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Abstract: CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for
land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced
each six years from both the visual interpretation and the automatic analysis of a large amount of
remote sensing images. Observing that various European countries regularly produce in parallel
their own land-cover country-scaled maps with their own specifications, we propose to directly
infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-
frame. No additional remote sensing image is required. In this paper, we focus more specifically
on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in
a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution.
We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural
Network with positional encoding. We show for various use cases that our method achieves a
superior performance than the traditional semantic-based translation approach, achieving an 81%
accuracy over all of France, close to the targeted 85% accuracy of CLC.

Keywords: land cover; mapping; translation; nomenclature; Convolutional Neural Network; geo-
graphical encoding; CORINE Land Cover; operational

1. Introduction

Over the last 30 years, land-cover maps became a mandatory baseline for monitoring
the status and the dynamics of the Earth’s surface. For that purpose, despite being a
notoriously time-consuming procedure, a large number of land-cover products has been
generated covering the entire Earth surface multiple times [1,2], at several spatial scales,
and with multiple representations (sets of classes, organized into what we call nomencla-
tures). Surprisingly, none of the existing maps fit to all specific end-users that continuously
require products with higher spatial, semantic, and temporal resolutions [3]. However,
moving back to the tedious traditional photo-interpretation task or revisiting the automatic
analysis of large amounts of remotely sensed imagery using massive training/validation
data sets should be avoided for complexity, time consumption and reproducibility issues [4].
One might prefer deriving new products from existing land-cover maps, assuming they
are available on the desired spatial extent and with a representation close to the target one.

Such a strategy involves alleviating the discrepancies existing between maps in terms
of spatial and semantic resolutions [5]. Such interleaved dissimilarities stem from the vary-
ing users’ requirements, rigid nomenclatures, technical constraints and solutions adopted
for deriving the maps [6]: the remote sensing images used for the underlying supervised
classification task, the amount and quality of training data and human intervention in
all steps of the generation process [7,8], natively generate maps that are not identical nor
straightforwardly comparable. All the above-mentioned requirements can be addressed
through the pivotal development of land-cover translation solutions [9]. As an analogy
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with linguistics, we choose to call land-cover translation the process of generating a target
land-cover map from a given (source) one. The source always exists whereas the target can
either be virtual or real. In the former case, we aim to generate a new map based solely on
the characteristics of the existing one. In the latter one, both maps already exist but we try
to benefit from some advantages of the source map to improve the target one (temporally,
spatially, or semantically). For maps being represented by classes, like any language trans-
lation task, the challenge lies in transforming a categorical representation into another one.
In the land-cover field, translation, therefore, means modifying the nomenclature and the
spatial scale (possibly jointly) of the source map in order to match the specifications of the
target map. In the following, we exclude from the land-cover translation task cases where
the target is virtual and where the source and target data are not spatially overlapping.

In this paper, we aim to produce a yearly updated country-scale version of the Eu-
ropean land-cover reference database CORINE Land Cover (CLC), traditionally updated
every 6 years. For that purpose, we propose a new supervised land-cover translation
framework aiming to translate OSO, a France-wide yearly updated land-cover product,
into CLC (Figure 1).

Figure 1. Illustration of the land-cover translation task. The spatial and semantic transformation of a yearly map (OSO, left)
into another (CLC, right) may lead to numerous applications such as fast updating or enhanced change detection.

In the literature, translation is an intermediate step. It is adopted either for map
comparison or fusion purposes. In the first case, one aims to evaluate the quality of a
map with respect to another one [10]. In the second one, the goal is to take the best of
both representations [5,11] without a special focus on quality evaluation. This strategy is
also named hybridization. In both contexts, this results in two main shortcomings: (i) a
lack of formalization of the translation task, leading to the absence of versatile solutions,
and (ii) no genuine quality assessment procedure. Indeed, translation errors are ignored
in both cases. When fusing maps, individual errors are in practice balanced by stacking
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multiple products: only an agreement is targeted [7,12]. When comparing two maps, either
a direct link between classes is performed or an intermediate representation is adopted
(e.g., Land Cover Classification System, LCCS, [10]). Then, the same errors apply to
both of them and are not taken into account. In the literature, the translation in terms
of spatial resolution is usually overlooked using simple approaches such as the nearest
neighbor resampling [13]. This ignores the challenge of nomenclature translation and
may not preserve the realistic geographical boundaries and the shape of objects. Such
solutions can achieve statistically acceptable results but fail in terms of cartographic quality.
Generalization techniques may be relevant but are only adapted to process very few classes
at the same time [14]. Most approaches for semantic translation rely on ad-hoc class
correspondences between the two nomenclatures [15]. They assume that the geometry of
the maps remains unchanged, that errors are limited or that discrepancies correspond to
meaningful changes [1]. This prevents from adopting nomenclature translation for multiple
use cases. Few works have tried to automatically match multiple representations. They
concluded on the difficulty in dealing with category semantics [16].

Two main limitations of those commonly used strategies can be highlighted. First of
all, spatial and semantic resolutions are highly intertwined, but never addressed jointly
so far. Secondly, the traditional semantic-based method can be seen as analogous to a
word-by-word translation of a sentence. Each class of the source nomenclature gets a
translation into the target nomenclature in a spatial context-independent way, ignoring
more complex semantic and spatial relationships. Consequently, current frameworks of
land-cover translation drastically restrict the scope of what such a definition encompasses
in reality. The core reason is that they are either too specific to a given problem or do not
manage to correctly handle the interleaved issue of spatial and semantic shifts.

This paper makes the following contributions:

• A comprehensive analysis of the land-cover translation task with underlying chal-
lenges and potential methodological solutions.

• A novel framework, applied at a national scale, based on Convolutional Neural Net-
works that simultaneously and contextually translates semantic and spatial concepts
from a state-of-the-art remote sensing based land-cover map (OSO, France) to an
authoritative product, CORINE Land Cover. This framework paves the way for an
annual update of CLC at country-scale.

• An application of our framework to three distinct use cases, in order to assess its
performance under operational constraints and its relevance with respect to other
conceivable solutions.

The remainder of this paper is organized as follows. In Section 2, we review the
existing land-cover translation frameworks and associated main issues. In Section 3, we
detail our OSO-to-CLC data set corresponding to the scenarios we investigate. Section 4
focuses on the proposed method and the proposed variations. Experiments and results are
presented in Section 5. Finally, Section 6 presents some conclusions and outlooks.

2. Related Work

In this section, we discuss the existing methods that translate a land-cover represen-
tation to another one. We first describe the task according to the two main dimensions
of the problem: the spatial resolution and the nomenclature. We then review existing
solutions and their related issues when applied to the land-cover translation task. They
encompass various operational challenges, depending on the source and the target maps,
as depicted in Figure 2.
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Figure 2. Main possibilities for land-cover map translation. (A) change detection, (B) updating, (C) validation, (D) har-
monization, (E) completion, (F) spatial simplification, (G) spatial improvement, (H) semantic modification. The method
proposed in this paper can handle configurations (E,F,H). See text for more details. See [1] for more details about the existing
land-cover maps.

2.1. Problem Description

As stated previously, land-cover translation involves two potential modifications,
in terms of semantics and spatial resolution. We present below each of these aspects
separately. However, one must notice that both are highly intertwined since the set of
classes depends on the spatial resolution of the map and vice versa [3].

2.1.1. Semantic Translation:

The first modification consists of turning a source nomenclature into a target one.
This step is necessary since nomenclatures are not standardized [5]. Even for spatially
coincident maps, variations exist in terms of class due to political or technical choices.
Indeed, there are two main reasons for the vast diversity of nomenclatures. The first one is
that nomenclatures are defined for a specific context each time. The diversity of applications
and end-users natively leads to either discrepant representations or representations at
different levels of detail. The second reason is a technological one: a particular combination
of data sources and processing methods constrains to discriminate a given set of classes
that may significantly vary from a map to another.

Thus, many works have focused on finding an ideal nomenclature usable across all
land-cover mapping projects [10,17]. However, no standardization technique is currently
universally adopted due to their inherent constraints [18]. Translating one land-cover into
another one needs a consistent link between the two nomenclatures. Two main approaches
prevail (purely semantic or data-driven). They are described in Section 2.2. One way
to recover such a link is to find semantic correspondences between the classes of the
two nomenclatures. This kind of method is usually referred to as harmonization [15]
(Figure 2D), which is pivotal for map updating, change detection, validation or hybridiza-
tion (Figure 2A–C). Such task is often carried out manually. For instance, inspecting the
definitions of the classes of two nomenclatures, one could infer that the class Dense urban
in the source nomenclature perfectly fits the definition of the class Continuous urban in the
target nomenclature. However, straightforward 1→ 1 or n→ 1 correspondences are not
always achievable when dealing with classes covering more complex concepts such as
those related to land-use (Figure 2H). An alternative strategy consists of searching for
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correspondences in the data itself instead of the class definitions. In this case, two maps of
the same area and the same period are compared through statistical analysis in order to
derive the co-occurrence relationships mentioned above. More complex n→m behaviors
can be captured.

2.1.2. Spatial Transformation:

It consists of modifying the spatial resolution of the map. The notion of spatial
resolution encompasses two aspects: the theoretical minimum size (MS) for an object to be
included in the map, and the minimum mapping unit (MMU), i.e., the effective minimum
size. The first one is the same for all classes. It corresponds to the pixel size in raster format.
The second one can vary across classes: specific classes can be preserved while not fitting
to the initial specification such as linear classes (rivers, roads). Usually, when the map is
produced by photo-interpretation of images, the MMU differs from the raster resolution
while they usually are the same when the map is automatically produced from remote
sensing data. The land-cover translation procedure needs to address both aspects.

When the source resolution is coarser than the target one, this is a super-resolution
problem [19,20]. This allows addressing the mixed pixel problem (Figure 2G). Addi-
tional data, such as images, are often needed to retrieve the structural information [21].
When the source resolution is finer than the target one, a technique for source map simpli-
fication is needed. In remote sensing, the problem is well documented and is commonly
known as down-sampling (Figure 2F): the interpolation of one value from multiple neigh-
bors using an averaging technique can be used. In the case of categorical data, down-
sampling is far more difficult. We have to deal with discrete values of which the order
does not carry information: computing the average of two classes such as tree and water
(e.g., with labels 2 and 15) does not make sense. The down-sampling task is assimilated in
cartography to the generalization process [14]. Since all information can not be represented
at a coarser scale, various transformations are performed in a hierarchical way to simplify,
gather, remove, or modify individual elements of the source map [22]. Often, rules are man-
ually defined to choose which information is kept, modified or erased, and subsequently
only valid for two specific scales [23].

Land-cover maps usually include in their specifications an overall accuracy. A trans-
lation procedure has to be evaluated with respect to such a value. Reaching it may be
difficult for at least two reasons. First, there are errors in the source map. With a standard
accepted accuracy of about 85% [24], 15% of errors in the source map is to be expected.
This can negatively impact any statistical translation method and can hardly be alleviated.
In most products, the per-class and per-area accuracies are not provided except for very
limited evaluation sets. They can be hardly learned. The second source of errors affecting
the target accuracy is the map translation procedure itself. Ideally, a translation procedure
should be error-free. Additionally, it could correct some systemic errors observed in the
source data. For example, if confusion exists between two source classes, disambiguation is
conceivable in the target domain, leading to more accurate discrimination than with simple
nomenclature matching.

2.2. Literature Review

In this section, we review the existing techniques proposed to accomplish either
semantic or spatial translation.

Traditional nomenclature harmonization techniques use purely semantic
approaches [25] to establish a correspondence between two nomenclatures. The core
idea is to define semantic relationships between each class of each nomenclature. Many
methods have been proposed to find such 1→ 1 and 1→ n or n→ 1 associations. A perfect
translation is conceivable when one or more classes in the source nomenclature match with
only one class in the target nomenclature (i.e., n→ 1 relationship). Other cases are far more
challenging and are poorly addressed by semantic methods [18,26,27]. Simple solutions
rely on expert knowledge [28] and are hardly generalizable. When very specific classes
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are targeted, remote sensing data are often integrated to bring additional constraints [29].
More sophisticated solutions are based on semantic distances, computed on hierarchical
nomenclature trees [30], semi-lattices [31] or class characteristics features [32]. The main
advantage of a semantic distance based approach is that it defines a correspondence value
between each source and target classes [33]. Unfortunately, when a source class has a small
semantic distance with multiple target labels, the final translation will always result in the
same target label (the closest of them all), ignoring all the other closely related labels that
could have been more appropriate in a given context. Recent references in harmonization
techniques include the well-known Land-Cover Classification System (LCCS) [34,35] and
the EAGLE [36] framework, which try to overcome the rigidity of current solutions by
defining pseudo embedding for each label and by matching them with the closest one.
Their main limitation remains that they still only associate each source label with its closest
one, despite the fact that they acknowledge the existence of other possible associations.
Since semantic-based techniques usually exhibit such limitations, they are often combined
with expert knowledge [37].

Another way of defining a relationship between nomenclatures is data-driven, with a
direct comparison of pairs of maps. Statistical links between the nomenclatures are obtained
by analyzing spatially co-occurring classes. For example, ref. [8] compared an expert-based
association between nomenclatures with a confusion matrix computed between two maps.
They reached a 57% agreement between both. This underlines the importance of improving
current nomenclature translation techniques. A first naive approach inspired by the previ-
ous example would consist of using a confusion matrix between the source and the target
maps and to assign to each source class the most likely class in the target nomenclature.
Recently, Latent Dirichlet Allocation has been adopted in [2] as an unsupervised way to
help with such a challenge. It exhibits two main limitations: it is not flexible and cannot
handle correlated classes.

Note that these methods only rely on statistical association: they discard the spa-
tial context and the geographical location of each object before translation. For example,
the class grass of GlobeLand30 [38] can be translated into several CORINE Land Cover
classes: Green urban areas, Sport and leisure facilities, Pastures, Natural grassland or Sparsely
vegetated areas. In such cases, the analysis of the local neighborhood is required. This ad-
vocates for integrating the spatial context in the translation task. As in natural language
processing (NLP), land-cover translation involves too many possible contextual config-
urations and cannot be manually defined. In NLP, this issue is tackled using machine
learning procedures on text corpora [39]. Surprisingly, no attempt of land-cover translation
using machine learning based contextual translation frameworks has been proposed in the
literature so far.

Compared to semantic translation, spatial resolution transformation has been under-
addressed in the land-cover mapping field. A vast majority of studies use a simple re-
sampling strategy: a majority rule [40] or the nearest neighbor method [41]. They are
adopted for the down-sampling case, while being sub-optimal. They are not adequate for
the super-resolution task. The most natural yet unrealistic solution for spatial translation
is to manually derive a set of rules based on the analysis of all possible spatial config-
urations in the context of an object. For down-sampling, this would imply defining a
set of rules for summarizing information of the source map. However, it is combinatori-
ally expensive even if we limit ourselves to coherent configurations. This corresponds to
expert-based knowledge solutions, similar to the semantic translation case. For instance,
in the case of CORINE Land Cover, class Continuous urban fabric is not applicable if a 20 ha
park is located in a continuous urban zone of 60 ha, whilst a 20 ha vegetated cemetery is.
When this kind of specification is part of the target nomenclature, the source nomenclature
must be a super-set of the target one. An alternative to either manually defining rules
or using over-simplistic approaches is to use machine learning to infer the spatial trans-
lation rules from existing pairs of land-cover maps with the appropriate nomenclatures
and native resolutions. On the one hand, recent approaches have been proposed for the
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super-resolution of land-cover maps. These deep learning-based solutions optimize a
cost function that integrates both the classes of the source map and the classification of
additional data (satellite imagery at a higher spatial resolution), pivotal to disambiguate
complex configurations [21,42]. While leveraging the relevance of deep learning for effi-
ciently capturing the spatial context, this strategy has two drawbacks: (1) the target map
has fewer labels, and (2) the classification output of external data (images) is required to
offer a reliable spatial support for translation. On the other hand, for the down-sampling
case, approaches related to map generalization [43] have been published. They only focus
on specific structures. In contrast, a land-cover translation framework requires to equally
handle all objects/classes on the map.

Apart from [21], the spatial resolution and semantic translation are addressed sepa-
rately or sequentially in the literature. The spatial resolution is generally first tackled. Thus,
a part of the original information is lost before the beginning of the semantic translation.

To sum up, a context-aware machine learning translation strategy seems well suited
to perform both transformations at the same time and reach an accuracy close to the input
maps with a large number of labels. Moreover, the use of such a method could partly
compensate for some of the systemic errors of the source map and produce a more accurate
translation. However, this also leads to two main issues. First, we depend on source map
and target map accuracies, i.e., we have to deal with label noise stemming from the two
maps and that do not compensate. Previous work only had to handle errors in the source
map(s): hybridization or harmonization techniques are based on expert knowledge and
perform map fusion to mitigate noise documented from each of the maps. Noise also
makes the evaluation of the translation procedure difficult: a lack of agreement between
the translated map and the reference target map can be due to a translation error, an error
in the target map, or both. Secondly, learning a translation requires the availability of
maps with the source and target nomenclatures with two constraints: a spatial overlap and
a limited temporal gap. The spatial overlap allows to recover pairs of objects, suitable
both from an unsupervised and a supervised perspective. A small temporal gap allows to
reduce the likelihood of land-cover changes, and therefore, the class noise present in the
training data.

3. Case Study: Generating CLC from a High Resolution Land-Cover Map

We aim to generate CORINE Land Cover from an existing high resolution land-cover
map at the scale of a country with the ultimate goal of yearly updates. The experiments
presented in this paper are carried out on the Metropolitan French territory (mainland plus
Corsica), which covers a 550,000 km2 area. It encompasses a large diversity of landscapes
and therefore of translation situations: waterfronts, mountains, wetlands, forests, urban and
agricultural zones. We first present the main characteristics of the source and target land-
cover products. We then explicit the main differences between the two maps, highlighting
the challenges of the translation task. Finally, we present the three translation scenarios
investigated and implemented. Their differences are related to the number of reference
years available for the source land-cover map and the temporal gap between the source and
the target maps.

3.1. Presentation of OSO and CLC Land-Cover Maps

The OSO land-cover map covers Metropolitan France and is updated annually. It is
produced every year based on a time series of Sentinel-2 images and a supervised Random
Forest classification framework [44]. Each map covers a reference period corresponding
to the civil year. Four versions of the product have been released so far (2016, 2017, 2018,
2019). The map has a spatial resolution of 10 m with an overall accuracy higher than 85%.
The reference years 2016 and 2017 had a 17-class nomenclature, which was later expanded
to 23 classes for the following maps. The main relevance of such a product is its high update
frequency and rapid availability: it is freely distributed before the end of March of the year
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following the reference period (https://www.theia-land.fr/en/product/land-cover-map/
accessed on 25 January 2021.

Table 1 details the 17-class nomenclature of the OSO product, organized into four
main groups. Note that in 2018 and 2019, the class Annual winter crops (AWC) is split
into Rapeseed (RAP), Straw cereals (CER), and Protein crops (PRO), and the class Annual
summer crops (ASC) is split into Soybean (SOY), Sunflower (SUN), Maize (MAI),Rice (RIC),
andTubers(TUB).

Table 1. OSO nomenclature with 17 classes. The nomenclature mainly defines land-cover classes.
Unlike CORINE Land Cover (CLC), no information on wetlands is given. See [44] for more details.

OSO Level 1 OSO Level 2

1. Artificial surfaces Continuous urban fabric (CUF)
Discontinuous urban fabric (DUF)

Industrial and commercial units (ICU)
Road surfaces (RSF)

2. Agricultural areas Annual winter crops (AWC)
Annual summer crops (ASC)
Intensive Grasslands (IGL)

Orchards (ORC)
Vineyards (VIN)

3. Forests and semi-natural areas Broad leaved forests (BLF)
Coniferous forests (COF)

Natural Grasslands (NGL)
Woody Moorlands (WOM)

Bare rock (BRO)
Beaches, dunes and sand (BDS)

Glaciers and permanent snow (GPS)

5. Water bodies Water (WAT)

The CORINE Land-Cover (CLC) database is the reference European land-use/land-
cover database. Five versions of the product have been released so far (1990, 2000, 2006,
2012, 2018), covering from 27 countries in 1990 [45], up to 39 in 2018. It is now updated
every six years, accompanied by a change map and thematic by-products.

CLC is based on satellite image interpretation (Landsat, SPOT, etc.) and regional
land-cover information such as aerial photographs, local knowledge, and statistics. CLC is
released in vector format with a 25 ha MMU for polygons and 100 m for linear features.
A raster map is also made available with a 100 × 100 m pixel resolution.

The nomenclature is hierarchically organized in three levels: 5, 15, and 44 classes.
The detailed nomenclature of CLC is given in Table 2. The measures of accuracy highly de-
pend on the semantic and spatial resolutions of each source and the desired nomenclature: a
lower number of classes in the target map always results in higher agreement/accuracy [46].
In the following, we will target the translation to level 2 nomenclature. A translation from
OSO to CLC level 3 nomenclature appears hardly feasible without remote sensing images,
especially on several land-use classes. We choose to discard any additional data to study the
pure potential of context in a translation procedure, and we restrict ourselves to 15 classes.
However, a contextual approach holds profound potential on some level 3 classes. Some
of them can highly benefit from contextual translation (e.g., Mixed Forest, or Green urban
areas). Reducing the number of classes in the target nomenclature tends to increase the
semantic distance between the source and target labels, making the translation easier. Thus,
results on CLC level 1 (5 classes) would be higher than those presented later in this paper.
Nevertheless, they would also have been of poor interest for studying the potential of
spatial context analysis in translation since pure nomenclature matching alone would
already achieve very high performance.

https://www.theia-land.fr/en/product/land-cover-map/
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Table 2. CORINE Land Cover 3-level of nomenclature defines both land-use and land-cover classes.

CLC Level 1 CLC Level 2 CLC Level 3

1. Artificial surfaces 1.1. Urban fabric (UBF) 1.1.1. Continuous urban fabric
1.1.2. Discontinuous urban fabric

1.2. Industrial, commercial and transport units (ICT) 1.2.1. Industrial or commercial units
1.2.2. Road and rail networks and associated land

1.2.3. Port areas
1.2.4. Airports

1.3. Mine, dump and construction sites (MCD) 1.3.1. Mineral extraction sites
1.3.2. Dump sites

1.3.3. Construction sites
1.4. Artificial non-agricultural vegetated areas (AVA) 1.4.1. Green urban areas

1.4.2. Sport and leisure facilities

2. Agricultural areas 2.1. Arable land (ARL) 2.1.1. Non-irrigated arable land
2.1.2. Permanently irrigated land

2.1.3. Rice fields
2.2. Permanent crops (PEC) 2.2.1. Vineyards

2.2.2. Fruit trees and berry plantations
2.2.3. Olive groves

2.3. Pastures (PAS) 2.3.1. Pastures
2.4. Heterogeneous agricultural areas (HET) 2.4.1. Annual crops associated with permanent crops

2.4.2. Complex cultivation
2.4.3. Land principally occupied by agriculture,
with significant areas of natural vegetation

2.4.4. Agro-forestry areas

3. Forests and semi-natural areas 3.1. Forests (FOR) 3.1.1. Broad-leaved forest
3.1.2. Coniferous forest

3.1.3. Mixed forest
3.2. Shrub and/or herbaceous vegetation

association (SHV) 3.2.1. Natural grassland

3.2.2. Moors and heathland
3.2.3. Sclerophyllous vegetation

3.2.4. Transitional woodland shrub
3.3. Open spaces with little or no vegetation (LNV) 3.3.1. Beaches, dunes, and sand plains

3.3.2. Bare rock
3.3.3. Sparsely vegetated areas

3.3.4. Burnt areas
3.3.5. Glaciers and perpetual snow

4. Wetlands 4.1. Inland wetlands (IWE) 4.1.1. Inland marshes
4.1.2. Peatbogs

4.2. Coastal wetlands (CWE) 4.2.1. Salt marshes
4.2.2. Salines

4.2.3. Intertidal flats

5. Water bodies 5.1. Inland waters (IWA) 5.1.1. Water courses
5.1.2. Water bodies

5.2. Marine waters (MWA) 5.2.1. Coastal lagoons
5.2.2. Estuaries

5.2.3 Sea and Ocean

CLC is considered as a reliable reference in terms of land-cover knowledge in Europe,
achieving a thematic accuracy superior to 92% for CLC 2018 (86–98%, depending on the
country [47] and a geometric accuracy of 100 m. Several complex classes show lower
accuracies (e.g., Mine, dump and construction sites or Heterogeneous agricultural areas), which
will have a negative impact in the translation procedure. Unfortunately, the significant costs
of generating such a detailed map by remote sensing and visual interpretation lead to a 6-
year update [48]. Conversely, the OSO product is updated every year, but its nomenclature
differs from the standardized European-wide CLC. Therefore, we study here the possibility
of using fully-automatic land-cover map translation to turn the OSO product into a yearly
updated CLC. For our experiments, we choose to use the two most recent CLC maps (2012
and 2018) and two of the four available OSO maps (2016 and 2018).
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3.2. OSO to CLC Translation Characteristics

To get a better understanding of the related challenges, we present here the main
differences between OSO and CLC that could impact the quality of the result.

The main challenge is that both source and target maps have rich and variate nomen-
clature with non-straightforward semantic relationships. Most works applying CLC trans-
lation merge some of the classes of level 2 and focus on a restricted nomenclature of less
than ten classes [48–50]. Table A1 in the Appendix A details a conceivable semantic associ-
ation between OSO 2018 and CLC 2018 nomenclatures. For each OSO class, we propose all
possible semantic associations with each CLC class. The third column of Table A1 gives
the observed percentage of OSO 2018 pixels at 10 m resolution following the proposed
association with CLC 2018.

We can observe that, for many cases, there is a low agreement between the pixels of
the two products. As an example, one pixel labeled as Discontinuous urban fabric in OSO
should typically be translated into Urban fabric in CLC, with a purely semantic analysis.
In reality, this association is only observed 45% of the time in the data set. Several reasons
can explain this, for example, scale, map generalization and errors in source and target
data. All these factors are not taken into account when using only semantics. Moreover,
one must notice that a semantic association does not always exist. CLC has a group of
classes related to wetlands, but no class related to wetlands exists in the OSO product.

Figure 3 illustrates some of the semantic discrepancies observed between both maps.
First of all, one might notice that CLC distinguishes marine from inland waters with an
arbitrary boundary well visible in this subset. Such an artificial decision is of course not
transferable without either knowing the rule behind the decision or using a contextual
translation framework. We also see a CLC polygon of inland wetland on the middle island,
corresponding to Woody Moorlands in the OSO nomenclature. This case is difficult due
to the lack of semantically close class for Wetlands in the OSO nomenclature. This calls
for integrating contextual information. As a final example, one might notice that the
agricultural areas on the riversides are partly misclassified in OSO as Continuous and
discontinuous urban areas. This error is often observed in the OSO data set on permanent
crop areas. A contextual framework should be able to give a correct translation despite the
confusion, noticing that permanent crops are also partly detected in the OSO map.

Figure 3. Illustration of the spatial and semantic similarities and discrepancies between OSO and CLC. See Tables 1 and 2
for the detailed nomenclatures and text for more details.

However, one must keep in mind that context only helps translation but can not
achieve by itself perfect translation. A good illustration is provided by land-use translation.
This is a notoriously difficult challenge for a remotely sensed map such as OSO since it
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involves predicting land-use from land-cover. A context-wise approach might help: spatial
context closely relates to land-use. Figure 4 gives an example of Artificial non-agricultural
vegetated areas (AVA) correctly translated from Broad leaved forest. This small forest was
located in a city, leading to assign a green urban area label. This example is of interest
since it shows two main limitations of our method. First of all, those areas tend to be
underestimated (marked bottom area) since predicted AVA areas are often erroneous.
Therefore, the network tends to translate into AVA when the AVA likelihood is very high.
Secondly, in CLC level 2, no difference is made between Sport and leisure facilities and Green
urban areas (all classified as AVA). Thus, the 25 ha MMU of CLC might induce confusion
when analyzed on the level 2 product. For example, the marked middle area is a stadium
too small to be referenced as a Sport and leisure facilities in the CLC level 3 nomenclature.
Therefore, it is generalized and appears as an Urban fabric in CLC level 2. On the opposite,
our method, which analyses the same way Green urban areas and Sport and leisure facilities
(they are all AVA), translates it as an AVA. Note that Green urban areas are always inside or
near cities, which is far from being the case of Sport and leisure facilities. Since we proceed
at level 2 (they both are AVA), the spatial context analysis remains difficult. All those
observations are generalizable to other land-use classes (Mine/Dump/Construction sites or
Industrial, commercial and transport units).

Figure 4. Limitation of a context-aware translation. Example of Artificial non-agricultural vegetated areas. Satellite image
extract from Bing Aerial ©2021 Microsoft Corporation ©2021 Maxar ©CNES (2021) Distribution Airbus DS.

For full France, we obtain an overall agreement of 73% between CLC 2018 and the
derivation of CLC from OSO, based on the pure semantic 1→ 1 translation. Without in-
tegrating spatial knowledge and more complex class relationships, we show that correct
results can be obtained despite random and systematic errors of both data sets. This pro-
vides a baseline and an order of magnitude of the expected accuracy with a supervised
spatio-semantic approach. Figure 5 provides an alternative point of view of the observed
associations between OSO and CLC maps. It shows the proportion of each OSO class
associated with each CLC class. The color saturation and the size of the squares indi-
cate this proportion. When the observed association matches the semantic association,
the square is blue. Otherwise, it is red. For example, the OSO class road surfaces is mainly
associated with the CLC class arable (the most prominent and brightest square in the line)
while this association is semantically inconsistent (red). Integrating spatial knowledge into
a translation framework should therefore go further than simple pixel-to-pixel or polygon
correspondence between both maps.
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Figure 5. Observed associations between OSO and CLC (Hinton diagram). The association is computed by resampling CLC
to a 10 m raster using the nearest-neighbor approach. We then perform a direct comparison between OSO and CLC. Blue
and red colors indicate an agreement and a disagreement between the semantic and the observed relationship between two
labels, respectively.

A second challenge comes from the fact that the classes are not balanced. For instance,
in the CLC map, the ratio between the most and the least represented classes is higher than
200 in level 2 and higher than 7000 for level 3. Learning the translation from unbalanced
data may lead to missing associations due to under-represented classes.

A third challenge is to mimic the CLC MMU. Indeed, the transformation from a 10 m
raster map to a map with a 25 ha MMU is not straightforward. A correct translation requires
learning the generalization procedure of CLC. It requires proposing a spatial context-aware
translation framework that learns rules such as: ”If two adjacent areas of discontinuous
and continuous urban fabric occur, each of them <25 ha, but in total >25 ha, they should be
mapped as one single polygon, and discontinuous urban fabric is privileged”.

Finally, the translation has to handle errors in both land-cover maps. The OSO
products have an 89% overall accuracy while CLC 2018 accuracy on level 3 product is
estimated to 94.2% over France (the value for level 2 is unknown but should be close, [47]).
A per-class analysis of the OSO product enables us to forecast which CLC labels are bound
to be mistranslated. For example, OSO Road surfaces and Industrial and Commercial units
tend to be underestimated. Thus, the CLC class Industrial, commercial and transport units is
expected to have a low recall. Similarly, some CLC classes exhibit limited accuracies (Mine,
dump and construction sites or Heterogeneous agricultural areas), which is also detrimental to
the learning process.

3.3. Land-Cover Translation Scenarios

Unlike traditional semantic-based methods, a learned translation requires that both
source and target map samples exist. Unfortunately, a time gap is often observed between
source and target generations, constituting a significant constraint for operational uses.
We propose three different scenarios corresponding to different time gaps between source
and target land-cover maps, and subsequently to three distinct operational use cases. As
stated above, we selected two reference years for CLC (2012 and 2018) and two for OSO
(2016, 2018). The goal is to use OSO to produce yearly updates of CLC. From the various
association combinations, we retain three scenarios for the assessment of the land-cover
translation methodology presented in Section 4.
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Scenario 1 consists of using OSO 2018 and CLC 2018. This is the only pair of products
we have with the same reference year. The use case corresponds to an automatic extension
of CLC to a broader area, since, for instance, CLC has not yet been generated over a full
area of interest (Figure 2E). This is particularly relevant for the forthcoming editions of
CLC: one would only need to generate a sample high-quality version on specific areas and
our framework could fill the gaps.

Scenario 2 corresponds to the updating operational setting. First, a translation model
is trained on a pair of existing OSO and CLC products. Then, the model is applied
on the OSO product of the year for which the new CLC map is to be produced. We
assume that the most recent OSO product is 2018 and that we want to produce CLC 2018.
The translation model is trained using CLC 2012. We choose to pair it with OSO 2016
to minimize the disagreement in the training data caused by land-cover changes. In this
scenario, OSO 2018 is translated with the learned model, and CLC 2018 will be used as
reference data for validation.

One criticism that can be made about Scenario 2 is that if the learning algorithm can
cope with discrepancies in the training data, it may be better to use the most recent OSO
map in the training phase. This would allow taking into account the evolution of land-cover,
which does not affect the translation itself. For instance, one could assume that climate
change makes wetland areas dryer. This would not introduce a change between CLC 2012
and CLC 2018 (dryer wetlands are still wetlands) but could introduce an evolution in OSO.
Indeed, OSO does not have wetland classes, and wetlands in CLC correspond to water,
sand, grasslands or moorlands in the OSO nomenclature. In this situation, some CLC
wetlands could transition from water to sand, grassland or moorland. This would mean
that the translation rule learned between OSO 2016 and CLC 2012 could not be applied to
OSO 2018.

In order to assess this situation, we propose the Scenario 3 on which the translation
model is trained by pairing CLC 2012 with OSO 2018. This model is then applied to
OSO 2018. CLC 2018 is used for validation. The underlying assumption is that the model
will fail to learn some of the associations imposed by the training data that correspond to
real changes from the point of view of the CLC nomenclature.

3.4. Data Set Preparation

We work on the full French metropolitan territory, i.e., French mainland and Cor-
sica island. OSO and CLC are both publicly available on their respective official websites
(http://osr-cesbio.ups-tlse.fr/~oso/ accessed on 25 January 2021, https://land.copernicus.
eu/pan-european/corine-land-cover accessed on 25 January 2021). OSO is directly down-
loaded in raster format while CORINE Land Cover is obtained in vector format and then
rasterized. Since we need to match the data sets both in terms of cartographic datum and
spatial grid, we perform the rasterization step of CLC jointly with this transformation step.
We align the two rasters with a simple spatial translation to make sure that the maps are
correctly registered at the pixel level. Eventually, since the OSO 2016 nomenclature merges
most of the agricultural classes into two super classes, namely, summer crops and winter
crops, we perform similarly for the OSO 2018 products. This step is only mandatory for
Scenario 2 but is still applied to all scenarios to make them comparable.

4. Deep Learning Based Map Translation

As stated in Section 2, the main current translation solutions are manually defined or
require at least the explicit knowledge of the semantic transformation between classes of
the two land-cover maps. This approach does not offer sufficient versatility and narrows
down the translation cases that can be handled (as shown in Section 3.2). Consequently,
to overcome such limitations, we propose a machine learning approach that automatically
learns such a transformation in a supervised way. Our method simultaneously performs
semantic and spatial resolution translations to take into account the entanglement of the
two types of information. We use existing pairs of source and target land-cover maps, which

http://osr-cesbio.ups-tlse.fr/~oso/
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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provide large volumes of training data. We adopt an approach based on Convolutional
Neural Networks (CNN) since they are perfectly tailored to integrate the semantics of the
pixel with its spatial context and are therefore appropriate for the task at hand.

4.1. The Proposed Neural Network Architecture

Land-cover classification is traditionally cast as a semantic segmentation task, in which
a set of remote sensing images are transformed into a class map [51–53]. The land-cover
translation task can also be seen as a semantic segmentation task where the input pixels
are not physical values (namely, the optical spectral bands or SAR polarized channels),
but semantic classes, i.e., nominal categorical data with low cardinality.

One difference between the land-cover classification and translation challenges is that
the former usually keeps the spatial resolution of the input data, while the latter often
requires to produce an output with a different resolution (see Section 2 and Figure 2).

We choose to use the popular U-Net encoder-decoder architecture [54]. The main
idea of U-Net is to encode the image input into a vector representation using successive
down-sampling and convolution steps and then restore (decode) the image using suc-
cessive up-sampling and deconvolution layers (see Figure 6). Skip connections between
the symmetrical layers of the encoder and the decoder are used to avoid losing spatial
information due to the down-sampling process. However, this does not alleviate the main
limitation of the standard U-Net formulation: its symmetry imposes aggregating features
of the same scale in the encoder and decoder sub-networks, which forbids the change of
resolution. Choosing different ratios for the down-sampling and the up-sampling parts
allows taking into account this change between the input and output maps. We propose
the following adaptation. Let r be the resizing factor between the input and the output of
the network, and D = (d1, d2, ..., dn), di ∈ N the downsizing factor of the different pooling
layers in the encoder. We need to ensure that:

r =
n

∏
i

di . (1)

Pooling parameters must be as small as possible to reduce the loss of spatial detail.

D = argmindi

n

∏
i

di . (2)

Figure 6. Our U-Net adaptation. An asymmetrical encoder-decoder is designed so as to efficiently handle the distinct
spatial resolutions of the source and the target.
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This problem has one unique solution, which can be obtained by prime decomposi-
tion [55]. In our case, the target map is 10 times smaller than the source map. This leads
to apply five and two pooling layers in the asymmetrical part of the encoder. To avoid
information loss, we apply the two pooling layers first.

To be able to feed this CNN with OSO and CLC, we slightly modify the input data.
We first split them into 14,705 source/target couples of patches of 6400 × 6400 m size for
GPU memory concerns. Secondly, we make the network return one hot-encoded prediction
of the map, instead of a simple prediction, to be able to adopt usual loss functions.

4.2. Geographical Context

It is widely assumed in the literature that inserting the geographical context into
CNN architectures helps to improve the semantic segmentation task [56,57]. Here, we
hypothesize that the translation of a land-cover element may co-variate with its spatial
coordinates (latitude and longitude). This assumption is in line with the current practices
in large-scale land-cover classification approaches in the remote sensing community: it
is implicitly performed by either locally fine-tuning a global classification model or by
defining distinct local models based on a specific stratification strategy [44,58]. Thus, we
decide to incorporate into our network a positional encoding sub-module to take into account
the coordinates of each patch during the translation process. Previous attempts have been
made to improve CNN-based classification of terrestrial images using various embedded
features [59]. The main strategy includes a direct insertion of (quantized) latitudes and
longitudes [60] or to retrieve proxy attributes that are more likely to be discriminative
(population statistics, social media, see [61,62]. However, to the best of our knowledge,
such a strategy has never been proposed for land-cover mapping.

The most natural way is to use the geographical coordinates as a residual connection,
adding complementary information to the learned representation. Helping land-cover
prediction with 2D coordinates is equivalent to approximating an inherently discontinuous
function such as ”if (x < 10,000 and y > 50,000) or (x > 500,000 and y < 3500), then it
can/cannot be seashore”. Since Multi-Layer Perceptrons (MLP) are known to have issues
with approximate discontinuous functions [63], we instead propose to adopt the positional
encoder strategy [64], adopted by the transformer architecture, as a way to make the signal
more continuous.

Unlike the traditional sequence-to-sequence architecture, here, the positional encoding
must be in 2D in order to both integrate latitude and longitude. The authors of [65] pro-
posed a strategy for image coordinates: rows and columns are independently encoded and
then concatenated. We adopt the same strategy with the latitude and longitude coordinates.
Let x and y be the longitude and latitude, respectively, px ,y is the corresponding position-
ally encoded matrix and d the dimension of the encoded matrix, which corresponds to
the number of feature maps generated by the CNN layer where the positional encoding
is added.

px =


sin(xω1)
cos(xω1)

...
sin(xωd/4)
cos(xωd/4)


d/2

py =


sin(yω1)
cos(yω1)

...
sin(yωd/4)
cos(yωd/4)


d/2

px ,y =


sin(xω1)
cos(xω1)

...
sin(yωd/4)
cos(yωd/4)


d

with ωi =
1

100002i/d
(3)

The resulting encoding px ,y is given to a one layer perceptron to preprocess the
positional encoding. Note that adding more layers did not show significant improvement
in our results. The output is added to the bottleneck of our U-Net in so that the positional
information has only influence at a coarse scale.
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4.3. Loss Function

The standard loss for semantic segmentation tasks is binary cross-entropy (BCE). It is
defined as a measure of the difference between two probability distributions for a given
random variable or a set of events. Let p be a softmax prediction of the network and y the
ground truth, with pi the predicted probability of class i and yi = 1 if the correct class is i
and yi = 0 otherwise. The BCE loss is computed as:

LBCE (p, y) =
1

n

n

∑
i=1

yi log(pi ) + (1− yi )log(1− pi ). (4)

The principal limitation of BCE is that it does not suitably handle imbalanced classes.
As stated previously, our case study holds highly imbalanced data, which prevents its
adoption. Many approaches have been proposed [54,66,67] to cope with the class imbalance
issue, such as the weighted cross-entropy [68] or focal loss [69]. Additionally, region-based
losses target to maximize the overlapping ratio between p and y . Among all these losses,
we select the Dice loss [70]: it computes an approximation of the F1-score metric, which is
vastly used in the remote sensing community. The Dice loss is computed as follows:

LDICE = 1−
2

n
∑
i=1

piyi

n
∑
i=1

pi +
n
∑
i=1

yi

. (5)

We combine the BCE and the Dice loss, as suggested in [71–74], to incorporate benefits
from finer decision boundaries (Dice) and accurate data distribution (BCE). This alleviates
the problem of high variance of the Dice loss.

Ltotal = LBCE + LDICE . (6)

4.4. Quality Assessment

The quality assessment of a map can be qualitative and quantitative. The qualitative
assessment focuses on three distinct features, based on a comparison between the predicted
map and the reference one:

• General aspect: does the translated map look like the reference one?
• General quality: are any classes under or over-estimated?
• Geometric preservation: is the shape of each predicted structure in the map close to its

reference counterpart? Which shapes are harder to translate?

The quantitative assessment relies on a reference data set. We first randomly split
the previously mentioned 14,705 couples of patches into disjoint train, validation (a small
set used during the training of the network to watch for convergence) and test data sets,
accounting for, respectively, 50%, 10% and 40% of patches.

The quantitative evaluation was conducted using traditional quality metrics derived
from the confusion matrix (Overall accuracy, F1-score, Kappa). Metrics were computed on
10 different initializations and trainings of our network. Mean values and the corresponding
standard deviations are displayed in this paper.

As stated before, the target map used for training can have errors and therefore, quality
metrics computed with these data can be misleading. In order to alleviate this, we manually
annotated the center pixel of the 6022 test patches. The class given in the CLC 2018 map
was visually validated and corrected if necessary. We used 10 m Sentinel-2 2018 satellite
images and 1 m Bing aerial images to disambiguate complex cases. We respected the
Minimal Mapping Unit of 25 ha of CLC.

The comparison between CLC 2018 and our reference version of CLC 2018 gives a
86% match. This fits with the specifications of the CLC product, which is 85%. We did
not create the ground truth from scratch but only by correcting CLC 2018: there may be
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a bias towards a high agreement with CLC. Table 3 provides some statistics about the
reference data set with respect to the CLC classes, as well as the associated precision, recall
and F1-score.

The manually validated center of test patches, which we will refer as ground truth,
was obtained by random selection while preserving the initial imbalance of classes in CLC.
Therefore, some categories are very rarely represented (e.g., Mine/construction/dump sites
are only observed five times), while others are over-represented (e.g., Arable land appears
1685 times). To overcome this issue, one might want to annotate more samples, but this
entails significant time costs and leads to higher class noise. Indeed, rare classes are often
complex to discriminate even using very high spatial resolution images and multisource
time series.

Note that our evaluation strongly differs from the official CLC 2018 evaluation proce-
dure [47], from which a 94.2% accuracy was obtained for CLC level 3 over France (versus our
86% on level 2). This stems from multiple variations between the CLC quality assessment
protocol and ours :

• Two different operators double-checked the CLC official validation dataset while ours
includes only one interpretation for each point.

• The official validation is achieved with respect to the CLC initial segmentation (to
avoid taking into account geometric errors, separately evaluated), while ours corrects
wrong segmentations. Therefore, our interpretation of the same point might differ
on edges.

• The official validation is performed on the vector data while ours is performed on a
rasterized version, which tends to amplify CLC segmentation errors.

Since we do not have access to the CLC validation dataset, all metrics are computed
on our ground truth. Thus, we will not target the 94% accuracy but the 86% observed on
our dataset.

Table 3. CLC statistics on our reference dataset. See Table 2 for the class codes.

Classes UBF ICT MCD AVA ARL PEC PAS HET FOR SHV LNV IWE MWE IWA MWA

Precision 0.90 0.86 1.00 0.88 0.91 0.69 0.81 0.71 0.93 0.88 0.91 0.64 1.00 0.97 1.00
Recall 0.83 0.90 0.60 0.93 0.90 0.92 0.79 0.78 0.92 0.80 0.92 1.00 0.94 0.84 1.00

F1-score 0.86 0.88 0.75 0.90 0.90 0.79 0.80 0.74 0.92 0.84 0.91 0.78 0.97 0.90 1.00
Nb samples 290 61 5 15 1685 90 916 730 1581 373 116 7 36 38 79

Evaluating the quality of the geometric preservation of a map is rarely done in land-
cover classification studies. Thus, we lack predefined quantitative measures to assess it. We
propose to use the Edge Preservation Index (EPI), traditionally used in image reconstruction
or denoising [75,76]. It computes the correlation between edges in a pair of images. EPI is
defined as [77]:

EPI =
Γ(∆p −∆p, ∆t −∆t)√

Γ(∆p −∆p, ∆p −∆p)Γ(∆t −∆t, ∆t −∆t)
, (7)

where p is the map predicted by the network, t is the ground truth target, ∆ denotes a
high pass filter (we use a simple Laplacian kernel), ∆p denotes the mean of the high pass
filtered image, and Γ is defined as:

Γ(x , y) = ∑
i ,j∈(nr ,nc)

x(i , j)× y(i , j), (8)

where nr and rc represent the number of pixels in rows and columns respectively of the
given image.

Since we work on categorical data, edges are discretized (0 = non edge, 1 = edge).
Ideally the EPI should be computed between our prediction and perfectly segmented
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ground-truth version of CLC 2018. Since the creation of this perfect segmentation would
be overly time consuming, we simply compute the EPI between our prediction and CLC
2018. Thus, it shows the agreement between the prediction and CLC edges rather than
the true correlation between our prediction and a perfect segmentation. The larger the
EPI value is, the more edges are maintained. From the analysis of our data, we propose
the following interpretation key for EPI value. EPI is inferior to 0.1 when no boundary
agreement exists. A limited match between edges leads to 0.1 < EPI < 0.5. Conversely,
0.5 < EPI < 0.9 indicates a correct boundary association and 0.9 < EPI < 1 corresponds to
an almost perfect match.

4.5. Comparison with Other Solutions

To better evaluate the performance of our method, we compare our three scenarios
with standard semantic approaches. They usually focus only on nomenclature changes,
discarding the modification of the spatial resolution. Three baselines are considered:

• ”Naive semantic”: we directly translate the OSO nomenclature into the CLC one.
For each OSO class, we associate the closest CLC class by our own expert knowledge.
Then, we evaluate the differences between the translation and CLC, based on random
points sampled over the full spatial extent of the map.

• ”Naive down-sampling": the second method integrates the change of spatial resolution.
The spatial resolution of OSO is 10 m, i.e., ten times superior to CLC. Therefore, we
convert a set of 10 × 10 pixels of OSO into one CLC class using a majority vote.

• ”Auto-semantic": the third one translates a set of 10 × 10 pixels of OSO into a single
CLC class using a Random Forest classifier. The features are the frequencies of each
OSO class in each area of interest, in an Entangled Random Forest flavor. Training is
performed on the same training set as the neural network in Scenario 1.

In addition, we also perform an ablation study and generate results using and discard-
ing the CNN module related to the geographical context.

5. Experiments and Discussion

In this section, we investigate the translation performance of our asymmetrical U-
Net on the three proposed "OSO to CLC" scenarios (Sections 5.1–5.3) for all of France.
Our method is then compared with simpler solutions (Section 5.1). Links for our code
(https://github.com/LBaudoux/Unet_LandCoverTranslator accessed on 25 January 2021)
and dataset (http://doi.org/10.5281/zenodo.4459484 accessed on 25 January 2021)
are provided.

5.1. Scenario 1

Figure 7 presents a sample of diverse areas, selected from our France-wide translation.
The qualitative analysis first reveals that the results are visually very satisfactory.

Errors in the translation mostly occur on CLC classes with no semantically close class in
OSO (namely, Mine and construction or Wetlands), which was expected. Such a limitation
cannot be addressed without external knowledge. Furthermore, one might notice errors
on linear shaped structures (like the road in the second row of Figure 7). There are two
possible factors. The first one is that U-Net architectures are known to perform poorly on
linear segment prediction. The second is that the rasterization step of our data set creation
procedure may lead to the disappearance of tiny linear features: they are too small to be
represented in raster maps with a spatial resolution of 100 m. Consequently, some roads
and small water sections are removed from the (training) data set, making the prediction of
such structures more difficult. In addition, our predictions inherit systematic errors of the
OSO product. For example, the OSO classes Mineral surfaces, rocks tend to be overestimated
on mountain areas, resulting also in an overestimation in the CLC prediction of the non
vegetated natural class. Finally, systematic errors exist on the border of the patches due to
the local lack of information.

https://github.com/LBaudoux/Unet_LandCoverTranslator
http://doi.org/10.5281/zenodo.4459484


Remote Sens. 2021, 13, 1060 19 of 32

Figure 7. Various results of our translation framework obtained over France for the three scenarios. Each area is 41 km2

wide. Scenario 2 results on all of France are available at https://oso-to-clc.herokuapp.com/ accessed on 25 January 2021.

These qualitative observations are quantitatively confirmed (Figure 8). Our first
observation is that precision and recall are nearly equivalent for most classes making

https://oso-to-clc.herokuapp.com/
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the method balanced. From the analysis of the confusion matrix, one might notice that
the largest confusion observed is that most predicted inland wetlands are in fact inland
waters. This underlines the fact that on CLC classes with no OSO corresponding class,
confusion unavoidably happens with close CLC classes. It appears impossible to improve
the discrimination power of our method on this class without adding extra information.
Additionally, some CLC classes such as Heterogeneous agricultural areas and Artificial non-
agricultural vegetated areas are confused with a large number of other CLC classes; revealing
both the need of extra information to disambiguate OSO data and the complexity of
those two CLC classes (one merging multiple CLC classes, the other mixing land-use and
land-cover).

Figure 8. Confusion matrices between prediction and ground truth. Left: expressed as prediction proportion. Right:
expressed as ground truth proportion. The diagonals provide the per-class precision and recall, respectively.

Using the manually labeled reference data, the obtained overall accuracy is 81%. This
is slightly under the specification of CLC (>85%), under the official estimated accuracy of
CLC (94.2%), and under the accuracy of CLC on our ground truth data set 86%. A detailed
per-class quantitative analysis is provided in Figure 9.
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Figure 9. Mean F1-score obtained for 10 different initializations of the network for each scenario. Error bars indicate the
standard deviation over the 10 trials.
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The best translation performances are obtained for Urban fabric, Arable land, Permanent
crops, Forest, and Non vegetated natural. The class Maritime water does not change over the
various editions of CLC. We decided to provide to the network a mask for this class to
ensure it focuses on finding wetlands and water bodies only. A perfect score is reported for
this class but is meaningless for our analysis.

We can draw the following observations:

• Urban Fabric, Arable land, Forest and Open spaces with little or no vegetation achieved a
very high F1-score with, respectively, 0.84, 0.89, 0.91, and 0.82 values.

• The class Coastal wetland obtained a high 0.83 F1-score despite being absent in OSO.
This is partly explained by the fact we provided a marine water mask to the network
helping the contextual translation over such areas.

• Artificial non-agricultural vegetated areas is the class with the lower F1-score (0.3). This
can be partly explained by the fact that this class mainly refers to land-use categories
(green urban areas/sport and leisure facilities), out of OSO classes. This class could
be recovered with contextual information by increasing the size of the receptive field
(e.g., stadiums have distinguishable shapes). However, this would be detrimental to a
correct shape retrieval for other classes.

• Mine/Dump/Construction sites obtained a 0.5 F1-score despite having no clearly defined
semantically close class in OSO. OSO maps usually mix a lot of classes on those areas,
giving them a unique and contextually recognizable texture to translate.

• Heterogeneous crops are difficult to predict since the class corresponds to a mix of
several OSO classes, explaining their limited F1-score (0.55). Thus, it is not surprising
that it performs worse than most classes. Again, it can only be determined through
contextual analysis.

• Industrial, commercial and transport units (ICT) are poorly predicted while close semantic
correspondences exist with OSO Industrial and commercial units and Road Surfaces.
Working with the full 23 OSO labels (decomposition of Summer crops and Winter crops
into a more detailed crop nomenclature) fosters a vast uprising of the ICT F1-score
from the observed 0.44 to 0.7. Thus, we hypothesize that the observed low value stems
from errors in the OSO data (some of the ICT being confused with crops).

As stated previously, accuracy metrics for the classes Mine/dump/construction, Artificial
non-agricultural vegetated areas and inland wetlands are computed on a small number of
reference samples. In Appendix B.1, we give a comparison between the observed F1-score
agreement computed between our prediction and CLC 2018 and the previously presented
F1-score computed between our prediction and our ground truth. Since CLC 2018 is not
error-less, the computed values are not as reliable as the ones we compute with our ground
truth. However, statistics can be computed on the whole test set and are therefore much
more comprehensive.

Class overestimation or underestimation are provided in Table A2 with the ratio
between the total per class area in our translation and CLC 2018. We also give per-
class accuracy and precision. We show that well-classified classes are overestimated
and that, conversely, poorly classified classes tend to be underestimated: our network
indeed tends to avoid making errors. However, other factors can have a per class impact
on over and underestimation. For example, the only class with high metrics being slightly
underestimated is Arable land. We attribute this behavior to the fact that, to maintain a
correct loss on Heterogeneous agricultural areas, the network tends to degrade the loss on
Arable land, thus inducing this slight underestimation.

A special focus must be made on the three land-use classes (Industrial, commercial and
transport units, ICT, Mine/dump/construction, MCD, Artificial non-agricultural vegetated areas,
AVA). They tend to be the most difficult to predict from OSO, which is a remotely sensed
map. While ICT is partly detailed in the OSO nomenclature (while being significantly
erroneous), MCD and AVA have no semantic correspondent. Interestingly, our method
remains able to partially predict some of them. For example, some AVA (green urban areas)
are located in urban areas and thus can sometimes be predicted from OSO labels, such as
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Broad leaved forest or Natural grassland (see Figure 4). However, the task remains challenging
mainly because spatial context is often not discriminant: camping sites or golf courses are
mostly grasslands often outside cities for which spatial context is of little use for translation.
Thus, to improve land-use class discrimination, additional data are required. While being
straightforwardly integrated into our network, we discarded such solution and focused on
pure context-based translation.

The Edge Preservation Index in this scenario is equal to 0.44. This might be first
explained by the fact that both the true CLC and our predicted CLC tend to be more
erroneous on edges. Secondly, the difficulty in predicting linear structures participates in
such a low value. Thirdly, highly segmented areas correspond to specific classes where our
method is prone to fail (e.g., Heterogeneous agricultural areas).

5.2. Scenario 2

In this scenario, we use our proposed translation framework to train a network with
the first available OSO land-cover map (2016) as source and CLC 2012 as target. In the
prediction step, we feed the network with OSO 2018 aiming to obtain CLC 2018.

Results are very similar to the ones observed in Scenario 1. All qualitative observations
made previously still hold. Thus, we focus here on the analysis of particular cases to show
limitations not discussed before.

The first row of Figure 10 illustrates the case of a lack of semantic distinction between
two classes (here between Shrubs and Forests). CLC tends to recover more shrub areas
than OSO, where they are more likely to be classified as forests. Consequently, our net-
work fails in perfectly translating CLC Shrub and/or herbaceous vegetation association areas.
The second row shows an example of a segmentation differing between our prediction
and CLC. The segment is classified in CLC as Heterogeneous agricultural areas: it mixes both
Arable land and Pastures with no dominating land-cover. Our prediction exhibits another
segmentation by discriminating separately Arable land and Pastures. This seems reasonable
according to the source OSO map even though differing from the CLC one. This is the
limitation of translation frameworks: we may hardly learn map specifications and cope
with existing errors.

Figure 10. Several failure cases for the Scenario 2. Note that other areas are correctly recovered. See
text for more details.
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The third row shows an example with unpredictable classes due to the lack of semantic
and contextual information. The network has to translate the OSO Intensive grassland into
the CLC artificial non agricultural vegetated area class. Since the former one more relates to
land-use than land-cover, the semantic association is weak. At the same time, contextual
knowledge does not foster information extraction since Intensive grassland near cities
will most of the time correspond to a Pasture or Heterogeneous agricultural areas in the
CLC nomenclature.

A per-class quantitative analysis is provided in Figure 9. We obtained an overall
accuracy of 79%. This is slightly below the 81% score observed in Scenario 1. The com-
parison between the F1-scores obtained in both scenarios shows that Scenario 2 exhibits
significantly worse results on artificial surfaces. No change is observed between Scenarios 1
and 2 on best translated classes: Arable land, Permanent crops, Forests. Note that the small
number of points in our ground truth prevents a deeper analysis.

Multiple reasons may explain the 2% under-performance of Scenario 2. One reasonable
hypothesis is that the under-performance is a consequence of a variation between OSO 2016
and OSO 2018 products. In fact, OSO 2016 differs from 2018 by its 1% smaller accuracy and
fewer classes (some crop classes are merged).

5.3. Scenario 3

Qualitative analysis shows that the Scenario 3 results are very similar to those obtained
in the two former configurations.

Quantitative analysis confirms our previous observations (Figure 9). Scenario 3
achieved an 81% accuracy, in line with the per-class F1-score of Scenario 1. A single
class reaches a significantly lower accuracy: Industrial, commercial and transport units (0.18
instead of 0.42 and 0.38 in Scenarios 1 and 2). This may be due to changes between
2012-2018, exacerbated by the limited initial consistency between both data sets and few
validation points.

Note that the Edge Preservation Index remains stable at 0.44 in this set-up. This is
a relatively low value for a prediction being between 73% identical to CLC 2018. This is
simply explained by the fact that most discrepancies between CLC and our prediction are
observed on edges (see Section 5.1).

5.4. Comparison with Other Solutions

In this subsection, we compare our method with the previously mentioned semantic
baselines. Figure 11 shows the results of the various solutions with respect to the ground
truth on a highly challenging area (41 km2). Qualitatively, the first observation is that
non-contextual translations (naive semantic, naive down-sampling, and auto-semantic) un-
surprisingly failed to retrieve the CLC MMU, leading to a noisy output. However, note that
even though our approach better translates CLC MMU, it still tends to include objects that
are too small. For instance, we measure that almost 5% of our method translated <25 ha
areas (against 0.3% in the used rasterized version of CLC). Non contextual translations also
generated less diverse classes than our proposed solution for various reasons. First of all,
naive semantic and naive down-sampling solutions cannot predict classes with no seman-
tically close classes like Wetlands. Secondly, several classes like Heterogeneous agricultural
areas cannot be predicted without taking into account an adequate spatial support.

Note that the qualitative comparison between our network with and without the
coordinates sub-module reveals little to no change (called ’S1 no coordinates’ and ’S1 no C’
in Figures 11 and 12).
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Figure 11. Visual comparison between the different experimented scenarios (S1-S2-S3), with and
without the geographical sub-module (’S1 no coordinates’), and with baselines methods.
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Figure 12. F1-score of each solution. Error bars indicate the standard deviation over the 10 trials for machine-learned
methods. ’S1 no C’ stands for ’Scenario 1 without the geographical sub-module’.
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Quantitatively, our network gives around 10% higher metrics than traditional methods
(see Figure 12 and Table 4). The superior results of our approach can partly be explained by
the ability of the network to output realistic maps even when no semantically close class
exists (e.g., Wetlands). Furthermore, one must notice that the proposed approach outper-
forms non contextual methods on each class and not only on classes with no semantically
close classes. Interestingly, we observe that the addition of the coordinate sub-module
slightly increases the quantitative performances for almost all classes. The highest gains
are observed in classes only present on some parts of the territory (cities, wetlands, het-
erogeneous crops). The increase is particularly noticeable on Maritime wetlands and Inland
waters for which the addition of coordinates acts like a reliable filter function. However,
the global increase is too small to achieve statistical significance and qualitative changes.
Note that the EPI of contextual translations is higher than non contextual ones. This can
partly be explained by the inability of non-contextual frameworks to translate the MMU
of CLC.

Table 4. Comparison with traditional non contextual approaches and ablation study. Best results are highlighted in bold.

Naive
Semantic

Naive
Down-Sampling

Auto
Semantic

Scenario 1
No Coordinates

Scenario 1 Scenario 2 Scenario 3

Accuracy 0.68 0.72 0.71 0.79 0.81 0.79 0.80
kappa 0.61 0.65 0.63 0.74 0.76 0.74 0.75

EPI (on CLC 2018) 0.34 0.38 0.37 0.43 0.44 0.43 0.44

6. Discussion

This paper proposed a novel method for the yearly production of CLC maps from
higher resolution OSO maps. To do so, we defined a translation framework able to
handle both the semantic and spatial resolution of the source map to match the target
one. Through a literature review, we first discussed existing methodologies based on
separate semantic or spatial translations. We identified that the three main limitations of
the literature were that the spatial context of each object was not taken into account, that
semantic relationships were often manually established and that spatial and nomenclature
shifts were performed separately.

To achieve sufficient performance, we proposed a fully-supervised framework to
contextually and simultaneously translate land-cover maps. We performed experiments at
country-scale and comprehensively assessed the performance of our approach. We showed
that it outperforms current solutions and provides a strong baseline for subsequent im-
provements.

Unlike traditional semantic methods, our learned strategy requires the existence of
both source and target maps. We studied the impact of the time gap between source and
target through three different scenarios, corresponding to three operational use cases.

Our first scenario consists of translating OSO 2018 into CLC 2018. The obtained model
can then be used to generate CLC on unseen areas (completion strategy). We obtained an
overall accuracy of 81% based on a manually-generated ground truth. It surpassed existing
methods. Unfortunately, results remain inferior to CLC specifications and official accuracy
(85% and 94.2%, respectively), which leaves room for improvement. Effort on geometric
accuracy (boundary definition) and on mixed land-use/land-cover classes improvement
is still needed to achieve higher accuracy. We believe that the combined integration of
multiple source maps could be relevant to disambiguate specific confusions. This would
require a multiple-stream network to benefit from the discriminate power of each map.

Our second scenario consisted of training a model to translate OSO 2016 into CLC 2012
and then use this model to translate OSO 2018 into CLC 2018, i.e., to generate an updated
version of CLC. We achieved a 79% accuracy, slightly under-performing the first scenario,
especially on urban classes. This could partly be explained by the difference between
the OSO 2016 and 2018 products in terms of per class thematic accuracy. Additionally,
this could also partly be explained by the difference between the regularization needed



Remote Sens. 2021, 13, 1060 26 of 32

to correct land cover changes between OSO 2016 and CLC 2012 versus OSO 2018 and
CLC 2012. This method could be once again improved using multiple maps to reduce
over-fitting: this would help us increase even more the agreement between our prediction
and CLC 2018.

Our third scenario simply tries translating OSO 2018 into CLC 2012 with the under-
lying hypothesis that changing areas between 2012 and 2018 will only be considered as
additional noise. We achieved a performance qualitatively and quantitatively similar to the
first scenario (81%). Thus, this scenario achieves a fairly good result while not needing a
common time stamp of the source and target for learning (scenario 1) and no older source
map (scenario 2).

The analysis of the results of the three scenarios reveals that in our application context
(a low resolution target map), the time-step between the source and the target maps does
not negatively influence the performance of the approach if it remains reasonable (6 years
in this study). Note that interestingly this statement seems to hold for all classes. Our
framework therefore proposes a realistic approach for the generation of the next versions
of CLC.

It offers the possibility to produce a CLC map at the country scale from an existing
map in less than 1 day, using 14,705 patches, with a consumer-grade computer (8 CPUS
and a Nvidia V100 GPU). Training takes approximately 10 hours and inference is achieved
in less than 30 min. Note that if no OSO map is available, it can be generated in less than a
week. Therefore, the whole procedure (OSO generation and translation into CLC level 2)
takes less than a week, making this method time competitive. A yearly generation at the
European scale is therefore conceivable.

The method worked particularly well on the most represented land cover classes,
i.e., Urban, Forest, and Arable land. However, some challenges remain. First of all, our
method performed poorly on the edges of objects and (thin) linear structures. A more
adapted method should be used to preserve these structures. Thus experiments on bound-
ary loss must be conducted to improve the results on those structures. Furthermore, even
though the contextual framework helps translating classes when no clear n→1 semantic
relationship exists, the result may remain insufficient to match the target specifications.
To achieve expected accuracy, large score improvements are needed on land use classes,
which seems impossible without the use of additional data. Finally, the method is currently
unable to give satisfactory results on CORINE Land Cover level 3 nomenclature: it mixes
land-use classes with land-cover ones. This problem can be hardly solved without adding
extra information and thus involves a modification of the technique proposed here to fuse
different types of data. Simply extending the spatial support of our analysis might result in
better capturing the context necessary to discriminate land-use classes and it is likely to be
detrimental to linear structures and small elements.

We believe in the high potential of spatial-semantic translation of land-cover maps to
support new applications in inter-operating land-cover data sets. Our method also offers
the advantage of generating maps with multiple variations of a nomenclature without
requiring remote sensing images and with a quality almost similar to the map specification.
Unlike previous approaches, contextual translation shows a high capacity to deal with
nomenclatures when difficult semantic relationships exist. This also enables to correct
some of the errors in the source data set. As a current limitation, our method works only
when source and target maps spatially overlap, which might prevent some key applications
related to map transfer. Therefore, some effort must be devoted to proposing a non-fully
supervised method for contextual translation.
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Appendix A. Data Set

Table A1. Semantic association between OSO and CLC. The second column informs on the percentage of the data effectively
following this association.

OSO Classes CLC Classes Observed

Dense urban Urban fabric 87%
Sparse urban 45%

Industrial and commercial Industrial/Commercial/transport 14%
Roads 16%

Rapeseeds

Arable land
Heterogeneous agricultural areas

91%
Cereals 90%

Protein Crops 91%
Soy 91%

Sunflower 89%
Maize 83%
Rice 96%

Tubers 96%

Orchards Permanent crops
Heterogeneous agricultural areas

62%
Vineyards 82%

Pastures Pastures
Heterogeneous agricultural areas
Artificial non-agricultural vegetated areas

69%

Lawn Shrub and/or herbaceous 39%
Shrub 41%

Broad leaved Forest
Artificial non-agricultural vegetated areas
Heterogeneous agricultural areas

82%
Coniferous 79%

Mineral surfaces Open space with little or no vegetation
Mine/Dump/Construction

86%

Sand Open space with little or no vegetation 65%
Glaciers and snow 100%

Water Inland water
Marine Water

84%

http://www.ai4geo.eu/
http://doi.org/10.5281/zenodo.4459484
https://github.com/LBaudoux/Unet_LandCoverTranslator
https://github.com/LBaudoux/Unet_LandCoverTranslator
https://oso-to-clc.herokuapp.com/
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Appendix B. Scenario 1 :

Appendix B.1. Agreement between Prediction and CLC 2018
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Figure A1. Mean F1-score computed between prediction/CLC 2018 and prediction/Ground Truth for 10 different training.
Error bars indicate standard deviation on the 10 trainings. Since CLC 2018 is not error-less, the displayed value should not
be considered as ground truth values.

B.2. Comparison between Predicted Areas

Table A2 shows the precision, recall, and ratio between predicted area and CLC 2018
area for each class. We assume that the CLC 2018 total area per class can act as a reference
for the total area covered by each class. High recall and precision classes tend to cover
more area than the same classes in the CLC 2018 map, and they are probably overestimated.
On the contrary, incorrectly classified classes tend to be underestimated. This seems easily
understandable: the network will generate labels on which fewer errors are made.

Table A2. Per class precision, recall (computed on ground truth) and ratio between predicted area and CLC area.

UBF ICT MCD AVA ARl PEC PAS HET FOR SHV LNV IWE MWE IWA

Precision on ground truth (%) 77 70 56 40 89 65 73 55 86 67 88 0 71 73
Recall on ground truth (%) 85 37 42 26 89 75 69 53 92 61 79 0 85 66

area Predicted/ area CLC (%) 113 63 72 65 93 113 106 104 101 106 78 36 125 106

Appendix C. Role of the Coordinates Sub-Module

In this subsection, we investigate the impact of using the geographical coordinates of
each patch on the result. The coordinates sub-module improves the agreement accuracy
of 1.5% between our prediction and CLC 2018. Figure 12 shows the per-class F1-score
with and without the coordinates sub-module. For most classes, the agreement F1-score
is slightly higher when the coordinates sub-module is used, while the difference is not
significant enough. Figure A2 presents the mean kappa agreement over France between
our network without coordinates and CLC 2018. A quality gradient can be observed clearly
following a southwest to northeast direction. The main reasons are :

• Some areas are more complex to translate due to difficult classes and or geometry
(small parcels of heterogeneous crops for example).

• Some areas might contain more errors in both source and target data.
• Some classes cannot be obtained without knowledge of the geographical situation.

For example, the coastline of Corsica Island (South East) is mostly classified as forests
in the OSO nomenclature while being considered as shrubs in the CLC nomenclature.
The choice of the shrub class is explained by the fact that forests on the Mediterranean
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sea coastline are usually low covered. Thus, this translation is impossible from OSO
without taking the information of the geolocation into account.

Figure A2 also shows the difference between the mean agreement kappa computed,
respectively, with and without the coordinates sub-module. Green areas show where the
network with coordinates sub-module outperformed the version without. Thus, we can
state that the network with the coordinates sub-module provides better results almost
everywhere in France (except for a small portion of the northeast). We see that the improve-
ment is mainly concentrated on southwest France, which was described earlier as the most
erroneous zone of the translation. Therefore, we can state that the coordinates sub-modules
helps to balance the errors in the data set spatially.

0%

20%

40%

60%

80%

100%

−6%
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−2%

0%

2%
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Figure A2. Mean agreement kappa between prediction without coordinates and CLC 2018 (left). Difference between the
mean agreement kappa of the prediction with coordinates and without coordinates (right).
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