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de la Bretèche & Gérald Tenenbaum

To the memory of Jonas Kubilius, who stood on the bridge and invited us all.

Introduction and statement of results

Dickman's function is defined on [0, ∞[ as the continuous solution to the delay-differential equation u (u) + (u -1) = 0 (u > 1) with initial condition (u) = 1 (0 u 1). It is known (see, e.g., [24; th. III.5.10]) that ∞ 0 (u) du = e γ , where γ denotes Euler's constant. The Dickman distribution is defined as the law of a random variable D on [0, ∞[ with density 0 (u) := e -γ (u) (u 0). This law appears in a large variety of mathematical topics, such as (the following list being non limiting):

Number theory, in the context of friable integers, (1) after the seminal paper of Dickman [START_REF] Dickman | On the frequency of numbers containing primes of a certain relative magnitude[END_REF] : see [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF] for a expositary account; Random polynomials over finite fields : see, e.g., Car [START_REF] Car | Théorèmes de densité dans F q [X[END_REF], Manstavičius [START_REF] Manstavičius | Remarks on elements of semigroups that are free of large prime factors (Russian)[END_REF], Arratia, Barbour & Tavaré [START_REF] Arratia | On random polynomials over finite fields[END_REF], Knopfmacher & Manstavičius [START_REF] Knopfmakher | On the largest degree of an irreducible factor of a polynomial in F q [X] (Russian)[END_REF]; Random permutations: see in particular, Shepp & Lloyd [START_REF] Shepp | Ordered cycle lengths in a random permutation[END_REF], Kingman [START_REF] Kingman | The population structure associated with the Ewens sampling formula[END_REF], Arratia, Barbour & Tavaré [START_REF] Arratia | Limits of logarithmic combinatorial structures[END_REF], Manstavičius & Petuchovas [START_REF] Manstavičius | Local probabilities and total variation distance for random permutations[END_REF]. In number theory, the Dickman function also appears in Billingsley's model [START_REF] Billingsley | On the distribution of large prime factors[END_REF] for the vector distribution of large prime factors of integers (see [START_REF] Tenenbaum | A rate estimate in Billingsley's theorem for the size distribution of large prime factors[END_REF] for an effective version) and in Kubilius' model (2) : see Elliott [START_REF] Elliott | Probabilistic number theory : mean value theorems[END_REF], Arratia, Barbour & Tavaré [START_REF] Arratia | The Poisson-Dirichlet distribution and the scale-invariant Poisson process[END_REF], Tenenbaum [START_REF] Tenenbaum | Crible d' Ératosthène et modèle de Kubilius[END_REF], and [24; § III.6.5] for an expositary account.

A simple probabilistic description of D is provided by the almost surely convergent series

n 1 1 j n X j ,
where the X j are independent and uniform on [0, 1]: see Goldie & Grübel [START_REF] Goldie | Perpetuities with thin tails[END_REF], Fill & Huber [START_REF] Fill | Perfect simulation of Vervaat perpetuities Electron[END_REF], Devroye [START_REF] Devroye | Simulating perpetuities[END_REF].

There is a vast bibliography on the various probabilistic models of the Dickman distribution: see, e.g., Chen & Hwang [START_REF] Chen | Analysis in distribution of two randomized algorithms for finding the maximum in a broadcast communication model[END_REF], Devroye & Fawzi [START_REF] Devroye | Simulating the Dickman distribution[END_REF], Pinsky [START_REF] Pinsky | A natural probabilistic model on the integers and its relation to Dickman-type distributions and Buchstab's function[END_REF].

In 2002, Hwang & Tsai [START_REF] Hwang | Quickselect and the Dickman Function[END_REF] used a simple model to show that, suitably normalized, the cost of Hoare's quickselect algorithm converges weakly to D. This model may be described as follows: if {Z k } k 1 denotes a sequence of independent Bernoulli random variables such that

P(Z k = 1) = 1/k = 1 -P(Z k = 0) (k 1) and if T n := 1 k n kZ k , then T n /n converges weakly to D, viz. lim n→∞ P(T n nu) = e -γ u 0 (v) dv (u 0).
A strong local limit theorem was then obtained by Giuliano, Szewczak & Weber [START_REF] Giuliano | Almost sure local limit theorem for the Dickman distribution[END_REF], in the form

(1•1) v n := m 0 P(T n = m) - e -γ n m n = o(1) (n → ∞).
We propose a sharp estimate of the speed of convergence. Here and in the sequel, we let log k denote the k-fold iterated logarithm. Theorem 1.1. We have

(1•2) v n = 2 log n π 2 n 1 + O 1 log 2 n (n → ∞).
This estimate may be put in perspective with the following result of Manstavičius [START_REF] Manstavičius | Remarks on elements of semigroups that are free of large prime factors (Russian)[END_REF]. Let {X k } k 1 denote a sequence of independent Poisson variables such that E(X k ) = 1/k, and put Y n := 1 k n kX k . Then [18; cor. 2] readily yields the strong local limit theorem

(1•3) m 0 P(Y n = m) - e -γ n m n 1 n
(n 1).

Thus, as may be expected, Poissonian approximations to the Bernoulli random variables Z k provide a closer model of the Dickman distribution. As a byproduct of (1•2) and (1•3), we get an estimate of the total variation distance between T n and Y n , viz.

d T V (T n , Y n ) := m 0 |P(T n = m) -P(Y n = m)| = v n + O 1 n = 2 log n π 2 n 1 + O 1 log 2 n .
We also point, without details, to a recent estimate of Bhattacharjee & Goldstein [4; th.1.1], which provides a bound 3/(4n) for a smooth Wasserstein-type distance between T n /n and D.

For u > 0, let ε n denote a non-negative sequence tending to 0 at infinity, and let {m n } n 1 denote a non-decreasing integer sequence such that m n = un + O(ε n n) as n → ∞. We may then define a sequence of random variables {L N (u)} ∞ N =1 by the formula

L N (u) := n N, T n =m n 1.
By a complicated proof resting on a general correlation inequality, an almost sure local limit theorem is established in [START_REF] Giuliano | Almost sure local limit theorem for the Dickman distribution[END_REF] assuming furthermore that {m n } n 1 is strictly increasing: for any u 1, the asymptotic formula L N (u) ∼ e -γ (u) log N holds almost surely as N → ∞. (3) The following result, proved by a simple, direct method, provides an effective version.

Theorem 1.2. Let u 1, ε n = o(1)
as n → ∞, and let {m n } n 1 denote a strictly increasing sequence of integers such that m n = un + O(ε n n) (n 1). We have, almost surely,

(1•4) L N (u) = 1 + O η N + (log 2 N ) 1/2+o(1) (log N ) 1/3 e -γ (u) log N,
where

η N := (1/ log N ) 1 N ε n /n = o(1).
Furthermore, for any u > 0, the formula L N (u) ∼ e -γ (u) log N holds almost surely provided

ϑ m := |{n 1 : m n = m}| = o(log m) (m → ∞),
and assuming only that the sequence (1) .

{m n } n 1 is non-decreasing. If ϑ m (log m) α with 0 α < 1, the estimate (1•4) holds with remainder η N + 1/(log N ) (1-α)/3+o
We note that, for all u > 0, the case m n := un is covered by the second part of the statement with α = 0.

Proof of Theorem 1.1

Let c be a large constant and put M (n) := cn(log n)/(log 2 3n). We first show that the contribution to

v n of those m > M (n) is negligible. Indeed, since (v) v -v , we first have 1 n m>M (n) m n 1 n m>M (n) e -m(log 2 n)/2n 1 n •
Then, we have, for all y 0

(2•1)

m>M (n) P(T n = m) e -yM (n) E(e yT n ) = e -yM (n) 1 k n
1 + e ky -1 k .

Selecting y = (log 2 n)/n, we see that the last product is

exp n 0 e yv -1 v dv n 2/ log 2 n ,
hence the left-hand side of (2•1) is also 1/n, and we infer that

(2•2) v n = 1 m M (n) P(T n = m) - e -γ n m n + O 1 n .
Recall the definition 0 (u) := e -γ (u) (u ∈ R) and let I(s) := 1 0 (e vs -1) dv/v (s ∈ C). From [24; th. III.5.10], we know that

(2•3) 0 (τ ) := R e iτ u 0 (u) du = e I(iτ ) (τ ∈ R).
Next, for |τ | < π, we have

(2•4) E e iτ T n = 1 k n 1 + e iτ k -1 k = exp S n (τ ) + U (τ ) + W n (τ ) + O τ n(1 + n|τ |) , with S n (τ ) := 1 k n e iτ k -1 k , W n (τ ) := k>n (e iτ k -1) 2 2k 2 U (τ ) := k 1 log 1 + e iτ k -1 k - e iτ k -1 k .
For |τ | < 2π, we may write

S n (τ ) = 1 k n iτ 0 e kv dv = iτ 0 e nv -1 1 -e -v dv = n 0 e iτ v -1 v dv + V n (τ ) with V n (τ ) := iτ 0 (e nv -1) 1 1 -e -v - 1 v dv = 1 0 (e inτ v -1)g τ (v) dv, g τ (v) := iτ 1 -e -iτ v - 1 v (0 v 1).
Since g τ (v) is twice continuously differentiable on [0, 1], partial integration yields

V n (τ ) = V (τ ) + a(τ )e inτ -1 2 n + O 1 n 2 (|τ | π), with V (τ ) := - 1 0 g τ (v) dv, a(τ ) := g τ (1) iτ = 1 1 -e -iτ - 1 iτ , We have W n (τ ) τ if |τ | 1/n. When 1/n |τ | π, we have (2•5) W n (τ ) = k>n e 2ikτ -2e ikτ 2k 2 + 1 2n + O 1 n 2 = 1 2n 1 + O 1 1 + n min(|τ |, π -|τ |)
.

by Abel's summation. This estimate is hence also valid for |τ | 1/n, and so we deduce that

V n (τ ) + W n (τ ) = V (τ ) + a(τ )e inτ n + O τ n(1 + n|τ |) + 1 n + n 2 min(|τ |, π -|τ |)
.

Put F (τ ) := e U (τ )+V (τ ) -1, so that F (0) = 0 and F may be analytically continued to the disc {z ∈ C : |z| < 2π}. We finally get

(2•6) E(e iτ T n ) = 0 (nτ ) 1 + F (τ ) + W * n (τ ) + O τ 1 + n 2 τ 2 (n 1, |τ | π), with (2•7) W * n (τ ) := a(τ ){1 + F (τ )}e inτ n + O 1 n + n 2 min(|τ |, π -|τ |) • It follows that, for m 1,
(2•8)

P(T n = m) = 1 2π π -π E(e iτ T n )e -imτ dτ = 1 2πn nπ -nπ 0 (τ )e -iτ m/n 1 + F τ n + W * n τ n + O τ n(1 + τ 2 ) dτ.
By (2•3) and, say, [24; lemma III.5.9], we have

(2•9) 0 (τ ) = -1 iτ + O 1 τ (1 + |τ |) (τ = 0), 0 (τ ) 1 1 + |τ | (τ ∈ R).
Therefore, the error term of (2•8) contributes 1/n 2 to the right-hand side. Summing over m M (n), we obtain that the corresponding contribution to the right-hand side of (2

•2) is (log n)/(n log 2 n), in accordance with (1•2).
We first evaluate

(2•10) 1 2πn nπ -nπ 0 (τ )e -iτ m/n dτ n 1, 1 m M (n)
by extending the integration range to R and inserting the first estimate (2•9) to bound the integral over R [-πn, πn]. This yields

(2•11) 1 2πn nπ -nπ 0 (τ )e -iτ m/n dτ - 0 (m/n) n = -1 πn ∞ nπ sin(τ m/n) τ dτ + O 1 n 2 = (-1) m+1 π 2 mn + O 1 m 2 n + 1 n 2 .
In order to estimate the contributions from F and W * n to the main term of (2•8), we use the more precise formula

(2•12) 0 (τ ) = i τ - e iτ τ 2 + O 1 τ 3 (|τ | 1).
Writing F (τ ) = τ G(τ ), we indeed deduce from by (2•12) that nπ -nπ

0 (τ )e -iτ m/n F τ n dτ = nπ -nπ τ 0 (τ ) e -iτ m/n n G τ n dτ = i I n e -iτ m G(τ ) 1 + i e iτ n nτ dτ + O 1 n , with I n := [-π, π] [-1/n, 1/n]. A standard computation furnishes G(π) -G(-π) = -2/π. (4)
Integrating by parts, we get i

I n e -iτ m G(τ ) dτ = 2 (-1) m+1 πm + 1 m π -π e -iτ m G (τ ) dτ + O 1 n = 2 (-1) m+1 πm + O 1 m 2 + 1 n ,
and, similarly,

-1 n I n e -iτ m G(τ ) e iτ n τ dτ = -1 n I n G(τ ) -G(0) τ e iτ (n-m) dτ + O 1 n 1 n •
We can thus state that, for n 1, 1 m M (n), we have

(2•13) 1 2πn nπ -nπ 0 (τ )e -iτ m/n F τ n dτ = (-1) m+1 π 2 mn + O 1 m 2 n + 1 n 2 .
It remains to estimate the contribution to (2•8) involving W * n (τ /n). The error term of (2•7) clearly contributes 1/n 2 . Arguing as for the proof of (2•11), we finally show that the contribution to (2•8) arising from a(τ /n)(1 + F (τ /n))e iτ /n is also 1/n 2 . The above estimates and (2•11) furnish together

(2•14) P(T n = m) - 1 n 0 m n = (-1) m+1 2 π 2 mn + O 1 m 2 n + 1 n 2 1 m M (n) .
Summing over m M (n) provides the required estimate (1•2).

Proof of Theorem 1.2

We first note that (2•14) yields

(3•1) P(T n = m) = 1 n 0 m n + O 1 n 2 (m n 1).
Hence, writing L N for L N (u) here and throughout,

(3•2) E(L N ) = n N 1 n 0 m n n + O(1) = 0 (u) log N + O(η N log N + 1) (N 1).
The stated result will follow from an estimate of the variance V(L N ). We have

(3•3) E(L 2 N ) = E(L N ) + 2 1 ν<n N P(T ν = m ν )α νn , with α νn := P T n -T ν = m n -m ν (1 ν < n N ).
Let us initially assume that {m n } n 1 is strictly increasing and hence that u 1. We note right away that, for large n and ν > (u + 1)n/(u + 2), we have α νn = 0, since the corresponding event is then impossible: either T n -T ν > ν > (u + 1)(n -ν) > m n -m ν or T n -T ν = 0 = m n -m ν . Therefore, we may assume ν n(u + 1)/(u + 2) in the sequel.

By (2•4), we have, writing ϕ j (τ ) := E e iτ T j (j 1),

(3•4) α νn = 1 2π π -π ϕ n (τ ) ϕ ν (τ ) e -i(m n -m ν )τ dτ = β νn + ∆ νn ,
where β νn denotes the contribution of the interval |τ | 1/2ν, and ∆ νn that of the complementary range 1/2ν < |τ | π. Now we may derive from (2•6) that

β νn = 1 2πn n/2ν -n/2ν 0 (τ ) ϕ ν (τ /n) 1 + F τ n + O 1 n e -i(m n -m ν )τ /n dτ.
Invoking (2•9) and (2•6)-(2•7) with ν in place of n to estimate the contribution of the error term, we get

(3•5) β νn = β * νn + O log n n 2 with (3•6) β * νn := 1 2πn n/2ν -n/2ν 0 (τ ) ϕ ν (τ /n) 1 + F τ n e -i(m n -m ν )τ /n dτ.
Note that the remainder term of (3•5) in turn contributes 1 to (3•3). Still assuming that ν (u + 1)n/(u + 2) and observing that

ψ ν (z) := k ν {1 + (e kz -1)/k} -1 1 (z ∈ C, |z| 2/3ν), we may write 1 + F (τ /n) ϕ ν (τ /n) = 1 + j 1 µ νj τ n j (|τ | n/2ν)
with µ νj (3ν/2) j (j 1). Hence, in view of (2•9), the contribution of the series to (3•6) is 1 2πn e S νn (τ )-i(m n -m ν )τ dτ + O log 2ν nν .

n 2 ,

 2 τ j-1 e iτ (m n -m ν )/n + O τ jv j-1 e iv(m n -m ν ) + O v jsince the assumption that {m n } ∞ n=1 is strictly increasing implies m n -m ν n -ν. Arguing as in the proof of (2•10) to evaluate the main term, we eventually get, We now consider ∆ νn . LetS νn (τ ) := ν<k n e ikτ k ,and note right away that S νn (τ ) is bounded for 1/2ν < |τ | π. For ν 1, we haveϕ n (τ ) ϕ ν

A probabilistic model for the uniform probability defined on the set of the first N integers with σ-algebra comprising those events that can be defined by divisibility conditions involving solely small primes

The authors of[START_REF] Giuliano | Almost sure local limit theorem for the Dickman distribution[END_REF] state that this almost sure asymptotic formula holds for all u > 0. However, the requirement that {m n } ∞ n=1 should be strictly increasing is incompatible with the assumption m n ∼ un if u < 1.

V (±π) = log(π/2) ∓ 1 2 iπ, e U (±π) = -2e γ , F (±π) = ∓iπe γ -1.
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Gathering our estimates and using the fact that is Lipschitz on [0, ∞[, we obtain

Carrying back into (3•3) and applying (3•1) for the pair (ν, m ν ) yields

and hence V(L N ) log N.

Selecting N = N k := 2 k 3 for k 1, we deduce from the Borel-Cantelli lemma that, given any ε > 0, the estimate

holds almost surely. In view of (3•2), this implies the stated result since L N is a non-decreasing function of N . We next consider the case of a non-decreasing sequence {m n } n 1 . Accordingly, we fix u > 0. By hypothesis, for some integer q = q N 2 such that

By (3•1), we have, for all a ∈ [1, q],

and, by (3•10),

Summing over a ∈ [1, q], we get V L N (u) q 1 a q V L N (u; a) qE(L N (u)) + log N q log N.

This is all needed.