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PAPR Analysis of Non-Contiguous Duplex
Multicarrier Signals

V. Savaux and Y. Louët

This paper deals with the peak to average power ratio (PAPR) of

duplex multicarrier signals. A simple but accurate expression of the

complementary cumulative distribution of the PAPR is suggested, based

on both empirical and theoretical analyzes of the mean PAPR of such

a continuous duplex signal. To this end, we show that the mean PAPR

can be written in function of the frequency distance between the two

signals composing the duplex one. The relevance and the accuracy of

the suggested analysis are shown through simulations, and a discussion

paves the way to further analyzes involving general multiplex signals with

different powers and subcarriers numbers.

Introduction: Multicarrier signals (MC) are well known to be prone to

high power fluctuations due to the inherent summation of independent

information carried on different tones. These power fluctuations can be

characterized through the ratio of the maximum instantaneous power and

the mean power of the transmitted signal, which leads to the definition

of the peak to average power ratio (PAPR). PAPR is a metric that is

directly related to the instantaneous power fluctuations of a signal. When

considering a power amplifier, the power budget is the ratio of the output

power of the amplified signal and the supply power. As the output power

is a function of the input power, the efficiency of the power amplifier is

generally inversely proportional to the PAPR of the input signal. This is

why PAPR reduction methods aim to mitigate the PAPR so as to drive the

signal as close as possible to the saturation point of the power amplifier

where the efficiency is the highest [1].

While PAPR derivation is well known considering a single-band

multicarrier signal [2–4], very few works have been suggested for non-

contiguous multiplex of signals [5–7]. Nevertheless, this situation raises

in contexts of heterogeneous signals transmission such as cognitive radio

or 5G, when several non-contiguous signals, each associated to different

users, have to be transmitted and amplified all together. In this context

the resulting PAPR should not only depend on the signals themselves

(respective number of subcarriers, respective mean powers, number of

users) but on the frequency distance between the signals as well. Given

these features, any opportunistic spectrum access or frequency resource

allocation has to be evaluated on the PAPR criteria.

In [5,6], the PAPR is analyzed only through simulations [5], and through

upper bounds of the complementary cumulative distribution functions

(CCDFs) [6]. More recently, the authors in [7] derived a thorough study of

the PAPR of multiplex signals with different numerology for an application

to 5G technology. Although the theoretical expression of the PAPR

generally well matches the simulations results, it is not easily tractable

in practice. Furthermore, the authors in [7] did not specifically analyze the

effect of the frequency gap between signals on the PAPR behavior.

In this paper we suggest handling this PAPR issue by considering the

combination of two non contiguous OFDM signals with the same number

of carriers and power. A simple and tractable expression of the CCDF

of PAPR is proposed, based on both theoretical and empirical original

analyzes of the mean PAPR of duplex multicarrier signals. The resulting

PAPR is evaluated with the frequency distance between the two spectra,

and we show the relevance of the derived results through simulations.

In particular, we show that the PAPR of a duplex signal increases when

the frequency distance between signal increases, but it reaches an upper

bound. Moreover, we discuss the results to provide leads for further studies

including more general multiplex of multicarrier signals as in [7]. This

PAPR analysis can be useful to any engineer or researcher seeking to

rapidly evaluate the PAPR of duplex multicarrier signals without need of

sophisticated functions.

The remainder of the paper is organized as follows. The PAPR of the

duplex signal is derived in Section after the statement of the problem given

in Section . Simulations are provided in Section and a conclusion ends the

paper in Section .

Problem Statement: We consider a duplex multicarrier signal x(t)
composed of two signals x1(t) and x2(t) as

x(t) = x1(t) + x2(t), (1)

ff1 f2

...

✁fBsc

Bw

x1 x2

Bw

t

T

0

a
m
p
li
tu
d
e

Fig. 1 Time-frequency representation of duplex of multicarrier signals x1 and
x2 transmitted at frequencies f1 and f2.

where t belongs to an observation window of duration T , i.e. t∈ [0, T ].

Typically, T corresponds to the duration of an OFDM symbol. Moreover,

we assume that x1 and x2 are non-contiguous in the frequency domain,

i.e. x1 is transmitted at frequency f1 and x2 at frequency f2 such that we
define the frequency distance ∆f = f2 − f1. Without loss of generality,

we arbitrarily consider that f2 ≥ f1. Furthermore, we assume that x1 and

x2 are composed of the same number of subcarriers denoted by N with a

common subcarrier spacing Bsc. The total bandwidth of each signal x1(t)
or x2(t) is thenBw =NBsc. The time-frequency representation of x1 and

x2 is illustrated in Fig. 1.

The sampled version of xi(t), i∈ {1, 2}, at Nyquist rate ts, is noted

xi,n with n= 0, 1, .., N − 1. In this case, the observation window can be

rewritten as T =Nts. If N is larger than about ten subcarriers, it can be

reasonably assumed that the samples xi,n are independent and identically

distributed (iid) and xi,n obey a complex Gaussian distribution, i.e. xi,n ∼
CN (0, σ2), where σ2 =E{|xi,n|2} [8], with E{.} the mathematical

expectation. Under this assumption, Van Nee et al. suggested an expression

of the CCDF of the PAPR of xi(t), i= 1, 2, expressed as [2–4]:

CCDF (λ) =P

(

max
t∈ 0,T

|xi(t)|2

σ2
≥ λ

)

(2)

≈1− (1− e−λ)αN , (3)

where P(E) means "probability of the event E", and α is an adjusting

parameter that has been empirically set to α= 2.8 in [2]. The popularity of
the CCDF expression in (3) lies in its simplicity and its good accuracy.

In fact, the PAPR of a continuous multicarrier signal can be properly

approximated by knowing its subcarriers number only. Therefore, it is

relevant to suggest a simple expression of the CCDF of the PAPR of the

duplex multicarrier signal x(t) in a Van Nee’s fashion. To this end, we

empirically set different α values in function of ∆f thanks to the mean

PAPR of the duplex multicarrier signal. The developments are hereby

derived. Nevertheless, limitations of Van Nee’s model have been stated

in [4, 9], such as the lack of theoretical justification. We hereby use this

approach for its simplicity, but we will, in turn, fairly discuss the suggested

adaptation of (3) to duplex signals in Section .

PAPR Analysis: We assume that the CCDF of the PAPR of a multicarrier

duplex signal x(t) in (1) can be expressed as in (3), where the coefficient α

needs to be defined. This assumption will be verified through simulations.

To do so, on one hand we theoretically derive the mean of the PAPR as

a function of α (it must be emphasized that the mean of PAPR has no

practical significance, but in this paper, it is used as a trick of arithmetic

to derive α). On the other hand, we empirically express the mean of PAPR
as a function of the frequency distance∆f . From these two developments,

we obtain a simple expression of the CCDF of PAPR with a coefficient α
as a function of ∆f .

Proposition 1: We define µ as the mean PAPR of the signal x(t) in (1). For
large N value (N ≥ 128), the mean PAPR can be simply expressed as

µ= γ + ln(αN), (4)

where γ is the Euler-Mascheroni constant, γ ≈ 0.577, and ln(.) is the

natural logarithm.
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Proof: In order to develop the mean of PAPR, we rewrite the CCDF in (3)

by using the binomial series expansion of (1− e−λ)αN as

CCDF (λ) =1−

+∞
∑

k=0

(αN

k

)

(−1)ke−kλ (5)

=−

+∞
∑

k=1

(αN

k

)

(−1)ke−kλ, (6)

where
(

αN
k

)

is the generalized binomial coefficient. The distribution of the

PAPR, defined as f(λ) =
∂(1−CCDF (λ))

∂λ
, is then obtained as

f(λ) =−

+∞
∑

k=1

(αN

k

)

(−1)kke−kλ, (7)

hence the mean is derived as

µ=

∫+∞

0

λf(λ)dλ=−

+∞
∑

k=1

(

αN
k

)

(−1)k

k
. (8)

For large αN value, we have
(

αN
k

)

∼ (αN)k

k!
, then (8) yields

µ=−

+∞
∑

k=1

(αN)k(−1)k

kk!
. (9)

From [10], we know that the series expansion of the exponential integral

defined for any z ∈C\R− as E1(z) =
∫+∞

z
e−t

t
dt leads to

E1(z) =−γ − ln(z)−

+∞
∑

k=1

(−1)kzk

kk!
. (10)

Since lim
z→+∞

E1(z) = 0, and reminding that we assume large αN , then the

substitution of z = αN into (10) leads to (4), which concludes the proof.

�

It can be noticed that this result is very similar to those in [11,12] where

Nyquist-sampled signals are considered. Thus, µ in (4) can be seen as a

generalized expression of the mean PAPR. From (4), we notice that the α
coefficient can in turn be expressed in function of the mean µ as

α=
exp(µ− γ)

N
. (11)

In order to obtain α relatively to the frequency distance ∆f , we

empirically express µ as a function g of ∆f such as suggested in

Proposition 2. For convenience, and in order to make the expression g

independent of the bandwidth Bw , we set θ=
∆f

Bw
.

Proposition 2: Consider a non-contiguous duplex multicarrier signal x(t)
such as defined in (1). Let θ ∈R+, then the mean PAPR µ of x(t) can be

expressed as a function of θ as

µ=g(θ) (12)

=β − ν exp(−q.θc), (13)

where β, ν, q, and c are positive parameters that need to be determined. It
can be noted that µ in (13) is a strictly increasing function of θ, which is

upper bounded by β.

The four parameters can be assessed as follows:

• β = lim
θ→+∞

µ, even though in practice θ should feature low values due to

the limitations of the transmitter in term of bandwidth.

• Once β is obtained, we deduce ν by means of the equality g(0) =
β − ν, which corresponds to the mean PAPR of a continuous (at least

largely oversampled) signal featuring N subcarriers. In practice, this

case should not happen since it means that x1 and x2 overlap since

f1 = f2, but for the sake of the analysis, it allows us to deduce ν.
• Similarly, q can be deduced thanks to g(1) = β − νe−q , which

corresponds to the mean PAPR of a continuous signal featuring 2N
contiguous subcarriers.
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Fig. 2Mean PAPR µ as a function of θ, for 128 subcarriers per signal. Markers
indicate the values from which the parameters β, ν, q, and θo (leading to c) are
deduced.

Table 1: Parameters β, ν, q, and c obtained from simulations.

parameter N value

β {128, 256, 512} {7.83, 8.6, 9.36}

ν {128, 256, 512} {1.45, 1.49, 1.5}

q {128, 256, 512} 0.7

c {128, 256, 512} 1.5

• Let us note θo = sup
θ∈R+

∂g(θ)
∂θ

, then c can be deduced by solving

∂2g(θo)

∂θ2
= 0. In fact, a unique solution θo exists, leading to a unique

solution to
∂2g(θo)

∂θ2
= 0 as well. Alternatively, the parameter c can be

empirically set to fit the behavior of µ in function of θ obtained through

simulations.

To summarize our approach, we suggest estimating the CCDF of PAPR

of duplex multicarrier signal x(t) in (1) by using a simple Van Nee-like

expression as in (3) where the coefficient α must be defined. To this end,

we theoretically express α as a function of the mean PAPR µ in (11) on one

hand. On the other hand, we empirically derive an expression of µ in (13)

as a function of the frequency distance∆f (or equivalently θ) between the

two multicarrier signals that compose the duplex. Then, substituting the

empirical mean µ into (11) finally leads to the simple expression of CCDF

of PAPR (3).

Simulations: This section aims to evaluate the relevance of the previous

developments through simulations. Both signals x1 and x2 are composed

of N subcarriers with N ∈ {128, 256, 512}, carrying elements that are

randomly taken from a 16-QAM constellation. We assume that x1 and

x2 are synchronized in time, even though time synchronization should

not have influence on the PAPR value, according to "remark 2" in [7]. A

large oversampling rate of R= 32 is considered in order to approximate

continuous signals, and at least to respect the condition ∆f << R
ts

for

reasonable∆f range. When this condition does not hold, some simulations

artifacts appears when ∆f > R
4ts

(i.e. when ∆f is too close to the

sampling frequency), which are not further described in this paper. All the

simulations results have been averaged over 10000 independent runs.

Fig. 2 shows the mean PAPR µ (linear scale) versus θ for a duplex signal
x(t) featuring 128 subcarriers per signal xi(t), i= 1, 2. The behavior of
µ has been obtained by simulation, and allows us to deduce the four

parameters β, ν, q, and θo (leading to c), such as highlighted by the

different markers. The corresponding values have been reported in Table

1, for N = 128, 256, and 512. We observe from Fig. 2 that µ is strictly

increasing with θ, and reaches an upper bound for θ≥ 4.
It is worth noticing from Table 1, that β and ν depend on θ, whereas

q and c are constant. Furthermore, ν tends to 1.5 when N increases. We

deduce that, for N large (typically N ≥ 512) it is sufficient to assess β for

θ≥ 4 to estimate µ for any θ, which further simplifies the PAPR estimation.

Otherwise, further simulations have shown that both β and ν must be set

when N < 512.
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In Fig. 3, we compare the mean PAPR µ versus θ for 128, 256, and 512
subcarriers per signal, obtained through simulations and from (13) using

the parameters in Table 1. It can be observed that the empirical µ values in

function of θ perfectly match the trajectories obtained through simulations,
therefore validating (13). For applications, we deduce from results in Fig.

3 that it is preferable to transmit the signals x1 and x2 in contiguous

bands (i.e. θ= 1), when possible, as it minimizes the PAPR. However,

in practice, other parameters should be considered to properly design

the system, such as the synchronization between signals (synchronization

mismatch between x1 and x2 would lead to interference), or the possible

intermodulation distortions that may cause disruptions in both x1 and x2,

but this is not dealt with in this paper.

Fig. 4 compares the trajectories of CCDF (λ) versus λ (dB) obtained

through simulations with that obtained with (3). N = 256 subcarriers are

considered, and θ= 1, 3. The corresponding α values are 5.68 and 11.45,

respectively. It can be seen that the curve obtained from analysis for θ= 1
matches that obtained through simulations. Moreover, it should be noticed

that α/2 = 2.82, which almost corresponds to the empirical value α=2.8
defined in [2] by Van Nee. Note that we find α/2 = 2.7 and α= 3.02 for

N = 128, and N = 512, respectively. We then deduce that the suggested

approach allows to adapt α value according N in Van Nee model (i.e. θ=
1). It can be seen for θ= 3 that the results obtained from analysis slightly

underestimate the CCDF of PAPR obtained through simulations (of about

0.05 dB). The suggested analysis is nevertheless an accurate approximation

of the CCDF of PAPR regarding the simplicity of the expression.

Discussion: Developments and simulations results have shown that the

PAPR of duplex multicarrier signals can be simply but accurately

approximated in a Van Nee’s fashion where the α coefficient is function

of the frequency distance∆f between the signals x1 and x2. However, we

voluntary limited the analysis to the case where x1 and x2 are equipowered

and share the same number of subcarriers. A similar but more general study

case could then be carried out in case the two signals do not share the

same parameters. In this case, the four parameters β, ν, q, and c should

be tuned with respect to the different powers and subcarriers numbers of

x1 and x2. To go further, the present analysis could even be extended to

derive simple expressions of the CCDF of PAPR of multiplex multicarrier

signals such as considered in [7, 9]. In that case, a more general mean

PAPR expression µ= g(θ1, θ2, .., θM−1) should be considered, where

M is number of signals composing the multiplex one, and θi are the

corresponding frequency distances.

In addition, it must be emphasized that the function g in (13) is

empirically derived. Although Fig. 3 shows that g accurately matches

simulations, an analytical derivation of g should be investigated as well.

Other studies could be undertaken from the present paper, such as the

analyze of the instantaneous signal envelope |x(t)| instead of |x(t)|2,
and its adaptation to duplex signals featuring low subcarriers numbers

(typically N ≤ 64) by using results in [12].

Conclusion: This paper highlights the dependency between the frequency

distance between signals composing a non-contiguous duplex signal and

the resulting PAPR. By deriving the mean PAPR of such kind of signal,

we came to the conclusions that (i) the lowest PAPR value of the duplex

is given when the two signals are contiguous in frequency, corollarilly

(ii) the larger the frequency gap the larger the PAPR, but (iii) the mean

PAPR is upper bounded for large frequency distance between the signals

that compose the duplex. To go further, this study could be enriched

by considering more than two users of unequal powers and different

subcarriers numbers.

V. Savaux (Network Interfaces Lab, b<>com, Rennes, France), Yves Louët

(CentraleSupélec, Rennes, France)

E-mail: vincent.savaux@b-com.com

References

1 Y. Louët, D. Roviras, A. Nafkha, H. Shaiek, and R. Zayani, “Global
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