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On strong and almost sure local

limit theorems for a probabilistic

model of the Dickman distribution

Régis de la Bretèche & Gérald Tenenbaum

To the memory of Jonas Kubilius,
who stood on the bridge and invited us all.

Abstract.

Let {Zk}k>1 denote a sequence of independent Bernoulli random variables defined by
P(Zk = 1) = 1/k = 1− P(Zk = 0) (k > 1) and put Tn :=

∑
16k6n kZk. It is then known that

Tn/n converges weakly to a real random variable D with density proportional to the Dickman
function, defined by the delay-differential equation u%′(u) + %(u − 1) = 0 (u > 1) with initial
condition %(u) = 1 (0 6 u 6 1). Improving on earlier work, we propose asymptotic formulae
with remainders for the corresponding local and almost sure limit theorems, namely

∑
m>0

∣∣∣∣P(Tn = m)−
e−γ

n
%

(
m

n

)∣∣∣∣ =
2 logn

π2n

{
1 +O

(
1

log2 n

)}
(n→∞),

and

(∀u > 0)
∑
n6N

Tn=bunc

1 = e−γ%(u) logN +O
(

(logN)2/3+o(1)
)

a.s. (N →∞),

where γ denotes Euler’s constant.

Keywords: almost sure limit theorems, almost sure local limit theorems, Dickman function,
Dickman distribution, quickselect algorithm, friable integers, random permutations.
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1. Introduction and statement of results

Dickman’s function is defined on [0,∞[ as the continuous solution to the delay-differential
equation u%′(u) + %(u − 1) = 0 (u > 1) with initial condition %(u) = 1 (0 6 u 6 1). It is
known (see, e.g., [24; th. III.5.10]) that

∫∞
0
%(u) du = eγ , where γ denotes Euler’s constant.

The Dickman distribution is defined as the law of a random variable D on [0,∞[ with density

%0(u) := e−γ%(u) (u > 0).

This law appears in a large variety of mathematical topics, such as (the following list being
non limiting):

Number theory, in the context of friable integers,(1) after the seminal paper of
Dickman [10] : see [24] for a expositary account;

Random polynomials over finite fields : see, e.g., Car [6], Manstavičius [18], Arratia,
Barbour & Tavaré [1], Knopfmacher & Manstavičius [17];

Random permutations: see in particular, Shepp & Lloyd [21], Kingman [16], Arratia,
Barbour & Tavaré [3], Manstavičius & Petuchovas [19].

In number theory, the Dickman function also appears in Billingsley’s model [5] for the vector
distribution of large prime factors of integers (see [23] for an effective version) and in Kubilius’
model(2): see Elliott [11], Arratia, Barbour & Tavaré [2], Tenenbaum [22], and [24; § III.6.5]
for an expositary account.

1. That is integers free of large prime factors

2. A probabilistic model for the uniform probability defined on the set of the first N integers with
σ-algebra comprising those events that can be defined by divisibility conditions involving solely small
primes
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A simple probabilistic description of D is provided by the almost surely convergent series∑
n>1

∏
16j6n

Xj ,

where theXj are independent and uniform on [0, 1]: see Goldie & Grübel [14], Fill & Huber [12],
Devroye [8].

There is a vast bibliography on the various probabilistic models of the Dickman distribution:
see, e.g., Chen & Hwang [7], Devroye & Fawzi [9], Pinsky [20].

In 2002, Hwang & Tsai [15] used a simple model to show that, suitably normalized, the
cost of Hoare’s quickselect algorithm converges weakly to D. This model may be described as
follows: if {Zk}k>1 denotes a sequence of independent Bernoulli random variables such that
P(Zk = 1) = 1/k = 1 − P(Zk = 0) (k > 1) and if Tn :=

∑
16k6n kZk, then Tn/n converges

weakly to D, viz.

lim
n→∞

P(Tn 6 nu) = e−γ
∫ u

0

%(v) dv (u > 0).

A strong local limit theorem was then obtained by Giuliano, Szewczak & Weber [13], in the
form

(1·1) vn :=
∑
m>0

∣∣∣∣P(Tn = m)− e−γ

n
%
(m
n

)∣∣∣∣ = o(1) (n→∞).

We propose a sharp estimate of the speed of convergence. Here and in the sequel, we let
logk denote the k-fold iterated logarithm.

Theorem 1.1. We have

(1·2) vn =
2 log n

π2n

{
1 +O

( 1

log2 n

)}
(n→∞).

This estimate may be put in perspective with the following result of Manstavičius [18]. Let
{Xk}k>1 denote a sequence of independent Poisson variables such that E(Xk) = 1/k, and put
Yn :=

∑
16k6n kXk. Then [18; cor. 2] readily yields the strong local limit theorem

(1·3)
∑
m>0

∣∣∣∣P(Yn = m)− e−γ

n
%
(m
n

)∣∣∣∣� 1

n
(n > 1).

Thus, as may be expected, Poissonian approximations to the Bernoulli random variables Zk
provide a closer model of the Dickman distribution. As a byproduct of (1·2) and (1·3), we get
an estimate of the total variation distance between Tn and Yn, viz.

dTV (Tn, Yn) :=
∑
m>0

|P(Tn = m)− P(Yn = m)| = vn +O
( 1

n

)
=

2 log n

π2n

{
1 +O

( 1

log2 n

)}
.

We also point, without details, to a recent estimate of Bhattacharjee & Goldstein [4; th.1.1],
which provides a bound 6 3/(4n) for a smooth Wasserstein-type distance between Tn/n andD.

For u > 0, let εn denote a non-negative sequence tending to 0 at infinity, and let {mn}n>1

denote a non-decreasing integer sequence such that mn = un + O(εnn) as n → ∞. We may
then define a sequence of random variables {LN (u)}∞N=1 by the formula

LN (u) :=
∑

n6N, Tn=mn

1.
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By a complicated proof resting on a general correlation inequality, an almost sure local limit
theorem is established in [13] assuming furthermore that {mn}n>1 is strictly increasing: for
any u > 1, the asymptotic formula LN (u) ∼ e−γ%(u) logN holds almost surely as N →∞.(3)

The following result, proved by a simple, direct method, provides an effective version.

Theorem 1.2. Let u > 1, εn = o(1) as n→∞, and let {mn}n>1 denote a strictly increasing
sequence of integers such that mn = un+O(εnn) (n > 1). We have, almost surely,

(1·4) LN (u) =

{
1 +O

(
ηN +

(log2N)1/2+o(1)

(logN)1/3

)}
e−γ%(u) logN,

where ηN := (1/ logN)
∑

16N εn/n = o(1).

Furthermore, for any u > 0, the formula LN (u) ∼ e−γ%(u) logN holds almost surely provided

ϑm := |{n > 1 : mn = m}| = o(logm) (m→∞),

and assuming only that the sequence {mn}n>1 is non-decreasing. If ϑm � (logm)α with
0 6 α < 1, the estimate (1·4) holds with remainder � ηN + 1/(logN)(1−α)/3+o(1).

We note that, for all u > 0, the case mn := bunc is covered by the second part of the
statement with α = 0.

2. Proof of Theorem 1.1

Let c be a large constant and put M(n) := cn(log n)/(log2 3n). We first show that the
contribution to vn of those m > M(n) is negligible. Indeed, since %(v)� v−v, we first have

1

n

∑
m>M(n)

%
(m
n

)
� 1

n

∑
m>M(n)

e−m(log2 n)/2n � 1

n
·

Then, we have, for all y > 0

(2·1)
∑

m>M(n)

P(Tn = m) 6 e−yM(n)E(eyTn) = e−yM(n)
∏

16k6n

(
1 +

eky − 1

k

)
.

Selecting y = (log2 n)/n, we see that the last product is

� exp
{∫ n

0

eyv − 1

v
dv
}
� n2/ log2 n,

hence the left-hand side of (2·1) is also � 1/n, and we infer that

(2·2) vn =
∑

16m6M(n)

∣∣∣∣P(Tn = m)− e−γ

n
%
(m
n

)∣∣∣∣+O
( 1

n

)
.

Recall the definition %0(u) := e−γ%(u) (u ∈ R) and let I(s) :=
∫ 1

0
(evs − 1) dv/v (s ∈ C).

From [24; th. III.5.10], we know that

(2·3) %̂0(τ) :=

∫
R

eiτu%0(u) du = eI(iτ) (τ ∈ R).

3. The authors of [13] state that this almost sure asymptotic formula holds for all u > 0. However, the
requirement that {mn}∞n=1 should be strictly increasing is incompatible with the assumption mn ∼ un
if u < 1.
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Next, for |τ | < π, we have

(2·4)

E
(
eiτTn

)
=

∏
16k6n

(
1 +

eiτk − 1

k

)
= exp

{
Sn(τ) + U(τ) +Wn(τ) +O

(
τ

n(1 + n|τ |)

)}
,

with

Sn(τ) :=
∑

16k6n

eiτk − 1

k
, Wn(τ) :=

∑
k>n

(eiτk − 1)2

2k2

U(τ) :=
∑
k>1

{
log

(
1 +

eiτk − 1

k

)
− eiτk − 1

k

}
.

For |τ | < 2π, we may write

Sn(τ) =
∑

16k6n

∫ iτ

0

ekv dv =

∫ iτ

0

env − 1

1− e−v
dv =

∫ n

0

eiτv − 1

v
dv + Vn(τ)

with

Vn(τ) :=

∫ iτ

0

(env − 1)
( 1

1− e−v
− 1

v

)
dv =

∫ 1

0

(einτv − 1)gτ (v) dv,

gτ (v) :=
iτ

1− e−iτv
− 1

v
(0 6 v 6 1).

Since gτ (v) is twice continuously differentiable on [0, 1], partial integration yields

Vn(τ) = V (τ) +
a(τ)einτ − 1

2

n
+O

( 1

n2

)
(|τ | 6 π),

with

V (τ) := −
∫ 1

0

gτ (v) dv, a(τ) :=
gτ (1)

iτ
=

1

1− e−iτ
− 1

iτ
,

We have Wn(τ)� τ if |τ | 6 1/n. When 1/n 6 |τ | 6 π, we have

(2·5) Wn(τ) =
∑
k>n

e2ikτ − 2eikτ

2k2
+

1

2n
+O

( 1

n2

)
=

1

2n

{
1 +O

( 1

1 + nmin(|τ |, π − |τ |)

)}
.

by Abel’s summation. This estimate is hence also valid for |τ | 6 1/n, and so we deduce that

Vn(τ) +Wn(τ) = V (τ) +
a(τ)einτ

n
+O

(
τ

n(1 + n|τ |)
+

1

n+ n2 min(|τ |, π − |τ |)

)
.

Put F (τ) := eU(τ)+V (τ) − 1, so that F (0) = 0 and F may be analytically continued to the
disc {z ∈ C : |z| < 2π}. We finally get

(2·6) E(eiτTn) = %̂0(nτ)

{
1 + F (τ) +W ∗n(τ) +O

(
τ

1 + n2τ2

)}
(n > 1, |τ | 6 π),

with

(2·7) W ∗n(τ) :=
a(τ){1 + F (τ)}einτ

n
+O

(
1

n+ n2 min(|τ |, π − |τ |)

)
·
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It follows that, for m > 1,

(2·8)

P(Tn = m) =
1

2π

∫ π

−π
E(eiτTn)e−imτ dτ

=
1

2πn

∫ nπ

−nπ
%̂0(τ)e−iτm/n

{
1 + F

( τ
n

)
+W ∗n

( τ
n

)
+O

(
τ

n(1 + τ2)

)}
dτ.

By (2·3) and, say, [24; lemma III.5.9], we have

(2·9) %̂0(τ) =
−1

iτ
+O

( 1

τ(1 + |τ |)

)
(τ 6= 0), %̂0(τ) � 1

1 + |τ |
(τ ∈ R).

Therefore, the error term of (2·8) contributes � 1/n2 to the right-hand side. Summing over
m 6 M(n), we obtain that the corresponding contribution to the right-hand side of (2·2) is
� (log n)/(n log2 n), in accordance with (1·2).

We first evaluate

(2·10)
1

2πn

∫ nπ

−nπ
%̂0(τ)e−iτm/n dτ

(
n > 1, 1 6 m 6M(n)

)
by extending the integration range to R and inserting the first estimate (2·9) to bound the
integral over Rr [−πn, πn]. This yields

(2·11)

1

2πn

∫ nπ

−nπ
%̂0(τ)e−iτm/n dτ − %0(m/n)

n
=
−1

πn

∫ ∞
nπ

sin(τm/n)

τ
dτ +O

( 1

n2

)
=

(−1)m+1

π2mn
+O

( 1

m2n
+

1

n2

)
.

In order to estimate the contributions from F and W ∗n to the main term of (2·8), we use the
more precise formula

(2·12) %̂0(τ) =
i

τ
− eiτ

τ2
+O

( 1

τ3

)
(|τ | > 1).

Writing F (τ) = τG(τ), we indeed deduce from by (2·12) that∫ nπ

−nπ
%̂0(τ)e−iτm/nF

( τ
n

)
dτ =

∫ nπ

−nπ
τ %̂0(τ)

e−iτm/n

n
G
( τ
n

)
dτ

= i

∫
In

e−iτmG(τ)
(

1 + i
eiτn

nτ

)
dτ +O

( 1

n

)
,

with In := [−π, π]r [−1/n, 1/n]. A standard computation furnishes G(π)−G(−π) = −2/π.(4)

Integrating by parts, we get

i

∫
In

e−iτmG(τ) dτ = 2
(−1)m+1

πm
+

1

m

∫ π

−π
e−iτmG′(τ) dτ +O

( 1

n

)
= 2

(−1)m+1

πm
+O

( 1

m2
+

1

n

)
,

and, similarly,

−1

n

∫
In

e−iτmG(τ)
eiτn

τ
dτ =

−1

n

∫
In

G(τ)−G(0)

τ
eiτ(n−m) dτ +O

( 1

n

)
� 1

n
·

4. V (±π) = log(π/2)∓ 1
2
iπ, eU(±π) = −2eγ , F (±π) = ∓iπeγ − 1.
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We can thus state that, for n > 1, 1 6 m 6M(n), we have

(2·13)
1

2πn

∫ nπ

−nπ
%̂0(τ)e−iτm/nF

( τ
n

)
dτ =

(−1)m+1

π2mn
+O

( 1

m2n
+

1

n2

)
.

It remains to estimate the contribution to (2·8) involving W ∗n(τ/n). The error term of (2·7)
clearly contributes � 1/n2. Arguing as for the proof of (2·11), we finally show that the
contribution to (2·8) arising from a(τ/n)(1 + F (τ/n))eiτ/n is also � 1/n2.

The above estimates and (2·11) furnish together

(2·14) P(Tn = m)− 1

n
%0

(m
n

)
= (−1)m+1 2

π2mn
+O

( 1

m2n
+

1

n2

) (
1 6 m 6M(n)

)
.

Summing over m 6M(n) provides the required estimate (1·2).

3. Proof of Theorem 1.2

We first note that (2·14) yields

(3·1) P(Tn = m) =
1

n
%0

(m
n

)
+O

( 1

n2

)
(m � n > 1).

Hence, writing LN for LN (u) here and throughout,

(3·2) E(LN ) =
∑
n6N

1

n
%0

(mn

n

)
+O(1) = %0(u) logN +O(ηN logN + 1) (N > 1).

The stated result will follow from an estimate of the variance V(LN ). We have

(3·3) E(L2
N ) = E(LN ) + 2

∑
16ν<n6N

P(Tν = mν)ανn,

with
ανn := P

(
Tn − Tν = mn −mν

)
(1 6 ν < n 6 N).

Let us initially assume that {mn}n>1 is strictly increasing and hence that u > 1. We
note right away that, for large n and ν > (u + 1)n/(u + 2), we have ανn = 0, since the
corresponding event is then impossible: either Tn − Tν > ν > (u + 1)(n − ν) > mn −mν or
Tn − Tν = 0 6= mn −mν . Therefore, we may assume ν 6 n(u+ 1)/(u+ 2) in the sequel.

By (2·4), we have, writing ϕj(τ) := E
(
eiτTj

)
(j > 1),

(3·4) ανn =
1

2π

∫ π

−π

ϕn(τ)

ϕν(τ)
e−i(mn−mν)τ dτ = βνn + ∆νn,

where βνn denotes the contribution of the interval |τ | 6 1/2ν, and ∆νn that of the
complementary range 1/2ν < |τ | 6 π.

Now we may derive from (2·6) that

βνn =
1

2πn

∫ n/2ν

−n/2ν

%̂0(τ)

ϕν(τ/n)

{
1 + F

( τ
n

)
+O

( 1

n

)}
e−i(mn−mν)τ/n dτ.

Invoking (2·9) and (2·6)-(2·7) with ν in place of n to estimate the contribution of the error
term, we get

(3·5) βνn = β∗νn +O

(
log n

n2

)
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with

(3·6) β∗νn :=
1

2πn

∫ n/2ν

−n/2ν

%̂0(τ)

ϕν(τ/n)

(
1 + F

( τ
n

))
e−i(mn−mν)τ/n dτ.

Note that the remainder term of (3·5) in turn contributes � 1 to (3·3).
Still assuming that ν 6 (u+ 1)n/(u+ 2) and observing that

ψν(z) :=
∏
k6ν

{1 + (ekz − 1)/k}−1 � 1 (z ∈ C, |z| 6 2/3ν),

we may write
1 + F (τ/n)

ϕν(τ/n)
= 1 +

∑
j>1

µνj

( τ
n

)j
(|τ | 6 n/2ν)

with µνj � (3ν/2)j (j > 1). Hence, in view of (2·9), the contribution of the series to (3·6) is

1

2πn

∑
j>1

µνj
nj

∫ n/2ν

−n/2ν

{
τ j−1eiτ(mn−mν)/n +O

(
τ j−1

1 + |τ |

)}
dτ

� 1

n

∑
j>1

µνj

∫ 1/2ν

−1/2ν

{
vj−1eiv(mn−mν) +O

(
vj−1

1 + n|v|

)}
dv

� ν

n(n− ν)
+

ν

n2
+
ν log(2n/ν)

n2
� ν log(2n/ν)

n2
,

since the assumption that {mn}∞n=1 is strictly increasing implies mn −mν > n− ν.
Arguing as in the proof of (2·10) to evaluate the main term, we eventually get,

(3·7) β∗νn =
1

n
%0

(mn −mν

n

)
+O

(ν log(2n/ν)

n2

)
(1 6 ν < n).

We now consider ∆νn. Let

Sνn(τ) :=
∑

ν<k6n

eikτ

k
,

and note right away that Sνn(τ) is bounded for 1/2ν < |τ | 6 π. For ν > 1, we have

ϕn(τ)

ϕν(τ)
=
ν

n

∏
ν<k6n

(
1 +

eikτ

k − 1

)
=
ν

n
exp

{
Sνn(τ) +O

( 1

ν + |τ |ν2
+

1

ν + (π − |τ |)ν2

)}
,

where we used the bounds

∑
ν<k6n

eikτ

k(k − 1)
� 1

ν + |τ |ν2
,

∑
ν<k6n

e2ikτ

(k − 1)2
� 1

ν + |τ |ν2
+

1

ν + (π − |τ |)ν2
,

∑
ν<k6n

eikjτ

(k − 1)j
� 1

νj−1
(j > 2).

Carrying back into (3·4), we obtain

(3·8) ∆νn =
ν

πn
<
∫ π

1/2ν

eSνn(τ)−i(mn−mν)τ dτ +O
( log 2ν

nν

)
.



8 R. de la Bretèche & G. Tenenbaum

Now observe that |S′νn(τ)| 6 π/|τ | 6 1
2 (n − ν) 6 1

2 (mn − mν) if, say ν 6 n/15 or
|τ | > 10(u+ 1)/ν. Hence, on this assumption, a standard estimate on trigonometric integrals
such as [25; Lemma 4.2] furnishes the bound � 1/(mn −mν)� 1/(n− ν)� 1/n for the last
integral. Since, in the case ν > n/15, the contribution of the range 1/2ν < |τ | 6 10(u+ 1)/ν
to the same integral is trivially � 1/ν, we finally get

(3·9) ∆νn �
log 2ν

nν
+

ν

n2

(
1 6 ν 6 (u+ 1)n/(u+ 2)

)
.

Gathering our estimates and using the fact that % is Lipschitz on [0,∞[, we obtain

(3·10) ανn =
1

n
%0

(mn

n

)
+O

(ν log(2n/ν)

n2
+

log 2ν

nν

)
(1 6 ν < n).

Carrying back into (3·3) and applying (3·1) for the pair (ν,mν) yields

E(L2
N )− E(LN ) = 2

∑
16ν<n6N

{
%0

(mn

n

)
%0

(mν

ν

) 1

νn
+O

(
log(2n/ν)

n2
+

log 2ν

nν2

)}
,

and hence
V(LN )� logN.

Selecting N = Nk := 2k
3

for k > 1, we deduce from the Borel-Cantelli lemma that, given any
ε > 0, the estimate

LNk − E(LNk)� k2(log 2k)1/2+ε

holds almost surely. In view of (3·2), this implies the stated result since LN is a non-decreasing
function of N .

We next consider the case of a non-decreasing sequence {mn}n>1. Accordingly, we fix u > 0.
By hypothesis, for some integer q = qN > 2 such that qN = o

(
logN

)
as N → ∞, we have

mn > mν whenever n− ν > qN .
Put

LN (u; a) :=
∑
n6N

n≡a (mod q)
Tn=mn

1 (1 6 a 6 q).

By (3·1), we have, for all a ∈ [1, q],

E
(
LN (u; a)

)
=

∑
n6N

n≡a (mod q)

1

n
%0

(mn

n

)
+O

( 1

a2

)
,

and, by (3·10),

V
(
LN (u; a)

)
− E

(
LN (u; a)

)
�

∑
16ν<n6N

ν,n≡a (mod q)

{ log 2n/ν

n2
+

log 2ν

nν2

}

�
∑

q<n6N
n≡a (mod q)

{ 1

nq
+

log 2a

a2n

}
� logN

q

{1

q
+

log 2a

a2

}
.

Summing over a ∈ [1, q], we get

V
(
LN (u)

)
6 q

∑
16a6q

V
(
LN (u; a)

)
� qE(LN (u)) + logN � q logN.

This is all needed.

Acknowledgment. The authors express warm thanks to Eugenijus Manstavičius for precise and
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