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CONTINUOUS MESH FRAMEWORK
PART I: WELL-POSED CONTINUOUS INTERPOLATION ERROR

ADRIEN LOSEILLE∗ AND FRÉDÉRIC ALAUZET†

Abstract. In the context of mesh adaptation, Riemannian metric spaces have been used to
prescribe orientation, density and stretching of anisotropic meshes. But, such structures are only
considered to compute lengths in adaptive mesh generators. In this article, a Riemannian metric
space is shown to be more than a way to compute a length. It is proven to be a reliable continuous
mesh model. In particular, we demonstrate that the linear interpolation error can be evaluated
continuously on a Riemannian metric space.

From one hand, this new continuous framework proves that prescribing a Riemannian metric field
is equivalent to the local control in L1 norm of the interpolation error. This proves the consistency of
classical metric-based mesh adaptation procedures. On the other hand, powerful mathematical tools
are available and well defined on Riemannian metric spaces: calculus of variations, differentiation,
optimization, . . . whereas these tools are not defined on discrete meshes.

Key words. Unstructured mesh, continuous mesh, Riemannian metric space, interpolation
error, linear interpolate, anisotropic mesh adaptation, optimal interpolation error bound.

AMS subject classifications. 65D05, 65L50, 65N15, 65N50

Introduction. The prescription and the generation of adapted meshes are crucial
issues during an adaptive process. There exists a large class of methods to prescribe
and to generate adapted meshes depending on the problem at hand along with the
mesh specificity: uniform, isotropic, anisotropic, . . . The simplest algorithms consist
in refining or coarsening the current mesh according to patterns. However, such
strategies encounter several bottlenecks. In particular, mesh coarsening is only applied
to regions already refined by patterns, i.e., only added patterns can be removed, and
they do not allow the generation of anisotropic meshes. Moreover, the quality of the
sequence of refined meshes is strongly related to the quality of the initial mesh and
this quality can only decrease during the refinement process. A generic and elegant
way to prescribe anisotropy is to use the notion of metric and Riemannian metric
space. In this framework, an adapted anisotropic mesh is simply the image in the
Euclidean space of a uniform mesh in a Riemannian metric space. This approach
was initiated in [6, 23, 41]. Distances in the adaptive mesh generator are computed
in the Riemannian metric space rather than in the Euclidean one. Practically, it
consists in generating a unit mesh where the length of the edges is equal to one with
respect to the prescribed Riemannian metric. This method is commonly called metric-
based mesh adaptation. There are actually a lot of softwares based on the metric
concept. Let us cite Bamg [22] and BL2D [26] in 2D, Yams [19] for discrete surface mesh
adaptation and Feflo.a [31], Forge3d [10], Fun3d [25], Gamanic3d [20], MadLib [9],
MeshAdap [27], Mmg3d [13], Mom3d [40], Tango [5] and LibAdaptivity [34] in 3D. It is
worth mentioning that all these softwares have arisen from different mesh generation
methods. The method in [20, 22] is based on a global constrained Delaunay kernel.
In [26], the Delaunay method and the frontal approaches are coupled. [19] is based
on local mesh modifications. And, [10] is based on the minimal volume principle.

As the use of Riemannian metric fields is well-suited for the generation of anisotro-
pic adapted meshes, it is then mandatory to transform the error estimate at hand into
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2 ADRIEN LOSEILLE AND FRÉDÉRIC ALAUZET

a metric tensor field. When the solution is assumed to be smooth, a straightforward
solution consists in controlling the linear interpolation error. As the linear interpo-
lation error involves the Hessian of the solution, a metric-based estimate is easily
derived, see [6, 11, 17, 24]. When solutions are of low regularity, a priori or a pos-
teriori error estimates need to be modified to come up with a metric tensor field, as
in [16, 35]. However, both approaches generally involve successive bounds to end up
with a metric-based estimate. There are neither specific study on the importance of
these approximations nor any guaranty of the veracity of the provided upper bound.
In this context, we can still wonder if it is a relevant choice to use metric tensor fields
for the control of such error estimates. For the linear interpolation error, a lot of
numerical examples for real life problems [5, 14, 15, 17, 30, 34, 36, 40] tend to answer
affirmatively to this question.

In this paper, this question is theoretically addressed and we prove that it is a
relevant choice to use metric tensors for anisotropic mesh adaptation. To this end,
we propose to push further this idea and to point out that Riemannian metric spaces
are more than a way to compute lengths inside adaptive mesh generators.

In the proposed analysis, a strong duality between discrete entities, e.g. ele-
ments and meshes, and continuous mathematical objects, e.g. metric tensors and
Riemannian metric spaces, is exhibited. Several mathematical results, named geo-
metric invariants, link their respective properties such as orientation, density, etc.
Consequently, a new formalism naturally arises from these results. This is the con-
tinuous mesh framework where continuous element and continuous mesh models are
proposed. This formalism is justified throughout this work.

Next, we demonstrate that this new formalism extends to the study of the linear
interpolation error. More precisely, the local interpolation error of a given function
on a discrete element can be expressed only as a function of the associated continuous
element model. A definition of the continuous linear interpolate with a point-wise
expression of the continuous interpolation error can then be deduced. As a result, the
continuous interpolation error for a given continuous mesh can be accurately predicted
whatever the considered smooth function. Theoretically, the use of a discrete support
is no more mandatory to compute the interpolation error.

Overview. The organization of the paper is as follows. In a first section, we
recall the differential geometry notions that are repeatedly used throughout this work.
Section 2, several results that connect discrete elements and metric tensor on one hand,
and discrete meshes and Riemannian metric spaces on the other hand are proved.
According to these dualities, continuous element and mesh models are introduced
leading to the continuous mesh framework. In the last section, these results are used
to rewrite the discrete linear interpolation error in the continuous framework. It leads
to a well established notions of continuous linear interpolate and continuous point-wise
linear interpolation error.

1. Notion of metric tensor for mesh adaptation. In order to be self-
contained, we recall some notions of differential geometry. It mainly concerns the
computation of lengths for different kinds of spaces: the Euclidean space, Euclidean
metric spaces and Riemannian metric spaces. We refer to [2, 3, 12] for a complete
review on Riemannian metric spaces.

We use the following notations in the sequel. Bold face symbols, as a,b,u,v,x, . . .,
denote vectors or points of R3. Vector coordinates are denoted by x = (x1, x2, x3).
The natural dot product between two vectors u and v of R3 is 〈u, v〉.
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1.1. Euclidean metric space. An Euclidean metric space (R3,M) is a finite
vector space where the dot product is defined by means of a symmetric definite positive
matrix M such that 〈u,v〉M = 〈u,Mv〉 = tuMv , for (u,v) ∈ R3 × R3 . M is
written as a 3× 3 matrix verifying:

(i) (symmetric) ∀(u,v) ∈ R3 × R3 , 〈u,Mv〉 = 〈v,Mu〉
(ii) (positive) ∀u ∈ R3 , 〈u,Mu〉 ≥ 0

(iii) (definite) 〈u,Mu〉 = 0 =⇒ u = 0.
These properties ensure that M defines a dot product. In the following, the matrix
M is simply called a metric tensor or a metric. The simplest example of an Euclidean
metric space is given by the identity matrix I3 which spans the canonical Euclidean
space R3. With the dot product defined by M, R3 becomes a normed vector space
(R3, ‖.‖M) and a metric vector space (R3, dM(., .)) given the following norm and
distance definitions:

• ∀u ∈ R3 , ‖u‖M =
√
〈u,Mu〉

• ∀(u,v) ∈ R3 × R3 , dM(u,v) = ‖u− v‖M.
In these spaces, the length `M of a segment ab = [a,b] is given by the distance
between its extremities: `M(ab) = dM(a,b). Note that this property is generally
wrong for a general Riemannian metric space defined hereafter. In an Euclidean
metric space, volumes are still well posed. Given a bounded subset K of R3, the
volume of K computed with respect to metric tensor M is:

|K|M =

∫
K

√
detM dK =

√
detM|K|In . (1.1)

Geometric interpretation. We will often refer to the geometric interpretation of
a metric tensor. This geometric view plays an important role in the continuous mesh
model. In the vicinity V(a) of point a, the set of points, that are at distance ε of a,
is given by:

ΦM(ε) =
{
x ∈ V(a) | t(x− a)M (x− a) ≤ ε2

}
.

We note that it is sufficient to describe ΦM(1) as ΦM(ε) can be deduced from ΦM(1)
for all ε by homogeneity. To describe ΦM(1), the spectral decompositionM = RΛ tR
is used. R is an orthonormal matrix verifying tRR = RtR = I3. It is composed
of the eigenvectors of M. Λ is a diagonal matrix composed of the eigenvalues of
M. Eigenvalues (λi)i=1,3 are strictly positive. In the eigenvectors frame, the initial
quadratic form t(x− a)M (x− a) becomes t(x̃− ã) Λ (x̃− ã). Consequently, ΦM(1)
is rewritten in this basis:

ΦM(1) =

{
x̃ ∈ V(ã) |

3∑
i=1

(
x̃i − ãi
hi

)2

≤ 1

}
.

The last relation defines an ellipsoid centered at a with its axes aligned with the

principal directions of M. Sizes along these directions are given by hi = λ
− 1

2
i . We

denote by EM this ellipsoid. Figure 1.1 depicts EM. In the sequel, the set ΦM(1) is
called the unit ball of M and it is denoted by BM.

Natural metric mapping. The last information handled by M is the definition of
an application that maps the unit ball BI3 of identity metric I3 onto the unit ball BM
of M. This mapping is given by the application M− 1

2 : R3 7→ R3. M− 1
2 is defined

by the spectral decomposition M− 1
2 = RΛ−

1
2 tR, where Λ−

1
2 is the diagonal matrix
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composed of the inverse of the square root of the eigenvalues of M. This mapping
provides another description of the ellipsoid EM:

EM =
{
M− 1

2 x | ‖x‖22 = 1
}
.

v1

v2

v3

Fig. 1.1. Left, geometric interpretation of BM = ΦM(1). vi are the eigenvectors of M
and h−2

i are the eigenvalues of M. Right, geometric visualization of a Riemannian metric space
(M(x))x∈[0,1]×[0,1]. At each point x of the domain, the unit ball of M(x) is drawn.
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Fig. 1.2. Iso-values of the function f(x) = `M(ox) where o is the origin, i.e., segment length
issued from the origin, for different Riemannian metric spaces. Left, in the canonical Euclidean
space ([−1, 1] × [−1, 1], I2), middle, in an Euclidean metric space ([−1, 1] × [−1, 1],M) with M
constant and, right, in a Riemannian metric space (M(x))x∈[−1,1]2 .

1.2. Riemannian metric space. When a metric tensor field is varying smoothly
in the whole domain Ω, a Riemannian metric space is defined. We denote this space
by M = (M(x))x∈Ω. The continuous mesh model is based on such a space. To give
a practical visualization of a Riemannian metric space, the unit ball of the metric at
some points of the domain are drawn, see Figure 1.1 (right).

The main operation performed in this space is the computation of the length of
edges. It is important to note that, in a Riemannian metric space, computing the
length of a segment (i.e., an edge) differs from evaluating the distance between the
extremities of this segment. Indeed, the straight line is no more the shortest path
between two points which is given by a geodesic. To take into account the variation
of the metric along the edge, the edge length is evaluated with an integral formula:

Definition 1.1 (Edge length computation). In a Riemannian metric space M =
(M(x))x∈Ω, the length of edge ab is computed using the straight line parameterization
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γ(t) = a + tab, where t ∈ [0, 1]:

`M(ab) =

∫ 1

0

‖γ′(t)‖M dt =

∫ 1

0

√
tabM(a + tab) ab dt. (1.2)

Figure 1.2 depicts iso-values of segment length from the origin for different Riemannian
metric spaces. The plotted function is f(x) = `M(ox) where o is the origin of the
plane. The iso-values are isotropic for the Euclidean space. They are anisotropic in
the case of an Euclidean metric space defined by M. The two principal directions
of M clearly appear. In the case of a Riemannian metric space M, all previous
symmetries are lost.

2. Continuous mesh framework. We exemplify in this section the set of
meshes that are represented by a Riemannian metric space M. The study is first
done locally for an element and then generalized to the whole computational do-
main Ω. These considerations are based on the concept of a unit element and a unit
mesh [18], recalled hereafter. From this analysis, a new duality between discrete and
continuous entities will appear clearly.

2.1. Local duality. In this section, M is a constant metric tensor and K a
tetrahedron.

Definition 2.1 (Unit element). An element K is unit with respect to M if
the length of all its edges is unit in the metric M. If K is given by its list of edges
(ei)i=1,6, then :

∀i = 1, ..., 6, `M(ei) = 1 .

The volume of K is given by:

|K|M =

√
2

12
and |K|I3 =

√
2

12

√
det(M).

The relationships between unit discrete elements with respect toM are stated in
the following proposition:

Proposition 2.2 (Equivalence classes). LetM be a metric tensor, there exists a
infinite set of tetrahedra that are unit with respect toM. Conversely, given an element
K = (ei)i=1,6 such that |K|I3 6= 0, then there is a unique M for which element K is
unit with respect to M.
The relation unit with respect to M defines a class of equivalence among the set of
all discrete elements.

Proof. We first examine the uniform case where M = I3. The general case
is deduced from it by using the mapping M− 1

2 . Let K0 be a regular tetrahedron,
thereby K0 is unit with respect to I3. Whatever the rotation matrix R verifying
tRR = RtR = I3, the tetrahedron RK0 is still unit for I3. Consequently, the class
of all unit elements for I3 is:

K = {K | ∀R ∈ O3 : K = RK0} with O3 =
{
R| tRR = RtR = I3

}
.

The equivalence class of the unit elements with respect toM is then given by the set:{
M− 1

2K
∣∣∣∀K ∈ K} .
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Conversely, given a non-degenerated discrete element K = (ei)i=1,6, such that
|K|I3 6= 0, let us demonstrate that there exists a unique metric for which K is unit.
It is sufficient to solve the following linear system:

(S)


`2M(e1) = 1
...
`2M(e6) = 1 .

The determinant of (S) is equal to |K|I3 6= 0. Consequently, (S) admits a unique
solution.

Figure 2.1 depicts some unit elements with respect to a metric tensor (represented
geometrically by its unit-ball).

Fig. 2.1. Several unit elements with respect to a continuous element in 2D and 3D.

1

2

3

4
e1

e2

e3

e4

e5

e6

1

2

3

4

n1

n2

n3

n4

1
2

3

e1

e2 e3

Fig. 2.2. Conventions used to enumerate the edges and the faces of a triangle and of a tetra-
hedron.

2.2. Geometric invariants. So far, only Definition 2.1 has established relation-
ships between unit elements and the relative metric tensor. Other properties exist.
They connect the geometric properties of unit elements to the linear algebra proper-
ties of metric tensors. The following proposition gives geometric invariants that hold
for all unit elements with respect to a metric tensor.

Proposition 2.3 (Geometric invariants). Let M be a metric tensor and K be a
unit element with respect to M. We denote by (ei)i=1,6 its edges list, see conventions
in Figure 2.2, and by |K| its Euclidean volume. Then, the following invariants hold:

• standard invariants:

∀ (ei, ej),

{
teiM ei = 1,

2 teiM ej + 1 = 0 if i 6= j.
(2.1)



CONTINUOUS MESH FRAMEWORK PART I 7

• invariant related to the Euclidean volume |K|:

|K| =
√

3

4
det(M− 1

2 ) in 2D and |K| =
√

2

12
det(M− 1

2 ) in 3D. (2.2)

• invariant related to the square length of the edges for all symmetric matrix H:

3∑
i=1

teiHei =
3

2
trace(M− 1

2HM− 1
2 ) in 2D,

6∑
i=1

teiHei = 2 trace(M− 1
2HM− 1

2 ) in 3D.

(2.3)

Proof. The first invariant of Relation (2.1) stems from the definition of a unit
element.

The second invariant of Relation (2.1) states that the angle between two edges of a
unit element face is constant in the metric. Let (ei, ej) be a couple of edges of element
K, this couple defines a face. We denote by ek the third edge of this face. According to
the conventions depicted in Figure 2.2, these edges verify: ei+ej−ek = 0. Expanding
the following relation

t(ei + ej + ek)M (ei + ej − ek) = 0,

leads to the second invariant of Relation (2.1).
Invariant (2.2) is proved by a direct integration. Given a unit element K for M,

there exists a unique regular tetrahedron K0, which is unit with respect to I3, such
that K =M− 1

2K0. The volume of K is then given by:

|K| =
∫
K

1 dx =

∫
K0

det(M− 1
2 ) dx = det(M− 1

2 ) |K0|,

where |K0| =
√

2
12 . The same proof applies in 2D.

Invariant (2.3) is first proved in the simpler case where H = I3 andM = I3. The
general case will be deduced from this proof. Let us consider the regular tetrahedron
K0 = (x1,x2,x3,x4) unit for I3 defined by the list of vertices:

x1 = (0, 0, 0) , x2 = (1, 0, 0) , x3 =

(
1

2
,

√
3

2
, 0

)
and x4 =

(
1

2
,

√
3

6
,

√
2

3

)
.

The proof does not depend on this specific choice of coordinates. We first demonstrate
the following preliminary result: For all lines (D) passing through one of the vertices of
K0, the sum of the square lengths of the edges projected on (D) is invariant. Without
loss of generality, we assume that (D) passes through the vertex x1 of K0. If (D) is
defined by the vector

n = (cos(u) cos(v), cos(u) sin(v), sin(u)) ,

with (u, v) ∈ R2, then the length of the first three edges of K0 projected on (D) are
given by:

a = e1 .n = cos(u) cos(v), b = e2 .n =
1

2
cos(u) cos(v) +

√
3

2
cos(u) sin(v),

c = e3 .n =
1

2
cos(u) cos(v) +

√
3

6
cos(u) sin(v) +

√
2

3
sin(u),
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with conventions of Figure 2.2. A direct trigonometric calculus shows that the sum
of the square length of all the edges projected on (D) is equal to 2. Indeed, it comes:

Σ = a2 + b2 + c2 + (b− c)2 + (c− a)2 + (a− b)2

= 3 a2 + 3 b2 + 3 c2 − 2ab− 2ac− 2bc.

After expanding and factorizing, Σ reads:

Σ = 2 cos(u)2 cos(v)2 + 2 cos(u)2 sin(v)2 + 2 sin(u)2 = 2.

When M is different from I3, we use the mapping M− 1
2 that maps the unit

ball of I3 onto the unit ball of M. As regards line (D), we select the specific line
which has for direction vector one of the eigenvectors of M, e.g. vj , and which is
passing through x1. The lengths a, b and c are thus multiplied by hj which is the size
prescribed by M in the direction vj . Consequently, the square length of the edges
projected on (D) are multiplied by h2

j . It comes:

Σj =

6∑
i=1

(tei vj)
2 = h2

j Σ = 2h2
j .

Considering the previous relation for all the principal directions of M and summing
the Σj complete the proof:

6∑
i=1

‖ei‖22 =

3∑
j=1

6∑
i=1

(tei vj)
2 = 2

(
h2

1 + h2
2 + h2

3

)
= 2 trace(M−1). (2.4)

We now consider the case where a symmetric matrix H is involved in the estima-
tion. As H is symmetric, it has real eigenvalues (µi)i=1,3 along the principal directions
(ui)i=1,3. Let K be a regular tetrahedron given by its list of edges (ei)i=1,6. Accord-
ing to the preliminary result, the sum of the projected square length of edges (ei)i=1,6

on each principal direction uj is equal to 2. We deduce:

µj

6∑
i=1

(tei uj)
2 = 2µj ,

for j ∈ [1, 3]. Summing the previous equalities lead to:

3∑
j=1

6∑
i=1

µj (tei uj)
2 = 2 (µ1 + µ2 + µ3).

The previous equality reads:

6∑
i=1

teiHei = 2 trace(H).

The general case is deduced by taking M− 1
2 HM− 1

2 as symmetric matrix. In that
case, each edge ei of the regular tetrahedron is mapped on ẽi = M− 1

2 ei. The new
tetrahedron defined by edges (ẽi)i=1,6 is unit with respect to M. This concludes the
proof.
Other geometric invariants can be found in [28].
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2.3. Global duality. When dealing with a Riemannian metric space M =
(M(x))x∈Ω, the main complexity is to take into account the variations of the function
x 7→ M(x). To simplify the analysis, M is first rewritten in order to distinguish local
properties from global ones.

We recall the spectral decomposition of M(x):

M : x ∈ Ω 7→ M(x) = R(x) Λ(x) tR(x),

where diagonal matrix Λ(x) is either λ1(x)
λ2(x)

λ3(x)

 or

 h−2
1 (x)

h−2
2 (x)

h−2
3 (x)

 .
R(x) is an orthonormal matrix providing the local orientation given by the eigenvec-
tors (vi(x))i=1,3, (λi(x))i=1,3 are the local eigenvalues and (hi(x))i=1,3 are the local
sizes along the principal directions of M. Practically, another decomposition is used
that points out the local characteristics of M. This decomposition is given by the
following proposition.

Proposition 2.4. M = (M(x))x∈Ω locally writes:

M(x) = d
2
3 (x)R(x)

 r
− 2

3
1 (x)

r
− 2

3
2 (x)

r
− 2

3
3 (x)

 tR(x),

where
• the density d is equal to: d = (h1 h2 h3)

−1
= (λ1 λ2 λ3)

1
2 ,

• the anisotropic quotients ri are equal to: ri = h3
i (h1 h2 h3)

−1
.

Proof. The proof consists in computing d
2
3 r
− 2

3
i :

d
2
3 r
− 2

3
i =

(
3∏
k=1

hk

)− 2
3

h−2
i

(
3∏
k=1

hk

) 2
3

= h−2
i = λi.

The density d controls only the local level of accuracy of M. Increasing or decreas-
ing d does not change the anisotropic properties or the orientation, see Figure 2.3
(left). Anisotropic quotients arises from the quotient of different parallelepipeds, see
Figure 2.3 (right).

We also define the complexity C of M:

C(M) =

∫
Ω

d(x) dx =

∫
Ω

√
det(M(x)) dx.

This real-value parameter is useful to quantify the global level of accuracy of (M(x))x∈Ω.
It can also be interpreted as the continuous counterpart of the number of vertices of
a discrete mesh. This quantity also leads to the definition of sequence of embedded
Riemannian spaces. Two embedded Riemannian spaces have the same anisotropic
ratios and orientations. They only differ from their complexity:

Definition 2.5 (Embedded Riemannian spaces). Two Riemannian spaces, say-
ing (M(x))x∈Ω and (N (x))x∈Ω, are embedded if a constant c exists such that:

∀x ∈ Ω, N (x) = cM(x).
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h1

h2

h3

Fig. 2.3. Left, different unit elements where only the density increases from left to right. Right,
the geometric interpretation of anisotropic quotients as quotients of parallelepipeds volumes.

Conversely, from M = (M(x))x∈Ω, we can deduce N = (N (x))x∈Ω of complexity
N having the same anisotropic properties (anisotropic orientations and ratios) by
considering:

N (x) =

(
N

C(M)

) 2
3

M(x).

In the context of error estimation, this notion enables convergence order study with
respect to an increasing complexity N . Consequently, the complexity C(M) is also
the continuous counterpart of the classical parameter h used for uniform meshes while
studying convergence. In the continuous framework, the uniform refinement consisting
in dividing by two each edge of a uniform mesh of size h writes:

Mi = 4i

 1
h2

1
h2

1
h2

 ,
where i is the level of refinement. (Mi)i=1...k defines a sequence of embedded Rie-
mannian spaces. Consequently, this simple practical adaptive strategy has a simple
continuous interpretation in term of embedded Riemannian spaces. However, when
dealing with anisotropic meshes, a unique size h is no more sufficient to give a quan-
titive information on the accuracy. The size h is then replaced by the complexity.

Unit mesh. The notion of a unit mesh is far more complicated than the notion
of a unit element as the existence of a mesh composed only of unit regular simplexes
with respect to a given Riemannian space is not guaranteed. For instance, if the
Riemannian space is not compatible with the domain size, then it clearly does not exist
such discrete mesh. To avoid this problem, let us look at the existence of a discrete
mesh composed only with unit regular simplexes with respect to a Riemannian space
in R3. To simplify even more the problem, we first consider (I3(x))x∈R3 .

It is well known that R3 cannot be filled only with the regular tetrahedron while
it is possible to fill R2 with the equilateral triangle. Consequently, even for the
simplest case (I3(x))x∈R3 , there is no discrete mesh composed only of the unit regular
tetrahedron. Therefore, the notion of a unit mesh has to be relaxed:

Definition 2.6 (Unit mesh). A discrete mesh H of a domain Ω ⊂ R3 is unit
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for (M(x))x∈Ω if all its elements are quasi-unit.
Now, let us give a meaning to quasi-unit in three dimensions. A first way to relax

the definition of unity is to take into account technical constraints imposed by mesh
generators. To converge (and to avoid cycling) while analyzing the length of edges,
the meshing algorithm considers an admissible length interval of the form [ 1

α , α] with

α > 0 [19]. If the symmetry property is required, i.e., α2 = 1
α , then we obtain α =

√
2.

Therefore, as regards the meshing requirement, a tetrahedron K defined by its list of
edges (ei)i=1,6 is said quasi-unit if ∀i ∈ [1, 6], `M(ei) ∈ [ 1√

2
,
√

2]. Nevertheless, we

do not know if this definition provide the existence of a unit mesh for (I3(x))x∈R3 .
In the following, this question of existence is studied by means of the space filling
tetrahedra.

Non-regular space filling tetrahedra. The study of space filling tetrahedra is an
old geometrical question [33, 37]. In the past, it has been demonstrated that there
exist sets of non-regular space filling tetrahedra: the Sommerville tetrahedra [38] and
the Goldberg tetrahedra family [21].

The Sommerville tetrahedra are based on particular splittings of the unit cube,
see Figure 2.4. We recall these tetrahedra thanks to their vertices coordinates, only
the last vertex distinguishes them. K is denoted (x1,x2,x3,x4) with x1 = (0, 0, 0),
x2 = ( 1

2 ,−
1
2 ,

1
2 ), x3 = ( 1

2 ,
1
2 ,

1
2 ) and

• x4 = ( 1
2 , 0, 0) for the Sommeville tetrahedron 1

• x4 = (1, 0, 0) for the Sommeville tetrahedron 2
• x4 = ( 1

2 ,−
1
2 ,−

1
2 ) for the Sommeville tetrahedron 3

• x4 = ( 1
2 , 0,−

1
4 ) for the Sommeville tetrahedron 4.

3a

3a

e

2a

3a

e

c

e

c

b

c

b

c

b

c

b

e e
e

3a

c

b

b

b

e
e

e

a

b

3a

c

b
b

c

C

A

B

D

1

A

Fig. 2.4. From left to right, the Sommerville tetrahedra 1, 2, 3 and 4.

The Goldberg tetrahedra are based on the splitting of a prism the basis of which
is the equilateral triangle. Their coordinates depend on an initial choice of two lengths
a and e. We specify one of the Goldberg tetrahedra for the specific choice a = 1

3 and
e = 1:

• x1 = (0, 0, 0), x2 = (0, 0, 1), x3 = (0, 1, 1
3 ) and x4 = (

√
3

2 ,
1
2 ,

2
3 ).

We propose now to compare these space filling tetrahedra to the unit regular
tetrahedron. To this end, all these tetrahedra are scaled such that their volumes

are equal to
√

2
12 . The resulting lengths of edges for each tetrahedron are specified in

Table 2.1. We notice that the proposed notion of quasi-unit element is only verified
for the Sommerville tetrahedra 1 and 2, and the Goldberg tetrahedron. Therefore,
there exists space filling tetrahedra that are quasi-units for the metric I3 in the sense
proposed above.

Now, the case of a constant anisotropic metricM is studied. We consider the pat-
tern around a vertex, i.e., the vertex ball, composed only with the second Sommerville
tetrahedron. This pattern exists as it fills (R3,M). The vertex ball is mapped back in
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the natural Euclidean space thanks to the applicationM 1
2 . Then, we notice that the

non-regularity of the second Sommerville tetrahedron leads necessarily to the creation
(in the Euclidean space) of several different anisotropic tetrahedra. However, all these
different tetrahedra have the same length of edges and the same volume in the metric
M. Consequently, filling space with only one tetrahedra is possible for all isotropic
metrics of the form αI3, but a set of tetrahedra is required to fill the Euclidean space
anisotropically.

Controlling the volume. Unfortunately, the weaker constraint on the length of
edges can lead to the generation of quasi-unit elements with a null volume. For
instance in (R3, I3), the regular tetrahedron with length of edges equal to

√
2 is quasi-

unit for I3. However, if one of its vertex is projected orthogonally on the opposite
face, then a quasi-unit element of null volume is obtained. Indeed, three edges are of

length
√

2 and the three other are of length
√

3
6 ≈ 0.816 ∈

[
1√
2
,
√

2
]
. In consequence,

controlling only the length of the edges is not sufficient, the volume must also be con-
trolled to relax the notion of unit element. Practically, this is achieved by controlling
the ratio between the sum of the square length of the edges over the volume of the
element. All quantities are computed within the prescribed metric. With this ratio,
we define a function QM that measures the quality in M of an element K:

QM(K) =
36

3
1
3

|K|
2
3

M∑6
i=1 `

2
M(ei)

∈ [0, 1] . (2.5)

The constant 36

3
1
3

is chosen so that QM is equal to 1 for the equilateral tetrahedron

whatever the length of its edges. For a null volume tetrahedron, QM is 0. The
qualities of the space filling tetrahedra are given in Table 2.1. Notice that QM only
quantifies the gap to the shape of the regular tetrahedron. We deduce the following
definition of quasi-unit element, which is also practically used by mesh generators:

Definition 2.7 (Quasi-unit element). A tetrahedron K defined by its list of
edges (ei)i=1,6 is said quasi-unit for M if

∀i ∈ [1, 6], `M(ei) ∈
[

1√
2
,
√

2

]
and QM(K) ∈ [α, 1] with α > 0 .

In our case, α = 0.8 is an acceptable value as it enables the Sommerville tetrahedra
1 and 2, and the Goldberg tetrahedron to be generated.

Remark 1. Instead of considering QM, the quality function 1
QM

can be consid-

ered. As the variation range becomes [1,∞[, the discrimination of bad elements is
made easier.

2.4. Continuous terminology. Propositions 2.2 and 2.4 highlight a duality
between discrete entities and continuous ones. It results that, in the proposed con-
tinuous framework, a metric tensor M is assimilated to a continuous element and
a continuous mesh of a domain Ω is defined by a collection of continuous elements
M = (M(x))x∈Ω, i.e., a Riemannian metric space. In particular, for an element, this
duality is justified by strict analogy between discrete and continuous notions: orien-
tation vs. matrix R, stretching vs. ri and size vs. d. For a mesh, we point out the
duality between the number of vertices and C(M). Proposition 2.3 also illustrates a
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duality between geometric quantities. This duality will be even reinforced in the next
section by studying the interpolation error.

In what follows, the continuous terminology is employed to emphasize the exhib-
ited duality. In particular, a continuous elementM is a metric tensor and a continuous
mesh of a domain Ω ⊂ R3 is a Riemannian metric space M = (M(x))x∈Ω.

3. Continuous linear interpolation error: discrete-continuous duality.
In the previous section, a continuous framework has been introduced to model ele-
ments and meshes. Now, we aim at applying this framework in the context of error
estimation. However, as our intent is to propose a fully discrete-continuous duality,
it is not enough to derive only the optimal mesh arising from an interpolation error
bound as in classical studies on interpolation error [6, 17, 24]. Instead, we want to
evaluate the interpolation error for any functions on any continuous meshes without
imposing some optimality conditions as alignment, equi-distribution, . . .

Let (M(x))x∈Ω be a continuous mesh of a domain Ω and let u be a non linear
function which is assumed to be only twice continuously differentiable. We seek a well-
posed definition of the continuous linear interpolation error ‖u − πMu‖L1(Ω) related
to a continuous mesh (M(x))x∈Ω which implies a well-posed definition of a linear
continuous interpolate πMu. More precisely, we would like the continuous linear
interpolation error to be a reliable mathematical model of ‖u−Πhu‖L1(Ωh) where Πh

is defined by a mesh H of a discretized domain Ωh which is a unit mesh with respect
to (M(x))x∈Ω. In fine, this means that considering ‖u− πMu‖L1(Ω) is equivalent to
consider ‖u−Πhu‖L1(Ωh).

The error analysis is first done locally, i.e, in a tangent space of (M(x))x∈Ω at a
given point a. In the tangent space, (M(x))x∈Ω reduces to the continuous element
M(a). In other words, the analysis is performed locally at the element level. The
function u is approximated by its local quadratic taylor expansion. Indeed, terms of
order greater than two can be neglected while studying the linear interpolation error.
Then, a global error estimate is derived by taking into account the variation of the
continuous mesh and of the function.

3.1. Interpolation error in L1 norm for quadratic functions. In this sec-
tion, we consider a quadratic function u defined on a domain Ω ⊂ R3. The function
is given by its matrix representation:

∀x ∈ Ω, u(x) =
1

2
txH x,

Tetrahedron Coeff. Length of edges Quality

Sommerville 1
√

2 0.70 1.22 1.22 1.0 1.0 1.41 0.800

Sommerville 2 2
1
6 1.12 0.970 0.970 0.970 0.970 1.12 0.954

Sommerville 3 2
1
6 0.970 0.970 0.970 1.12 1.59 1.12 0.763

Sommerville 4 12−
1
3 2

3
2 0.691 1.07 1.07 1.12 1.12 1.23 0.886

Goldberg 3−
1
2 2

1
6 0.932 0.990 1.12 1.12 0.990 0.990 0.950

Table 2.1
Space filling tetrahedra characteristics. Coeff. is the coefficient that scales the tetrahedron onto

a unit volume tetrahedron, i.e., |K| =
√

2/12. The length of edges and the tetrahedron quality QI3
given by Formula (2.5) are provided.
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where H is a symmetric matrix representing the Hessian of u. For every symmetric
matrix H, |H| denotes the positive symmetric matrix deduced from H by taking
the absolute values of its eigenvalues. The function u is linearly interpolated on a
tetrahedron K defined by its vertices list: K = (x1,x2,x3,x4). |K| denotes the
Euclidean volume of K. We denote by Πhu the linear interpolate of u on K. We can
now state the following result:

Proposition 3.1. For every quadratic function u, its linear interpolation error
in L1 norm on a tetrahedron K verifies:

‖u−Πhu‖L1(K) ≤
|K|
40

6∑
i=1

tei|H|ei,

where (ei)i=1,6 is the set of edges of K.
The previous inequality becomes an equality when u is elliptic or parabolic.

Proof. The proof consists in deriving an exact error estimate of the point-wise
interpolation error within the element K: e(x) = (u − Πhu)(x) for x ∈ K. This
error is then integrated over K. To derive e, we use the standard reference element
technique. Reference element Kref is defined by its four vertices coordinates:

x̂1 = t(0, 0, 0), x̂2 = t(1, 0, 0), x̂3 = t(0, 1, 0) and x̂4 = t(0, 0, 1).

All the computations are done on Kref and the result is then mapped onto the current
element K by using the following affine mapping:

x = v1 +BK x̂ with BK = [x2 − x1,x3 − x1,x4 − x1], x ∈ K, x̂ ∈ Kref .

The matrix Bk is given as a function of the following edges:

e1 = x2 − x1, e2 = x3 − x1 and e3 = x4 − x1,

so that BK = [e1, e2, e3]. The quadratic function u reads in the frame of Kref :

u(x(x̂)) =
1

2
tx1H x1 +

1

2
tx1H BK x̂ +

1

2
tx̂ tBK H x1 +

1

2
tx̂ tBK H BK x̂.

As we consider the linear interpolation, linear and constant terms of u(x(x̂)) are
exactly interpolated. Without loss of generality, these terms are neglected and only
quadratic terms are kept. Indeed, if we consider ũ(x) = 1

2
tx̂ tBK H BK x̂, then it

comes:

e(x) = (u−Πhu)(x) = (ũ−Πhũ)(x).

We can now consider ũ instead of u. However for the sake of clarity, we keep on
writing u and not ũ. We rewrite u in a matrix form:

u(x(x̂)) =
1

2
t

 x̂
ŷ
ẑ

 te1He1
te1He2

te1He3
te2He1

te2He2
te2He3

te3He1
te3He2

te3He3

 x̂
ŷ
ẑ

 .

u in Kref reads:

u(x(x̂)) =
1

2
[ (te1He1) x̂2 + (te2He2) ŷ2 + (te3He3) ẑ2 +

2(te1He2) x̂ŷ + 2(te1He3) x̂ẑ + 2(te2He3) ŷẑ ].
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u is now linearly interpolated on Kref . Its linear interpolate Πhu(x̂) writes ax̂+ bŷ+
cẑ+ d, where coefficients (a, b, c, d) ∈ R4 satisfies the following linear system ensuring
the P1 exactness, i.e., Πhu(vi) = u(vi) for all i ∈ [1, 4]:

Πhu(v1) = d = u(x((0, 0, 0)) = 0,

Πhu(v2) = a = u(x((1, 0, 0)) = 1
2 (te1He1),

Πhu(v3) = b = u(x((0, 1, 0)) = 1
2 (te2He2),

Πhu(v4) = c = u(x((0, 0, 1)) = 1
2 (te3He3).

The solution of the previous linear system gives the final expression of Πhu:

Πhu(x(x̂)) =
1

2

[
(te1He1) x̂+ (te2He2) ŷ + (te3He3) ẑ

]
.

The exact point-wise interpolation error e(x) is then given by:

e(x(x̂)) =
1

2
[ (te1He1) (x̂2 − x̂) + (te2He2) (ŷ2 − ŷ) + (te3He3) (ẑ2 − ẑ)

+ 2 (te1He2) x̂ŷ + 2 (te1He3) x̂ẑ + 2 (te2He3) ŷẑ ].

From this equality, estimate in L1, L2 or H1 can be deduced by considering the change
of variables given by the mapping BK . Indeed, for every function F , its integration
over K can be computed through its expression in Kref :∫

K

F (x) dxdydz =

∫
Kref

F (x(x̂)) |det(BK)|dx̂dŷdẑ,

As 6 |K| = det(Bk), previous equality becomes:∫
K

F (x) dxdydz = 6|K|
∫
Kref

F (x(x̂)) dx̂dŷdẑ.

Consequently, the interpolation error in L1 norm is evaluated by a direct integration
of |e(x)|. When u is concave or convex, we have: |(u − Πhu)(x)| = (u − Πhu)(x) in
the convex case and |(u− Πhu)(x)| = −(u− Πhu)(x) in the concave case. The error
reads:

‖u−Πhu‖L1(K) =
|K|
40

∣∣ 2(te1H e2 + te1H e3 + te2H e3)

− 3(te1H e1 + te2H e2 + te3H e3)
∣∣.

Using the conventions of Figure 2.2, the crossed terms can be expressed only in
terms of eiH ei for i = 1, .., 6:

2 te1H e2 = te1H e1 + te2H e2 − te4H e4,

2 te1H e3 = te1H e1 + te3H e3 − te5H e5,

2 te2H e3 = te2H e2 + te3H e3 − te6H e6.

We deduce:

∣∣2(te1H e2 + te1H e3 + te2H e3)−3(te1H e1 + te2H e2 + te3H e3)
∣∣ =

∣∣∣∣∣
6∑
i=1

teiH ei

∣∣∣∣∣ .
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If u is hyperbolic, the inequality 1
2 |xH x| ≤ 1

2x |H|x is used to conclude the proof in
the general case.

The same proof applies in 2D. For a quadratic function u, the linear interpolation
error on a triangle K is given by:

‖u−Πhu‖L1(K) ≤
|K|
24

3∑
i=1

tei|H|ei.

Error estimates in L2 norm and in H1 norm can also be derived. We refer to [4, 32]
and references therein for their evaluations. These error estimates are classically used
to exhibit mesh quality functions and to obtain the best element shape minimizing
the interpolation error [1]. In the continuous mesh framework, the interpolation error
estimate in L1 norm is used to prove some exactness properties of the continuous
linear interpolate.

Remark 2 (Safety principle). Even if it is possible to define exactly the linear
interpolation error in L1 norm for hyperbolic functions, we do not consider these
expressions from a practical point of view. We prefer to consider |H| instead of H
transforming the function into an elliptic or a parabolic one. It comes to in over-
estimating the error for hyperbolic functions. Indeed, it seems that we do not take any
advantages of considering the null error directions for mesh adaptation.

3.2. Linear interpolation on a continuous element. Let M be a continu-
ous element and u be a quadratic positive function (see Remark 2). We study the
interpolation error for the class of all unit discrete elements with respect toM, given
by Definition 2.1. Figure 2.1 depicts for a given metric tensorM some unit elements.
We can now state the main result:

Theorem 3.2. For all unit elements K with respect toM, the interpolation error
of u in L1 norm does not depend on the element shape and is only a function of the
Hessian H of u and of continuous element M.

• In 3D, for all unit elements K for M, the following equality holds:

‖u−Πhu‖L1(K) =

√
2

240
det(M− 1

2 ) trace(M− 1
2 HM− 1

2 ). (3.1)

• In 2D, for all unit elements K for M, the following equality holds:

‖u−Πhu‖L1(K) =

√
3

64
det(M− 1

2 ) trace(M− 1
2 HM− 1

2 ).

Proof. According to Proposition 3.1, the interpolation error in L1 norm of a
quadratic positive function u on an element K is:

‖u−Πhu‖L1(K) =
|K|
40

6∑
i=1

teiHei .

Then, if K is unit with respect to M, the previous interpolation error is expressed
by:

‖u−Πhu‖L1(K) =

√
2

240
det(M− 1

2 ) trace(M− 1
2 HM− 1

2 ).
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thanks to the geometric invariants related to the volume, Relation (2.2), and to the
square lengths of the edges, Relation (2.3).

We note the strong analogy with classical interpolation error estimate for La-
grange interpolation [7]:

• The term det(M− 1
2 ) stands for the Jacobian of the affine transformation

from the reference element K̂ onto the current element K. In our continuous
framework, it is the Jacobian of the affine mapping between the reference
continuous element unit ball BI3 onto the current continuous element unit
ball BM.

• The term trace(M− 1
2 HM− 1

2 ) stands for the semi-norm involved in classical
error estimates. Generally, this semi-norm contains the anisotropic behavior
of the estimate. In the continuous framework, the trace-term gives the align-
ment correlation between the principal directions of the Hessian H and the
principal directions of the metric M.

Relation (3.1) shows that the infinite set of discrete elements that are unit for
a given continuous element M achieves the same interpolation error, and moreover,
shows that this interpolation error is only expressed with continuous quantities: the
continuous elementM and the Hessian of the function u. Consequently, Theorem 3.2
points out that the metric alone contains enough information to describe completely
the linear interpolation error in L1 norm. In other words, this theorem confirms
that the use of metric-based mesh adaptation is particularly well suited to control
anisotropically the interpolation error. In the past, this efficiency has been observed
practically on real life problems, see for instance [5, 14, 15, 17, 30, 34, 36, 40].

3.3. Continuous linear interpolate. The main difficulty in defining the con-
tinuous linear interpolate is to connect a discrete error computed on an element to
a local continuous error that is defined point-wise. Indeed, the discrete interpolation
error in norm L1 is integrated on the element K. On the contrary, a continuous mesh
is a function x 7→ M(x) defined at each point x of Ω.

Suppose now that the continuous mesh (M(x))x∈Ω is varying and that the func-
tion u is no more quadratic but only twice continuously differentiable. If Equality (3.1)
of Theorem 3.2 does not hold anymore, all the terms of the right-hand-side M and
H are well defined continuously. The definition of a continuous interpolate follows up
from this consideration.

We denote by uQ the quadratic approximation of a smooth function u. At point
a, uQ is defined in the vicinity of a as the truncated second order Taylor expansion
of u:

∀x ∈ V(a) , uQ(a;x) = u(a) +∇u(a)(x− a) +
1

2
〈(x− a), H(a)(x− a)〉.

When no confusion is possible, the notation uQ(a;x) is replaced by uQ(x). uQ is a
complete quadratic form composed of a constant term, a linear term and finally a
quadratic term.

The first result of this section provides an equivalence formula between discrete
and continuous views locally around a point a of the domain. In the vicinity of a, uQ
approximates u and (M(x))x∈Ω reduces to M(a) in the tangent space. We can now
state the main result:

Theorem 3.3 (Discrete-continuous equivalence). Let u be a twice continuously
differentiable fonction of a domain Ω and (M(x))x∈Ω be a continuous mesh of Ω.
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Then, there exists a unique continuous linear interpolate function πM such that:

∀a ∈ Ω , |u− πMu|(a) = 2
‖uQ −ΠhuQ‖L1(K)

|K|
,

for every K unit element with respect to M(a).
The proof is given hereafter, we first look at the consequences of this theorem.

Corollary 3.4. Let u be a twice continuously differentiable fonction of a domain
Ω and (M(x))x∈Ω be a continuous mesh of Ω. Then, the following continuous linear
interpolation estimate holds in 3D:

∀a ∈ Ω , |u− πMu|(a) =
1

10
trace

(
M(a)−

1
2 |H(a)|M(a)−

1
2

)
=

1

10

(
d(a)−

2
3

3∑
i=1

ri(a)
2
3 tvi(a) |H(a)|vi(a)

)
.

In 2D, the estimate is:

∀a ∈ Ω , |u− πMu|(a) =
1

8
trace

(
M(a)−

1
2 |H(a)|M(a)−

1
2

)
=

1

8

(
d(a)−1

2∑
i=1

ri(a) tvi(a) |H(a)|vi(a)
)
.

Proof. In 3D, for all unit elements K with respect to M(a), the error estima-
tion (3.1) can be rewritten as follow for the quadratic function uQ approximating u
in the vicinity of a:

‖uQ −ΠhuQ‖L1(K)

|K|
=

1

20
trace(M(a)−

1
2 |H(a)|M(a)−

1
2 ).

Then, expressingM(a) as a function of the continuous mesh parameters given by the
decomposition of Proposition 2.4 leads to:

‖uQ −ΠhuQ‖L1(K)

|K|
=

1

20

(
d(a)−

2
3

3∑
i=1

ri(a)
2
3 tvi(a) |H(a)|vi(a)

)
where the (vi(a))i=1,3 stand for the eigenvectors of M(a).

This result shows that the continuous point-wise linear interpolation can be de-
composed into the product of two terms:

• a first term that control the accuracy, this density term is directly connected
to the size of the continuous element,

• a second term that measures alignment deviation between the continuous
element orientation and the anisotropy features of the function u.

Remark 3 (Convergence order). Note that if the first term (involving the density)

is rewritten in term of metric size accordingly to Proposition 2.4, d(a)
2
3 in 3D and

d(a)−1 in 2D are both of the order of h−2(a). This shows the typical second order
of convergence for the linear interpolation error. We study the convergence analysis
within the continuous framework in Part II [29].

It is possible to give a geometric interpretation of this estimate. This inter-
pretation illustrates the impact of a continuous mesh on the error iso-values and,
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consequently, gives some clue toward the control of the error by means of a con-
tinuous mesh. The term M− 1

2 (a) |H(a)|M− 1
2 (a) corresponds to the frame change

related to the continuous mesh local orientation. Given a symmetric matrix |H(a)|,
the corresponding quadratic form is: f = 1

2
tx |H(a)| x.

The matrix M− 1
2 (a) |H(a)|M− 1

2 (a) corresponds to a new quadratic form ob-
served in the space deformed by M(a). Indeed, if we consider the change of coordi-

nates x̃ =M 1
2 (a)x, we define a new quadratic form f̃ :

f̃(x̃) = tx |H(a)|x = t(M− 1
2 (a) x̃) |H(a)|M− 1

2 (a) x̃

= tx̃
(
M− 1

2 (a) |H(a)|M− 1
2 (a)

)
x̃.

Iso-values of f̃ and f are different when they are seen in the canonical Euclidean space.
In fact, viewing a quadratic form for different continuous meshes changes its iso-values
in the Euclidean space, i.e., the real physical space. It is then possible to control the
error iso-values by modifying M. This is the main principle of mesh adaptation, but
here formulated in a continuous framework. Mesh adaptation principle: Classical
metric-based mesh adaptation consists in finding a metric field that provides isotropic
iso-values of the error function, see pionneer work [6].

These results demonstrate that both the interpolation error and the linear in-
terpolate Πh have continuous counterparts. It is then a step forward in finding a
complete duality between the discrete and the continuous views. From a practical
point of view, we deduce the following analogy. Given a unit mesh H of a domain Ωh
with respect to a continuous mesh (M(x))x∈Ω, the global interpolation error is:

‖u−Πhu‖L1(Ωh) =
∑
K∈H

‖u−Πhu‖L1(K). (3.2)

In the continuous case, the discrete summation becomes an integral:

‖u− πMu‖L1(Ω) =

∫
Ω

|u− πMu|(x) dx. (3.3)

Note that there is no global guarantee on the continuous interpolation error reliability
given by Relation (3.3). For instance, there is no a priori relationship between (3.2)
and (3.3). The only guarantee is the local equivalence given by Theorem 3.3. However,
the local guarantee becomes global when the mesh is unit with respect to a constant
metric tensor (this does not necessary implied that the mesh is uniform) and when the
function is quadratic. In this specific case, by neglecting error due to the boundary
discretization, we have the equality:

2 ‖u−Πhu‖L1(Ωh) = ‖u− πMu‖L1(Ω),

for all unit meshes H with respect to (M(x))x∈Ω. The numerical examples in Part
II [29] will numerically demonstrate the efficiency of the continuous model. In partic-
ular, we will observe that:

• the model is accurate and the equivalence (3.2)≈(3.3) is observed for non
quadratic functions and non-constant continuous meshes,

• the error due to the fact that mesh generator generates edges with length not
stricly equal to one is negligible. In particular, the range for the lengths of
the edges given in Definition 2.7 ensures reliable numerical results.
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The constant 2 involved in Theorem 3.3 arises in the perfect case where the
mesh is only composed of perfect unit elements. Note this is only possible in 2D
whereas it is always false in 3D due the impossibility to tessel the space only with the
regular tetrahedron. In a more practical situation, this constant needs to be evaluated
from one unit mesh in order to estimate the deviation between the continuous mesh
complexity with respect to the number of vertices of the unit mesh. In other words,
the number of vertices Nv of a unit mesh verifies the following function:

Nv = C N,

where N is the continuous mesh complexity and C a constant. The constant C
depends on the domain shape, the mesh generator used and the unit mesh resulting
quality. Consequently, it reflects how far the current mesh is from the perfect unity.
Several examples are given in the numerical examples section and illustrates this
relation.

To conclude this section, the proof of Theorem 3.3 is given. This proof is based
on the exact expression of the continuous linear interpolate:

Proposition 3.5. The continuous interpolate πMu evaluated at a ∈ Ω for a
continuous mesh (M(x))x∈Ω and for a smooth function u is given by:

πMu(a) = p∗(0),

where p∗ is the unique linear polynomial solution of:

p∗ = min
p∈P1

‖uQ − p‖L2(BM),

where uQ is the quadratic model of u at a and BM is the unit ball of M at a. πM is
given by

πMu(a) = u(a) +∇u(a) +
1

cn
trace(M− 1

2 (a)H(a)M− 1
2 (a)),

where cn is a constant that depends only on the space dimension:

c2 =
1

8
and c3 =

1

10
.

Proof. The quadratic model uQ of u at point a defined by:

uQ(a;x) = u(a) +∇u(a)(x− a) +
1

2
〈(x− a), H(a)(x− a)〉,

becomes after the translation x 7→ x + a

uQ(x) =
1

2
txH(a)x +∇u(a)x + u(a).

The linear polynomial p∗ is given by:

p∗ : x ∈ BM 7→ tg x + c,

where c ∈ R and g ∈ R3. As the space of linear polynomials P1 and BM are convex,
p∗ exists and is unique. We seek for p∗ verifying the following condition:

∀p ∈ P1 ,

∫
BM

(uQ(x)− p∗(x)) p(x) dx = 0.
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In particular, it is true for the following basis of P1: x 7→ 1, x 7→ xi, for i ∈ {1, 2, 3}.
The previous condition leads to:∫

BM

(uQ(x)− p∗(x)) dx = 0 and

∫
BM

(uQ(x)− p∗(x))xi dx = 0, (3.4)

for i = {1, 2, 3}. The initial integration domain BM is mapped onto BI3 by using the
following one-to-one change of variables:

BM −→ BI3
x 7−→ y =M(a)

1
2 x.

Functions uQ and p∗ becomes:

uQ(x) = ũQ(y) = 1
2
tyM(a)−

1
2 H(a)M(a)−

1
2y + tyM(a)−

1
2 ∇u(a) + u(a),

p∗(x) = p̃∗(y) = tyM(a)−
1
2 g + c.

We now consider the following basis: y 7→ 1, y 7→ yi, for i ∈ {1, 2, 3}. Equations (3.4)
become: ∫

BI3

(ũQ(y)− p̃∗(y)) det(M(a)−
1
2 ) dy = 0,∫

BI3

(ũQ(y)− p̃∗(y)) yi det(M(a)−
1
2 ) dy = 0,

for i = {1, 2, 3}. A formal integration gives in 3D [39]:(
2

15
trace(M(a)−

1
2 H(a)M(a)−

1
2 ) +

4

3
(u(a)− c)

)
det(M(a)−

1
2 ) = 0,(

4

15
M(a)−

1
2 (∇u(a)− g)

)
det(M(a)−

1
2 ) = 0,

from which the expression of p∗ is deduced:

g = ∇u(a) and c = u(a) +
1

10
trace(M(a)−

1
2 H(a)M(a)−

1
2 ).

Finally, for the 2D case, the expression of p∗ is given by:

g = ∇u(a) and c = u(a) +
1

8
trace(M(a)−

1
2 H(a)M(a)−

1
2 ).

The proof of Theorem 3.3 is deduced from the definition of πMu(a).
In the case where the continuous mesh is constant and the function u quadratic,

we verify (3.2)=(3.3).
Notice that using the L2 projection of the quadratic model uQ of u is necessary

to ensure the specific equivalence between the discrete linear interpolate Πh and the
continuous linear interpolate πM of Theorem 3.3. However, the continuous linear
interpolate is still well defined if we use the function u instead of uQ. It seems then
possible to define the continuous linear interpolate for far less regular functions. For
instance, one may consider only functions that are locally L2. An open problem
is then to find a discrete linear interpolation operator which enables discrete and
discontinuous approaches to be linked. Some works involving other interpolation
operators have already been considered, we can cite the developments in [16] that
derive interpolation error estimate based on the Clément’s interpolate [8].
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4. Conclusion. In this paper, we have proposed a continuous framework to
model a mesh and its elements. The model is based of the notion of Riemannian
metric space. In this context, the following analogy has been proved. Geometric
invariants have been exhibited that connect a metric tensor to the set of all the
discrete elements which are represented by this metric. Metric tensors have then
been used to continuously model discrete elements. As the behavior of a Riemannian
metric space is obtained by patching together the behavior of each of its tangent
spaces, which are defined by metric spaces, the global continuous mesh model arises
from gathering together all the continuous elements. This continuous mesh model
is emphasized by rewriting the symmetric definite positive matrix representing the
metric tensor at each point of the computational domain. Continuous mesh features
as density, orientation and stretching ratio are pointed out. The discrete projection
is then based on the notion of unit mesh. A unit mesh with respect to a continuous
mesh is provided by the use of an adaptive mesh generator. Consequently, the discrete
image depends on the method used to generate the mesh and is not unique.

The discrete-continuous duality has been completed by providing a continuous
interpolation error estimate and a well-posed definition of the continuous linear in-
terpolate. The latter is based on an exact relation connecting the discrete error to
the continuous one. This main result states that the linear interpolation error on
the class of unit elements is only a function of the associated continuous element and
of the considered function. In other words, the notion of continuous mesh handles
sufficient information to completely model the interpolation error which is a priori
only discrete.
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