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This paper is devoted to the NURBS-based Isogeometric analysis of the On-Surface Radiation Condition (OSRC) method for solving two-and three-dimensional time-harmonic acoustic scattering problems. In addition, a Phase Reduction of the OSRC formulation based on a plane wave ansatz is introduced. This leads to an efficient and accurate implementation of OSRC methods. Some numerical tests for two-and three-dimensional problems illustrate the proposed approach.

Introduction

The numerical solution of high frequency time-harmonic acoustic, electromagnetic and elastic wave scattering problems is very challenging in computational science because of its importance in numerous technological and industrial applications. In the present paper, we consider the specific case of the exterior Helmholtz equation which models 2D/3D acoustics and 2D TE/TM electromagnetic waves propagation. Among the most standard accurate computational approaches, let us mention e.g. the high-order finite difference/finite element methods with absorbing/artificial boundary conditions or PMLs [START_REF] Antoine | Bayliss-Turkel like radiation conditions on surfaces of arbitrary shape[END_REF][START_REF] Bayliss | Boundary conditions for the numerical solution of elliptic equations in exterior regions[END_REF][START_REF] Bayliss | Radiation boundary conditions for wave-like equations[END_REF][START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF][START_REF] Bermudez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF][START_REF] Bermudez | Perfectly matched layers for time-harmonic second order elliptic problems[END_REF][START_REF] Ph | Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications[END_REF][START_REF] Collino | The perfectly matched layer in curvilinear coordinates[END_REF][START_REF] Djellouli | Finite element solution of two dimensional scattering using arbitrarily shaped convex artificial boundaries[END_REF][START_REF] Engquist | Absorbing boundary conditions for the numerical simulation of waves[END_REF][START_REF] Givoli | High-order local non-reflecting boundary conditions : a review[END_REF][START_REF] Ihlenburg | Finite Element Analysis of Acoustic Scattering[END_REF][START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM[END_REF][START_REF] Ihlenburg | Finite element solution of the Helmholtz equation with high wave number Part II: the h-p version of the FEM[END_REF][START_REF] Rabinovich | A finite element scheme with a high order absorbing boundary condition[END_REF][START_REF] Tezaur | Three-dimensional finite element calculations in acoustic scattering using arbitrarily shaped convex artificial boundaries[END_REF][START_REF] Tsynkov | Numerical solution of problems on unbounded domains[END_REF][START_REF] Turkel | Absorbing PML boundary layers for wave-like equations[END_REF][START_REF] Villamizar | Exact local absorbing boundary conditions for time-harmonic waves in terms of farfield expansions[END_REF][START_REF] Wu | A dispersion minimizing compact finite difference scheme for the 2D Helmholtz equation[END_REF] to get a bounded computational domain and solved by iterative or hybrid solvers [START_REF] Antoine | Optimized Schwarz Domain Decomposition Methods for Scalar and Vector Helmholtz Equations[END_REF][START_REF] Boubendir | A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation[END_REF][START_REF] Erlangga | Advances in iterative methods and preconditioners for the Helmholtz equation[END_REF][START_REF] Ernst | Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods[END_REF][START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF][START_REF] Kechroud | Preconditioning techniques for the solution of the Helmholtz equation by the finite element method[END_REF], the boundary element approximation of preconditioned iterative integral equation formulations [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF][START_REF] Bruno | Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case[END_REF][START_REF] Colton | Integral Equation Methods in Scattering Theory[END_REF][START_REF] Nédélec | Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems[END_REF] accelerated by fast evaluation algorithms like the Fast Multipole Method [START_REF] Chew | Fast and Efficient Algorithms in Computational Electromagnetics[END_REF][START_REF] Coifman | The Fast Multipole Method for the wave equation: A pedestrian description[END_REF][START_REF] Greengard | A fast algorithm for particle simulations[END_REF][START_REF] Kirkup | The Boundary Element Method in acoustics: a survey[END_REF][START_REF] Rokhlin | Rapid solution of integral equations of scattering theory in two dimensions[END_REF] or H-matrix algorithms [START_REF] Börm | Introduction to hierarchical matrices with applications[END_REF][START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF][START_REF] Kpadonou | On the efficiency of nested GMRES preconditioners for 3D acoustic and elastodynamic H-matrix accelerated Boundary Element Methods[END_REF], and the infinite element methods [START_REF] Astley | Wave envelope and infinite elements for acoustical radiation[END_REF]. Concerning the asymptotic numerical approaches, the On-Surface Radiation Condition (OSRC) method [START_REF] Acosta | On-surface radiation condition for multiple scattering of waves[END_REF][START_REF] Alzubaidi | Formulation and accuracy of on-surface radiation conditions for acoustic multiple scattering problems[END_REF][START_REF] Ammari | An on-surface radiation condition for Maxwell's equations in three dimensions[END_REF][START_REF] Antoine | Fast approximate computation of a time-harmonic scattered field using the on-surface radiation condition method[END_REF][START_REF] Antoine | Advances in the On-Surface Radiation Condition Method: Theory, Numerics and Applications[END_REF][START_REF] Antoine | An improved surface radiation condition for highfrequency acoustic scattering problems[END_REF][START_REF] Atle | On surface radiation conditions for high-frequency wave scattering[END_REF][START_REF] Kriegsmann | A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach[END_REF][START_REF] Medvinsky | On surface radiation conditions for an ellipse[END_REF][START_REF] Medvinsky | Local absorbing boundary conditions for elliptical shaped boundaries[END_REF] has proved to be an interesting prediction tool to efficiently compute far field patterns or as a key ingredient in a more accurate standard numerical method, e.g. as a preconditioner in integral equations formulations [START_REF] Antoine | Alternative integral equations for the iterative solution of acoustic scattering problems[END_REF][START_REF] Antoine | Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation[END_REF][START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF] or as transmitting boundary conditions for optimized Schwarz domain decomposition methods [START_REF] Antoine | Optimized Schwarz Domain Decomposition Methods for Scalar and Vector Helmholtz Equations[END_REF][START_REF] Boubendir | A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation[END_REF][START_REF] Ernst | Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods[END_REF][START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF]. All these developments are first formulated at the continuous level, and next a numerical approximation scheme (e.g. finite element or boundary element method) is applied to discretize the resulting equations. For scattering problems, it is desirable to go towards accurate numerical discretization schemes to minimize e.g. the pollution/dispersion effects arising in the numerical approximations, while also considering a highly precise representation of the scattering surface.

Among the numerical methods that combine high precision representations of both the geometry and physical solution, Isogeometric analysis (IGA) has proved to be an extremely powerful tool to compute highly accurate PDE solutions in various fields of interest in engineering. Introduced by Hughes et al. in 2005 [48], the use of Non-Uniform Rational B-Spline (NURBS) allows to extend the finite element method not only to represent the solution to the physical problem but also the geometry, which bridges the gap between the finite element method and computer aided design (CAD) tools [START_REF] Cottrell | Isogeometric Analysis: Toward Integration of CAD and FEA[END_REF][START_REF] Cottrell | Isogeometric analysis of structural vibrations[END_REF][START_REF] Hughes | Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems[END_REF][START_REF] Nguyen | Isogeometric analysis: An overview and computer implementation aspects[END_REF][START_REF] Nguyen-Thanh | Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling[END_REF][START_REF] Wall | Isogeometric structural shape optimization[END_REF]. In particular, NURBS-based IGA was applied successfully in [START_REF] Khajah | B-spline FEM for time-harmonic acoustic scattering and propagation[END_REF] to high-frequency 2D/3D acoustic scattering problems for the volume formulation with low-and high-order absorbing boundary conditions. It was shown that IGA can indeed lead to high precision solutions while reducing notably the pollution/dispersion error that can be met e.g. in finite element methods. Extensions were later reported e.g. in [START_REF] Atroshchenko | Isogeometric collocation for acoustic problems with higher-order boundary conditions[END_REF][START_REF] Dinachandra | Plane wave enriched Partition of Unity Isogeometric Analysis (PUIGA) for 2D-Helmholtz problems[END_REF][START_REF] Diwan | Pollution studies for high order isogeometric analysis and finite element for acoustic problems[END_REF][START_REF] Dsouza | Non Uniform Rational B-Splines and Lagrange approximations for time-harmonic acoustic scattering: accuracy and absorbing boundary conditions[END_REF][START_REF] Khajah | Highly accurate acoustic scattering: Isogeometric analysis coupled with local high order farfield expansion ABC[END_REF][START_REF] Videla | h-and p-adaptivity driven by recovery and residual-based error estimators for PHT-splines applied to time-harmonic acoustics[END_REF] for various improvements. IGA approximation was also applied with success in [START_REF] Simpson | Acoustic isogeometric boundary element analysis[END_REF] for the numerical approximation of standard integral equation formulations arising in acoustic scattering, resulting in IGABEM approximations (see also [START_REF] Coox | An isogeometric indirect boundary element method for solving acoustic problems in open-boundary domains[END_REF][START_REF] Dölz | A fast isogeometric BEM for the three dimensional Laplace-and Helmholtz problems[END_REF][START_REF] Peake | Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems[END_REF][START_REF] Peake | Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems[END_REF][START_REF] Venås | Isogeometric boundary element method for acoustic scattering by a submarine[END_REF][START_REF] Wu | Isogeometric indirect boundary element method for solving the 3D acoustic problems[END_REF]). IGA with infinite element was also proposed very recently [START_REF] Venås | Isogeometric analysis of acoustic scattering using infinite elements[END_REF]. These references show again that IGA has a great potentiality to compute accurate wave fields.

As previously noticed, since the OSRC method is used as a tool for both volume and surface acoustic formulations, and that many recent contributions have shown that IGA is a very interesting discretization technique for both volume and surface formulations, it is natural to analyze the behavior of IGA when approximating the OSRC formulations, which is the first goal of the paper, resulting in the IGA-OSRC method. In addition, in several high frequency methods [START_REF] Antoine | Phase reduction models for improving the accuracy of the finite element solution of time-harmonic scattering problems I: General approach and low-order models[END_REF][START_REF] Geuzaine | An amplitude formulation to reduce the pollution error in the finite element solution of time-harmonic scattering problems[END_REF][START_REF] Giladi | A hybrid numerical asymptotic method for scattering problems[END_REF][START_REF] Laghrouche | Short wave modelling using special finite elements[END_REF][START_REF] Laghrouche | Modelling of short wave diffraction problems using approximating systems of plane waves[END_REF][START_REF] Laghrouche | A comparison of NRBCs for PUFEM in 2D Helmholtz problems at high wave numbers[END_REF][START_REF] Turkel | Improved accuracy for the Helmholtz equation in unbounded domains[END_REF], an ansatz of the solution can be used to partially cancel the high oscillations arising in the unknown wave field, leading therefore to the possibility of reducing greatly the number of degrees of freedom involved in the numerical method, and, as a consequence, of the size of the linear system to resolve. Here, we propose a Phase Reduction (PR) formulation [START_REF] Antoine | Phase reduction models for improving the accuracy of the finite element solution of time-harmonic scattering problems I: General approach and low-order models[END_REF][START_REF] Geuzaine | An amplitude formulation to reduce the pollution error in the finite element solution of time-harmonic scattering problems[END_REF] of the OSRC method, called PR-OSRC formulation, using the plane wave approximation as ansatz (but other possible ansatz could be similarly used according to the situation). The PR-OSRC is also next approximated by IGA, leading therefore to the IGA-PR-OSRC method, that is favorably compared with the IGA-OSRC scheme. This opens the possibility to directly implement efficient and accurate OSRC-based formulations that could be used later to improve volume and surface based wave scattering formulations approximated by IGA.

The plan of the paper is the following. Section 2 presents the OSRC and PR-OSRC formulations by considering the Padé-type OSRC developed in [START_REF] Antoine | An improved surface radiation condition for highfrequency acoustic scattering problems[END_REF]. The IGA approximation of both formulations is then explained in Section 3. The simple case of the disk is analyzed in details in Section 4 to understand the different features of the methods. More numerical examples are presented in Section 5 in 2D and Section 6 in 3D. We finally end by a conclusion in Section 7.

OSRC and PR-OSRC formulations

The time-harmonic scattering problem

Let us denote the scatterer by Ω -, defined as a d-dimensional bounded set of R d with boundary Γ := ∂Ω -. We introduce the corresponding exterior domain of propagation Ω + := R d \Ω -. We assume that a Dirichlet or a Neumann boundary condition (sound-soft/soundhard boundary condition) is prescribed on Γ by a function g. Our goal is to compute the time-harmonic wave field u solution to

     ∆u + k 2 u = 0, in Ω + , u = g or ∂ n u |Γ = g on Γ, lim ||x||→+∞ ||x|| (d-1)/2 (∇u • x ||x|| -iku) = 0, ( 1 
)
where ∆ is the Laplacian operator, ∇ the gradient operator and n is the outwardly directed unit normal vector to Ω -. The wave number k is related to the wavelength λ by the relation: λ := 2π/k. Denoting by a • b the hermitian inner-product of two complex-valued vector fields a and b, then the last equation of system (1) is known as the Sommerfeld's radiation condition at infinity [START_REF] Colton | Integral Equation Methods in Scattering Theory[END_REF][START_REF] Nédélec | Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems[END_REF], ensuring the uniqueness of the solution to the BVP.

The OSRC method and its standard formulation

The technique of On-Surface Radiation Conditions (OSRC) for scattering problems consists in writing an approximation Λ app of the exact DtN operator Λ ex defining the exact nonlocal relation ∂ n u = Λ ex u over the scattering surface Γ. This results in an approximate relation ψ = Λ app ρ, with ψ ≈ ∂ n u or/and ρ ≈ u on Γ. One of the fundamental requirements related to OSRCs is that they are defined explicitly or implicitly by a local operator, i.e. a surface PDE, or a system of surface PDEs on Γ. In the present paper, we illustrate the full methodology by considering the Padé-type OSRC introduced in [START_REF] Antoine | An improved surface radiation condition for highfrequency acoustic scattering problems[END_REF] which has been proved to be accurate, in particular when considering the high-frequency regime corresponding to λ small compared to the characteristic size of Ω -.

More precisely, the approximation of Λ ex uses the α-rotated Padé's approximation of order N of the square-root OSRC

ψ = ik √ I + Xρ, (2) 
with

X = div Γ ( 1 k 2 ∇ Γ •), (3) 
leading to the local PDE representation [START_REF] Antoine | An improved surface radiation condition for highfrequency acoustic scattering problems[END_REF] 

ψ = ik(c 0 ρ + N j=1 c j φ j ), on Γ, (4) 
with div Γ ( d j k 2 ∇ Γ φ j ) + φ j = div Γ ( 1 k 2 ∇ Γ ρ), on Γ. (5) 
In the above equation, ∇ Γ designates the surface gradient over Γ of a scalar surface field while div Γ is the divergence of a surface vector field. The identity operator on Γ is denoted by I. The complex wavenumber k is such that: k := k + i , where := 0.4k 1/3 H 2/3 , with H the local mean curvature of Γ. For j = 1 • • • N , the complex-valued Padé coefficients of order N are given by

c 0 = e iα/2 R N (e -iα -1), c j = e -i α 2 a j (1 + b j (e -iα -1)) 2 , d j = e -iα b j 1 + b j (e -iα -1) , (6) 
with

a j = 2 2N + 1 sin 2 ( jπ 2N + 1 ), b j = cos 2 jπ 2N + 1 , (7) 
and the standard real-valued Padé approximation of order N is

R N (z) = 1 + N j=1 a j z 1 + b j z . ( 8 
)
The resulting rotating Padé approximation is then given by

R N,α (z) = c 0 + N j=1 c j z 1 + d j z . (9) 
Let us consider now that we are solving a sound-soft scattering problem. Then, we set ρ = g = -u i on Γ, where u i is the incident field (usually a plane wave). The OSRC method with Padé's approximation can be decomposed into two steps. First, we determine the auxiliary surface functions φ j , j = 1, ..., N , solutions to the weak variational formulation: find φ j ∈ H 1 (Γ), such that, ∀v j ∈ H 1 (Γ),

- Γ d j k 2 ∇ Γ φ j • ∇ Γ v j dΓ + Γ φ j v j dΓ = Γ 1 k 2 ∇ Γ u i • ∇ Γ v j dΓ. (10) 
Next, the normal derivative trace ∂ n u | Γ is approximated by ψ based on

ψ = ik(-c 0 u i + N j=1 c j φ j ), (11) 
which completes the Cauchy data required to calculate the scattered field. Indeed, we have the exact Helmholtz integral representation formula, for x ∈ Ω + ,

u(x) = Γ ∂ n(y) G(x, y)u(y) -G(x, y)∂ n(y) u(y) dΓ(y), (12) 
which allows us to determine the exterior wavefield, where G designates the Green's function given in 2D by

G(x, y) = i 4 H (1) 0 (k||x -y||) (13) 
and in 3D through

G(x, y) = e ik||x-y|| 4π||x -y|| . (14) 
Here, H

(1) 0 stands for the first-kind Hankel function of order zero. From the approximate OSRC Cauchy data (ρ, ψ) = (-u i , ψ), we evaluate the scattered field by replacing (u, ∂ n u |Γ ) by its OSRC approximation in [START_REF] Antoine | Optimized Schwarz Domain Decomposition Methods for Scalar and Vector Helmholtz Equations[END_REF]. Similarly, we can compute the far-field pattern (Radar Cross Section (RCS)) in 2D based on the formula (in decibels (dB))

RCS(θ) = 10 log 10 2π|a 0 (θ)| 2 (dB), (15) 
where (r, θ) is the polar coordinate system and a 0 (θ) is the r-independent scattering amplitude [START_REF] Antoine | An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems[END_REF][START_REF] Colton | Integral Equation Methods in Scattering Theory[END_REF][START_REF] Nédélec | Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems[END_REF] given by

a 0 (θ) = e iπ 4 √ 8πik Γ ∂ n(y) u(y) + ikθ • n(y)u(y) e -ikθ•y dΓ(y), (16) 
where θ = (cos(θ), sin(θ)) T is the vector of observation in the polar coordinate system. In 3D, one gets the expression RCS(θ, ϕ) = 10 log 10 4π|a 0 (θ, ϕ)| 2 (db), [START_REF] Bayliss | Radiation boundary conditions for wave-like equations[END_REF] where (r, θ, ϕ) are the spherical coordinates, and a 0 (θ, ϕ) is the scattering amplitude in the (θ, ϕ)-direction defined by

a 0 (θ, ϕ) = 1 4π Γ ∂ n(y) u(y) + ikθ • n(y)u(y) e -ikθ•y dΓ(y), (18) 
setting θ := (cos(θ) cos(φ), sin(θ) cos(ϕ), sin(ϕ)) T .

In the case of a Neumann boundary condition (sound-hard acoustic problem), then we have:

ψ = ∂ n u | Γ = g = -∂ n u i | Γ .
Therefore, based on the Padé's OSRC approximation, we have to solve the following coupled system of PDEs: find ρ ≈ u ∈ H 1 (Γ) such that, ∀v ∈ H 1 (Γ),

ikc 0 Γ ρvΓ + ik N j=1 Γ c j φ j vΓ = - Γ ∂ n u i | Γ vdΓ, (19) 
together with: for 1 ≤ j ≤ N , find

φ j ∈ H 1 (Γ) such that, ∀v j ∈ H 1 (Γ), Γ 1 k 2 ∇ Γ ρ • ∇ Γ v j dΓ - Γ d j k 2 ∇ Γ φ j • ∇ Γ v j dΓ + Γ φ j v j dΓ = 0. ( 20 
)
The approximate Cauchy data (ρ, -∂ n u i | Γ ) can then be used to evaluate the scattered field, and most particularly the RCS. The extension to other kinds of boundary conditions is direct.

Finally, let us remark that an alternative formulation could be derived based on the following idea. We can formally write a new OSRC equation

√ I + Xψ = ik(I + X)ρ
which corresponds to composing the initial square-root OSRC equation ( 2) on both sides by √ I + X. Now, for the Neumann problem, ψ is known, and we solve the equation in two steps, first computing

W = √ I + Xψ (21) 
which is localized thanks to the Padé approximants to get W , and next

ik(I + X)ρ = W, (22) 
to obtain ρ. This means that for [START_REF] Börm | Introduction to hierarchical matrices with applications[END_REF] we can easily adapt the Dirichlet code to get the approximation of W . Even if the method is interesting since the first step leads to solving uncoupled equations, this formulation usually provides a less accurate numerical solution and is not considered in the paper.

Phase Reduction OSRC formulation (PR-OSRC)

We now propose to develop a Phase Reduction OSRC (called PR-OSRC) formulation based on a plane wave approximation approach.

Let us first fix the Dirichlet problem for a plane wave illuminating the obstacle, i.e.

where the tangential incident wavenumber k i Γ is defined by: k

i Γ := k i -(n • k i )n.
Therefore, writing similar relations for both φ j = A j e ik i •x and v j := B j e -ik i •x , one gets, for j = 1, ..., N , the PR-OSRC formulation of system (10)

Γ - d j k 2 (∇ Γ A j + ik i Γ A j ) • (∇ Γ B j -ik i Γ B j ) + A j B j dΓ = Γ 1 k 2 ik i Γ • (∇ Γ B j -ik i Γ B j )dΓ, (23) 
since

∇ Γ u i = ik i Γ e ik i •
x . The functions A j and B j are supposed to be some complex-valued functions with low frequency oscillations, similarly to the PR method developed for volume formulations in [START_REF] Antoine | Phase reduction models for improving the accuracy of the finite element solution of time-harmonic scattering problems I: General approach and low-order models[END_REF][START_REF] Geuzaine | An amplitude formulation to reduce the pollution error in the finite element solution of time-harmonic scattering problems[END_REF]. Expanding the above formulation, we obtain

1 k 2 ik i Γ • (∇ Γ B j -iB j k i Γ )dΓ. (24) 
Then, in a second step, the normal derivative trace is approximated thanks to the slowly varying amplitude Ψ

∂ n u | Γ ≈ ψ := Ψ(x)e ik i •x and Ψ(x) = ik(-c 0 + N j=1 c j A j (x)). (25) 
Once these quantities are obtained, the Cauchy data are approximated by (u |Γ , ∂ n u | Γ ) ≈ (-1, Ψ)e ik i •x . In the present paper, for the RCS computations, we directly inject the Cauchy data evaluated against the plane wave function in [START_REF] Bayliss | Boundary conditions for the numerical solution of elliptic equations in exterior regions[END_REF] or [START_REF] Bérenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF], leading for example to the 2D PR-OSRC approximation of a 0

a 0 (θ) ≈ a PR 0 (θ) = 1 √ 8πk Γ (Ψ(y) + ikθ • n(y)) e ik(θ i -θ)•y dΓ(y). (26) 
Specific methods could also be used, even within the framework of IGA, by considering quadrature rules for approximating highly oscillatory functions or techniques as the ones related to high frequency integral equations [START_REF] Deaño | Computing Highly Oscillatory Integrals[END_REF]. However, we only apply a direct quadrature evaluation in the paper. Finally, the PR-OSRC method can be extended to the Neumann problem based on the previous formulation ( 19)- [START_REF] Bermudez | Perfectly matched layers for time-harmonic second order elliptic problems[END_REF]. More precisely, setting ρ(x) = U (x)e ik i •x and with

∂ n u | Γ = -i(k i • n)e ik i •x
, by using the same notations as above, one gets from [START_REF] Bermudez | An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems[END_REF] 

ikc 0 Γ U BdΓ + ik N j=1 Γ c j A j BdΓ = Γ ik i • nBdΓ, (27) 
and, for [START_REF] Bermudez | Perfectly matched layers for time-harmonic second order elliptic problems[END_REF], we obtain

Γ 1 k 2 ∇ Γ U • ∇ Γ B j + i k 2 (U (k i Γ • ∇ Γ B j ) -(k i Γ • ∇ Γ U )B j ) + ||k i Γ || 2 k 2 U B j dΓ - Γ d j k 2 ∇ Γ A j • ∇ Γ B j + id j k 2 (A j (k i Γ • ∇ Γ B j ) -(k i Γ • ∇ Γ A j )B j ) + d j k 2 ||k i Γ || 2 A j B j dΓ + Γ A j B j dΓ = 0. ( 28 
)
3. IGA approximation of OSRC formulations

A brief overview of IGA

In [START_REF] Antoine | An improved surface radiation condition for highfrequency acoustic scattering problems[END_REF], the OSRC formulation is approximated by a linear finite element method. Since the OSRC leads to solving systems of surface PDEs, it appears that developing numerical approximation schemes involving directly the geometry description would perfectly fit. In addition, since we are solving (2D) Helmholtz-type surface problems, it is known that pollution effects could arise in a finite element method, even in 2D.

Here, we prospect the possibility of using directly high-order representations of the surface fields and the geometry considering Isogeometric Finite Element Methods (IGA). It was originally developed to directly adopt the computational domain model generated by Computer Aided Design (CAD) in conventional Finite Element Analysis [START_REF] Cottrell | Isogeometric Analysis: Toward Integration of CAD and FEA[END_REF][START_REF] Cottrell | Isogeometric analysis of structural vibrations[END_REF][START_REF] Hughes | Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems[END_REF][START_REF] Nguyen | Isogeometric analysis: An overview and computer implementation aspects[END_REF][START_REF] Nguyen-Thanh | Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling[END_REF][START_REF] Wall | Isogeometric structural shape optimization[END_REF]. To achieve this, the basis functions used to describe the domain geometry were considered to estimate the solution. More specifically, B-Splines and Non Uniform Rational B-Splines (NURBS) were used to describe both the physical domain and the solution in IGA. It was shown that IGA can yield higher accuracy per degree of freedom when compared to conventional FEM. Exact geometry based on both polynomials and conic sections such as circles, spheres, and ellipsoids can be represented even using very coarse meshes. Therefore, this exact geometry representation combined with convenient high order analysis makes IGA a promising tool for the analysis of wave propagation problems. For example, the effects of adopting B-Splines on the pollution error was studied for 2D/3D acoustics. In particular, it was observed [START_REF] Khajah | B-spline FEM for time-harmonic acoustic scattering and propagation[END_REF] that the pollution error can be strongly limited by maintaining the discretization density fixed for basis orders p ≥ 3, even at very high frequencies. IGA also benefits from attractive refinement possibilities such as k-refinement which has no equivalent in conventional FEM. Furthermore, r-refinement for IGA was developed to increase the density of control points where curvature based monitor functions are maximum [START_REF] Xu | Efficient r-adaptive isogeometric analysis with winslow's mapping and monitor function approach[END_REF].

In IGA, the parametric definition of the B-Splines/NURBS basis function is directly adopted to discretize a 3D curve. A knot vector is defined as a set of non-decreasing parametric coordinates ξ = {ξ 1 , ξ 2 , ..., ξ (n+p+1) }, ξ i ≤ ξ i+1 , where ξ i is the i th knot and i is the knot index, i = 1, 2, • • • , n + p + 1, where p is the polynomial order and n is the number of basis functions. The mapping of a non-zero knot span in parametric space to physical space is defined as an element. When a knot ξ i is repeated k times in the knot vector, its multiplicity is k i and the B-Spline exhibit C p-k continuity in the corresponding physical point. Usually, open knot vectors are used in IGA where the first and the last knot values appear p + 1 times, in other words, first and last knots have k = p + 1 multiplicity which results in C 0 continuity at the surface patch boundaries or curve end points. This also provides Krönecker delta property at the end points which does not hold for the interior points.

The Cox-de Boor recursion formula is used to define a B-Spline recursively by starting with the zeroth order (p = 0) basis function:

for p = 0, N p i (ξ) = 1 ξ i ≤ ξ ≤ ξ i+1 , 0 otherwise, (29) 
for p = 1, 2, 3, • • • N p i (ξ) = ξ -ξ i ξ i+p -ξ i N p-1 i (ξ) + ξ i+p+1 -ξ ξ i+p+1 -ξ i+1 N p-1 i+1 (ξ), (30) 
where 0/0 is defined to be zero. The first-order B-Spline functions are identical to their Lagrangian (FEM) counterparts. B-Splines also provide the partition of unity property,

n i=0 N i,p (ξ) = 1.
The number of required shape functions for order p analysis is p + 1;

N i,p (ξ) = 0 only when ξ ∈ [ξ i , ξ i+p+1 ]. We define R p i (ξ) = N p i (ξ)w i W (ξ) = N p i (ξ)w i n i=1 N p i (ξ)w i , (31) 
where {N p i } n i=1 is a set of B-Splines basis functions and {w i } n i=1 is a set of positive NURBS weights. For equal weights, NURBS basis functions reduce to their B-Splines counterparts, R p i = N p i , and the corresponding curve becomes a non-rational polynomial again. Hence, B-Splines are a subset of NURBS. Multivariate NURBS basis functions are generated as the tensor product of univariate basis: R p,q i,j (ξ, η) =

N p i (ξ)M j,q (η)w i,j n i=1 m j=1 N p i (ξ)M j,q (η)w i,j , (32) 
where N p i (ξ), and M q j (η) are B-Splines basis functions of order p, and q respectively. NURBS curves and surfaces are defined as a linear combination of these basis functions and the corresponding control points denoted with B, leading to

C(ξ) = n i=1 R p i (ξ)B i , S(ξ, η) = n i=1 m j=1 R p,q i,j (ξ, η)B i,j . (33) 
For completeness, we recommend the review papers [START_REF] Nguyen | Isogeometric analysis: An overview and computer implementation aspects[END_REF][START_REF] Nguyen-Thanh | Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling[END_REF] for the reader interested in IGA.

Computation of geometrical features in IGA for OSRC

Benefiting from smoothness of the functions in IGA, we can readily calculate the mean curvature H (and possibly other geometrical quantities) at each integration point on the surface of the scatterer which is required to calculate the complex wave number k = k + i involved in the OSRC definition, with := 0.4k 1/3 H 2/3 . It is known that

H = ||C, ξ ×C, ξξ || ||C, ξ || 3 = x, ξ y, ξξ -y, ξ x, ξξ (x, 2 ξ +y, 2 ξ ) 3/2 , (34) 
where x, ξ and y, ξ are the first-order derivatives of the physical map with respect to ξ, while x, ξξ and y, ξξ are the second-order derivatives. The curvature at a physical point on the surface (x, y) can be characterized through principal curvatures and curvature directions which can be obtained respectively as the eigenvalues and eigenvectors of the following matrix:

A = -T c T -1 m , (35) 
where T c and T m are the metric and curvature tensors of the surface, respectively [START_REF] Sherwin | Mesh generation in curvilinear domains using high-order elements[END_REF], given by

T m = E F F G = C, ξ •C, ξ C, ξ •C, η C, η •C, ξ C, η •C, η (36) 
and

T c = e f f g = n • C, ξξ n • C, ξη n • C, ηξ n • C, ηη , ( 37 
)
where n is the unit normal vector to the surface

n = C, ξ ×C, η ||C, ξ ×C, η || . ( 38 
)
Then, the principal curvatures H 1,2 (and H = (H 1 + H 2 )/2) are calculated by

H 1,2 = -B ± √ B 2 -4AC 2A , (39) 
where

A = det(T m ), B = 2F f -Ge -Eg, C = det(T c ). (40) 
The calculated curvature can be the basis of r-refinement which reduces the error by moving the degrees of freedom [START_REF] Sherwin | Mesh generation in curvilinear domains using high-order elements[END_REF][START_REF] Xu | Efficient r-adaptive isogeometric analysis with winslow's mapping and monitor function approach[END_REF].

IGA approximation of the OSRC and PR-OSRC formulations

When compared to a conventional finite element analysis, IGA uses basis functions characterized by a larger support but providing an improved accuracy, for a given approximation order p. In practice, most particularly here in 2D for the OSRC method, this leads to a moderate higher computational cost in the matrix assembly process than the finite element method but for a much better precision. In the following, we denote by n λ the number of degrees of freedom per wavelength λ involved in the IGA approximation process. The total number of functions overlapping the support of a particular shape function is 2p + 1, which is similar to that of the conventional finite element method, resulting in the same matrix bandwidth. For 3D acoustics, since we are solving two-dimensional complex-valued Helmholtz-type problems for the OSRC and PR-OSRC formulations with IGA, all the resulting sparse linear systems can be efficiently solved by a LU factorization at a reasonable cost, depending on the matrix size. During the numerical examples reported in the next sections, we show that the PR-OSRC formulation combined with IGA leads to small size sparse linear systems to resolve, while maintaining the accuracy of the OSRC approach.

Numerical example: two-dimensional scattering by a disk

Padé parameters for IGA-OSRC

Let us start by considering the scattering problem by the sound-soft circular cylinder C r 0 of radius r 0 (Dirichlet boundary condition), centered at the origin. Then, in this case, for an incident plane wave with zero incidence, we can analytically compute the reference normal derivative trace over the surface Γ = C r 0 as

∂ r u ex (r 0 , θ) = -k +∞ n=0 n i n J n (kr 0 ) H (1) 
n (kr 0 )

H (1) n (kr 0 ) cos(nθ), ( 41 
)
where n is the Neumann function, which is equal to 1 for n = 0 and 2 otherwise, and θ ∈ [0; 2π]. The Bessel function of order n is J n while H

n denotes the first-kind n-th order Hankel function. When using the Padé approximation R N,α (z) of order N and angle α, given by ( 9), we have the following form of the analytical solution

ψ Pade (r 0 , θ) = -ik ∞ n=0 n i n R N,α (- n 2 k 2 r 2 0 )J n (kr 0 ) cos(nθ), (42) 
with := 0.4k 1/3 r -2/3 0

. Similarly, for the Neumann boundary condition (sound-hard scatterer), we obtain the analytical form of the OSRC solution for the Padé approximation

ρ Pade (r 0 , θ) = -i ∞ n=0 n i n 1 R N,α (-n 2 k 2 r 2 0 ) J n (kr 0 ) cos(nθ). (43) 
Let us start by analyzing the optimal values for the Padé order N and rotating angle α for minimizing the relative L 2 (Γ)-error for the IGA solution, with order p and density of degrees of freedom per wavelength n λ , for a given wave number k. The objective function of this optimization problem is defined as the relative error between the numerical IGA approximation of the Padé OSRC-based normal derivative trace ψ in (4) and the exact reference normal derivative trace ∂ r u ex given by (41), i.e.

k,p (N, α) = ||ψ -∂ r u ex || 0,Γ ||∂ r u ex || 0,Γ , (44) 
where ||f || 0,Γ is the L 2 (Γ)-norm of a function f defined over Γ. The minimum of the objective function k,p (N, α) is computed by the Differential Evolution algorithm which is known for its speed and ability to find the global solution. Let us remark here that the imposition of the non-homogeneous Dirichlet boundary condition is not straightforward in IGA due to lack of Krönecker delta property. More precisely, when using an open knot vector only the end points satisfy the Krönecker delta property and therefore the value of the boundary condition at these points can be directly applied by setting the control variable equal to the prescribed value. However, this direct imposition is not possible for intermediate control variables where additional treatments become necessary similarly to those common in meshless methods. Usual methods include e.g. Transformation method, Nitsche's method, least squares minimization approach, Lagrange multiplier, penalty and the augmented Lagrangian methods. In this study, we force the non-homogeneous boundary condition by using the L 2 -projection method as described in [START_REF] Costantini | Quasi-interpolation in isogeometric analysis based on generalized b-splines[END_REF]. The optimal values of the design variables found by the approach (for an error of about 10 -2.2 ) are listed in Table 1 according to k, for n λ = 5 (and p = 5). In addition, the relative error k,p (N, α) (in log 10 scale) with Padé order N and rotation angle α for k = 50, and p = 1, • • • , 4 (and n λ = 5) are plotted in Fig. 1. It was observed that higher Padé orders N are required for higher frequencies and/or discretization densities n λ and that, interestingly, the optimum Padé angles α found are decreasing with increased frequency. We also see that the optimal values do not depend on p, which is very interesting in practice for IGA. In [START_REF] Antoine | An improved surface radiation condition for highfrequency acoustic scattering problems[END_REF], it was shown that θ = π/4 is a relatively fair choice whatever is N . Figures 

Accuracy of IGA-OSRC and IGA-PR-OSRC

We consider now the IGA-OSRC and IGA-PR-OSRC approximations for comparison. Since IGA-PR-OSRC is another formulation of IGA-OSRC involving oscillating functions, we consider the same Padé parameters for both formulations. To illustrate this claim, we report on Figure 2 the behavior of the error thanks to n λ and N for both formulations, and k = 40, p = 2 and α = 0.62. We can indeed see that the error is similar according to N (but of course for different values of n λ ).

The IGA-OSRC numerical results on the normal derivative trace and RCS for the soundsoft acoustic problem for k = 40, p = 2, N = 2, α = 0.62 and n λ = 5 (corresponding to 2 × 197 Degrees of Freedom (DOF)) are reported on Fig. 3. They are compared with the exact reference solution given by expression [START_REF] Ernst | Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods[END_REF], leading to an error k,p (N, α) = 4.3 × 10 -3 . We can decrease a little bit the number of DOF (nDOF) for n λ = 4 by increasing the order p of IGA (see Fig. 4). Then one gets nDOF= 2 × 157 for p = 5 and k,p (N, α) = 4.5 × 10 -3 . If we keep on decreasing n λ from 4 to 3, we start to observe some errors in the computation of the normal derivative trace as seen on Figure 5 for nDOF= 2 × 117 in IGA-OSRC increasing then the error to k,p (N, α) = 2.5 × 10 -2 . However, the RCS is still accurate on Figure 5, which is probably due to the fact that averaging arises in the computation of the integral definition of the scattering amplitude (see Eq. ( 16)). This example shows that increasing the order p in IGA-OSRC improves the accuracy and allows to have less DOFs. Nevertheless, it is limited by n λ to correctly represent the oscillations of the surface field.

When using IGA-PR-OSRC, the reduction in nDOF is clearly improved. The IGA-PR-OSRC results for k = 40, p = 2 and n λ = 0.8 (corresponding to 2 × 29 DOFs) are reported in Fig. 6a. We observe that both the IGA-OSRC (for n λ = 5) and IGA-PR-OSRC (with n λ = 0.8) formulations lead to solutions that superpose the plot of the exact reference solution, with a similar relative error of 4.3 × 10 -3 . In addition, when increasing p, we can decrease n λ to 0.6 for nDOF= 2 × 21, which is very low (see Fig. 6b). We observe some small amplitude errors in the normal derivative trace ( k,p (N, α) = 4.9 × 10 -3 ) but obtain an accurate RCS. These comments extend to other wave numbers k, showing that IGA-PR-OSRC allows to clearly go to only a few DOFs for solving the OSRC formulation, reducing then the computational costs and memory requirements. vs the discretization density n λ (and nDOF), for IGA-OSRC and IGA-PR-OSRC and various orders p. We fix N = 2 and α = 0.54, for k = 50. We directly see that increasing the IGA order p increases the accuracy and leads to smaller nDOF. In addition, the IGA-PR-OSRC requires less DOF for a given accuracy considering a small value of n λ . IGA-PR-OSRC is therefore considered as a suitable formulation for the OSRC solution with Dirichlet boundary condition. 

k,p (N, α) by k,p (N, α) = ||ρ -u ex || 0,Γ ||u ex || 0,Γ , (46) 
with

u ex (r 0 , θ) = - +∞ n=0 n i n J n (kr 0 ) H n (1) (kr 0 ) H (1) n (kr 0 ) cos(nθ). ( 47 
)
We also introduce the error The trace and RCS for the IGA-PR-OSRC solution of the sound-hard acoustic problem for k = 40, p = 5, N = 3, α = 0.62 and n λ = 3 (corresponding to 3 × 117 DOF) are reported on Fig. 8. They are compared with the exact reference solution given by expression [START_REF] Hackbusch | Hierarchical Matrices: Algorithms and Analysis[END_REF], leading to an error k,p (N, α) = 1.37 × 10 -2 . The IGA-PR-OSRC is always more accurate than IGA-OSRC for a given density of degrees of freedom, but the difference is more moderate than for the Dirichlet problem. This can be understood from the plane wave ansatz which is probably more adapted to the Dirichlet than Neumann problem. Other choices of ansatz can be considered, even for more complicate objects, since the IGA-PR-OSRC approach can be adapted to other phase functions. To illustrate the behavior of IGA-PR-OSRC vs IGA-OSRC, we plot the convergence curves Pade k,p,n λ (N, α) for various values of the order p by refining. We indeed see that IGA-PR-OSRC remains better than IGA-OSRC. Here, we fixed N = 2 and α = 0.54.

Scattering by a submarine-like shaped scatterer

Now, let us consider a more complicate scatterer which models a simplified submarinelike obstacle. To analyze the IGA-PR-OSRC approach, we decompose the analysis into three intermediate geometrical cases: i) the main convex part of the toy submarine (see Fig. 10a), ii) the convex part plus the stabilizer fins (see Figure 11a), and then iii) the full scatterer by adding a tower (Figure 12a). We consider an incident plane wave with k = 30 and incidence θ i := (cos(θ i ), sin(θ i )), setting θ i = 5π/6. In all what follows, the reference solution is accurately computed thanks to the IGA-FEABC method developed in [START_REF] Khajah | Highly accurate acoustic scattering: Isogeometric analysis coupled with local high order farfield expansion ABC[END_REF], which consists in a volume variational formulation with high-order ABC and IGA discretization.

Let us start with the convex part of the submarine (Fig. 10a). The reference solution in the domain is plotted on Figure 10b. For IGA-PR-OSRC, we consider N = 2 Padé functions for the rotating angle α = 0.69. IGA is based on a mesh involving 74 points. Let us remark that this is needed to describe correctly the geometry of the submarine. The IGA-PR-OSRC solution (RCS and normal derivative trace) is computed by using basis order p = 2 and only nDOF = 2 × 74 degrees of freedom. We report the RCS on Figure 10c for both IGA-PR-OSRC and IGA-FEABC. We see that IGA-PR-OSRC leads to an accurate solution at low computational cost. For completeness, we also plot on Figure 10d the amplitude of the approximate normal derivative traces with respect to the curvilinear abscissa s over Γ (s starts at (1, 0) and is counterclockwise directed). We again see that the surface field is well reproduced even if a discrepancy arises at point [START_REF] Acosta | On-surface radiation condition for multiple scattering of waves[END_REF]0).

We now modify the shape by adding the stabilizer fins as shown in Fig. 11a and obtain the reference solution again by using IGA-FEABC as shown in Fig. 11b. IGA-PR-OSRC is based on the basis of order p = 2, for N = 2 Padé functions and α = 0.69, leading to nDOF = 2 × 106. The corresponding RCS are plotted for IGA-PR-OSRC and IGA- FEABC in Fig. 11c. We observe again a good agreement between the solutions, even if the OSRC approach deteriorates due to the presence of a locally concave part. Nevertheless, this difficulty is inherent to the OSRC and not the numerical scheme itself. Future works will address this problem based on computational procedures. Finally, we report on Figure 11d the magnitude of the approximate normal derivatives and see that the field is correctly reproduced even if some errors are locally visible near the stabilizer.

To end this analysis for the sound-soft case, we consider the full submarine-like shaped obstacle (see Fig. 12a). The total field is represented in Fig. 12b. We observe a more complicate pattern since waves can be multiply scattered, most particularly by the tower. On Figure 12c, we see that this clearly impacts the accuracy of the far-field pattern computation by IGA-PR-OSRC, where N = 2, α = 0.69, p = 5, and nDOF = 2×78. This is indeed related to the local error loss on the surface fields based on the OSRC, as seen on Figure 12d. This difficulty needs to be solved to lead to fully useful numerical methods related to the OSRC approximation. In addition, increasing p allows for this situation to also maintain a very low number of unknowns to nDOF = 2 × 78. Let us finally remark that using IGA-OSRC would also require much more points than IGA-PR-OSRC.

Let us now focus on the sound-hard toy submarine. First, we solve with IGA-PR-OSRC the scattering problem by the convex part of the submarine. As noticed for the circular cylinder case, we need a finer discretization because the plane wave ansatz is probably less adapted to the Neumann problem and should be improved. We report on Figure 13 both the RCS (left) and the amplitude of the approximate trace (right). To this end, we use p = 2 for IGA, leading to nDOF = 2 × 272, since again N = 2 and α = 0.69 are used for the Padé approximation. We can observe that the two quantities are relatively accurate compared with the IGA-FEABC reference solution. Let us also remark that nDOF could also be smaller by keeping a relatively correct solution, in particular when the OSRC quality deteriorates as seen on the two next examples. We report on Figure 14 the same situation but with the stabilizer fins. Here, we use p = 2 leading to nDOF = 2 × 114, for the same Padé parameters.

We see that we already capture the OSRC accuracy even at this discretization level. To end, we consider the full toy submarine on Figure 15. IGA is based on the basis functions of order p = 2, then leading to nDOF = 2 × 83, with the same Padé parameters. Even if clearly some accuracy is lost because of the limits of the OSRC for non convex obstacles, we obtain a good approximation of the RCS at a very low computational cost.

Three-dimensional scattering

For completeness, we end by reporting a few computations for three-dimensional problems. Let us start with the scattering problem by the unit sphere. A multi-patch model was developed for both IGA and IGA-PR-OSRC as shown in Figures 16a-16b. The dimension reduction offered by IGA-PR-OSRC is expected to considerably reduce the difficulties encountered when meshing the space around the scatterer in FEM and IGA, avoiding then the solution of a large size linear system. For IGA-FEABC, we use the method introduced in [START_REF] Dsouza | Non Uniform Rational B-Splines and Lagrange approximations for time-harmonic acoustic scattering: accuracy and absorbing boundary conditions[END_REF] based on the Wilcox's far-field expansion which serves as a reference computational method for general shapes. The ABC is set on an outer spherical surface of radius 2. For the spherical case, we can alternatively use the exact Mie series expansion ("Exact solution") for comparison.

We first consider the scattering of a plane wave with vector wavenumber k i = k(1, 0, 0) T , for k = 20 and k = 40, by the sound-soft sphere. The modulus of the normal derivative trace over the unit sphere computed by using IGA-PR-OSRC is shown in Fig. 17a for k = 40 We next compare the RCS calculated by using IGA-PR-OSRC for the sound-hard sphere with the exact solution in Fig. 19. These results were obtained by considering the basis order p = 2, and nDOF = 2 × 1016 degrees of freedom for both k = 20 and k = 40. The accuracy improves with the frequency without increasing the basis order p or the number of degrees of freedom nDOF. In terms of computational time, the resulting IGA-PR-OSRC method is extremely efficient and requires a very low memory storage.

To end, we consider the scattering problem by a sound-hard torpedo-shaped object (see Fig. 20a The plane wave is given by the parameter values k = 20 and θ i = 145 • . We report on Fig. 20b the amplitude of the surface field based on IGA-FEABC. Here, the basis order is p = 5 for nDOF = 165, 480 to obtain the reference solution. We plot on Figures 20c and 20d the modulus of the trace computed by IGA-PR-OSRC for nDOF = 2 × 200 and nDOF = 2 × 12728, respectively. We observe a relatively good agreement, even for a very small number of degrees of freedom. Some accuracy is lost but this is mainly due to a lack of modelling of the OSRC operator in the case of the presence of a non convex part in the scatterer. Getting such a solution is however obtained extremely fast with low memory requirement. Increasing the accuracy for non convex obstacles will be studied in a future work. Finally, we report on Fig. 21a the related RCS in the plane {x 2 = 0}, i.e. in the slice along the longitudinal axis. We observe that a good estimation of the RCS is found using only nDOF = 2 × 200 degrees of freedom. The comparison is made with the reference RCS computed with IGA-FEABC. We note that higher accuracy is expected for larger frequencies. We finally increase the number of degrees of freedom to nDOF = 2 × 12728 and report the RCS on Figure 21b. We remark then that the improvement of the RCS calculation is not significant.

Conclusion

In this paper, we developed the NURBS-based IGA of both standard and Phase-Reduction OSRC formulations for 2D/3D acoustic scattering problems. In this framework, a Padé-type OSRC is analyzed and its tuning parameters are fixed by a numerical study. The case of a circular cylinder is fully investigated for both Dirichlet and Neumann boundary conditions. It appears that IGA allows to reduce greatly the number of discretization points of the method resulting in the IGA-OSRC method. In addition, using the Phase Reduction based on the plane wave ansatz, also leads to diminishing the number of points. This last method, called IGA-PR-OSRC, is then applied to a few more complicate two-dimensional scatterers, and simple three-dimensional shapes to validate the methodology. The resulting IGA-OSRC and IGA-PR-OSRC can serve later as interesting tools to improve more standard formulations for acoustic scattering solved by volume or surface integral formulations and approximated by IGA. Finally, the way to improve the accuracy of the method for non convex scatterers will be prospected in further works. 
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 12 Figure 1: Dirichlet problem, IGA-OSRC: relative error k,p (N, α) (in log 10 -scale) with Padé order N and rotation angle α for k = 50, and p = 1, • • • , 4 in IGA.
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 34 Figure 3: Dirichlet problem: RCS (dB) and amplitude of the normal derivative trace calculated using IGA-OSRC for k = 40, p = 2, n λ = 5 and nDOF = 2 × 197.
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 5 Figure 5: Dirichlet problem: RCS (dB) and amplitude of the normal derivative trace calculated using IGA-OSRC for k = 40, p = 5, n λ = 3 and nDOF = 2 × 117.
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 6 Figure 6: Dirichlet problem (k = 40) and IGA-PR-OSRC: RCS (dB) and amplitude of the normal derivative trace.
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 7 Figure 7: Dirichlet problem (k = 50): evolution of the relative error Pade k,p,n λ (N, α) vs. n λ (nDOF) for various values of p.

  Pade k,p,n λ (N, α) = ||ρ -ρ Pade || 0,Γ ||ρ Pade || 0,Γ .
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 8 Figure 8: Neumann problem: numerical solution using IGA-PR-OSRC for k = 40, p = 5, n λ = 3, k,p (N, α) = 1.37 × 10 -2 .
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 9 Figure 9: Neumann problem (k = 50): evolution of the relative error Pade k,p,n λ (N, α) vs. n λ (nDOF) for various values of p.

  Mesh representation of the convex part of the submarine (b) Total field with IGA-FEABC (c) RCS (dB) (d) Amplitude of the normal derivative trace
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 10 Figure 10: Scattering by the convex part of a simplified sound-soft submarine. The plane wave is characterized by k = 30 and θ i = 5π/6. IGA-PR-OSRC uses basis functions of order p = 2 and considers nDOF = 2 × 74.

  Adding the stabilizer fins (b) Total field with IGA-FEABC (c) RCS (dB) (d) Amplitude of the normal derivative trace
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 11 Figure 11: Adding the stabilizer to the convex part of the sound-soft submarine. The plane wave is characterized by k = 30 and θ i = 5π/6. IGA-PR-OSRC uses basis functions of order p = 2 and considers nDOF = 2 × 106.

  Submarine-like scatterer (b) Total field with IGA-FEABC (c) RCS (dB) (d) Amplitude of the normal derivative trace
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 12 Figure 12: Full sound-soft submarine-like shaped scatterer. The plane wave is characterized by k = 30 and θ i = 5π/6. IGA-PR-OSRC uses basis functions of order p = 5 and considers nDOF = 2 × 78.
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 13 Figure 13: Scattering by the convex part of a simplified sound-hard submarine. The plane wave is characterized by k = 30 and θ i = 5π/6. IGA-PR-OSRC uses basis functions of order p = 2 and considers nDOF = 2 × 272.
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 14 Figure 14: Adding the stabilizer to the convex part of the sound-hard submarine. The plane wave is characterized by k = 30 and θ i = 5π/6. IGA-PR-OSRC uses basis functions of order p = 2 and considers nDOF = 2 × 114.

  (a) RCS (dB) (b) Amplitude of the trace
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 15 Figure 15: Full sound-hard submarine-like shaped scatterer. The plane wave is characterized by k = 30 and θ i = 5π/6. IGA-PR-OSRC uses basis functions of order p = 5 and considers nDOF = 2 × 83.
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 1617 Figure 16: (a): Only the scatterer surface is meshed in IGA-PR-OSRC reducing the space dimension by one, leading to an important mesh reduction and low computational times. (b): IGA-FEABC needs the 3D meshing between the two concentric spheres.

  RCS (dB): IGA-PR-OSRC -k = 20, nDOF = 2 × 296. RCS (dB): IGA-PR-OSRC -k = 40, nDOF = 2 × 1016
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 18 Figure 18: RCS = RCS(θ, 0) (dB) calculated for the sound-soft sphere by IGA-PR-OSRC and compared with exact solution for (a): k = 20 and (b): k = 40. The numerical results were obtained for the basis order p = 2 with nDOF = 2 × 296 and nDOF = 2 × 1016, respectively.
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 19 Figure 19: RCS for the sound-hard unit sphere based on IGA-PR-OSRC and comparison with the exact solution for k = 20 and k = 40. The numerical results were computed for the basis order p = 2 with nDOF = 2 × 1016.
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 20 Figure 20: The modulus of the trace calculated for k = 20 and θ i = 145 • using IGA-PR-OSRC is compared to the IGA-FEABC solution for a sound-hard torpedo shaped model. The IGA-PR-OSRC analysis was performed for the basis order p = 2 using (c) nDOF = 2 × 200 (d) and nDOF = 2 × 12728.
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 21 Figure 21: RCS for the sound-hard torpedo based on IGA-PR-OSRC and comparison with the IGA-FEABC solution for k = 20 and θ i = 145 • . The numerical results were computed for the basis order p = 2 with nDOF = 2 × 200, and nDOF = 2 × 12728 respectively.

Table 1 :

 1 [START_REF] Acosta | On-surface radiation condition for multiple scattering of waves[END_REF] show that this indeed seems to be again a reasonable global choice in the context of IGA-OSRC, most particularly when p ≥ 2. Optimal values of the complex Padé approximation parameters (N, α) vs k (n λ = 5).

	k	10	20	30	40	50	60	100	200	500
	N	1	2	2	2	2	3	3	4	5
	α 0.677 0.7903 0.6919 0.6148 0.5353 0.7521 0.6117 0.6134 0.398

u i (x) := e ik i •x . We set the trace u as: u(x) := -e ik i •x over Γ, where k i = kθ i and θ i is the incidence vector. More generally, we have∇ Γ (A(x)e ik i •x ) = ∇(A(x)e ik i •x ) -n(n • ∇(A(x)e ik i •x )) = ((∇A + ik i A) -n(n • (∇A + ik i A)))e ik i •x = (∇ Γ A + i(k in(n • k i ))A)e ik i •x = (∇ Γ A + ik i Γ A)e ik i •x ,

Γ -d j k 2 ∇ Γ A j • ∇ Γ B j -i d j k 2 (A j (k i Γ • ∇ Γ B j ) -(k i Γ • ∇ Γ A j )B j ) +(1 -d j k 2 ||k i Γ || 2 )A j B j dΓ = Γ