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MULTIPLICATIVE FUNCTIONS IN LARGE ARITHMETIC

PROGRESSIONS AND APPLICATIONS

ÉTIENNE FOUVRY AND GÉRALD TENENBAUM

Abstract. We establish new Bombieri-Vinogradov type estimates for a wide
class of multiplicative arithmetic functions and derive several applications,

including: a new proof of a recent estimate by Drappeau and Topacogullari

for arithmetical correlations; a theorem of Erdős-Wintner type with support
equal to the level set of an additive function at shifted argument; and a law

of iterated logarithm for the distribution of prime factors of integers weighted

by τ(n− 1) where τ denotes the divisor function.
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1. Introduction

The idea of this paper came up to our minds on studying the work of Drappeau
and Topacogullari [5], in which the authors investigate sums of the form

T(x; f) :=
∑

16n6x

f(n)τ(n− 1) (x→∞),

where f is a multiplicative function, periodic over the primes (see Definition 1.1
and Remark 1.2 below) and τ is the standard divisor function. In this work, an
asymptotic formula for the sum T(x; f) is derived with error term � x/(log x)N ,
for arbitrary N > 1. Our approach consists in shifting this question to the problem
of the level of distribution of such multiplicative functions f .

As a consequence, we obtain an alternative proof of the results of [5] briefly
described in Section 2 and, in a more innovative way, we obtain new information
on the joint distribution of (f(n), g(n− 1)), for certain additive functions f , g.

We first describe the general framework for various types of levels of distribution.
To study the statistical behaviour of the arithmetical function f over the arith-

metic progression a (mod q), with (a, q) = 1, it is natural to introduce the error
term

(1.1) ∆f (x; q, a) :=
∑
n6x

n≡a (mod q)

f(n)− 1

ϕ(q)

∑
n6x

(n,q)=1

f(n) (x > 1).

Whenever f is suspected to be well distributed among arithmetic progressions, the
challenge is to prove that, for any A > 0, there exists a constant c(A) such that, for
any x > 1, all q in some specific range (depending on x and as large as possible),
and any integer a coprime to q, we have

(1.2)
∣∣∆f (x; q, a)

∣∣ 6 c(A)
√
x

ϕ(q)L A

(∑
n6x

|f(n)|2
)1/2

,

where L := log 3x. A general presentation of these topics is displayed in [2, p.205–
210].

A more tractable form of the question is obtained by studying the average dis-
tribution of f . For instance

(a) Find (large) values of Q = Q(x,A), such that the bound

(1.3)
∑
q6Q

max
y6x

max
(a,q)=1

|∆f (y; q, a)| �A

√
x

L A

(∑
n6x

|f(n)|2
)1/2

(x > 1),

holds for any A > 0.
(b) Given a fixed integer a 6= 0, determine a large range of validity for the weaker

requirement

(1.4)
∑
q6Q

(q,a)=1

|∆f (x; q, a)| �A

√
x

L A

(∑
n6x

|f(n)|2
)1/2

(x > 1).

Some classical results assert that, for many arithmetical functions such as the
indicator 1P of the set of primes, standard multiplicative functions and others, the
bound (1.3) does hold with

Q =
√
x/L B(A),

the key point being that f should present some valuable combinatorial structure
(in order to apply the large sieve inequality) and should already satisfy (1.2) when
q does not exceed some power of L —a Siegel–Walfisz type property.
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The threshold Q =
√
x has been overpassed only in very few examples for f ,

even in the case of the simpler inequality (1.4). These difficult results require
sophisticated tools.

An apparently much easier problem is:
(c) Find (large) values of Q = Q(x,A) such that the bound

(1.5)
∑
q6Q

(q,a)=1

∆f (x; q, a)�a,A

√
x

L A

(∑
n6x

|f(n)|2
)1/2

(x > 1)

holds for any A > 0 and any integer a 6= 0.
Compared to (1.4), this question seems simpler because the sign oscillations

of ∆f (x; q, a) as q varies may be exploited. Furthermore, Dirichlet’s hyperbola
technique opens the way to reach much larger value of Q. Indeed, writing the
congruence condition n ≡ a (mod q) appearing in (1.1) as

n = a+ qr, n 6 x,

we may replace the smooth summation over q in (1.5) by a smooth summation
over r. This method is highly efficient when q runs over all integer values from
an interval included in [

√
x, x]. Indeed, the variable r is then also smooth and,

furthermore, bounded above by
√
x. As a consequence, for adequate functions f ,

the proof of (1.5) for some Q(x,A) >
√
x may be reduced to the case Q 6

√
x.

This will be illustrated in our approach—see §7. Note that (1.4) is not yet known
to hold for Q(x,A) =

√
x when f = 1P. However, we have the following theorem.

Theorem A. ([2, th. 9], [4], [7, cor. 1]). Let f := 1P. For every A and suitable
B = B(A), C = C(A), the inequality∣∣∣∣∣ ∑

q6Q
(q,a)=1

∆f (x; q, a)

∣∣∣∣∣ 6 Cx

L A
(x > 1)

holds for all Q 6 x/L B and any integer a such that 1 6 |a| 6 L A.

This theorem is sufficiently strong to enable further progress in the well-known
Titchmarsh divisor problem: if Λ denotes the von Mangoldt function, an asymptotic
expansion for the sum

T(x; Λ) =
∑

26n6x

Λ(n)τ(n− 1),

is now available with error term � x/L A for arbitrary, fixed A: see [2, cor. 1] and
[7, cor. 2].

Actually Bombieri, Friedlander and Iwaniec proved a stronger form of Theorem A
which may be interpreted as an answer to a compromise between questions (b)
and (c).

Theorem B. ([2, th. 9]). Let f := 1P. Then, for all A > 0, ε > 0, and suitable
B = B(ε,A), C = C(ε,A), the inequality∑

r6R
(r,a)=1

∣∣∣∣∣ ∑
q6Q

(q,a)=1

∆f (x; qr, a)

∣∣∣∣∣ 6 Cx

L A
(x > 1)

holds for every Q and R satisfying 1 6 R 6 x1/10−ε, QR 6 x/L B, and every
integer a such that 1 6 |a| 6 L A.
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The first aim of this paper is to establish an analogue of this theorem in the
context of multiplicative functions f that are essentially periodic on the set of
primes. As mentioned above, we subsequently apply this result to various problems,
related to joint distribution of pairs of additive functions, one of them being sampled
at a shifted argument.

It is now time to state our central result, providing sufficient conditions to ensure
that the statement of Theorem B remains true for multiplicative functions f of the
above mentioned type. Since we aim at a large uniformity over f , our hypotheses
require specific notations used both in the proofs and in the applications.

1.1. Conventions and notations. The following notation will be used through-
out this paper.
• γ is Euler’s constant.
• N is the set of non-negative integers, N∗ := Nr {0}.
• For arbitrary sets X, Y , the set of mappings X → Y is denoted as Y X .
• The lower case letter x denotes a real number > 1 and L is implicitly defined

by L := log 3x. In some instances it will be implicitly assumed that x is sufficiently
large.
• Throughout this work, we let logk denote the k-th iterated logarithm.
• The letter p is reserved to denote a prime number.
• P+(n) (resp. P−(n)) denotes the largest (resp. the smallest) prime factor of

a positive integer n, with the convention that P+(1) = 1, P−(1) =∞.
• The notation (especially in a subscript) n ∼ N means that the integer variable

n satisfies the inequality N < n 6 2N , while we use n ' N to indicate that n
belongs to some (usually unspecified) interval included in ]N, 2N ].
• The letter c denotes a constant depending on various parameters such as ε > 0,

K > 0, etc., and whose value may change at each occurence.
• C0 denotes an absolute constant, whose effectively computable value may

change at each occurrence. It will mainly appear in upper bounds containing the
factor DC0 .
• Given a complex sequence α = (αm)m>1 and a real number M > 1, we define

the `2–norm of (αm)m∼M by

‖α‖2M :=
∑
m∼M

|αm|2.

• For integers ν > 0, n > 1, and primes p, we write pν‖n to mean that pν | n
but pν+1 - n. The notation d | n∞ means that p | n whenever p | d.
• A strongly multiplicative (resp. strongly additive) arithmetical function is a

multiplicative (resp. an additive) function such that f(pν) = f(p) for all ν > 1.
• ω(n) is the number of distinct prime factors of the integer n > 1. More

generally, given integers D > 1 and t ∈ Z, we put

(1.6) ωD,t(n) :=
∑
p|n

p≡t (modD)

1.

We also define

(1.7) ω(n, t) :=
∑
p |n
p6t

1 (n > 1, t > 3).

• Given a subset A of N∗, we let 1A : N∗ → {0, 1} designate the indicator function
of A. We simply write 1 for 1N∗ . For Y0 > 2, we put

(1.8) Y0 := 1{n>1:P−(n)>Y0},

so that Y0 = 1 whenever Y0 6 2.
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• For k > 1, we write wk := 1{n>1:ω(n)=k}. In particular, w1 is the characteristic
function of the set of prime powers. The summatory function of wk is denoted by
πk(x).
• The Möbius function is denoted by µ is, the von Mangoldt function by Λ, and,

given α > 0, we put

(1.9) bα(n) :=
∏
p|n

(
1 +

1

pα

)
(n > 1).

• For n ∈ N∗ and z ∈ C, we define the Piltz divisor function n 7→ τz(n) by the
Dirichlet series expansion of ζ(s)z =

∑
n>1 τz(n)/ns, converging in the half-plane

<s > 1. We often simply note τ = τ2.
• Given coprime integers q > 1 and a, we define gq(n; a) for n > 1 by the formula

gq(n; a) :=


1− 1/ϕ(q) if n ≡ a (mod q),

−1/ϕ(q) if n 6≡ a (mod q) and (n, q) = 1,

0 if (n, q) > 1.

This notation will be used to shorten some formulae. For instance, we have

∆f (x; q, a) =
∑
n6x

f(n)gq(n; a) (x > 1).

• Given an an arithmetical function f and two positive integers, b, c, we denote
by fb,c the arithmetical modification of the function f defined by

(1.10) fb,c(n) :=

{
f(bn) if (n, c) = 1,

0 otherwise.

1.2. Definitions. Our central definition is the following (see [5, §1]).

Definition 1.1. [F(D,K)] Let D ∈ N∗ and K > 0. We denote by F(D,K) the set
of those multiplicative functions f verifying the following properties:

(i) There exists a sequence of real numbers

2 = Υ1 < Υ2 < Υ3 < · · ·
such that

Υn+1

Υn
> 1 +

1

(log 2Υn)K
(n > 1),

(ii) For any pair of primes p, p′ with Υn < p, p′ 6 Υn+1 and p ≡ p′ (modD),
we have

(1.11) f(p) = f(p′),

(iii) We have

(1.12) |f(n)| 6 τK(n) (n > 1).

Remark 1.2. Some comments are in order regarding hypothesis (ii) above. A sim-
ilar regularity condition actually appears in many works dealing with Bombieri–
Vinogradov type theorems for multiplicative functions, e.g. in Wolke’s [28, Satz 1,
cond. 1.1.2], where the f(p) are assumed to be close, on average, to a fixed num-
ber τ , or in the definition of the set FD(A) given in [5, p.2384]. As mentioned
earlier, an hypothesis of this type is needed to get a Siegel–Walfisz property for
the restriction f |P. Now this Siegel–Walfisz hypothesis alone is not sufficient to
reach high levels of distribution for the function n 7→ f(n): see the instructive
example provided in [13, Prop 1.3]. For our present purposes, hypothesis (ii) in
Definition 1.1 turns out to be also crucial in Subsections 5.3.1 and 5.3.2. Indeed,
various combinatorial transformations and reductions lead to handle the exponent
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of distribution in arithmetic progressions of the sequence f(p1)f(p2)f(p3) where
the primes pj satisfy p1p2p3 6 x and pj > x2/7. Since f |P is assumed to be es-
sentially constant, this amounts to handle the level of distribution of the product
Λ(n1)Λ(n2)Λ(n3), where the integers nj satisfy n1n2n3 6 x and nj > x2/7. Fur-
ther combinatorial transformations enable to reduce the problem to studying the
exponent of distribution of the products n1n2n3 6 x with nj > x2/7. At that point,
we may conclude by appealing to the deep result concerning the distribution of the
function τ3 in arithmetic progressions—see Lemma 4.13.

We note incidentally that the insertion of the sequence {Υn}∞n=1 will be of crucial
importance in some applications, for instance Theorem 2.5 below.

For f ∈ F(D,K) the restriction f |P of f to the set P of all primes is uniformly
bounded since

(1.13) | f(p) | 6 K (p ∈ P).

Conditions (i) and (ii) imply that the function p 7→ f(p) is equidistributed among
the arithmetic progressions {p ∈ P : p 6 x, p ≡ a (mod q)}, when (aD, q) = 1 and
q 6 L A for any fixed A. This is a Siegel–Walfisz type assumption, as presented
in Definition 1.4 below. The periodicity of p 7→ f(p) is crucial in §5.3.2 where we
need results concerning the distribution levels of τ2 and τ3.

Typical examples of elements of F(1,K) for some K are provided by the functions
n 7→ zω(n) and τz, with |z| 6 K.

More elaborate is the case of the characteristic function 1Q of the set of those
integers representable as the sum of two squares. This function belongs to F(4, 1)
but not to F(1,K) for any K. This follows from Fermat’s theorem for primes in
Q. However 1Q is not of Siegel–Walfisz type SW(1,K) in the sense of Definition
1.4 below. Indeed, for instance, given any integer q divisible by 4 but not by 3, we
have 1Q(n) = 0 whenever n ≡ 3 (mod q).

To circumvent this difficulty, we introduce a new definition extending that of
∆f (x; q, a). Given an arithmetic function f , a real number x > 1 and integers
q > 1 and D > 1, we put

(1.14) qD := (q,D∞) =
∏
pν‖q
p |D

pν , q′D :=
q

qD
=
∏
pν‖q
p -D

pν ,

and, for integer a 6= 0,

(1.15)

∆f (x; q,D, a) :=
∑
n6x

n≡a (mod q)

f(n)− 1

ϕ(q′D)

∑
n6x

n≡a (mod qD)
(n,q′D)=1

f(n)

=
∑
n6x

n≡a (mod qD)
n≡a (mod q′D)

f(n)− 1

ϕ(q′D)

∑
n6x

n≡a (mod qD)
(n,q′D)=1

f(n),

since (qD, q
′
D) = 1.

When (q,D) = 1, we have

(1.16) ∆f (x; q,D, a) = ∆f (x; q, a).

When (D, a) = 1 formula (1.15) can be expressed in terms of Dirichlet charac-
ters χ modulo qD, viz.

(1.17) ∆f (x; q,D, a) =
1

ϕ(qD)

∑
χ (mod qD)

χ(a) ∆fχ(x; q′D, a),
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since the function

n 7→ 1

ϕ(qD)

∑
χ (mod qD)

χ(a)χ(n)

is the characteristic function of the arithmetic progression {n : n ≡ a (mod qD)}.
Another important definition is the following. We recall the definition (1.6) for

the function ωD,t.

Definition 1.3. [χD,T,Φ] Let D ∈ N∗, T ⊂
(
Z/DZ

)∗
and Φ ∈ NT be a function

defined on T with non-negative integral values. We denote by

χD,T,Φ

the characteristic function of the set of those integers n > 1, such that

(∀t ∈ T) ωD,t(n) = Φ(t).

If T = ∅, then χD,T,Φ = 1. If D = 1, T = {0} and Φ(0) = k is a fixed non-
negative integer, then χD,T,Φ is the characteristic function wk of those integers with
k distinct prime factors, as introduced in §1.1. More generally, χD,T,Φ detects those
integers n with prescribed number of distinct prime divisors in some fixed reduced
classes modulo D. The function χD,T,Φ is linked to elements of F(D,K) via the
identity given in (3.3) infra.

We next bring up the Siegel–Walfisz condition to express equidistribution of
sequences among reduced arithmetic progressions, with modulus coprime to D.

Definition 1.4. [Siegel–Walfisz condition SW(D,K)] Let D ∈ N∗ and K > 0 be
given, and let β = (βn) ∈ CN∗ be a complex sequence. We say that β satisfies the
Siegel–Walfisz condition SW(D,K), and write β ∈ SW(D,K), if for all A > 0, we
have

(SW(D,K))
∑

n∼N, (n,d)=1
n≡` (mod k)

βn −
1

ϕ(k)

∑
n∼N

(n,dk)=1

βn �
‖β‖N τ(d)K

√
N

(log 2N)A
,

uniformly for N > 1, d > 1, k > 1, (`D, k) = 1.

1.3. The central results. First of all, we establish an analogue of Theorem B
concerning multiplicative functions f in the class F(D,K).

Theorem 1.5. The following statement holds for suitable, absolute C0. Let A > 0,
ε > 0, K > 0. There exist B = B(A, ε,K) and C = C(A, ε,K) such that, uniformly
for

D > 1, f ∈ F(D,K), x > 1, R 6 x1/105−ε,

QR 6 x/L B , (a,D) = 1, 1 6 |a| 6 L A,

we have

(1.18)
∑
r6R

(r,a)=1

∣∣∣∣∣ ∑
q6Q

(q,a)=1

∆f (x; qr,D, a)

∣∣∣∣∣ 6 CDC0x

L A
·

We deduce the following two corollaries.

Corollary 1.6. The following statement holds for suitable, absolute C0. Let A > 0,
ε > 0, K > 0. There exist B = B(A, ε,K) and C = C(A, ε,K) such that, uniformly
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for

D > 1, f ∈ F(D,K), x > 1,

R 6 x1/105−ε, QR 6 x/L B , |ξr| 6 τK(r) (1 6 r 6 R),

(a,D) = 1, 1 6 |a| 6 L A,

we have

(1.19)

∣∣∣∣∣ ∑
r6R

(r,a)=1

ξr
∑
q6Q

(q,a)=1

∆f (x; qr,D, a)

∣∣∣∣∣ 6 C DC0 x

L A
·

The second corollary deals with the function χD,T,Φ from Definition 1.3.

Corollary 1.7. The following statement holds for suitable, absolute C0. Let A > 0,
ε > 0, K > 0. There exist B = B(A, ε,K) and C = C(A, ε,K) such that, uniformly
for

D > 1, T ⊂ (Z/DZ)∗, Φ ∈ NT, (a,D) = 1

and

(1.20)
x > 1, R 6 x1/105−ε, QR 6 x/L B ,

|ξr| 6 τK(r) (1 6 r 6 R), 1 6 |a| 6 L A,

we have

(1.21)

∣∣∣∣∣ ∑
r6R

(r,a)=1

ξr
∑
q6Q

(q,a)=1

∆χD,T,Φ(x; qr,D, a)

∣∣∣∣∣ 6 CDC0x

L A
·

In particular, for all A > 0, ε > 0 there exist B = B(A, ε) and C = C(A, ε), such
that, under conditions (1.20) and uniformly for k > 1, we have

(1.22)

∣∣∣∣∣ ∑
r6R

(r,a)=1

ξr
∑
q6Q

(q,a)=1

∆wk(x; qr, a)

∣∣∣∣∣ 6 Cx

L A
·

The structure of the upper bounds in (1.18), (1.19) and (1.21) allows selecting
D = D(x) tending to infinity with x, but not faster than a bounded power of log x.
For k = 1, the upper bound in (1.22) is a weaker form of Theorem B. Note that
this inequality is actually useless whenever k/ log2 x → ∞, since, for such k, the
level set {n 6 x : ω(n) = k} is so thin—see for instance [24, pp. 311-312]— that
the stated upper bound does not enable to recover those of (1.4) or (1.5).

1.4. Back to the original question. We now address the problem of the average
distribution of a function f in F(D,K) as stated in (1.3). In §8, taking advantage of
the combinatorial preparation leading to Proposition 5.1, we provide a condensed
proof of the following theorem, which may be seen as a variant of a result of Wolke
[28, Satz 1].

Theorem 1.8. The following statement holds for suitable, absolute C0. Let A > 0,
K > 0. There exist B = B(A,K) and C = C(A,K) such that, uniformly for

D > 1, f ∈ F(D,K), x > 1, Q 6
√
x/L B ,

we have ∑
q6Q

max
(a,qD)=1

∣∣∆f (x; q,D, a)
∣∣ 6 CDC0x

L A
·
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We note here that, at the cost of mild modifications in the arguments, this
statement could be used in place of Corollary 1.6 for the proofs of Theorems 2.1,
2.3 and 2.5 stated infra. Indeed, in all three instances, one may manage to use a
level of distribution < 1

2 (actually any strictly positive value suffices for Theorems

2.1 and 2.3 while the proof of Theorem 2.5 requires a level arbitrary close to 1
2 )

and appeal to Cauchy-Schwarz or Hölder’s inequality in order to deal with weights
bounded above by some function τK . However, applying Corollary 1.6 turns out to
be simpler and more straightforward.

1.5. Comments. Fouvry and Radziwi l l [9, cor. 1.3] proved that, for any multi-
plicative function f , satisfying, instead of condition (1.11), the more general as-
sumption that p 7→ f(p) is of Siegel–Walfisz type (see Definition 1.4 above), we
have the bound

(1.23)
∑

Q<q62Q
(q,a)=1

∣∣∆f (x; q, a)
∣∣�a,ε

x

L 1−ε ,

for any integer a 6= 0 and any ε > 0, provided Q 6 x17/33−ε. At first sight
this result may seem deeper than (1.18) since the error terms ∆f are summed
in modulus. However the upper bound in (1.23) appears to be too weak for the
applications described in the next section.

2. Applications

We list here, among many possible ones, four applications of our main results.
The first is a quick, natural proof of theorems 1.3, 1.4 and 1.6 of [5] and their
corollaries.

Let us start with sketching the proof of a weaker form of [5, th. 1.3] in this
framework, namely show that, for all A > 0, N > 1, and uniformly for |z| 6 A,
x > 2, 1 6 |h| 6 L A, we have

(2.1)
∑

|h|<n6x

τz(n)τ(n+ h) = x(log x)z

{ ∑
06j6N

λh,j(z)

(log x)j
+O

(
1

(log x)N+1

)}
,

where the λh,j are entire functions. Note that the error term above is actually
slightly more precise than stated in [5].

Let S denote the left-hand side of (2.1). Using the symmetry of the divisors of
n+ h around

√
n+ h, we may write, for any c > 1

2 ,

S = 2
∑

|h|<n6x

τz(n)
∑

d |n+h

d<
√
n+h

1 +O
(
xc
)

= 2
∑
t | |h|

∑
m6
√
x+h/t

(m,h/t)=1

∑
max{|h|/t,m2t−h/t}<n6x/t

n≡−h/t (modm)

τz(nt) +O
(
xc
)
.

From this point on, the strategy is clear and so we omit the computational details:
(i) show that if m 6M := x1/5, say, then one can ignore the lower constraint in the
inner n-sum; (ii) split the m-sum into intervals ]M∆j ,M∆j+1] with ∆ := 1+1/L C

and C sufficiently large in terms of N ; (iii) show that, to within the required
accuracy, one can replace, in the n-sum, the lower limit m2t by M2∆2jt; (iv) apply
Theorem 1.5 with R = 1, Q = M∆j and Q = M∆j+1; (v) apply the Selberg-
Delange method as displayed in [24, ch. II.5] to sum τz(nt) over integers coprime
to m (see [24, (5.36) p. 287]); (vi) rearrange the main terms by expanding the
various powers of log(x/t) and log(M∆j).
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Observe that the assumptions of [5, th. 1.3] are more flexible than those of
the above statement, inasmuch they assert that (2.1) holds in the larger domain
1 6 |h| 6 xδ for some small constant δ > 0. Such uniformity may also be derived
from our approach. We now describe which modifications should be incorporated in
order to reach this goal. The key-point concerns Lemma 4.7 below. Following the
original proof of [2, Theorem 6] and tracking the dependency upon the congruence
class a (particularly in applying bounds for sums of Kloosterman sums), it can be
seen that the estimate (4.10) remains true if the list of conditions (4.8) is replaced
by

D,M,N,Q,R > 1, |a|κRXε 6 N 6 |a|−κX−ε(X/R)1/3, Q2R 6 X,

where κ is a suitable absolute constant. Under the hypothesis 1 6 |a| 6 Xδ, where
δ is a small positive constant, the effect of the factors |a|±κ in the above conditions
is absorbed by other terms provided some exponents in the sequel of the proof of
Theorem 1.5 are slighted modified. In conclusion, we claim that, provided condition
R 6 x1/105−ε is replaced by R 6 x1/106−ε, Theorem 1.5 still holds true if hypothesis
1 6 |a| 6 L A is relaxed to 1 6 |a| 6 xδ.

Our second application is a theorem of Erdős–Wintner type conditional to the
level set of an additive function at shifted argument. As a typical illustration, we
prove the following statement, corresponding to the case when the additive function
employed to define the support is the number of prime factors function, ω.

Let us recall that the classical Erdős–Wintner theorem (see, e.g., [24, th. III.4.1])
states that the convergence of the following three series is necessary and sufficient
for a real, additive function f to possess a limiting distribution F :

(2.2)
∑
|f(p)|>1

1

p
,

∑
|f(p)|61

f(p)2

p
,

∑
|f(p)|61

f(p)

p
·

When this is the case, the characteristic function of F is given by the formula

ϕF (ϑ) :=

∫
R

eiϑt dF (t) =
∏
p

(
1− 1

p

)∑
ν>0

eiϑf(pν)

pν
(ϑ ∈ R),

where the convergence of the infinite product is a consequence of that of the three
series (2.2).

We shall consider the family of distribution functions Fr (r > 0) with character-
istic functions

(2.3) ϕFr (ϑ) :=
∏
p

(
1 +

(
1− 1

p

)∑
ν>1

eiϑf(pν) − 1

pν−1(p− 1 + r)

)
,

so that F1 = F . From a classical theorem of Lévy (see, e.g. [24, th. III.2.7], it
follows that Fr is continuous if, and only if

(2.4)
∑

f(p) 6=0

1/p =∞.

and that the set of discontinuities is otherwise included in f(N∗). We henceforth
define a common continuity set C(f) := R if (2.4) holds and C(f) := R r f(N∗)
otherwise.

Theorem 2.1. Let f be a real, additive function satisfying (2.2). Then, uniformly
for

0 6 r := (k − 1)/ log2 x� 1,
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we have

(2.5)
1

πk(x)

∑
1<n6x

ω(n−1)=k
f(n)6t

1 = Fr(t) + o(1)
(
t ∈ C(f), x→∞

)
.

The proof is given in Section 9. From general results on weak convergence of
distribution functions, it follows that formula (2.5) is actually uniform with respect
to t on any compact subset of C(f) and valid uniformly for t ∈ R if (2.4) holds.

For k = 1, we recover, in a slightly more general setting, a result of Kátai [18].
It is of interest to observe that if ω(n − 1) is replaced by ω(n) in (2.5) then, as

shown in [27], a limiting distribution still occurs but has a different value for r 6= 1:
when, for instance, f is strongly additive, the corresponding characteristic function
turns out to be

(2.6)
∏
p

(
1 +

r
(
eiϑf(p) − 1

)
p− 1 + r

)
whereas in this case

(2.7) ϕFr (ϑ) =
∏
p

(
1 +

eiϑf(p) − 1

p− 1 + r

)
.

Qualitatively, these results tell us that, as expected, the perturbation is more sig-
nificant in the case when the same variable is used for the additive function and the
definition of the level set, as is clear from comparing the coefficients of eiϑf(p) − 1
in (2.6) and (2.7). In the case of a shifted argument, the distributions of ω(n− 1)
and f(n) are “almost” independent.

Of course (2.5) opens the way to estimating the distribution function of an
additive satisfying (2.2) with respect to various probability measures related to the
function ω(n−1). As an illustration, we state without proof a standard consequence,
the proof of which simply involving a re-summation procedure and, say, a weak
version of [24, th. II.6.1].

Corollary 2.2. Let y > 0 and let f be a real, additive function satisfying (2.2).
Then, we have∑

1<n6x
f(n)6t

yω(n−1) =
{
Fy(t) + o(1)

}∑
n6x

yω(n)
(
t ∈ C(f), x→∞

)
.

A third application, which we shall not develop here in full generality, is the
variant of the previous one consisting in establishing an Erdős-Kac theorem over
the level set of an additive function at shifted argument. Letting Φ(t) denote the
normalized Gaussian distribution function, a typical statement in this direction is
as follows.

Theorem 2.3. Let f be a real, strongly additive arithmetical function such that

B2
x :=

∑
p6x

f(p)2

p
→∞ (x→∞),(2.8)

By ∼ Bx (y := x1/ log2 x, x→∞),(2.9) ∑
y<p6x

f(p)

p
= o
(
Bx
)
, (∀ε > 0)

∑
p6x

|f(p)|>εBx

f(p)2

p
= o
(
B2
x

)
(x→∞).(2.10)
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Then, uniformly for x→∞, 1 6 k � log2 x and t ∈ R, we have

1

πk(x)

∑
1<n6x

ω(n−1)=k
f(n)6Ax+tBx

1 = Φ(t) + o(1),

with Ax :=
∑
p6x f(p)/p.

This result generalizes to a natural framework a recent work of Goudout [12] in
which f = ω. When k = 1, it follows from a general theorem of Barban, Vinogradov
and Levin [1].

The hypotheses of the above theorem could be lightened further with some ex-
tra work. Note that (2.8) is classical, that (2.9) is a slight strengthening of the
requirement in Kubilius’ class H (see [19, ch. IV]), and that the second condition
in (2.10) coincides with the usual Feller-Lindeberg condition—see, e.g. [6, lemma
1.30].

As in the case of Theorem 2.1, we can derive, by re-summation over k, a number
of estimates from Theorem 2.3. The following statement, the proof of which we
leave to the reader, is emblematic.

Corollary 2.4. Let f be a real, strongly additive arithmetical function satisfying
(2.8), (2.9) and (2.10) and let ℘x denote a probability measure on ]1, x] ascribing
to each integer n a weight depending only on ω(n− 1). Assume furthermore that

℘x
(
ω(n− 1) > T log2 x

)
= o(1) (T, x→∞).

Then, uniformly for t ∈ R, we have

℘x
(
f(n) 6 Ax + tBx

)
= Φ(t) + o(1) (t→∞).

Our fourth application is a law of iterated logarithm for integers weighted with
τ(n− 1). More precisely, given a function ξ(x)→∞, this deals with the behaviour
of the quantities

(2.11)

Λ(n, t) :=
ω(n, t)− log2 t√

2 log2 t log4 t

(
t > ξ(x)

)
, M(n, ξ) := sup

ξ(x)<t6x
|Λ(n, t)|,

M+(n, ξ) := sup
ξ(x)<t6x

Λ(n, t), M−(n, ξ) := inf
ξ(x)<t6x

Λ(n, t).

It will be convenient to equip {1 < n 6 x} with the probability Px ascribing to
each integer n a weight proportional to τ(n− 1). With this setting, we prove the
following result in Section 11.

Theorem 2.5. Let ε > 0. If ξ(x) tends to ∞ with x sufficiently slowly, then we
have

(2.12) Px

(
M(n, ξ) 6 1 + ε

)
= 1 + o(1) (x→∞).

Moreover,

Px

(
M+(n, ξ) > 1− ε

)
= 1 + o(1) (x→∞),(2.13)

Px

(
M−(n, ξ) 6 −1 + ε

)
= 1 + o(1) (x→∞).(2.14)

It is well-known that the sum∑
n6x

τ(n) = x log x+O(x)

is dominated by integers with ω(n) ∼ 2 log2 x. Moreover, these prominent integers
actually satisfy ω(n, t) ∼ 2 log2 t uniformly for ξ(x) < t 6 x, and so a twisted
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version of the law of iterated logarithm could be proved for the probability on [1, x]
ascribing to each integer n a weight proportional to τ(n). Thus, from a qualitative
perspective, Theorem 2.5 tells us that, unlike the weight τ(n) which has the effect
of recentering averages on integers for which ω(n, t) is roughly twice its normal
order, the weight τ(n− 1) involves very little perturbation on the fine structure of
the sequence of prime factors of n.

3. Proofs of Corollaries 1.6 and 1.7

3.1. Proof of Corollary 1.6. We show here how Corollary 1.6 may be deduced
from Theorem 1.5.

By the Cauchy–Schwarz inequality and the size hypothesis for the ξr, we have

(3.1)

∣∣∣∣∣ ∑
r6R

(r,a)=1

ξr
∑
q6Q

(q,a)=1

∆f (x; qr,D, a)

∣∣∣∣∣
2

6 Σ1Σ2,

with

Σ1 :=
∑
r6R

(r,a)=1

τ2
K(r)

∣∣∣∣∣ ∑
q6Q

(q,a)=1

∆f (x; qr,D, a)

∣∣∣∣∣, Σ2 :=
∑
r6R

(r,a)=1

∣∣∣∣∣ ∑
q6Q

(q,a)=1

∆f (x; qr,D, a)

∣∣∣∣∣.
From Theorem 1.5, we get

(3.2) Σ2 � DC0 x/L A.

We bound Σ1 trivially as in Lemma 4.2, equation (4.1), infra. Selecting S = QR,
we get

Σ1 � τK(|a|)QRL c + xL c,

where c = c(ε,K). Inserting this last bound and (3.2) into (3.1) completes the
proof.

3.2. Proof of Corollary 1.7. For t ∈ T, choose zt ∈ C with |zt| = 1. Define
z := (zt)t∈T and define the strongly multiplicative function fz by its values on
primes as follows

fz(p) =

{
zt if p ≡ t (modD) (t ∈ T),

1 if (∀t ∈ T) p 6≡ t (modD).

The function fz belongs to F(D, 1) and, as a consequence of Cauchy’s integral
formula, we have the equalities

(3.3)

χD,T,Φ(n) =
∏
t∈T

(
1

2πi

∮
|zt|=1

z
ωD,t(n)−Φ(t)
t

zt
dzt

)

=
( 1

2πi

)|T| ∮
|zt|=1
(t∈T)

fz(n)∏
t∈T z

Φ(t)+1
t

dz,

Now, let us insert this expression into the left hand side of (1.21), interchange
summation and integration, apply bound (1.19), and finally integrate trivially over
the product of the units circles |zt| = 1. This completes the proof of (1.21).
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4. Lemmas

4.1. Classical lemmas. Our first lemma provides a bound for short sums of pow-
ers of the Piltz divisor function over arithmetic progressions—see [22, Theorem 2]
for instance.

Lemma 4.1. Let K ∈ N∗, ` ∈ N∗, and ε > 0 be fixed. Then, uniformly for
xε 6 y < x, 1 6 q 6 y/xε, (a, q) = 1, we have∑

x−y<n6x
n≡a mod q

τK(n)` � y

q
LK`−1.

We next consider the general sum G = G(c, f, S, x) defined by

G :=
∑
s6S

(s,a)=1

|cs|

{ ∑
n6x

n≡a mod s

|f(n)|+ 1

ϕ(s)

∑
n6x

(n,s)=1

|f(n)|

}
.

It will be useful to dispose of a bound for G when the summation variables n or s
are restricted to a sparse set.

Lemma 4.2. Let K > 1 be an integer and ε > 0 be given. There exists c = c(ε,K)
such that, uniformly for

x > 1, S ∈ N∗ ∩
[
1, x1−ε], 1 6 |a| 6 10x, c = (cs) ∈ CS , f ∈ CN∗ ,

and assuming that both c and f satisfy (1.12), we have

(4.1) G � |N|1/3x2/3L c + τK(|a|)SL c,

where N := {n 6 x : f(n) 6= 0}. Moreover, we also have

(4.2) G �

( ∑
s6S
cs 6=0

1

ϕ(s)

)1/2

xL c.

Proof. We have

G 6
∑
s6S

τK(s)
∑

n∈N, n 6=a
n≡a mod s

τK(n) + |f(|a|)|SL c +
∑
n∈N

τK(n)
∑
s6S

τK(s)

ϕ(s)

�
∑

n∈N, n6=a

τK(n)τK+1(|n− a|) + τK(|a|)SL c + L c

(
|N|
∑
n6x

τ2
K(n)

)1/2

�

(
|N|
∑
n6x

τK(n)3

)1/3(∑
n6x
n 6=a

τK+1(|n− a|)3

)1/3

+ τK(|a|)SL c +
√
x|N|L c.

Appealing to Lemma 4.1, this furnishes (4.1).
To prove (4.2), let us denote by S the set of those integers s 6 S such that cs 6= 0.

Applying Lemma 4.1 and the Cauchy–Schwarz inequality, we obtain

G �

( ∑
s∈S

τK(s)

ϕ(s)

)
xL c

�

( ∑
s6S

τK(s)2

ϕ(s)

)1/2( ∑
s∈S

1

ϕ(s)

)1/2

xL c �
( ∑
s∈S

1

ϕ(s)

)1/2

xL c,

as required. �
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The following lemma (see, e.g., [24, ex. 293], [26, ex. 293]) provides a quantita-
tive form of the assertion that the product of small prime factors of an integer is
usually small.

Lemma 4.3. Uniformly for 2 6 y 6 z 6 x, we have∣∣∣{n 6 x :
∏
pν‖n
p6y

pν > z
}∣∣∣� x exp

(
− log z

2 log y

)
.

The next lemma is proved via a standard application of Rankin’s method. We
recall the notation (1.9) for the multiplicative function bα.

Lemma 4.4. Uniformly for integers m > 1, n > 1, and real y > 1, we have∑
δ6y

δ|m∞, (δ,n)=1

1

δ
=
∏
p|m
p -n

(
1− 1

p

)−1

+O

(
b3/4(m)

y1/4

)
.

Proof. The main term of the stated formula coincides with the limit of the left-hand
side as y →∞. The remainder is∑

δ>y
δ|m∞, (δ,n)=1

1

δ
�

∑
δ|m∞

(δ,n)=1

1

δ

( δ
y

)1/4

.

�

Finally we apply an identity due to Heath-Brown—see [17, prop. 13.3]— in order
to split the von Mangoldt function into sums of bilinear forms.

Lemma 4.5. Let y > 1 and let n, J , be two integers such that J > 1, 1 6 n 6 2y.
We have

Λ(n) =
∑

16j6J

(−1)j−1

(
J

j

) ∑
∏j
h=1 mhnh=n

max16h6j mh6y
1/J

∏
16h6j

µ(mh) log n1.

4.2. Lemmas of Siegel–Walfisz type. Recall that w1 denotes the indicator func-
tion of the set of prime powers. The classical Siegel–Walfisz theorem asserts that
the bound

(4.3) ∆w1
(x; q, a)�A x/L

A

holds for any fixed A and all coprime integers a, q.
A Siegel–Walfisz theorem for the Möbius function is also known, viz.

∆µ(x; q, a)�A x/L
A,

see for instance [17, cor. 5.29].
We shall need extensions of these two results. Recall the definition of Y0 in (1.8).

Lemma 4.6. For every A > 0, there exists a constant C(A) such that, for all
Y0 > 1, x > 1 and coprime integers a and q with q > 1, we have∣∣∆Y0

(x; q, a)
∣∣ 6 C(A)x/L A,(4.4) ∣∣∆µY0(x; q, a)
∣∣ 6 C(A)x/L A.(4.5)

Proof. To prove (4.4), it is plainly sufficient to establish a bound of same type for

∆′Y0
(x; q, a) := ∆Y0

(x; q, a)−∆Y0
(x/2; q, a).

Every integer n ∈]x/2, x] may be uniquely represented as

n = pm, with P+(m) 6 p 6 x/m.
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Let E be the set of those integers n ∈]x/2, x] such that x/m < y := e
√

log x, and
hence such that p = P+(n) 6 y. Lemma 4.3 then yields that E is a thin set, indeed

(4.6) |E| � x/
√
y.

Now we have

∆′Y0
(x; q, a) =

∑
m6x

(m,q)=1

Y0(m)
∑

max(x/(2m),Y0,P+(m))6p6x/m

gq(p; am),

where m is the multiplicative inverse of m modulo q. From (4.6) and (4.3) we
deduce that

|∆′Y0
(x; q, a)| �

∑
m6x/y
(m,q)=1

Y0(m)x

m
(
log(x/m)

)A +
x
√
y
,

where A is arbitrary. Summing over m furnishes the required estimate.
The proof of (4.5) is similar.

�

4.3. Lemmas from the dispersion technique and bounds on Kloosterman
sums. Let α = (αm) and β = (βn) be complex sequences. For M, N > 1 we
consider

(4.7) ∆α,β(M,N ; q, a) :=
∑∑

m∼M,n∼N
mn≡a (mod q)

αmβn −
1

ϕ(q)

∑∑
m∼M,n∼N
(mn,q)=1

αmβn.

which is a variant of ∆f (see (1.1)) where the sizes of the variables m and n in the
convolution α ∗ β are restricted to dyadic intervals. We also introduce

X := MN,

and for 1 6 u < v the shortened sum ∆u,v
α,β(M,N ; q, a)

∆u,v
α,β(M,N ; q, a) :=

∑∑
m∼M,n∼N

mn≡a (mod q)
u<mn6v

αmβn −
1

ϕ(q)

∑∑
m∼M,n∼N
(mn,q)=1
u<mn6v

αmβn,

where the variables m and n satisfy the extra multiplicative constraint u < mn 6 v.
Note that ∆u,v

α,β vanishes when u > 4X or v < X.

We now list several lemmas providing instances in which the X
1
2 -barrier for the

level of distribution of the convolution α ∗ β can be overpassed. The proofs of
Lemmas 4.7 and 4.8 below are both based on Linnik’s dispersion method and on
bounds of various types of Kloosterman sums.

The first part of the following statement is a weak version of [2, Theorem 6,
p. 242] which however will be sufficient for our purpose. Extending the validity to
∆u,v
α,β is now standard by using the Mellin transform of a smooth approximation

to 1]u,v] in order to separate the variables m and n in the summation condition
u < mn 6 v—see for instance the proof of [9, cor. 1.1] or [3, p. 371–372]. Therefore,
we omit the proof of this extension.

Similarly, albeit [2, Theorem 6] only deals with the case D = 1, we omit the
straightforward proof of the extension to general D.
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Lemma 4.7. Let A > 0, K > 0, ε > 0. Uniformly for

(4.8)
D, M, N, Q, R > 1, 1 6 |a| 6 (logX)A,

RXε 6 N 6 X−ε(X/R)1/3, Q2R 6 X,

all β = (βn) ∈ CN∗ ∩ SW(D,K) satisfying the sifting condition

(4.9) P−(n) 6 e(log2 n)2

⇒ βn = 0,

and all α = (αm) ∈ CN∗ , we have

(4.10)
∑
r6R

(r,aD)=1

∣∣∣ ∑
q'Q

(q,aD)=1

∆α,β(M,N ; qr, a)
∣∣∣� ‖α‖M ‖β‖N √X

(logX)A
·

Under the same assumptions, the bound (4.10) persists, uniformly for 1 6 u < v,
on replacing ∆α,β by ∆u,v

α,β.

In particular, estimate (4.10) and its extension to ∆u,v
α,β hold uniformly for

D, M, N, Q, R > 1, 1 6 |a| 6 (logX)A,

X1/105 6 N 6 X2/7, 1 6 R 6 X1/105−ε, Q2R 6 X.

Fouvry [7, Proposition 1, p. 61] proved a similar result in the special case β = µ
or 1. These special cases are sufficient to derive Theorem A above.

When N = Xo(1), Lemma 4.7 does not allow selecting R = Xδ, for some fixed
δ > 0. The following result, due to Fouvry and Radziwi l l [9, cor. 1.1,(i) & Propo-
sition 8.1(i)], fills this gap when D = 1. Here again the extension to general D > 1
is straightforward. Accordingly, we state the following lemma.

Lemma 4.8. Let A > 0, K > 0, ε > 0. Uniformly for

D, M, N, Q > 1, 1 6 |a| 6 1
12X, e(logX)ε 6 N 6 Q−11/12X17/36−ε.

and all complex sequences α = (αm) ∈ CN∗ , β = (βn) ∈ CN∗∩ SW(D,K) such that

(4.11) |αm| 6 τK(m) (m > 1), |βn| 6 τK(n) (n > 1),

we have

(4.12)
∑
q6Q

(q,aD)=1

|∆α,β(M,N ; q, a) | � X

(logX)A
·

Under the same hypotheses, the bound (4.12) persists, uniformly for 1 6 u < v,
on replacing ∆α,β by ∆u,v

α,β.
In particular, for all ε > 0, A > 0, the estimate

(4.13)
∑
r6R

(r,aD)=1

∣∣∣ ∑
q'Q

(q,aD)=1

∆α,β(M,N ; qr, a)
∣∣∣� X

(logX)A
,

holds uniformly for

D, M, N, Q, R > 1, 1 6 |a| 6 1
12X,

exp
{

(logX)1/4
}
6 N 6 X1/105, 1 6 R 6 X1/105−ε, Q2R < X.

Under the same conditions, the estimate (4.13) persists, uniformly for 1 6 u < v,
on replacing ∆α,β by ∆u,v

α,β .

The derivation of (4.13) from (4.12) is standard and follows lines similar to those
described in the proof of Corollary 1.6 above.

The next statement is obtained by combining Lemmas 4.7 and 4.8.
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Lemma 4.9. Let A > 0, K > 0, ε > 0. Uniformly for

D, M, N, Q, R > 1, 1 6 |a| 6 (logX)A,

exp
{

(logX)1/4
}
6 N < X2/7, 1 6 R 6 X1/105−ε, Q2R < X,

and all complex sequences α = (αm) ∈ CN∗ , β = (βn) ∈ CN∗ ∩SW(D,K) satisfying
conditions (4.9) and (4.11), we have

(4.14)
∑
r6R

(r,aD)=1

∣∣∣ ∑
q'Q

(q,aD)=1

∆α,β(M,N ; qr, a)
∣∣∣� X

(logX)A
·

On replacing ∆α,β by ∆u,v
α,β, the estimate (4.14) persists, uniformly for 1 6 u < v.

As will be explained in §7, it turns out that condition Q2R < X in Lemmas 4.7,
4.8 and 4.9, may be relaxed to the weaker condition QR < X/(logX)B for some
B = B(A) by exploiting an idea due to Dirichlet.

4.4. The convolution principle. We recall here a by now classical principle which
is implicit in many works related to the Bombieri–Vinogradov theorem. This prin-
ciple asserts that the convolution of two well-behaved sequences has an exponent
of distribution equal to 1/2. The following statement is a straightforward variation
of [2, Theorem 0(b)].

Lemma 4.10. Let A > 0, K > 0, ε > 0. There exists B = B(A,K, ε) such that,
uniformly for

D > 1, M, N > e(logX)ε , Q 6 X1/2/(logX)A,

and all complex sequences α = (αm) ∈ CN∗ , β = (βn)CN∗∩ SW(D,K) satisfying
(4.11), we have

(4.15)
∑
q6Q

(q,D)=1

max
(a,q)=1

|∆α,β(M,N ; q, a) | � X

(logX)A
·

Under the same hypotheses, the bound (4.15) persists, uniformly for 1 6 u < v,
on replacing ∆α,β by ∆u,v

α,β.

4.5. Lemmas from the theory of algebraic exponential sums. Recall from
§ 1.1 the definitions of the functions gq and Y0, the latter being associated to the
positive number Y0. The following lemma is trivial when Y0 = 2. When Y0 > 2, it
is a standard consequence of the fundamental lemma from sieve theory.

Lemma 4.11. The following statement holds for suitable, absolute constant C0.
For each ε > 0, suitable δ = δ(ε), c(ε) > 0, and uniformly for x > 1, M > 1,
Y0 > 2, and integers integers a, q, t, D such that

2 6 Y0 < x1/100 < M 6 x, 1 6 q 6 x1−ε, (q, aD) = 1, (t,D) = 1,

we have ∑
m'M

m≡t (mod D)

gq(m; a)� DC0

ϕ(q)
x1−δ(ε),

and, more generally, ∑
m'M

m≡t (modD)

gq(m; a)Y0(m)� DC0

ϕ(q)
x1−c(ε)/ log Y0 .
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Lemma 4.11 deals with the distribution of the function τ1 = 1 in arithmetic
progressions. The following two lemmas concern the distribution of the functions
τ2 and τ3. They assert that the exponent of distribution of these functions can
be taken > 1/2. It remains a challenging problem to extend these results to the
function τ4.

Lemma 4.12. The following statement holds for suitable, absolute C0. For each
ε > 0, suitable δ = δ(ε), c(ε) > 0, and uniformly for x > 1, M1,M2 > 1, Y0 > 2,
and integers a, q, t1, t2, D , such that

2 6 Y0 6 x
1/100 6M1 6M2, M1M2 6 x,

1 6 q 6 x2/3−ε, (q, aD) = 1, (t1t2, D) = 1,

we have

(4.16)
∑ ∑

m1'M1, m2'M2

mi≡ti (modD) (i=1,2)

gq(m1m2; a)� DC0

ϕ(q)
x1−δ(ε),

and, more generally,

(4.17)
∑ ∑

m1'M1, m2'M2

mi≡ti (modD) (i=1,2)

gq(m1m2; a)Y0(m1m2)� DC0

ϕ(q)
x1−c(ε)/ log Y0 .

Lemma 4.13. The following statement holds for suitable, absolute C0. For each
ε > 0, suitable δ = δ(ε), c(ε) > 0, and uniformly for x > 1, M1,M2,M3 > 1,
Y0 > 2, and integers a, q, t1, t2, t3, D such that

2 6 Y0 6 x
1/100 6M1 6M2 6M3, M1M2M3 6 x,

1 6 q 6 x21/41−ε, (q, aD) = 1, (t1t2t3, D) = 1,

we have

(4.18)
∑ ∑ ∑

m1'M1,m2'M2,m3'M3

mi≡ti (modD) (16i63)

gq(m1m2m3; a)� DC0

ϕ(q)
x1−δ(ε),

and more generally

(4.19)
∑ ∑ ∑

m1'M1,m2'M2,m3'M3

mi≡ti (modD) (16i63)

gq(m1m2m3; a)Y0(m1m2m3)� DC0

ϕ(q)
x1−c(ε)/ log Y0 .

Proof of Lemmas 4.12 and 4.13. First consider the case where D = 1. The bound
(4.16) is then a classical consequence of Weil’s bound for Kloosterman sums. As
for (4.18), the first result with an exponent > 1/2 in the upper bound for q is due
to Friedlander and Iwaniec [10, th. 5] and it appeals to Deligne’s deep bounds for
multidimensional exponential sums. We use here Heath-Brown’s result [16, th. 1]
that any exponent < 21/41 is admissible. Note that if q is assumed to be prime,
the best exponent to date is 12/23− ε: see [8, th. 1].

The bounds (4.17) and (4.19) are variants of (4.16) and (4.18) in which the
variables mi are slightly sifted. These extensions, useless if log Y0 � log x, are
classically obtained through the fundamental lemma of sieve theory—see, e.g., [3,
lemma 2*].

Let us now consider the case where D > 1. The congruences mi ≡ ti (modD)
may be detected by means of additive characters modulo D. It is standard to
incorporate these extra characters in the proofs of (4.16) and (4.18), which are
based on the study of the oscillations of additive characters modulo q. The proofs
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are identical with no loss up to the factor DC0 . This factor turns out to be harmless
in our applications since D will be a fixed power of log x—see the comments after
Corollary 1.7. �

4.6. Lemmas from complex analysis. The following stimate will be useful to
deal with some main terms appearing in § 7. We use the following notations

(4.20)

h :=
∏
p

(
1 +

1

p(p− 1)

)
, λ := γ −

∑
p

log p

1 + p(p− 1)
,

g(n) :=
∏
p|n

1

1 + p/(p− 1)2
, ϑ(n) :=

∑
p|n

p2 log p

(p− 1)(p2 − p+ 1)
.

Lemma 4.14. Uniformly for n ∈ N∗ and R > 1, we have

(4.21) T (R,n) :=
∑
r6R

(r,n)=1

1

ϕ(r)
= hg(n)

{
logR+ λ+ ϑ(n)

}
+O

(
b1/2(n)

R2/7

)
.

Proof. For <s > 0, consider the Dirichlet series∑
r>1

(r,n)=1

1

ϕ(r)rs
=
∏
p -n

(
1 +

1

(1− 1/p)

∑
ν>1

1

pν(s+1)

)
= ζ(s+ 1)H(s)G(n, s),

with

H(s) :=
∏
p

(
1 +

1

ps+1(p− 1)

)
,

G(n, s) :=
∏
p |n

1− 1/ps+1

1 + 1/{ps+1(p− 1)}
=
∏
p |n

1

1 + p/{(p− 1)(ps+1 − 1)}
·

Apply Perron’s formula in effective form (see, e.g., [24, cor. II.2.4, p. 220]) and
move the line of integration to the abscissa σ = − 1

2 . Since, we have, uniformly for

σ > − 1
2 ,

G(n, s)� b1/2(n),

we obtain, uniformly for R > 1 and n > 1,

T (R,n) = Res
(
Rsζ(s+ 1)H(s)G(n, s)/s; 0

)
+O

(b1/2(n)

R2/7

)
= H(0)G(n, 0){logR+ γ}+H ′(0)G(n, 0) +H(0)G′(n, 0) +O

(b1/2(n)

R2/7

)
,

which coincides with (4.21). �

The above lemma may be exploited to evaluate the more general sum

T (R,m, n) :=
∑
r6R

(r,n)=1

1

ϕ(mr)
·

We retain notation (4.20) and further introduce, for j = 0, 1, integers m,n > 1,
and real u > 1,

(4.22) Θj(m,n;u) :=
∑
δ6u

δ|m∞, (δ,n)=1

(log δ)j

δ
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Lemma 4.15. Uniformly for R > R0 > 1, and integers m,n > 1, we have

(4.23)

T (R,m, n) =
hg(mn)

ϕ(m)

({
logR+ λ+ ϑ(mn)

}
Θ0(m,n;R0)−Θ1(m,n;R0)

)
+O

(
τ(mn)2 log 2R

ϕ(m)R
1/4
0

)
.

Proof. Split the sum T (R,m, n) according to the value of δ := (r,m∞) and write
r = δs. Since (s,mδ) = 1 we get, with notation (4.21),

T (R,m, n) =
∑
δ|m∞

(δ,n)=1

1

ϕ(mδ)

∑
s6R/δ

(s,mn)=1

1

ϕ(s)
=

∑
δ|m∞

(δ,n)=1

T (R/δ,mn)

ϕ(mδ)
.

To shorten this summation we use, for δ > R0, the trivial bound T (R/δ,mn) �
log 2R. Since ϕ(mδ) = δϕ(m), Rankin’s method eventually yields

(4.24) T (R,m, n) =
∑
δ<R0

δ|m∞, (δ,n)=1

T (R/δ,mn)

δϕ(m)
+O

(
log 2R

ϕ(m)

∑
δ|m∞

1

δ

( δ

R0

)1/4
)
.

Inserting (4.21) into (4.24), we obtain a formula for T (R,m, n) with the stated
main term and error term

�
b1/2(mn)b5/7(m)

ϕ(m)R
2/7
0

+
b3/4(m) log 2R

ϕ(m)R
1/4
0

·

It can be checked that the order of magnitude of this expression does not exceed
that of the error term appearing in (4.23). �

5. Proof of Theorem 1.5 with the restrictions Q2R 6 x and (qr,D) = 1

5.1. First step of preparation. When (qr,D) = 1, we have ∆f (x; qr,D, a) =
∆f (x; qr, a) by (1.16). The purpose of this section is to establish the following
statement.

Proposition 5.1. Let K > 0. For suitable absolute constant C0 and all ε, A > 0,
there exists C = C(ε,A) such that, uniformly for

(5.1)
D > 1, f ∈ F(D,K), x > 1, Q > 1, 1 6 R 6 x1/105−ε,

Q2R 6 x, (a,D) = 1, 1 6 |a| 6 L A,

we have

(5.2)
∑
r6R

(r,aD)=1

∣∣∣ ∑
q6Q

(q,aD)=1

∆f (x; qr, a)
∣∣∣ 6 C DC0x

L A
·

The same bound also holds, uniformly for integers b and c with 1 6 b, c 6 L A, on
replacing f ∈ F(D,K) by fb,c, as defined in (1.10). Under the assumptions (5.1),
we therefore have

(5.3)
∑
r6R

(r,aD)=1

∣∣∣ ∑
q6Q

(q,aD)=1

∆fb,c(x; qr, a)
∣∣∣ 6 C DC0x

L A
·
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In order to prove (5.2) under the assumptions (5.1) we first perform a dyadic
decomposition and define accordingly

V (Q,R) :=
∑
r6R

(r,aD)=1

∣∣∣ ∑
q6Q

(q,aD)=1

(
∆f (x; qr, a)−∆f (x/2; qr, a)

)∣∣∣
=

∑
s6S

(s,aD)=1

cs

( ∑
n∼x/2

n≡a mod s

f(n)− 1

ϕ(s)

∑
n∼x/2
(n,s)=1

f(n)

)
(5.4)

with

(5.5) S := QR and cs :=
∑

r6R, q6Q
s=qr

ξr,

where ξr is some coefficient satisfying |ξr| 6 1. Note the bounds S � x53/105 and
|cs| 6 τ(s). Thus, the proof of Proposition 5.1 is reduced to that of the estimate

(5.6) V (Q,R)� DC0x/L A,

for both functions f and fb,c.
Let us now fix

Y0 := exp
(
L 1/4

)
,

and recall from § 1.1 the definition of the associated indicator function Y0. We
factorize integers n ∈]x/2, x] uniquely as

(5.7) n = νn
∏

16j6Jn

p
αj
j ,

with

νn :=
∏
p6Y0

p`‖n

p`, Y0 < p1 < p2 < · · · < pJn , αj > 1 (Jn > 0, 1 6 j 6 Jn).

Since f is multiplicative, we have

(5.8) f(n) = f(νn)
∏

16j6Jn

f(pj
αj )

and also

fb,c(n) =

{
f(bνn)

∏
16j6Jn

f(pj
αj ) if (νn, c) = 1,

0 if (νn, c) > 1,

since we may assume 1 6 b, c 6 L A and x sufficiently large.

5.2. Contribution of non typical variables n. In that subsection, we will not
appeal to the combinatorial structure of the coefficients cs. Let E0 be the set of
those integers n ∈]x/2, x] such that, with notation (5.7),

max
16j6J

αj > 2 or νn > Z0 := exp
(
L 3/4

)
.

From the trivial estimate
∑
p>z 1/p2 � 1/z and Lemma 4.3 we infer that

|E0| � x exp
(
−L 1/4

)
.

Combined with (4.1), this bound implies that the contribution from integers in E0

to the left–hand side of (5.4) is

(5.9) � x exp
(
− 1

4L 1/4
)

+ τK(|a|)SL c � x exp
(
− 1

4 L 1/4
)
.

We now introduce the dissection parameter

(5.10) % := 1 + 1/L B0 ,
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where B0 will be specified later in terms of K and A, and define

Yk := Y0%
k (k = 0, 1, 2, ...).

Let E1 be the set of those integers n ∈]x/2, x] r E0 such that νn 6 Z0 and

Yk < p1 < p2 6 Yk+1.

for some k > 0, so that the two smallest prime factors of n/νn are close to each
other. We plainly have

|E1| 6
∑

Y0<p1<p26%p1

x

p1p2
�

∑
p1>Y0

x log %

p1 log p1
� x

L B0
·

From (4.1), we deduce that the contribution to the left–hand side of (5.4) arising
from integers in E1 is

(5.11) � x

L B0/3−c
+ τK(|a|)SL c � x

L B0/3−c
·

Taking (5.4), (5.9) and (5.11) into account, we can write

(5.12) V (Q,R) =
∑

(t,D)=1

∑
k>0

∑
`>1

Vk,`(Q,R; t) +O

(
x

L B0/3−c

)
,

where Vk,`(Q,R; t) is the subsum of V (Q,R) corresponding to the supplementary
conditions

(5.13)
αj = 1 (1 6 j 6 Jn), νn 6 Z0,

p1 ≡ t(modD), p1 ∈ Ik,` :=]Yk, Yk+1]∩]Υ`,Υ`+1], p2 > Yk+1,

with notations (5.7), and where the Υ` appear in Definition 1.1. The interval Ik,`
may be empty, however the number of sums Vk,`(Q,R; t) appearing in (5.12) is
� DL B0+K+2. We also observe that selecting B0 = 3A+ 3c implies that the error
term in (5.12) is � x/L A, sharper than required in (5.6).

From the above remarks, we see that (5.6) follows from showing that, for suitable
absolute C0 and all A > 0, we have

(5.14) Vk,`(Q,R; t)� DC0x/L A,

uniformly for D > 1, (t,D) = 1, k > 0, ` > 1, for both f and fb,c whenever
1 6 b, c 6 L A.

Proving (5.14) is the purpose of the next subsection, where we will use, in a
crucial way, the fact that, if p belongs to Ik,` and satisfies p ≡ t ( modD), then f(p)
assume a constant value, noted as zt. Recall that, by (1.13), we have |zt| 6 K.
Regarding the importance of the periodicity of f |P, see Remark 1.2.

5.3. Estimating Vk,`(Q,R; t). We consider two subcases according to the size
of Yk.

5.3.1. The case Yk 6 x2/7. In order to apply Lemma 4.9 to each sum Vk,`(Q,R; t)
we define

βn :=

{
zt if n ∈ P, n ≡ t (modD), n ∈ Ik,`,

0 otherwise.

Note that the sequence (βn) satisfies the condition SW(D, 1). Next, we define

αm :=

{
f(m) if m = mh, P+(m) 6 Y0, P

−(h) > Yk+1, m 6 Z0, µ(h)2 = 1,

0 otherwise.
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With these definitions we can rewrite Vk,`(Q,R; t) as

Vk,`(Q,R; t) =
∑
s6S

(s,aD)=1

cs

( ∑
mn∼x/2

mn≡a mod s

αmβn −
1

ϕ(s)

∑
mn∼x/2
(mn,s)=1

αmβn

)
.

We now appeal to the combinatorial structure of the coefficient cs—see (5.5)—and
apply Lemma 4.9 with N = Yk > Y0, M � x/Yk, u = x/2, v = x. This furnishes
the bound

(5.15) Vk,`(Q,R; t)� x/L A,

for any A.
Extending the validity of this bound to fb,c is straightforward: it suffices to

replace f(m) by fb,c(m) in the definition of αm. By (5.15) we see that (5.14) holds

(with C0 = 0) provided Yk 6 x2/7. Thus, it remains to deal with the case when Yk
is large.

5.3.2. The case Yk > x2/7. As a direct consequence of the inequalities Y 4
k > x and

x/2 < n 6 x, we see that any n contributing to Vk,`(Q,R; t) may be represented in
one of the following three ways

n = νnp1, n = νnp1p2, n = νnp1p2p3,

where νn and the pj are defined in (5.7), and satisfy conditions (5.13). The case
n = νnp1 is very similar to the case treated in Theorem B. We will restrict to the
situation when n = νnp1p2p3: indeed the other two cases are similar and actually
simpler from a combinatorial aspect.

In order to homogenize the notations in the following computations, we substi-
tute

k → k1, `→ `1, t→ t1.

With the above considerations in mind, it is natural to consider the expression

(5.16) Wk1,`1(Q,R; t1) :=
∑
s6S

(s,aD)=1

cs
∑

ν,p1,p2,p3

gs(νp1p2p3, a)f(ν)f(p1p2p3),

where the summation variables satisfy the conditions

(5.17)
x/2 < νp1p2p3 < x, ν 6 Z0, P+(ν) 6 Y0,

p1 ∈ Ik1,`1 , p1 ≡ t1 (modD), Yk1+1 < p2 < p3.

The proof of (5.14) is hence reduced to showing that, for a suitable absolute C0

and all A > 0, we have

(5.18) Wk1,`1(Q,R; t1)�A D
C0x/L A,

uniformly for D > 1, (t1, D) = 1, k1 > log(x2/7/Y0)
/

log %, `1 > 1, for both f and

fb,c, with 1 6 b, c 6 L A.
However, the summation conditions given in (5.17) are not sufficient to determine

the value of f(p1p2p3) in (5.16). To circumvent this difficulty, we split further the
sum Wk1,`1(Q,R; t1) as

(5.19) Wk1,`1(Q,R; t1) =
∑
k2,k3

∑
`2,`3

∑
t2,t3 mod D

Wk,`(Q,R; t) + E,

with
• k := (k1, k2, k3) satisfies k3 > k2 > k1 (> log(x2/7/Y0)

/
(log %)),

• ` := (`1, `2, `3) satisfies `2, `3 > 1,
• t := (t1, t2, t3) satisfies (t2t3, D) = 1,
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•

(5.20) Wk,`(Q,R; t) := zt1zt2zt3
∑
s6S

(s,aD)=1

cs
∑

ν,p1,p2,p3

gs(νp1p2p3, a)f(ν),

where the summation conditions of (5.17) are replaced by

x/2 < νp1p2p3 < x, ν 6 Z0, P
+(ν) 6 Y0, pi ∈ Iki,`i , pi ≡ ti (modD) (1 6 i 6 3),

and where the error term E arises from the contribution of those (p1, p2, p3) such
that Yk2 < p2 < p3 6 Yk2+1 for some k2 > k1. Finally we denote by zti the value
of f(pi) when pi belongs to Iki,`i and p ≡ ti (modD).

By a computation similar to (5.12), we see that, if B0 is chosen sufficiently large,
the error term E (see (5.19)) is bounded as required in (5.18).

The number of terms in the multiple sum of (5.19) is � D2L 2B0+2K+4. Hence
(5.18) follows from the validity of the bound

(5.21) Wk,`(Q,R; t)� DC0x/L A,

for suitable, absolute C0 and all A > 0, uniformly for

(5.22)
k3 > k2 > k1 > log(x2/7/Y0)

/
log %, min

16j63
`j > 1,

D > 1, (t1t2t3, D) = 1.

It is time to replace, in (5.20), the characteristic function of the set of primes
P by the classical von Mangoldt function Λ and even better by the function ΛY0.
Since these techniques classically generate an admissible error, the proof of (5.21)
is reduced to show that, uniformly under conditions (5.22), we have

(5.23) W̃k,`(Q,R; t)�A D
C0x/L A,

where

(5.24) W̃k,`(Q,R; t) :=
∑
s6S

(s,aD)=1

cs
∑

ν,n1,n2,n3

gs(νn1n2n3, a)G(ν, n1, n2, n3),

with

G(ν, n1, n2, n3) := f(ν)Y0(n1)Λ(n1)Y0(n2)Λ(n2)Y0(n3)Λ(n3),

and where the summation variables in (5.24) satisfy the conditions

(5.25)
x/2 < νn1n2n3 < x, ν 6 Z0, P+(ν) 6 Z0,

ni ∈ Iki,`i , ni ≡ ti (modD) (1 6 i 6 3).

Conditions (5.22) and (5.25) imply x2/7 < n1 < x1/3 and n3 < x3/7. So we
can apply Lemma 4.5 to each of the factors Λ(ni) (1 6 i 6 3) with y := x4/7 and
J := 2. Thanks to this identity, the summation over each variable ni (1 6 i 6 3)
in (5.24) is replaced by two summations, respectively over

(5.26) pairs (mi,1, ni,1), and 4-tuples (mi,1,mi,2, ni,1, ni,2).

Mixing all these cases leads to considering eight types of sums. Since the other cases
are similar, and actually simpler in the combinatorial aspect, we will concentrate
on those sums arising from the last cases in (5.26) for i = 1, 2 or 3. We therefore
consider the arithmetic function

(5.27) g(n) :=
∑
ν

f(ν)
∑

mi,j ,ni,j
(16i63; j=1,2)

∏
16i63
j=1,2

µ(mi,j)Y0(mi,jni,j)
∏

16i63

log ni,1,
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with the summation conditions

(5.28)



n = ν
∏

16i63

∏
16j62mi,jni,j ,

ν 6 Z0, P
+(ν) 6 Y0,

mi,1mi,2ni,1ni,2 ∈ Iki,`i (1 6 i 6 3),

mi,1, mi,2 6 x2/7 (1 6 i 6 3),

mi,1mi,2ni,1ni,2 ≡ ti (modD) (1 6 i 6 3).

With this definition, we are led to consider the typical sum

(5.29) Gk,`(Q,R; t) :=
∑
s6S

(s,aD)=1

cs

( ∑
n∼x

n≡a mod s

g(n)− 1

ϕ(s)

∑
n∼x

(n,s)=1

g(n)
)
.

Indeed, (5.23) will follow from the validity of

(5.30) Gk,`(Q,R; t)� DC0x/L A,

for suitable absolute C0, all A > 0, and uniformly under conditions (5.22).
The sum Gk,`(Q,R; t) defined in (5.29) is over fourteen variables, namely s, ν,

the mi,j and the ni,j . In order to make the last twelve variables arithmetically
independent, we fix the reduced congruence class modulo D of each mi,j and ni,j .
This involves splitting sum Gk,`(Q,R; t) into � D12 subsums where the last con-
dition in (5.28) is replaced by twelve conditions of the shape mi,j ≡ ti,j (modD)
and ni,j ≡ t′i,j where the ti,j , t

′
i,j are reduced classes modulo D. For notational

simplicity we will not recall these conditions in the sequel of the proof.
The presence of the factor involving Y0 in (5.27) implies that each variable mi,j ,

ni,j is either 1 or> Y0. Therefore, Gk,`(Q,R; t) contains subsums which can be han-

dled by Lemma 4.9 as was performed in § 5.3.1. More precisely, let G
(1,1)
k,` (Q,R; t)

denote the subsum of Gk,`(Q,R; t) corresponding to the extra condition m1,1 > 1,

which implies Y0 6 m1,1 6 x2/7. We may then apply Lemma 4.9 to the variables
n := m1,1, m := ν(

∏
(i,j)6=(1,1)mi,j) (

∏
ni,j) , in (4.7) with

βn =

{
µ(n)Y0(n) if n ≡ t1,1 (modD),

0 otherwise,

the definition of αm being then obvious. By (4.5), the sequence βn satisfies SW(D,K).
Lemma 4.9 hence provides the bound

(5.31) G
(1,1)
k,` (Q,R; t)� x/L A.

Let us next consider the subsum G
(1,2)
k,` (Q,R; t) corresponding to the extra hy-

pothesis m1,1 = 1, m1,2 > 1, which similarly implies Y0 6 m1,2 6 x2/7. We may
again apply Lemma 4.9 to deduce

(5.32) G
(1,2)
k,` (Q,R; t)� x/L A.

Continuing this process on each of the variables mi,j yields upper bounds similar
to (5.31) and (5.32). Having dealt with these easy subsums, we reduce the proof of
(5.30) to that of the bound

(5.33) G∗k,`(Q,R; t)� DC0x/L A,

where G∗k,`(Q,R; t) is the subsum of Gk,`(Q,R, t) corresponding to the extra con-

dition mi,j = 1 (1 6 i 6 3, j = 1, 2).
The sum G∗k,`(Q,R; t) is then over eight variables, namely s, ν 6 Z0 and the

ni,j which are equal to 1 or > Y0. By (4.4), we know that, whenever (t,D) = 1,
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the functions

n 7→ βn =

{
Y0(n)(log n)j if n ≡ t (modD),

0 otherwise,

satisfy SW(D,K) for j = 0 or 1. Hence Lemma 4.9 ensures that the bound (5.33)
holds for the subsum of G∗k,`(Q,R; t) corresponding to the case when at least one

of the variables ni,j (1 6 j 6 3, 1 6 i 6 2) lies in the interval Y0 6 ni,j 6 x2/7.
Thus, we can state that the proof of (5.33) is reduced to showing that, for suitable

absolute C0 and all A > 0, we have

(5.34) G†k,`(Q,R; t)� DC0x/L A,

where G†k,`(Q,R; t) is the subsum of G∗k,`(Q,R; t) in which the ni,j satisfy the extra
conditions

ni,j = 1 or ni,j > x2/7 (1 6 i 6 3, j = 1, 2).

Since all the the mi,j are equal to 1, we also have

1
2x < ν

∏
16i63

∏
16j62

ni,j 6 x,

hence the number of variables ni,j exceeding x2/7 lies between 1 and 3, the others
being equal to 1.

The large variables ni,j are almost smooth, since the function Y0 only involves a
mild sifting. Therefore, we may apply Lemma 4.11 provided only one large variable
is involved, Lemma 4.12 when two are, and Lemma 4.13 when three are. These
lemmas substantiate respectively the equidistribution of the sequences

gs(`1)Y0(`1), gs(`1`2)Y0(`1`2), gs(`1`2`3)Y0(`1`2`3),

(where the integers `i belong to some intervals and satisfy congruence conditions
modulo D) in every congruence class a(mod s), with (s, aD) = 1, uniformly in the
respective range

s 6 x1−ε, s 6 x2/3−ε, s 6 x21/41−ε

with error terms of the shape � DC0e−c(ε)L
3/4

x/ϕ(q). Summing over s 6 S
(note the inequalities 1 > 2/3 > 21/41 > 53/105) and noticing that when actually
present, the factor log ni,j may be treated by partial summation, completes the
proof of (5.34). This terminates the proof of Proposition 5.1 for the case of the
function f .

The extension to the function fb,c is straightforward on replacing f(m) by fb,c(m)
in the definition of αm and f(ν) by fb,c(ν) in § 5.3.2. This yields (5.3).

6. Proof of Theorem 1.5 with the sole restriction Q2R 6 x

This section is devoted to deducing from Proposition 5.1 the following statement.

Proposition 6.1. Let K > 0. For a suitable absolute constant C0 and all A > 0,
ε > 0, there exists C = C(ε,A) such that, uniformly for

D > 1, f ∈ F(D,K), x > 1, Q > 1, 1 6 R 6 x1/105−ε,

Q2R 6 x, (a,D) = 1, 1 6 |a| 6 L A,

we have

(6.1)
∑
r6R

(r,a)=1

∣∣∣∣∣ ∑
q6Q

(q,a)=1

∆f (x; qr,D, a)

∣∣∣∣∣ 6 C DC0x

L A
·
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Under the same hypotheses, the same bound holds uniformly for integers b, c, with
1 6 b, c 6 L A, on replacing f ∈ F(D,K) by fb,c, as defined in (1.10), viz.

(6.2)
∑
r6R

(r,a)=1

∣∣∣∣∣ ∑
q6Q

(q,a)=1

∆fb,c(x; qr,D, a)

∣∣∣∣∣ 6 C DC0x

L A
.

Proof. Let S and cs be defined as in (5.5). The sum studied in (6.1) may be written
as

V (Q,R;D) :=
∑
s6S

(s,a)=1

cs ∆f (x; s,D, a).

According to (1.14), we factorize s as

s = sDs
′
D, with sD = (s,D∞).

Splitting the sum V (Q,R;D) according to the value of sD, we get

V (Q,R;D) =
∑
t|D∞

∑
σ6S/t

(σ,aD)=1

ctσ ∆f (x; tσ,D, a).

The contribution of large t is estimated by Lemma 4.1: for T > 1 we have

R+(T ) :=
∑
t|D∞
t>T

∑
σ6S/t

(σ,aD)=1

ctσ ∆f (x;σt,D, a)�
∑
t|D∞
t>T

∑
σ6S/t

(σ,aD)=1

τ(tσ)xL c

ϕ(tσ)

� xL c+2
∑
t|D∞
T<t6S

τ(t)

ϕ(t)
� xL c+2

∑
t|D∞

τ(t)

ϕ(t)

( t
T

)1/4

�
xL c+2b3/4(D)2

T 1/4
·

It remains to select T := L C with suitable C = C(A) to obtain the bound

(6.3) R+(T )� Dx/L A.

We next turn our attention to the complementary sum

R−(T ) :=
∑
t|D∞
t6T

∑
σ6S/t

(σ,aD)=1

ctσ∆f (x; tσ,D, a).

We now introduce Dirichlet characters modulo t—see (1.17)—to infer

(6.4) |R−(T )| 6
∑
t|D∞
t6T

1

ϕ(t)

∑
χ(mod t)

∣∣∣ ∑
σ6S/t

(σ,aD)=1

ctσ ∆fχ(x;σ, a)
∣∣∣.

Since f(p)χ(p) is periodic modulo Dt, we have fχ ∈ F(Dt,K). In order to apply
Proposition 5.1 we must also check that the weight σ 7→ ctσ can be suitably factor-
ized. However, since (σ, t) = 1, the equality qr = tσ implies a unique representation

q = qtqσ, r = rtrσ with qtrt = t and qσrσ = σ.

Taking into account that (σ, aD) = 1 ⇔ (σ, aDt) = 1, we get that the absolute
value of the inner sum in (6.4) does not exceed∑

qtrt=t

∑
rσ6R/rt

(rσ,aDt)=1

∣∣∣∣∣ ∑
qσ6Q/qt

(qσ,aDt)=1

∆fχ(x; qσrσ, a)

∣∣∣∣∣� ∑
qtrt=t

(Dt)C0x

L B
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by Proposition 5.1, where B is arbitrary. Inserting back into (6.4) we obtain

R−(T )�
∑
t|D∞
t6T

∑
χ(mod t)

∑
qtrt=t

(Dt)C0x

L Bϕ(t)
� DC0xTC0+1

L B
� DC0x

L A
,

for a suitable choice of B, considering our choice for T . Combined with (6.3) this
bound furnishes (6.1).

Extending the above proof to obtain (6.2) is now standard and we omit the
details. �

7. Application of Dirichlet’s hyperbola method

In this section, we aim at completing the proof of Theorem 1.5 from Proposi-
tion 6.1. We may plainly assume that

(7.1) Q0 :=
√
x/R 6 Q 6 x/RL B , R 6 x1/105−ε

where B = B(A, ε) has to be determined. Given ξ = (ξr)r>1 ∈ CN∗ such that
supr |ξr| 6 1, we introduce the quantity

HD(Q0, Q,R; ξ) :=
∑
r∼R

(r,a)=1

ξr
∑

Q0<q6Q
(q,a)=1

∆f (x; qr,D, a).

As a consequence of Proposition 6.1, it remains to prove that, for a suitable absolute
constant C0, and all A > 0, ε > 0, there exist B = B(A, ε) and C = C(A, ε) such
that, the estimate

(7.2) |HD(Q0, Q,R; ξ)| 6 CDC0x/L A,

holds uniformly for Q0, Q and R satisfying (7.1), 1 6 |a| 6 L A, and ξ as above.
From (1.15), we may split HD(Q0, Q,R; ξ) as

(7.3) HD(Q0, Q,R; ξ) = S− E,

where

(7.4) S :=
∑
r∼R

(r,a)=1

ξr
∑

Q0<q6Q
(q,a)=1

∑
n6x

n≡a (mod qr)

f(n),

and

(7.5) E :=
∑
r∼R

(r,a)=1

ξr
∑

Q0<q6Q
(q,a)=1

1

ϕ(q′Dr
′
D)

∑
n6x

n≡a (mod qDrD)
(n,q′Dr

′
D)=1

f(n)

is the expected main term.

7.1. Transformation of S. We tackle the sum S by Dirichlet’s hyperbola method
as follows. We express the congruence n ≡ a (mod qr) as

(7.6) n = a+ uqr,

and consider this relation as a congruence condition modulo ur, which is convenient
since u 6 2Q0 by (7.1). However the condition (a, u) = 1 could now fail. This
induces technical complications which have been completely ignored in [2, pp. 239–
240]—but, of course, disappear in the typical cases a = ±1.

We address this difficulty by splitting S as

(7.7) S =
∑
∆|a

S∆,
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where S∆ is defined as S in (7.4) but with the extra constraint (n, a) = ∆. Since
(a, qr) = 1, we deduce from (7.6) that ∆ | u. So we may write

(7.8) n = ∆m, a = ∆b, u = ∆v,

and deduce from (7.6) the equality

(7.9) m = b+ qvr,

where the coprimality condition (m, b) = 1 is now satisfied. In order to simplify
some summation conditions in the sequel, we will frequently use the trivial fact
that this condition implies that any divisor of m− b is coprime to b.

The representation (7.9) implies that (b, q) = 1 are coprime, but not necessarily
that (a, q) = 1. So we introduce the integer

(7.10) α = α(a, b) :=
∏

p|a, p - b

p.

Let e be any divisor of α and write q = ew, so that (7.9) may be rewritten as

(7.11) m = b+ ewvr.

In order to apply Möbius’ formula to take account of the condition (q, α) = 1, we
perform the further split

(7.12) S∆ :=
∑
e|α

µ(e)S∆,e,

with

S∆,e :=
∑
r∼R

(r,a)=1

ξr
∑

Q0/e<w6Q/e

∑
m6x/∆
(m,b)=1

f(∆m)

=
∑
r∼R

(r,a)=1

ξr
∑

Q0/e<w6Q/e

∑
m6x/∆

f∆,b(m)

where f∆,b is defined in §1.1 and the variable m runs through integers satisfying
(7.11) for some v—in other words m ≡ b (mod ewr).

This is time to apply Dirichlet’s device in the form of summing over the smooth
variable v instead of w. Thus

S∆,e :=
∑
r∼R

(r,a)=1

ξr
∑

v6(x−a)/(∆Q0r)

∑∗

m≡b mod evr

f∆,b(m),

where the asterisk indicates that m satisfies the extra conditions

Q0 < (m− b)/vr 6 Q, m 6 x/∆,

which we rephrase as

(7.13) b+Q0vr < m 6 min{x/∆, b+Qvr}.

We would like to apply Proposition 5.1 to S∆,e. However the bounds appearing
in (7.13) are not fixed since they depend on the product vr. This difficulty may
be circumvented by appealing to a classical device in such context: to split the
summation on r and v into subsums over intervals of the form Ik :=]%k, %k+1] with
% as in (5.10). This leads to an estimate of the form

(7.14) S∆,e =
∑
k

∑
`

Sk,`
∆,e + E,

where

R 6 %k < %k+1 < 2R, 1 6 %` < %`+1 < (x− a)/(∆Q0%
k+1),



MULTIPLICATIVE FUNCTIONS IN LARGE ARITHMETIC PROGRESSIONS 31

the number of involved pairs (k, `) is � L 2B0+2, and

Sk,`
∆,e :=

∑
r∈Ik

(r,a)=1

ξr
∑
v∈I`

∑†

m≡b mod evr

f∆,b(m),

where the asterisk indicates the summation condition

(7.15) b+Q0%
k+`+2 6 m 6Mk,` := min{x/∆, b+Q%k+`},

and the error term E corresponds to the contribution of the triplets (r, v,m) con-

tributing to S∆,e but to none of the Sk,`
∆,e.

Applying the bounds (4.1) and (4.2) in a classical way yields the estimate

E � x/L A,

provided B0 is chosen sufficiently large.
We now consider two cases, according to the size of Mk,`, as defined in (7.15).

Case 1: Mk,` 6 x/L A+3B0+2.
The trivial bound given by Lemma 4.2 then furnishes the bound

(7.16) Sk,`
∆,e � x/L A+3B0−c+2.

Case 2: x/L A+3B0+2 < Mk,` 6 x.
We then apply the estimate (6.2) of Proposition 6.1, with the changes of variables

r → er, q → v, R→ e%k, Q→ %`, b→ ∆ and c→ b. Since (a,D) = 1 we also have

(evr)D = vDrD and (evr)′D = ev′Dr
′
D.

That the required hypotheses are satisfied follows from (7.1). This gives that, for
all C, we have

(7.17) Sk,`
∆,e =

∑
r∈Ik

(r,a)=1

ξr
∑
v∈I`

(v,b)=1

1

ϕ(ev′Dr
′
D)

∑†

(m,ev′Dr
′
D)=1

m≡b (mod vDrD)

f∆,b(m) + O
(DC0x

L C

)
.

Now observe that (7.17) actually also holds in Case 1 above because the main
term is then smaller than the error term—see (7.16).

Gluing back all estimates (7.17) for (k, `) arising in (7.14) and suitably select-
ing C, we obtain

(7.18)

S∆,e =
∑
r∼R

(r,a)=1

ξr
∑

v6(x−a)/(∆Q0r)
(v,b)=1

1

ϕ(ev′Dr
′
D)

∑∗

(m,ev′Dr
′
D)=1

m≡b (mod vDrD)

f∆,b(m)+O
(DC0x

L A

)
.

We now insert (7.18) into (7.12), carry back into (7.7), revert summations, split
the sum according to the level sets rD := r and vD := v, and change r′D into s and
v′D into v, to obtain

(7.19) S =
∑

rv|D∞

∑
s∼R/r

(s,aD)=1

ξrs
∑
∆|a

∑
m6x/∆
(m,s)=1

m≡b (mod rv)

f∆,b(m)
∑

e|α(a,b)
(e,m)=1

µ(e)

×
∑

(v,bmD)=1

1

ϕ(evs)
+O

(DC0x

L A

)
,

where the last summation is restricted to those integers v satisfying

(7.20)
m− b
Qvrs

< v 6
m− b
Q0 vrs

,
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and where b and α are as defined in (7.8) and (7.10) respectively.

7.2. Transformation of E. In order to compare S with E defined in (7.5), we
consider the approximation of S given in (7.19) and transform E following a path
parallel to the treatment of S in § 7.1. Thus, we fix ∆ = (a, n), split a = ∆b,
n = ∆m, q = vv, r = rs with v = qD and r = rD, which implies (D, vs) = 1. After
inverting summations, we obtain

(7.21) E =
∑

rv|D∞

∑
s∼R/r

(s,aD)=1

ξrs
∑
∆|a

∑
m6x/∆
(m,s)=1

m≡b (mod rv)

f∆,b(m)
∑

Q0/v<v6Q/v
(v,amD)=1

1

ϕ(vs)
·

Substracting (7.21) from (7.19), we get

(7.22)
∣∣S− E| 6

∑
rv|D∞

∑
s∼R/r

(s,aD)=1

| ξrs|
∑
∆|a

∑
m6x/∆
(m,s)=1

m≡b (mod rv)

|f∆,b(m)Ωm|+O
(DC0x

L A

)
,

with

(7.23)

Ωm = Ωm(a, b,D, s)

:=
∑

e|α(a,b)
(e,m)=1

µ(e)
∑

(v,bmD)=1

1

ϕ(evs)
−

∑
Q0/v<v6Q/v
(v,amD)=1

1

ϕ(vs)
,

where, in the first v-sum, the summation variable satisfies (7.20). Note that the two
v-sums appearing in (7.23) run over intervals with the same ratio Q/Q0 between
the upper and the lower bound, which is a transcription of Dirichlet’s approach.

By a method already used above, we may shorten the summations over v and r
in (7.22): for suitable G = G(A, ε) we have

(7.24)
∣∣S−E| 6 ∑

rv|D∞

max(r,v)6LG

∑
s∼R/r

(s,aD)=1

∑
∆|a

∑
m6x/∆

(m,br)=1
m≡b (mod rv)

τK(∆m)|Ωm|+O
(DC0 x

L A

)
.

7.3. Estimating Ωm. Lemma 4.15 is relevant to evaluate Ωm, defined in (7.23).
We will apply this statement four times, the parameter R appearing in (4.23) taking
successively the values

(7.25)
m− b
Qvrs

,
m− b
Q0vrs

,
Q

v
,

Q0

v
·

Since ∆ 6 |a| 6 L A, QR 6 x/L B , max(v, r) 6 L G, every number of the list
(7.25) is at least

L := L B−G−A,

where B(A, ε) has still to be specified.
We apply Lemma 4.15 with R0 := L in the four cases and we notice that parts

of the main terms disappear when substracting. We obtain, with notations (4.20)
and (4.22),

(7.26) Ωm = h log
( Q
Q0

)
U + V
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with

U :=
∑

e|α(a,b)
(e,m)=1

µ(e)g(bDems)

ϕ(es)
Θ0(es, bDm;L)− g(aDms)

ϕ(s)
Θ0(s, aDm;L),

V� L

L1/4

{ ∑
e|α(a,b)

µ(e)2τ(bDems)2

ϕ(es)
+
τ(aDms)2

ϕ(s)

}
.

A standard computation involving sums of classical multiplicative functions
shows that, provided B is suitably chosen, the contribution of V to the multiple
sum in (7.24) may be absorbed by the error term.

We next apply Lemma 4.4 to evaluate the terms involving Θ0. We get

(7.27) U = U∗ + W

with

U∗ :=
∑

e|α(a,b)
(e,m)=1

µ(e)g(bDems)

ϕ(es)

∏
p | es
p - bDm

(
1− 1

p

)−1

− g(aDms)

ϕ(s)

∏
p | s

p - aDm

(
1− 1

p

)−1

W� 1

L1/4

{ ∑
e|α(a,b)

µ(e)2τ(bDems)b3/4(es)

ϕ(es)
+
τ(aDms)b3/4(s)

ϕ(s)

}
.

Here again, we check that, for suitable choice of B, the contribution of W to the
multiple sum in (7.24) may be absorbed by the error term.

7.4. Vanishing of U∗. We now prove that, for all relevant values of a, b, D, m, s,
we actually have

U∗ = 0.

Inserting this back into (7.27), (7.26) and (7.24), provides the expected bound

|S− E| � DC0x/L A.

and hence, via (7.3) and (7.2), completes the proof of Theorem 1.5 by choosing
B = B(A, ε) sufficiently large.

Observing that the summation conditions in (7.22) imply

(b,D) = (bDem, s) = (e, bDm) = 1,

we see that the condition p - bDm in the first product arising in the definition of
U∗ is superfluous. Therefore we may rewrite U∗ as

g(bDms)s

ϕ(s)2

{ ∑
e|α(a,b)
(e,m)=1

µ(e)g(e)e

ϕ(e)2
−

∏
p |α(a,b)
p -m

g(p)

}
.

However, the last sum equals∏
p |α(a,b)
p -m

{
1− pg(p)

(p− 1)2

}
=

∏
p |α(a,b)
p -m

g(p),

by the definition of g(p). This is all we need.
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8. Proof of Theorem 1.8.

In this section we sketch the proof of Theorem 1.8 exploiting the combinatorial
preparation of the variables given in the beginning of the proof of Proposition 5.1—
see §5.1, 5.2 for the notations. To simplify the exposition we only consider the case

D = 1.

By dyadic dissection we may restrict to studying

W (Q) :=
∑
q6Q

max
(a,q)=1

|∆f (x; q, a)−∆f (x/2; q, a)|

and set out to prove that

W (Q)� x/L A,

provided Q 6
√
x/L B with suitable B = B(A,K). Using the factorisation (5.8)

and bounding trivially the contribution of non typical terms, we are led to consider
the sum

(8.1) Wk,`(Q) :=
∑
q6Q

max
(a,q)=1

∣∣∣∣ ∑
ν,p1<p2<···

f(ν)f(p1)f(p2) · · · gq(νp1p2 · · · ; a)

∣∣∣∣
where k > 0 and ` > 1, where the variables satisfy the conditions

ν 6 Z0, P+(ν) 6 Y0,

p1 ∈ Ik`, Yk+1 < p2 < p3 < · · · ,
νp1p2 · · · ∼ x,

and aim at establishing the bound

(8.2) Wk,`(Q)� x/L A.

We now consider two cases :
• If the variables p1 and p2 do exist on the right–hand side of (8.1), we directly
apply Lemma 4.15 with N := Yk. This furnishes (8.2)
• If the variable p2 does not actually appear in the multiple sum on the right–hand-
side of (8.1) we cannot directly apply Lemma 4.15 since the support of ν could be
very small. The function f(p) being constant on Ik`, we may appeal for instance
to [21, Theorem 8.4] which generalizes the Bombieri–Vinogradov theorem to the
function α ∗ Λ, when the support of the general sequence α has suitable size. We
obtain (8.2) here again.

This completes the proof of Theorem 1.8.

9. Proof of Theorem 2.1

9.1. Lemmas. The main difficulty for the proof of Theorem 2.1 rests in assuming
no more than (2.2). We need a number of lemmas. The first is a easy estimate for
the number of friable integers in

(9.1) E(x; k) := {n 6 x : ω(n) = k}.

It is useful to bear in mind that the Hardy-Ramanujan upper bound [15]—see e.g.
[24, ex. 264] or [26, p. 257] for an alternative proof— states that, for a suitable
absolute constant a, we have

(9.2) πk(x) = |E(x; k)| � x(log2 x+ a)k−1

(k − 1)! log x
(x > 3, k > 1).
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Lemma 9.1. Uniformly for x > 3, 1 6 k � log2 x, 2 6 y 6 x, u := (log x)/ log y,
we have

(9.3) πk(x, y) :=
∑

n∈E(x;k)

P+(n)6y

1� πk(x)e−u/2·

Proof. The stated estimate holds trivially if y 6 7 for then πk(x, y)� (log x)4. We
may therefore assume henceforth that y > 11. In this circumstance, we may write,
with α := 2/(3 log y),

πk(x, y) 6 x3/4 + x−3α/4
∑

x3/4<n6x
ω(n)=k

P+(n)6y

nα

Since e2/3 < 2, we the n-sum may be estimated by applying [23, lemma 1] to the
multiplicative function n 7→ 1{P+(n)6y}n

α. Under the assumption k � log2 x, we
obtain the upper bound

� πk(x) exp
{ k − 1

log2 x

∑
p6y

pα − 1

p

}
� πk(x).

This implies the required estimate, up to noticing that x3/4 � x24/25e−u/2 for
y > 11. �

Our next lemma refines the latter when k is ‘small’.

Lemma 9.2. Under the conditions

(9.4) εx = o(1), k > 1, k log(1/εx) = o(log2 x) (x→∞),

we have

(9.5) πk
(
x, x1−εx

)
= o
(
πk(x)

)
.

Proof. We may plainly assume k > 2. Setting y := xεx , we have

(9.6)
πk
(
x, x1−εx

)
6
∑
pν6x
p6x/y

πk−1

( x
pν
, p
)
.

A routine Abel summation yields that the contribution of ν > 2 is

� x(log2 x)k−2

(k − 2)! log x
� kπk(x)

log2 x
= o
(
πk(x)

)
.

The remaining contribution is, for a suitable absolute constant a,

(9.7)

6
∑
p6
√
x

πk−1

(x
p
, p
)

+
∑

√
x<p6x/y

πk−1

(x
p

)
�

∑
p6
√
x

x1−1/(2 log p)(log2 x)k−2

(k − 2)!p log x
+

∑
√
x<p6x/y

x(log2 x/p+ a)k−2

(k − 2)! p log x/p

� kπk(x)

log2 x
+

x

(k − 2)!

∫ x/y

√
x

(log2 x/t+ a)k−2

t log(x/t)
dπ(t)

� kπk(x)

log2 x
+

1

(k − 2)!

∫ √x
y

π
(x
t

)
|f ′k(t)| dt

� kπk(x)

log2 x
+

x

(k − 2)! log x

∫ √x
y

|f ′k(t)|
t

dt,
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where we applied (9.2), made use of (9.3), and set

fk(t) :=
t(log2 t+ a)k−2

log t
(t > 3).

Since fk is actually non-decreasing throughout the integration domain, we have

(9.8)

∫ √x
y

|f ′k(t)|
t

dt� (log2 x)k−2

log x
+

∫ x

y

(log2 t+ a)k−2

t log t
dt.

Carrying back into (9.7), we get

πk
(
x, x1−εx

)
� kπk(x)

log2 x
+ πk(x)

{
1−

( log2 y + a

log2 x+ a

)k−1}
.

Taking account of the inequality 1− (1− v)m 6 mv (0 6 v 6 1 6 m), we see that
this bound does imply (9.5) under the hypothesis (9.4). �

For larger k, we shall invoke the following result in which we write

(9.9) nε :=
∏
p6xε

pν‖n

pν (1 6 n 6 x, 0 < ε 6 1
2 ).

We also recall notation (9.1).

Lemma 9.3. Uniformly for

x > 3, 1/ log2 x < ε 6 1
2 , 1 6 k � log2 x, r := k/ log2 x,

we have

(9.10) ω
(
nε
)
> k − 2r log(1/ε), nε 6 x

√
ε

for all but at most � εr(log 4−1)πk(x) integers n in E(x; k).

Proof. By [23, lemma 1], we have, for any fixed y > 0,∑
n∈E(x;k)

yω(n)−ω(nε) � πk(x)εr(1−y)

uniformly in the considered ranges for x, k, ε. Selecting y = 2, and multiplying
through by εr log 4, we see that the number of n contravening the first inequality in
(9.10) is � εr(log 4−1)πk(x).

Similarly, for α := 1/(ε log x), we have, again by [23, lemma 1],∑
n∈E(x;k)

nαε � πk(x).

This shows that at most � e−1/
√
επk(x) integers contravene the second condition

in (9.10). �

Next, we need an estimate for mean-values of some arithmetic functions over
level sets related to a shifted argument.

Definition 9.4. Given constants A > 0, B > 0, ε > 0, we designate by M(A,B, ε)
the class of those functions G > 0 such that

G(mn) 6 AΩ(m)G(n)
(
(m,n) = 1

)
, G(n) 6 Bnε,

∑
p

∑
ν>2

G(pν)

pν
6 B.

The following result could be generalized much further along the lines of [20, 25].
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Lemma 9.5. Let A > 0, B > 0, R > 0, 0 < ε < 1
2 . Uniformly under the conditions

x > 2, G ∈M(A,B, ε/3), 1 6 k 6 R log2 x, we have

(9.11) Sk(x) :=
∑

1<n6x
ω(n−1)=k

G(n)� πk(x)

log x

∑
n6x

G(n)

n
·

Proof. In view of, for instance, [20, cor. 3], the subsum over n 6 x/(log x)c, with
c = c(R) sufficiently large, is negligible in front of the right-hand side of (9.11). By
a standard splitting argument, we may hence restrict to finding an upper bound
for the subsum, say S∗k(x), over the range x/2 < n 6 x.

For each n, let ξn be the largest of those integers ξ such that

an(ξ) :=
∏

pν‖n(n−1)
p6ξ

pν 6 x2ε.

Write an := an(ξn), bn := n(n− 1)/an, pn := P−(bn), vn := vpn(bn), so that

x2ε/pvnn < an 6 x
2ε.

Put ajn :=
∏
pν‖n−j, p6ξn p

ν (j = 0, 1), so that

a0n|n, (a0n, a1n) = 1, a1n|(n− 1).

For j ∈ [1, 3], we denote by Nj(x) the contribution to S∗k(x) of those integers n
respectively satisfying the conditions

(N1) an 6 x
ε and pn > xε/2

(N2) an 6 x
ε and pn 6 x

ε/2

(N3) an > xε.

If n appears in N1(x), then conditions Ω(bn) 6 E := 5/ε and ω(n − 1) = k
imply k −E 6 ω(a1n) < k, where the upper inequality arises from the assumption
a1n 6 xε. Summing according to the fibers a1n = s, a0n = t, we may hence write

N1(x) 6
∑

(k−E)+6κ<k

∑
ω(s)=κ
st6xε

∑
x/2<n6x
s|(n−1), t|n

P−
(
n(n−1)/st

)
>xε/2

G(n)

�
∑

(k−E)+6κ<k

∑
ω(s)=κ
st6xε

G(t)x

ϕ(st)(log x)2

� x

(log x)2

∑
(k−E)+6κ<k

1

κ!

(∑
p6x

p

(p− 1)2

)κ∑
t6x

G(t)

ϕ(t)

�
x
(

log2 x
)k−1

(log x)2(k − 1)!

∑
n6x

G(n)

n
,

where the last upper bound stems from the following computation, in which we
write εp :=

∑
ν>2G(pν)/pν and define λ as the multiplicative function such that

λ(p) := 1/(p− 1), λ(pν) = 0 (ν > 1), for all prime numbers p:

(9.12)

∑
t6x

G(t)

ϕ(t)
=
∑
t6x

G(t)

t

∑
d|t

λ(d) =
∑
d6x

λ(d)
∑
m|d∞

G(md)

md

∑
n6x/md

G(n)

n

6 K
∑
n6x

G(n)

n
,
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with

(9.13)

K :=
∑
d>1

λ(d)

d

∏
p | d

∑
j>0

G(pj+1)

pj
6
∏
p

{
1 +

∑
j>0

λ(p)G(pj+1)

pj+1

}

6
∏
p

{
1 +

G(p)λ(p)

p
+ λ(p)εp

}
6 eA+B .

Let us now consider an integer n contributing to N2(x). We have pvnn > xε

and pn 6 xε/2. For each prime p not exceeding xε/2, let ν(p) denote the smallest
exposant ν such that pν > xε. Then ν(p) > 2 and pν(p)−1 6 xε, so pν(p) 6 p3ε/2.
Therefore

N2(x) 6
∑

p6xε/2

∑
x/2<n6x

n(n−1)≡0 (mod pν(p))

G(n)� Bxε/3
∑

p6xε/2

xν(p)

pν(p)
� x1−ε/6.(9.14)

In order to bound N3(x), we consider qn := P+(an) and note that

Ω(bn) 6 η(qn) := 3(log x)/ log qn.

It follows that

N3(x) 6
∑
q6x2ε

∑
(k−η(q))+6κ<k

∑
ω(s)=κ

xε<st6x2ε

P+(st)=q

G(t)
∑

x/2<n6x
s|(n−1), t|n

P−
(
n(n−1)/st

)
>q

Aη(q)

�
∑
q6x2ε

∑
(k−η(q))+6κ<k

∑
ω(s)=κ

xε<st6x2ε

P+(st)=q

G(t)Aη(q)x

ϕ(st)(log q)2
·

We estimate the inner sum by Rankin’s method, employing the weight (st/xε)v with
v := C/ log q, where C is a sufficiently large constant. We obtain, for a suitable
constant c0,

N3(x)�
∑
q6x2ε

∑
(k−η(q))+6κ<k

x1−Cε/ log q(log2 2q + c0)κ(AR+ 1)η(q)

q(log q)2κ!

∑
t6x

P+(t)6q

G(t)tv

ϕ(t)
·

A computation similar to (9.12)-(9.13) enables us to show that the last sum is
�
∑
n6xG(n)/n. We then observe that, provided Cε > 1 + 2 log(AR+ 1), we have∑

q6x2ε

∑
(k−η(q))+6κ<k

x1−Cε/ log q(log2 2q + c0)κ(AR+ 1)η(q)

q(log q)2κ!

�
∑
q6x2ε

η(q)x1−1/ log q(log2 x+ c0)k−1

q(log q)2(k − 1)!
� πk(x).

�

Our next, and last, preliminary result is a sieve estimate for integers n such that
ω(n− 1) is fixed.

Lemma 9.6. Let R > 0. Uniformly for x > 3, 1 6 k 6 R log2 x, and all sets of
prime numbers P ⊂ [2, x] such that

∑
p∈P 1/p = o(1) as x→∞, we have

(9.15)
∑

1<n6x
ω(n−1)=k
∃p∈P : p|n

1 = o
(
πk(x)

)
.
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Proof. We may plainly reduce the proof to showing the stated estimate for the
contribution of those n in ]x/2, x] to the left-hand side of (9.15). We consider two
cases, according to the size of k.

Let us first assume k 6 ηx log2 x for some function ηx tending to 0 sufficiently
slowly, to be specified later. We write n − 1 = qnmn with qn := P+(n − 1). By
Lemma 9.2, we may assume that qn > x1−εx for some quantity εx tending to 0
sufficiently slowly as x→∞. Thus, we can also discard those integers n such that
q2
n|n− 1. Now, define pn as the smallest element of P such that pn|n. We split the

set of remaining integers n into two subsets, according to whether pn 6 x1−2εx or
x1−2εx < pn 6 x.

By the Brun-Titchmarsh theorem, the contribution of the first subset does not
exceed

(9.16)

∑
m6xεx

ω(m)=k−1

∑
p∈P

p6x1−2εx

p -m

∑
q∈P

q≡−m (mod p)
x/3m<q6x/m

1�
∑

m6xεx
ω(m)=k−1

∑
p∈P

p6x1−2εx

x

mp log(x/mp)

� x(log2 x)k−1

(k − 1)! εx log x

∑
p∈P

1

p
= o
(
πk(x)

)
provided we select εx tending to 0 sufficiently slowly.

To bound the contribution of the second subset, we write

n = qnmn + 1 = νnpn, with mn 6 x
εx , νn 6 x

2εx .

By the large sieve (see, e.g. [11, ch. 9]), the searched for contribution is hence

6
∑

ν6x2εx

∑
m6xεx
(m,ν)=1
ω(m)=k−1

∑
q≡−m (mod ν)
(qm+1)/ν∈P
x/3m<q6x/m

1�
∑

ν6x2εx

∑
m6xεx
(m,ν)=1
ω(m)=k−1

x

mϕ(ν)(log x)2
� εxπk(x).

We next turn our attention to the case of large k, i.e. ηx log2 x < k � log2 x.
Put r := k/ log2 x. We select a function εx tending to 0 and write m := n− 1 = ab,
with a = mε2x

, as defined in (9.9). With a suitable choice of εx, Lemma 9.3 implies1

that, at the cost of neglecting o
(
πk(x)

)
elements m from E(x; k), we may assume

that ω(b) 6 hx := 4r log(1/εx), a 6 xεx . Retaining the definition of pn, we consider
the same two cases as previously, by comparing pn to x1−2εx .

If pn 6 x1−2εx , the corresponding contribution is hence, parallel to (9.16),

(9.17)

6
∑
a6xεx

k−hx6ω(a)6k−1

∑
p∈P
p - a

p6x1−2εx

∑
b≡−a (mod p)

P−(b)>xε
2
x

x/3a<b6x/a

1

�
∑
a6xεx

k−hx6ω(a)6k−1

∑
p∈P

p6x1−2εx

x

apε2
x log x

� x

ε2
x log x

∑
16t6hx

(log2 x)k−t

(k − t)!
∑
p∈P

1

p
,

where the first bound follows from the sieve. The sum over t does not exceed

hx(1 +R)hx
(log2 x)k−1

(k − 1)!
·

1This is where we take into account the sufficiently slow decay of ηx to 0, so as to ensure that
εrx = o(1).



40 ÉTIENNE FOUVRY AND GÉRALD TENENBAUM

Therefore the last bound in (9.17) is o
(
πk(x)

)
provided εx tends to 0 sufficiently

slowly.
If x1−2εx < pn 6 x, we have νn = n/pn 6 x2εx so, still writing m = n − 1, we

see that the number S of these integers satisfies

S 6
∑

ν6x2εx

∑
x/3<m6x
ω(m)=k

m≡−1 (mod ν)
(m+1)/ν∈P

1.

This quantity may be bounded above using the weights of the combinatorial sieve,
as defined, for instance, in [11, §6.5]. If {λ+

d (ν)}Dd=1 denotes the sequence of the
upper bound sieve for primes p 6 xc, p - ν, with a small positive constant c and
D := xcs with some large, fixed s, we obtain, with a suitable constant C,

S 6
∑

ν6x2εx

∑
d6D

λ+
d (ν)πk

(
x; νd,−1

)
.

=
∑

ν6x2εx

∑
d6D

λ+
d (ν)

{πk(x)

ϕ(νd)
+ ∆wk

(
x; νd,−1

)}

6
∑

ν6x2εx

{
Cν

ϕ(ν)2

∏
p6xc

(
1− 1

p

)
πk(x) +

∑
d6D

∣∣∣∆wk

(
x; νd,−1

)∣∣∣},
where, as defined earlier, wk is the indicator function of the level set E(x; k). The
contribution of the first term inside curly brackets is plainly

� εxπk(x) = o
(
πk(x)

)
.

That of the second may be bounded using the Bombieri-Vinogradov theorem for wk,
as established by Wolke and Zhan in [29]. Since we can select c so small that, for
instance, cs 6 1/4, we obtain the bound

�
∑

q6x1/3

2ω(q) max
(v,q)=1

∣∣∣∆wk

(
x; q, v

)∣∣∣.
By the Cauchy-Schwarz inequality, this is

�

( ∑
q6x1/3

4ω(q)x

ϕ(q)

)1/2( ∑
q6x1/3

max
(v,q)=1

∣∣∣∆wk

(
x; q, v

)∣∣∣)1/2

� x

(log x)A

for any constant A > 0.
This finishes the proof. �

9.2. Completion of the proof. We aim at applying Lévy’s continuity theorem
(see e.g. [24, th. III.2.4]), according to which the required conclusion holds if, and
only if, under our assumption upon k, the Fourier transforms

(9.18) Φk(ϑ;x) :=
1

πk(x)

∑
1<n6x

ω(n−1)=k

eiϑf(n) (ϑ ∈ R)

approach ϕFr (ϑ) as defined in (2.3) for each ϑ as x → ∞. The standard strategy
is to employ Cauchy’s formula

Φk(ϑ;x) :=
1

2πiπk(x)

∮
|z|=r

W(x;ϑ, z; f)
dz

zk+1
(r > 0)

with

(9.19) W(x;ϑ, z; f) :=
∑

1<n6x

eiϑf(n)zω(n−1).
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To this end, we would like to expand eiϑf(n) as a sum over the divisors of n and
revert summations. However, in order to apply a result like Theorem 1.5, we
need to restrict the sizes of the divisors involved. This can be done by selecting
a suitable parameter y ∈ [1, x] and approximating f(n) by the additive truncation
fy, defined by

(9.20) fy(pν) :=

{
f(pν) if p 6 y,

0 if p > y.

We select throughout

(9.21) y := exp{(log2 x)1/3}.
The first step consists in establishing that, if they exist, the limiting distributions
associated to f and fy are identical, in other words that, given any ε > 0, we have

(9.22)
∑

1<n6x
ω(n−1)=k

|f(n)−fy(n)|>ε

1� ηπk(x)

for some η = η(ε) tending to 0 with ε.
Showing this turns out to be the most difficult part of the proof and motivates

all of the preparation displayed in the previous subsection. Since y → ∞, the
Hardy-Ramanujan upper bound (9.2) enables us to discard those n such that p2|n
for some p > y. Then, we consider the set Pε := {p ∈ P : p > y, |f(p)| > ε3}. By
the convergence of the first two series in (2.2), we have∑

p∈Pε

1

p
6

∑
p>y
|f(p)|>1

1

p
+

∑
p>y
|f(p)|61

f(p)2

ε6p
= o(1).

Therefore, Lemma 9.6 yields that the contribution to (9.22) of those n divisible
by a prime from Pε is negligible. To deal with the remaining integers, we define a
multiplicative function Gε by

Gε(p
ν) :=


1 if p 6 y,

0 if p > y and |f(p)| > ε3,

0 if p > y and ν > 2,

e|f(p)|/ε2 if p > y, ν = 1, and |f(p)| 6 ε3.

Thus, if n is not divisible by the square of a prime > y and is free of prime factors
from Pε, we have

|f(n)− fy(n)| > ε⇒ Gε(n) > e1/ε.

Moreover, since Gε satisfies the hypotheses of Lemma 9.5, we have∑
1<n6x

ω(n−1)=k

Gε(n)� πk(x),

which completes the proof of (9.22).
We have thus reduced the proof of Theorem 2.1 to showing that, for each fixed

ϑ ∈ R, we have

(9.23) Φ∗k(ϑ;x) :=
1

πk(x)

∑
1<n6x

ω(n−1)=k

eiϑfy(n) = ϕFr (ϑ) + o(1) (x→∞).

With the notation (9.19), we hence write

(9.24) Φ∗k(ϑ;x) =
1

2πiπk(x)

∮
|z|=r

W(x;ϑ, z; fy)
dz

zk+1
(r > 0).
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Given ϑ ∈ R, let hϑ denote the multiplicative function defined by hϑ = eiϑfy ∗ µ,
so that

hϑ(pν) =

{
eiϑf(pν) − eiϑf(pν−1) if p 6 y, ν > 1,

0 if p > y.

We have
eiϑfy(n) =

∑
d|n

P+(d)6y

hϑ(d)

so, for α := K/ log y, |z| = r, the contribution to W(x;ϑ, z; fy) of those d exceed-
ing xc is at most∑

1<n6x

rω(n−1)
∑
d|n

P+(d)6y

|hϑ(d)|dα

xαc

= x−cα
∑

1<n6x

rω(n−1)
∏
pν‖n
p6y

(
1 + 2

∑
16j6ν

pjα
)
�r x

1−K/ log2 x,

by the Cauchy-Schwarz inequality and standard estimates for sums of non-negative
multiplicative functions. Since we shall ultimately select r 6 R, we see that, given
any fixed constant c > 0, we may replace W(x;ϑ, z; fy) in (9.24) by

W∗(x;ϑ, z; fy) :=
∑
d6xc

P+(d)6y

hϑ(d)
∑

n6x−1
n≡−1 (mod d)

zω(n),

to within an acceptable error. We are hence in a position to apply Corollary 1.6
with

Q = D = 1, c < 1
105 , R = xc, ξr =

{
hϑ(r) if P+(r) 6 y,

0 if P+(r) > y,

f(n) = zω(n), a = −1.

We obtain

(9.25) W∗(x;ϑ, z; fy) =
∑
d6xc

P+(d)6y

hϑ(d)

ϕ(d)

∑
n6x

(n,d)=1

zω(n) +OA

( x

(log x)A

)
.

Now a standard application of the Selberg-Delange method as displayed in [24, ch.
II.6] yields, uniformly for x > 2, d > 1, 1 6 k 6 R log2 x, r := (k − 1)/ log2 x 6 R,

(9.26)
∑
n6x

(n,d)=1
ω(n)=k

1 =
πk(x)

br(d)
+O

(BR(d)πk(x)

log2 x

)

with

(9.27) br(d) :=
∏
p | d

(
1 +

r

p− 1

)
, BR(d) :=

∏
p|d

(
1− 1

p3/4

)−R
.

Inserting (9.26) back into (9.25) and carrying into (9.24) yields, by Cauchy’s integral
formula,

Φ∗k(x;ϑ) =
∑
d6xc

P+(d)6y

hϑ(d)

br(d)ϕ(d)
+ o(1)

where the error term has been estimated, in view of (9.21), using the fact that
|hϑ(d)| 6 2ω(d) for all d > 1. By Rankin’s method, we may extend the summation
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over d to all y-friable values without altering the remainder term. To reach the
required conclusion (9.23), it only remains to observe that

∑
P+(d)6y

hϑ(d)

br(d)ϕ(d)
=
∏
p6y

(
1 +

(
1− 1

p

)∑
ν>1

eiϑf(pν) − 1

pν−1(p− 1 + r)

)
= ϕFr (ϑ) + o(1),

due to the convergence of the infinite product.

10. Proof of Theorem 2.3

Since the proof is very similar to that of Theorem 2.1, we shall only sketch the
main lines.

Let y be defined as in the statement of the theorem and let fy denote the additive
truncation defined by (9.20). The first step consists in showing that the distribution
functions of {f(n)−Ax}/Bx and {fy(n)−Ax}/Bx on

E∗k(x) := {n ∈]1, x] : ω(n− 1) = k}

differ by at most o(1).
To this end, we apply the Hardy-Ramanujan bound (9.2) to show that at most

o
(
πk(x)

)
elements of E∗k(x) are divisible by the square of a prime > y, and we invoke

Lemma 9.15 to infer that, given ε > 0, the same bound holds for the number of
those n ∈ E∗k(x) having a prime factor p > y such that |f(p)| > ε3Bx. Then, we

may use, as previously, Lemma 9.5 with now G(p) := e|f(p)|/ε2Bx to get that

|f(n)− fy(n)| = o
(
Bx
)

holds for
{

1 + o(1)
}
πk(x) elements of E∗k(x).

Let ϑ be a real number and put hϑ := eiϑfy/Bx ∗ µ. For the second step we aim
at showing that, for bounded z ∈ C and any fixed c > 0, the contribution of d > xc

to the sum

V(x;ϑ, z, y) :=
∑

1<n6x

zω(n−1)eiϑfy(n)/Bx =
∑

1<n6x

zω(n−1)
∑
d|n

hϑ(d)

is negligible. As in Section 9.2, this is achieved by a standard application of Rankin’s
method. This is where we need y to be taken smaller than any power of x.

We then apply Corollary 1.6 to obtain, for all fixed A,

(10.1) V(x;ϑ, z, y) =
∑
d6xc

P+(d)6y

hϑ(d)

ϕ(d)

∑
n6x

(n,d)=1

zω(n) +O

(
x

(log x)A

)
.

The Selberg-Delange method now furnishes, uniformly for x > 2, d > 1, |z| 6 R,

∑
n6x

(n,d)=1

zω(n) =
Jd(z)x(log x)z−1

Γ(z)
+O

(
BR(d)x(log x)z−2

)
,

where BR is defined in (9.27) and

Jd(z) :=
∏
p - d

(
1 +

z

p− 1

)(
1− 1

p

)z∏
p | d

(
1− 1

p

)z
.



44 ÉTIENNE FOUVRY AND GÉRALD TENENBAUM

We then carry back into (10.1) and extend the summation over all y-friable d.
This involves a global error � Lϑ(y)x(log x)<z−2 with

Lϑ(y) :=
∑

P+(d)6y

|hϑ(d)|BR(d)

ϕ(d)
� exp

{∑
p6y

|hϑ(p)|
p

}
� exp

{
|ϑ|
Bx

∑
p6x

|f(p)|
p

}
� (log x)o(1),

where the last bound follows from the Cauchy-Schwarz inequality. By Cauchy’s
formula with a standard treatment of the error term, we get, for each fixed ϑ and
uniformly for r := (k − 1)/ log2 x 6 R,

(10.2)
∑

1<n6x
ω(n−1)=k

eiϑfy(n)/Bx =
x

2πi log x

∮
|z|=r

Hϑ(z;x)(log x)z
dz

zk
+O

( πk(x)√
log x

)
,

with

Hϑ(z;x) :=
1

Γ(z + 1)

∑
P+(d)6y

hϑ(d)Jd(z)

ϕ(d)
.

The last sum is an entire function of z. We may hence compute it assuming first
that z 6∈ (1 − P) and then deleting this restriction by analytic continuation. We
find that it is equal to∏

p>y

(
1 +

z

p− 1

)(
1− 1

p

)z ∏
p6y

(
1− 1

p

)z(
1 +

z + hϑ(p)

p− 1

)
.

It readily follows from our hypotheses that Hϑ(z;x) is bounded in the disk |z| 6 2R.
Thus, inserting Taylor’s formula

Hϑ(z;x) = Hϑ(r;x) + (z − r)H′ϑ(r;x) +O
(
|z − r|2 sup

06s61
|H′′ϑ(r + s(z − r);x)|

)
and noting that, by our choice of r, the contribution of the linear term to the
Cauchy integral in (10.2) vanishes, we obtain∑

1<n6x
ω(n−1)=k

eiϑfy(n)/Bx = {1 + o(1)}xHϑ(r;x)(log2 x)k−1

(k − 1)! log x
·

Applying this also for ϑ = 0 and dividing yields

1

πk(x)

∑
1<n6x

ω(n−1)=k

eiϑ{fy(n)−Ax}/Bx = e−iϑAx/Bx
∏
p6y

(
1 +

hϑ(p)

p− 1 + r

)
+ o(1)

= exp

{∑
p6x

eiϑf(p)/Bx − 1− iϑf(p)/Bx
p

+ o(1)

}

= exp

{∫
R

eiϑu − 1− iϑu
u2

dKx(u) + o(1)

}
,

with

Kx(u) :=
1

B2
x

∑
p6x

f(p)6uBx

f(p)2

p
·

By (2.10), Kx(u) tends to 1]0,∞[(u) as x → ∞. Thus, as may be seen by par-
tial integration and appeal to Lebesgue’s dominated convergence theorem, the last
integral approaches −ϑ2/2 as x→∞. This is all we need.
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11. Proof of Theorem 2.5

This is a reappraisal of the proof of [14, th. 11], in which we make crucial use
of Corollary 1.6. We provide all the details for convenience of the reader. The
following result, which is a special case of [20, cor. 3], will also be very useful. We
recall Definition 9.4 for the class M(A,B, ε).

Lemma 11.1. Let A > 0, B > 0, ε ∈]0, 1
100 ]. Then, uniformly for F ∈M(A,B, ε),

x > 2, we have

(11.1)
∑

1<n6x

F (n)τ(n− 1)� x
∑
n6x

F (n)

n
·

Letting Ex denote the expectation relative to the probability Px brought up in
Section 2, we see that (11.1) may be restated as

(11.2) Ex(F )� 1

log x

∑
n6x

F (n)

n
·

Let us start by proving (2.12) or, equivalently, with notation (2.11),

(11.3) Px
(
|M(n, ξ)| > 1 + ε

)
= o(1) (x→∞).

Provided ξ(x) tends to infinity sufficiently slowly, which can be assumed without
loss of generality, we may restrict our attention to the range ξ(x) < t 6 x1 with
log2 x1 = log2 x− ξ(x). Indeed, if t > x1, we have, with notation (1.7),

ω(n, t)− log2 t 6 ω(n)− ω(n, x1) + |ω(n)− log2 x|+ ξ(x)

ω(n, t)− log2 t > ω(n)− log2 x−
{
ω(n)− ω(n, x1)

}
and so

|ω(n, t)− log2 t| 6 ω(n)− ω(n, x1) + |ω(n)− log2 x|+ ξ(x).

Now, by (11.2), we have for any v ∈ [1, 2]

Ex
(
vω(n)−ω(n,x1)

)
� e(v−1)ξ(x),

Ex
(
vω(n)−log2 x + vlog2 x−ω(n)

)
� (log x)v−1−log v + (log x)log v−1+1/v

Selecting v = 2 in the upper estimate and v = 1 + ξ(x)/
√

log2 x in the lower one,

we see that, assuming ξ(x) = o
(√

log4 x
)
, we have, for all ε > 0,

Px

(
sup

x1<t6x
|Λ(n, t)| > ε

)
= o(1)

and so (11.3) will follow from

Px
(
|M1(n, ξ)| > 1 + ε

)
= o(1), with M1(n, ξ) := sup

ξ(x)<t6x1

|Λ(n, t)|.

Next, we consider the subset Ux of {n : 1 < n 6 x} comprising those integers n
such that

∏
pν‖n, p6x1

pν 6 x1/4. By (11.2), we have

Px(]1, x] r Ux) 6 x−1/(4 log x1)Ex

( ∏
pν‖n, p6x1

pν/ log x1

)
� exp

{
− 1

4eξ(x)
}
.

We thus embark to prove that

(11.4) Px

(
n ∈ Ux, |M1(n, ξ)| > 1 + ε

)
= o(1).

At the cost of replacing ε by 2ε in (11.4), we may plainly restrict the variable t, in
the definition of M1(n, ξ), to run through the sequence

{tk : ξ(x) 6 k 6 log2 x− ξ(x)},
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with tk := exp exp k (k > 1). Now, put I := b(log3 ξ(x))/εc, J := b(1 + log3 x1)/εc,
and for each j, I 6 j 6 J , write Kj := eεj , so that KI 6 log2 ξ(x), KJ > log2 x1.
We then define Tj := exp expKj = exp exp exp(εj) and consider the set Sj of those
n ∈ Ux such that

(Sj) sup
Kj6k6Kj+1

|Λ(n, t)| > 1 + ε.

We also define ψ(T ) := (1 + ε)
√

log2 T − c, where c is a sufficienlty large constant,
and denote by Aj the set of those n ∈ Ux for which

(Aj) |ω(n, Tj+1)− log Tj+1| > ψ(Tj)
√

log2 Tj .

In order to show that

Px

( ⋃
I6j6J

Sj

)
= o(1),

we shall actually prove, for x > x0(ε),

Px
(
Aj
)
� 1

j1+ε/4
(I 6 j 6 J),(11.5)

Px
(
Sj
)
6 2Px

(
Aj
)

(I 6 j 6 J).(11.6)

The proof of (11.5) is straightforward, since, for x > x0(ε), condition (Aj) implies

|ω(n, Tj+1)− log2 Tj+1| > (1 + 2
3ε)
√

2 log2 Tj log4 Tj

> (1 + ηj) log2 Tj+1,

with ηj := (1+ 1
7ε)
√

2 log4 Tj+1/ log4 Tj+1 and so we only need to apply (11.2) with

F (n) := vω(n,Tj+1) for v = 1± ηj .
To prove (11.6), we split Sj into Kj+1−Kj disjoint subsets Skj , Kj < k 6 Kj+1,

defined by the extra condition

(Skj) max
kj<m<k

|Λ(n, tm)| 6 1 + ε < |Λ(n, tk)|.

We clearly have

Px(Sj) 6
∑

Kj<k6Kj+1

Px(Skj).

For each k ∈]Kj ,Kj+1], let Bkj comprise those integers n ∈ Ux such that

(Bkj)

∣∣∣∣ω(n, Tj+1

)
− ω(n, tk)− log

( log Tj+1

log tk

)∣∣∣∣ 6 c√log2 Tj+1.

Since condition (Skj) implies

|ω(n, tk)− log2 tk| > (1 + ε)
√

2 log2 tk log4 tk

we see that Bkj ∩ Skj ⊂ Aj . The Skj being disjoint for fixed j, we infer that∑
Kj<k6Kj+1

Px
(
Bkj ∩ Skj

)
6 Px

(
Aj
)
.

Therefore (11.6) will follow from

(11.7) Px
(
Skj ∩Bkj

)
6 1

2Px
(
Skj
)

with Bkj := Ux rBkj . We shall prove that (11.7) holds for sufficiently large c.
Let a, b denote respectively generic integers such that P+(a) 6 tk, P−(b) > tk.

We have ∑
n∈Skj

τ(n− 1) =
∑

a6x1/4

a∈Skj

∑
b6x/a
ab>1

τ(ab− 1) >
∑

a6x1/4

a∈Skj

∑
d6
√
x

∑
b6x/a
ab>1

b≡a (mod d)

1.
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Corollary 1.6 enables us to bound the double inner sum from below. We obtain,
for any A > 0,∑

n∈Skj

τ(n− 1) >
∑

a6x1/4

a∈Skj

x

a

{ ∑
d6
√
x

1

ϕ(d) log tk
+O

( 1

(log x)A

)}
,

whence

(11.8) Px
(
Skj
)
� e−k

∑
a6x1/4

a∈Skj

1

a
·

Now observe that, for n = ab ∈ Skj ∩Bkj , at least one of the inequalities α1(b) < 0
or α2(b) > 0 holds, with

αh(b) = ω(b, Tj+1)−
(
Kj+1 − k) + (−1)hc

√
Kj (h = 1, 2).

Therefore, for any y1, y2, with 1
2 6 y1 < 1 < y2 6 3

2 , we have

(11.9) Px
(
Skj ∩Bkj

)
� 1

x log x

∑
a6x1/4

a∈Skj

∑
b6x/a

τ(ab− 1)
{
y
α1(b)
1 + y

α2(b)
2

}
.

Inserting the upper bound

τ(ab− 1) 6 2
∑
d6
√
x

ab≡1 (mod d)

1

and appealing to Corollary 1.6 again furnishes∑
b6x/a

τ(ab− 1)y
αh(b)
h 6 2

∑
d6
√
x

∑
b6x/a
ab>1

b≡a (mod d)

y
αh(b)
h

�
∑
d6
√
x

1

ϕ(d)

∑
b6x/a
(b,d)=1

y
αh(b)
h +

x

a(log x)A

� x log x

a ek
exp

{
(Kj+1 − k)(yh − 1− log yh)− c| log yh|

√
Kj

}
.

We select yh := 1 + (−1)h/2 or yh = 1 + (−1)hc
√
Kj/(Kj+1 − k) according as

k > Kj+1 − 2c
√
Kj or not. Then the expression in curly brackets is 6 −κc, where

κ is an absolute constant. Inserting back into (11.9), we obtain

Px
(
Skj ∩Bkj

)
� e−k−κc

∑
a6x1/4

a∈Skj

1

a
,

from which (11.7) follows for sufficiently large c, in view of (11.8).
This completes the proof of (2.12).

We now turn our attention to proving (2.13) and (2.14). By symmetry, we
restrict to the first property. We write X := x1/ log2 x and embark on showing

(11.10) Px
(
M+(n, ξ) 6 1− ε

)
= o(1) (x→∞).

Given a large constantD = D(ε) to be specified later, we putK := blog2 ξ(x)/ logDc,
L := blog3X/ logDc. For K < k 6 L, set sk := exp expDk, Ik :=]sk−1, sk], and
define

ωk(n) :=
∑

p|n, p∈Ik

1.
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As in the corresponding part of the proof of [14, th. 11], we aim at establishing
that the level of independence of the ωk(n) (K < k 6 L) is sufficient to implement
the classical probabilistic approach. Of course, independence is here understood
with respect to Px.

Let zk (K < k 6 L) be complex numbers such that |zk| 6 2, and write

z := (zK+1, . . . , zL).

The first step consists in evaluating the characteristic function

Ψ(z) := Ex(f), where f(n) :=
∏

K<k6L

z
ωk(n)
k .

We shall show that

(11.11) Ψ(z) = Θ(z)

{
1 +O

( 1

log x

)}
,

with

Θ(z) :=
∏
p

{
1 +

(f(p)− 1)(p− 1)

p2

}
=

∏
K<k6L

∏
p∈Ik

{
1 +

(zk − 1)(p− 1)

p2

}
.

For any β > 1
2 , we have

(11.12)

S(x; z) :=
∑

1<n6x

f(n)τ(n− 1) = 2
∑
d6
√
x

∑
d2<n6x

n≡1 (mod d)

f(n) +O
(
xβ
)

= 2
∑
d6
√
x

∑
n6x

n≡1 (mod d)

f(n) +O
(
R + xβ

)
,

with

R :=
∑

x1/4<d6
√
x

∑
n6d2

n≡1 (mod d)

f(n).

Let ∆ := 1 + 1/L B , where B is a large constant to be determined later. We split
the outer summation range into intervals Vj :=

{
d : x1/4∆j < d 6 x1/4∆j+1

}
. In

each corresponding subsum we may replace the condition n 6 d2 by n 6
√
x∆2j at

the cost of an error

� x1/4∆j(∆− 1)

log x

∑
n6x

|f(n)|
n
� x1/4∆j

L B−1
.

Indeed, this readily follows from [20, cor. 3]. Summing over j, we obtain that the
global error involved is �

√
xL . Next, we apply Corollary 1.6 to each subsum,

viz. ∑
d∈Vj

∑
n6
√
x∆2j

n≡1 (mod d)

f(n) =
∑
d∈Vj

1

ϕ(d)

∑
n6
√
x∆2j

(n,d)=1

f(n) +O
(√x∆2j

L 2B

)
.

The inner sum is relevant to [14, th. 02]. It is

√
x∆2j

∏
p - d

(
1 +

f(p)− 1

p

)
+O

(√x∆2j

log x

)
.

Carrying back into (11.12), we get, after a short computation,

S(x; z) = 2
∑
d6
√
x

∑
n6x

n≡1 (mod d)

f(n) +O
(
xΘ(z)

)
,
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which is compatible with (11.11). Applying Corollary 1.6 again, we get

(11.13) S(x; z) = 2
∑
d6
√
x

1

ϕ(d)

∑
n6x

(n,d)=1

f(n) +O
(
xΘ(z)

)
,

since the error involved from the Bombieri-Vinogradov estimate may be absorbed
by the previous one. Now, letting χd denote the indicator of the set of integers
coprime to d, we write fχd = g ∗ χd where g is the multiplicative function defined
as

g(pν) =

{
0 if p | d or ν > 1

f(p)− 1 if p - d, ν = 1.

We have∑
n6x

n≡1 (mod d)

f(n) =
∑
m6x

g(m)
∑

n6x/m
(n,d)=1

1 =
xϕ(d)

d

∑
m6x

g(m)

m
+O

(
2ω(d)

∑
m6x

|g(m)|
)

=
xϕ(d)

d

∏
p - d

(
1 +

f(p)− 1

p

)
+O

( x2ω(d)

(log x)B

)
,

where the last estimate may be obtained by a standard application of Rankin’s
method, using the fact that g(m) vanishes if P+(m) > X. Carrying back into
(11.13), we get, keeping in mind that f(p) = 1 for all small p,

S(x; z) = 2
∑
d6
√
x

1

d

∏
p - d

(
1 +

f(p)− 1

p

)
+O

(
xΘ(z)

)
= 2

∏
p

(
1 +

f(p)− 1

p

) ∑
d6
√
x

1

dr(d)
+O

(
xΘ(z)

)
,

with r(d) :=
∏
p|d{1 + (f(p) − 1)/p}. The Selberg-Delange method yields (11.11).

We omit the details.
From this point on, the argument is essentially identical with the corresponding

part of [14, th. 11], and we only sketch the main steps. We use

exp
{z − 1

p− 1
+

2

p(p− 1)

}
as a majorant series for 1 + z(p− 1)/p2 and note that

exp
{

2 +
∑

K<k6L

(z − 1)Hk

}
is a majorant series for Θ(z) with

Hk :=
∑
p∈Ik

1

p− 1
= Dk−1(D − 1) +O(1) (K < k 6 L).

For jk 6 2Hk, we evaluate Px
(
ωk(n) = jk (K < k 6 L)

)
by Cauchy’s integral

formula and then show that, with

hk := Hk +
√

2Hk log2D
k (K < k 6 L),

we have

Px

(
sup

K<k6L
{ωk(n)− hk} > 0

)
= 1 + o(1).

We then conclude by noting that, if ω`(n)− h` > 0 and if M1(n, ξ) 6 1 + ε, then

ω(n, s`−1) > D`−1 − (1 + ε)
√

2D`−1 log2D
`
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and so, if D = D(ε) is sufficiently large,

ω(n, s`) = ω(n, s`−1) + ω`(n)

> D`−1 +H` +
(√

H` − (1 + ε)
√
D`−1

)√
2 log2D

`

> D` + (1− ε)
√

2D` log2D
`.

This completes the proof of (2.13) alias (11.10).
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[7] É. Fouvry. Sur le problème des diviseurs de Titchmarsh. J. Reine Angew. Math., 357:51–76,

1985.
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