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aAix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France

Abstract

The accuracy of the lattice-Boltzmann (LB) method is related to the relaxation time
controlling the flow viscosity. In particular, it is often recommended to avoid large fluid
viscosities in order to satisfy the low-Knudsen-number assumption that is essential to re-
cover hydrodynamic behavior at the macroscopic scale, which may in principle limit the
possibility of simulating creeping flows and non-Newtonian flows involving important vis-
cosity variations. Here it is shown, based on the continuous Boltzmann equations, that a
two-relaxation-time (TRT) model can however recover the steady Navier-Stokes equations
without any restriction on the fluid viscosity, provided that the Knudsen number is redefined
as a function of both relaxation times. This effective Knudsen number is closely related to
the previously-described parameter controlling numerical errors of the TRT model, providing
a consistent theory at both the discrete and continuous levels. To simulate incompressible
flows, the viscous incompressibility condition Ma2/Re� 1 also needs to be satisfied, where
Ma and Re are the Mach and Reynolds numbers. This concept is extended by defining a
local incompressibility factor, allowing one to locally control the accuracy of the simulation
for flows involving varying viscosities. These theoretical arguments are illustrated based on
numerical simulations of the two-dimensional flow past a square cylinder. In the case of a
Newtonian flow, the viscosity independence is confirmed for relaxation times up to 104, and
the ratio Ma2/Re = 0.1 is small enough to ensure reliable incompressible simulations. The
Herschel-Bulkley model is employed to introduce shear-dependent viscosities in the flow. The
proposed numerical strategy allows to achieve major viscosity variations, avoiding the imple-
mentation of artificial viscosity cut-off in high-viscosity regions. Highly non-linear flows are
simulated over ranges of the Bingham number Bn ∈ [1, 1000] and flow index n ∈ [0.2, 1.8],
and successfully compared to prior numerical works based on Navier-Stokes solvers. This
work provides a general framework to simulate complex creeping flows, as encountered in
many biological and industrial systems, using the lattice-Boltzmann method.
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1. Introduction

The lattice-Boltzmann (LB) method is a popular method to simulate fluid flows [1, 2]. In
contrast to Navier-Stokes methods which directly describe the dynamics of the macroscopic
flow quantities (e.g. pressure, momentum), the LB method is a statistical approach based
on gas kinetic theory. Originally derived from lattice-gaz models [3, 4], the LB method is
a space-time discretization of the Boltzmann equation, which can recover the Navier-Stokes
equations provided that the relevant conditions are satisfied [5, 6].

In many textbooks, the ability of the LB method to accurately predict macroscopic flow
behaviors is assumed to rely on a small Knudsen number assumption, especially because this
number is used as the expansion parameter in the Chapman-Enskog analysis, allowing to
derive the Navier-Stokes equations from the Boltzmann equation [7]. The Knudsen number,
denoted by Kn, is the ratio between the mean free path of gas particles and the typical length
scale of the macroscopic problem, denoted by D in the following. It is often expressed using
the von Kármán formulation, namely Kn ∼ Ma/Re [8], where Ma and Re are the Mach
and Reynolds numbers of the physical system. The Mach number reads Ma = u0/cs, where
u0 is the typical flow velocity of the problem and cs is the sound speed, which is set by
the lattice in most LB implementations, unless a more generic method is used [9]. As the
condition Ma� 1 must be satisfied to achieve incompressible flows, the condition Kn� 1
is simple to achieve in problems involving intermediate or large values of Re. In contrast,
when Re� 1, the Mach number may have to be decreased, by decreasing the flow velocity
u0, in order to satisfy the low Knudsen assumption, resulting in higher computational costs.
Due to this restriction, the lattice-Boltzmann method is not efficient in solving low Reynolds
number (creeping) flows.

Alternatively, LB simulations of creeping flows can be performed by assuming the Stokes
regime, where the flow is fully linear [10]. In this regime, the Reynolds number is not a
physical parameter and it can thus be freely varied to satisfy the low Knudsen assumption.
However, this approach requires an a priori assumption on the effect of flow inertia, which
may not be obvious depending on the physical configuration [11]. In this work, a direct
simulation approach is considered, where no assumption is made concerning the flow behav-
ior, allowing one to perform simulations over a large range of Re including non-inertial and
weakly-inertial flows.

In LB simulations, the fluid viscosity is controlled through a collision relaxation time,
denoted by τ . Based on the kinematic viscosity ν = c2

s(τ − 1/2), the Reynolds number can
be expressed as

Re =
u0D

c2
s(τ − 1/2)

. (1)

Using the von Kármán formulation, the Knudsen number can thus be expressed as a function
of the relaxation time, the sound speed and the macroscopic length scale,

Kn =
cs(τ − 1/2)

D
. (2)

It appears that the Knudsen restriction is closely connected to the relaxation time τ : to
achieve small Knudsen numbers, small values of τ and thus small fluid viscosities have to be
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employed, if cs and D are fixed. Note that in some LB implementations, cs can be considered
as a free parameter that is not connected to the fluid viscosity [9, 12, 10, 13]. Even though
such an approach may allow small variations of Kn through cs, the present work focuses on
the dominant effect of τ , and cs is kept constant as in common LB implementations [2, 1].

The analysis and correction of the effect of the fluid viscosity (or relaxation time) on
the accuracy and stability of the lattice-Boltzmann method have motivated a number of
works during last decades. Several approaches have been proposed to achieve viscosity
independence of the simulations, especially by introducing multiple-relaxation-time collision
models [14] with suitable scaling of the relaxation parameters [15, 9, 13]. The fluid viscosity
may also greatly alter the accuracy of boundary conditions and immersed boundaries, which
may require specific corrections [16]. In the two-relaxation-time (TRT) collision model
[15, 17], symmetric and anti-symmetric parts of the distribution functions are relaxed at
two different rates. While the first rate controls the kinematic viscosity, the second rate
is not directly related to macroscopic properties and it can be freely varied to adapt the
numerical accuracy. D’Humières and Ginzburg [17] showed that the numerical error can
then become independent of the fluid viscosity if both relaxation rates satisfy a constant
relation [17]. This result should allow one to employ large fluid viscosities to simulate low
Reynolds number flows efficiently (see equation (1)). However, the viscous relaxation time
must in principle remain limited by the above mentioned Knudsen restriction (see equation
(2)). The present work aims at clarifying this aspect.

In addition to its impact on low Re simulations, the limitation of the relaxation time
also questions the reliability of the LB method for the simulation of non-Newtonian flows.
Viscoplastic fluids, as shear-thinning, shear-thickenning and yield-stress (or Bingham) fluids,
are often modeled using shear-dependent viscosities, an approach referred to as generalized
Newtonian modelling [18]. The LB method is a promising tool for the simulation of such
flows, as it allows local computation of the flow shear rate using the distribution functions
[19] and local variation of the fluid viscosity through the relaxation time [20, 21, 22, 23].
However, the resulting variation of the fluid viscosity raises the question of the relevant range
of viscosities that can be covered while ensuring numerical accuracy. In particular, Bingham
and shear-thinning fluids involve a major viscosity increase in low-shear regions of the flows.
Even though the TRT lattice-Boltzmann model has already been successfully applied to
Bingham flows in previous works [12, 24], general guidelines to design such simulations
using LBM are still missing.

In this work, a detailed analysis of the TRT lattice-Boltzmann equation is presented in
order to emphasize the impact of the physical and numerical parameters on the macroscopic
flow behavior in the creeping regime, with a special attention paid to the effect of the
relaxation times. A focus is placed on the steady case, as unsteady diffusive phenomena can
not be accurately predicted at large viscosities using the LB method (see §2.4). The analysis
shows that the Navier-Stokes equations can be recovered without any restriction on the fluid
viscosity, Mach number, Reynolds number or nominal Knudsen number Kn = Ma/Re,
provided that the physical Knudsen number is correctly redefined as a function of both
relaxation times. The incompressible flow equations, however, can only be recovered if the
viscous incompressibility factor T = Ma2/Re is small. This result is verified numerically
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based on the two-dimensional creeping flow past a square cylinder. This configuration is
chosen as it involves non-trivial external flow dynamics while allowing accurate and simple
implementation of the no-slip boundary conditions using the bounce-back method. In the
case of a viscoplastic fluid modelled by the Herschel-Bulkley law, a local definition of the
T criterion allows one to control the viscosity range of the flow solution and to achieve
considerable viscosity ratios between low-shear and high-shear regions of the flow. The
numerical results are discussed and compared to prior works based Navier-Stokes models.

The present paper is organized as follows. First, the lattice-Boltzmann method is briefly
introduced in §2. Mesoscopic equations are then analyzed in §3, and the macroscopic flow
equations are derived and discussed. The method is applied to the simulation of a Herschel-
Bulkley flow past a square cylinder. The physical setup and the numerical implementation
are first described in §4; the numerical results are then analyzed in §5. Finally, the principal
conclusions of this work are summarized in a last section, in §6.

2. Lattice-Boltzmann method

The main aspects of the lattice-Boltzmann model employed in this work are presented in
the following. After a brief presentation of the discrete-velocity Boltzmann equation in §2.1,
the two-relaxation-time collision model is described in §2.2 and the space-time discretization
leading to the LB equation is introduced in §2.3. The ability of the present method to
simulate unsteady flows is discussed in §2.4.

2.1. Boltzmann equation and velocity discretization

The flow dynamics is described through the particle distribution function f(x, ξ, t), rep-
resenting the density of fluid particles moving with velocity ξ, at location x and time t. The
dynamics of the distribution function is governed by the Boltzmann equation,

∂f

∂t
+ ξ · ∇f = Ω(f), (3)

where Ω(f) is the collision operator. The discretization of the Boltzmann equation in the
velocity space, physical space, and time leads to the lattice-Boltzmann method.

The velocity space is discretized on a set of velocity vectors {ci, i = 0, ..., Q− 1}, where
Q is the number of discrete velocities. In the present work, which only focuses on two-
dimensional physical configurations, a D2Q9 velocity set is used. However, it should be
mentioned that the following analysis does not rely on a particular velocity discretization.
In the D2Q9 model, the velocity space is discretized on nine velocities, namely

ci =


(0, 0), i = 0,

c
(

cos(π(i−1)
2

), sin(π(i−1)
2

)
)
, i ∈ [1, 4],

√
2c
(

cos(π(2i−9)
4

), sin(π(2i−9)
4

)
)
, i ∈ [5, 8],

(4)
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where c is the lattice speed. The particle densities at velocities {ci} are represented by the
discrete-velocity distribution functions {fi(x, t)}, also called particle populations.

The macroscopic flow quantities are moments of the particle populations in the velocity
space. In particular, the fluid momentum and density read

ρu =
8∑
i=0

fici, ρ =
8∑
i=0

fi, (5)

with ρ and u the fluid density and velocity.

2.2. Two-relaxation-time Boltzmann equation

In the discretized velocity space ξ = {ci}, the two-relaxation-time Boltzmann equation
reads

∂fi
∂t

+
∂

∂xα
(ci,αfi) = − 1

τ+

(
f+
i − f

eq+
i

)
− 1

τ−
(
f−
i − f

eq−
i

)
, (6)

where τ+ and τ− are the two relaxation times and f+
i and f−

i are symmetric and anti-
symmetric parts of fi, expressed as

f+
i =

1

2
(fi + fi) ; f−

i =
1

2
(fi − fi), (7)

with the index i defined so that ci = −ci. When τ+ = τ−, equation (6) reduces to the single-
relaxation-time (SRT) Boltzmann equation based on the Bhatnagar-Gross-Krook (BGK)
collision operator [25].

Populations are decomposed into equilibrium and non-equilibrium parts, namely fi =
f eq + fneq. The equilibrium functions are expressed as

f
(eq)
i = wiρ

(
1 +

u · ci
c2
s

+
(u · ci)2

2c4
s

− u · u
2c2
s

)
, (8)

where cs is the sound speed and {wi} are the lattice weights depending on the lattice model.
In the case of the D2Q9 scheme, they read w0 = 4/9, w1 = w2 = w3 = w4 = 1/9 and
w5 = w6 = w7 = w8 = 1/36.

The symmetric and anti-symmetric populations exhibit a series of properties that are
described in §Appendix A. These identities will be particularly useful when projecting the
Boltzmann equation onto Hermite polynomials in §3.1.

2.3. Space-time discretization

Space-time discretization of the LB equation (6) is performed through a method of
characteristics. It can be shown that the second-order discretized equation can be expressed
in an explicit form, called the lattice-Boltzmann equation, namely [2]

f̂i(x+ ci∆t, t+ ∆t)− f̂i(x, t) = − 1

τ̂+
f̂neq+i − 1

τ̂−
f̂neq−i , (9)
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through the change of variable

f̂i = fi +
1

2

(
1

τ+
fneq+i +

1

τ−
fneq−i

)
, (10)

and defining f̂+
i = (f̂i + f̂i)/2 and f̂−

i = (f̂i − f̂i)/2, and the numerical relaxation times
τ̂+ = τ+ + 1/2 and τ̂− = τ− + 1/2, with τ± > 0 and τ̂± > 1/2.

Equation (9) is defined on a two-dimensional uniform and Cartesian grid which consists
of a series of nodes spaced by a distance ∆n in the x and y directions. This lattice satisfies
the acoustic scaling condition c = ∆n/∆t, where ∆t is the numerical time step. Therefore,
the streaming process, on the left-hand side of equation (9), is characterized by the transport
of the populations from one node to a neighboring one at the lattice speed c. It is balanced
by the collision process, on the right-hand side of the equation.

D’Humières and Ginzburg [17] have shown that the discretization errors on steady-state
bulk solutions and specific boundary rules are controlled by an effective relaxation time, also
called magic collision parameter, Λ = (τ̂+ − 1/2)(τ̂− − 1/2). Small discretization errors are
generally expected for values of Λ close to 0.1 [2]. In particular, the value Λ = 1/4 ensures
optimal stability conditions [26, 27].

2.4. From unsteady to steady Boltzmann equations

The TRT Boltzmann equation (6), or its discretized counterpart (9), are not suitable
to describe highly viscous unsteady flows. As shown in the following, the fluid viscosity is
determined by the relaxation time τ+, namely ν = c2

sτ
+, where ν is the kinematic viscosity.

A typical numerical time scale related to viscous diffusion can thus be expressed as tν =
∆n2/ν = 3/τ+, using the lattice scaling ∆n = ∆t = 1 and cs = 1/

√
3. In order to

accurately describe unsteady diffusive phenomena, the diffusive time scale should be larger
than numerical time step, namely tν > 1. In theory, this condition is only satisfied when
τ+ < 3. Even though in practice this critical value may vary from one case to the other,
this condition illustrates that the lattice-Boltzmann method is generally not reliable for the
simulation of highly viscous unsteady flows involving large values of the relaxation time.

Other time integration strategies, as dual-time-stepping approaches [28], can be employed
to simulate highly viscous unsteady flows using the lattice-Boltzmann method. This method
relies on the accuracy of the lattice-Boltzmann in simulating steady fluid flows. Therefore,
in the following the focus is first placed on the analysis of the steady TRT-LB method. The
simulation of unsteady flows will be addressed in a future work.

Here, the unsteady LB equation is thus only employed as a method to reach steady flow
solutions. The transient part of the simulations is ignored, and a focus is placed on the
reliability of the obtained steady solutions. Once a steady solution is reached, the system
satisfies the steady TRT lattice-Boltzmann equation. Its continuous counterpart is the
steady Boltzmann equation, which is obtained by ignoring the time derivative in equation
(6),

∂

∂xα
(ci,αfi) = − 1

τ+

(
f+
i − f

eq+
i

)
− 1

τ−
(
f−
i − f

eq−
i

)
. (11)
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3. Analysis of the steady TRT Boltzmann equation

In the following, the steady TRT Boltzmann equation is analyzed in order to characterize
the emerging macroscopic flow behavior, especially in the viscous flow regime. The analysis
is based on the velocity-discretized Boltzmann equation (11), in order to ignore numerical
errors related to the space-time discretization, which have already been thoroughly examined
in prior works [17].

3.1. Hermite projection of the Boltzmann equation

To recover the macroscopic equations, equation (11) is projected onto Hermite polyno-
mials of increasing order, through the discrete operator

< fi|H(n)
i >=

∑
i

fiH(n)
i , (12)

where H(n) is the n-rank Hermite tensor. Hermite tensors from order n = 0 to order n = 2
can be expressed as [29]

H(0)
i = 1, H(1)

i,α = ci,α, H(2)
i,αβ = ci,αci,β − c2

sδα,β. (13)

It should be noted that the following analysis is based on the equilibrium distribution func-
tions defined by equation (8), that are already truncated in the Hermite space. Indeed,
this analysis only aims at deriving the macroscopic equations recovered by the present LB
model, and the effect of Hermite truncation is not directly addressed.

At order 0, the Boltzmann equation (11) recovers the mass equation,

∂

∂xα
(ρuα) = 0. (14)

Then the first-order projection,

∂

∂xα
(
∑
i

fici,αci,β) = 0, (15)

involves the second-order moment Παβ =
∑

i fici,αci,β. Its equilibrium part Πeq
αβ =

∑
i f

eq
i ci,αci,β

can be directly computed from the expression of f eqi ; it reads Πeq
αβ = ρc2

sδαβ + ρuαuβ. Ex-
pression (15) thus becomes

∂

∂xα
(ρc2

sδαβ + ρuαuβ) +
∂

∂xα
(
∑
i

fneqi ci,αci,β) = 0. (16)

Expression (16) governs the flow momentum transport. The first term of the equation
relates to inviscid fluxes. The flow pressure can be identified by introducing the isothermal
ideal gaz state equation, p = ρc2

s. However, the non-equilibrium second-order moment,
Πneq
αβ =

∑
i f

neq
i ci,αci,β, remains to be determined. In order to recover a hydrodynamic

behavior, Πneq
αβ should be equal to the viscous stress tensor.
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The tensor Πneq
αβ can be explicitly computed by performing a second-order projection of

the Boltzmann equation, as detailed in Appendix B. The resulting equation reads

2ρc2
sSβγ +

∂

∂xα
(Qneqαβγ)− uγ

∂

∂xα
(Πneq

αβ )− uβ
∂

∂xα
(Πneq

αγ ) =
−Πneq

βγ

τ+
, (17)

whereQαβγ is the third-order moment defined byQαβγ =
∑

i ficαcβcγ and Sαβ = 1
2

(
∂uα
∂xβ

+
∂uβ
∂xα

)
is the shear-rate tensor. The viscous stress tensor can be recognized in the first term of equa-
tion (17). However, other terms represent non-hydrodynamic contributions to the macro-
scopic flow behavior. These terms are quantified hereafter following the Chapman-Enskog
procedure.

3.2. Chapman-Enskog expansion

The distribution functions are expanded around the equilibrium solution fi = f eqi using
the expansion parameter ε� 1, namely

fi =
N∑
n=0

εnf
(n)
i , (18)

where N is the order of the expansion. The definition of the expansion parameter ε will
be discussed in the next section. At order 0, the distribution functions are equal to the
equilibrium distributions, f

(0)
i = f eqi . The multi-scale expansion consists in substituting this

expansion in the Boltzmann equation and projecting the equation on different orders of ε.

The space derivative is considered to be first order, and expanded in the form
∂

∂x
= ε

∂

∂x

(1)

.

If ε is small enough, fi can be reasonably approximated by fi ≈ f eqi + εf (1). By expanding

the shear-rate tensor as Sβγ = εS
(1)
βγ , expression (17) becomes

εΠ
(1)
βγ = −2τ+ρc2

sεS
(1)
βγ − ε

2τ+ ∂
(1)

∂xα
(Q

(1)
αβγ) + uγτ

+ε2
∂(1)

∂xα
(Π

(1)
αβ) + uβτ

+ε2
∂(1)

∂xα
(Π(1)

αγ ), (19)

which at first order reduces to

εΠ
(1)
βγ = −2τ+ρc2

sεS
(1)
βγ , (20)

or, reversing the spatial derivative expansion,

Πneq
βγ = −2τ+ρc2

sSβγ. (21)

Substituting Πneq
βγ in the momentum equation (16) finally gives the expected steady momen-

tum equation. By adding the mass equation (14), the Navier-Stokes equations are obtained,

∂

∂xα
(ρuα) =0, (22a)

∂

∂xβ
(ρuαuβ) =− ∂p

∂xα
+

∂

∂xβ
(2µSαβ), (22b)
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with p = ρc2
s and µ = ρc2

sτ
+. The relaxation time τ+, which controls the fluid viscosity,

is called the viscous relaxation time in the following. In contrast, τ− is not involved in the
macroscopic equations; it is called the free relaxation time. Note that in the above analysis,
no assumption has been made concerning the viscous relaxation time τ+; in particular, τ+

can be space dependent [2]. The definition µ = ρc2
sτ

+ thus applies to non-uniform viscosities,
e.g. shear-dependent viscosities, as already done in prior works [12, 24].

The above Chapman-Enskog analysis is equivalent for both the single- and two-relaxation-
time collision models, since the multi-scale expansion only has to be performed on the
second-order projection of the Boltzmann equation (17), which only involves the viscous
relaxation time. Therefore, both models may appear to be equivalent at the macroscopic
level. In both cases, the derived hydrodynamic equations (22) rely on the small value of the
expansion coefficient ε, as all terms ∼ O(ε2) have been neglected. If ε � 1 is not satisfied,
additional macroscopic equations can emerge and lead to non-hydrodynamic behaviors, e.g.
visco-elastic effects [30]. The definition of ε is thus crucial to close the analysis. As discussed
in the following, this aspect reveals important differences between the SRT and TRT models.

3.3. Discussion on the Knudsen number

The Chapman-Enskog expansion aims at expressing deviations from the equilibrium solu-
tion through small perturbations whose amplitude is quantified by the expansion parameter
ε. Therefore, this parameter controls the magnitude of the non-equilibrium functions; in
particular, fneqi = 0 must be satisfied when ε = 0. In the case of the SRT collision model,
the solution tends to the equilibrium distribution when the relaxation time tends to 0.
Therefore, τ+ can be employed as a perturbative parameter, namely εSRT ∼ τ+. Gener-
ally, the expansion parameter is rather expressed as a Knudsen number Kn, quantifying
the ratio between the molecular free path length l and the typical hydrodynamic length
scale D. The Knudsen number can be determined based on the Reynolds Re and Mach Ma
numbers through the von Kármán relation, namely Kn = Ma/Re, which can be re-written
as Kn = τ+cs/D. If the value of cs is fixed by the lattice as in the present LB model, it
is seen that both definitions εSRT ∼ τ+ or εSRT ∼ Kn are equivalent for a given value of
D. The Chapman-Enskog expansion can only be performed if Kn � 1; consequently, the
SRT lattice-Boltzmann method only recovers the Navier-Stokes equations for low Knudsen
number configurations. The relation ε ∼ τ+ clearly indicates the limitation of the SRT
collision model: the viscous relaxation time, i.e. the fluid viscosity, has an influence on the
resulting macroscopic equations, since large relaxation times (or large Kn) will result in the
growth of non-hydrodynamic modes in the momentum equation (17).

The definition ε ∼ τ+ can not be employed in the case of the TRT collision model, since
both τ+ and τ− are expected to impact the magnitude of the non-equilibrium functions.
The relevant expansion parameter can be determined by expressing the non-equilibrium
populations as functions of both relaxation times, as detailed in Appendix C. This analysis
shows that, in the case of the TRT collision model, the equilibrium solution is achieved
when the product of both relaxation times tends to 0, namely τ+τ− → 0. Note that this
result holds for continuous equations, as additional terms may emerge at the discrete level.
The parameter εTRT ∼

√
τ+τ− can thus be considered as a relevant parameter for the
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expansion. Interestingly, this number is equivalent to the magic collision number Λ = τ+τ−,
identified by d’Humières and Ginzburg [17], that determines the magnitude of the numerical
errors of the TRT lattice-Boltzmann equation, i.e. the TRT Boltzmann equation (11) after
spatial discretization. Here, it is proposed to express it as an effective Knudsen number,
Kn∗ =

√
τ+τ−cs/D =

√
Λcs/D, corresponding to the relevant expansion parameter for the

Chapman-Enskog analysis of both the SRT and TRT Boltzmann equations.
The Knudsen number controls the reliability of the Boltzmann equation in modeling

fluid flows, as it determines the magnitude of high-order non-hydrodynamic terms in the
expression of the shear-stress tensor (see equation (19)). Small values of Kn∗ should there-
fore be used in LB simulations. Using a SRT collision model, small Knudsen numbers can
only be achieved by choosing small relaxation times, i.e. by performing weakly viscous sim-
ulations. In contrast, the TRT model allows one to freely increase the viscous relaxation
time, provided that τ+τ− remains small. This property, already established based on the
space-discretized equations [17], is supported by the present continuous analysis, providing
a consistent theory at both the discrete and continuous levels.

3.4. Non-dimensional macroscopic equations and incompressibility assumption

Generally, a hydrodynamic problem described by the Navier-Stokes equations (22) is
expected to depend at least on five physical parameters, namely a reference density ρ0, a
reference velocity u0, a reference kinematic viscosity (or relaxation time) ν0 = c2

sτ
+
0 , the

speed of sound cs and a reference length scale D. Following the Buckingham theorem, the
non-dimensional flow solution should only depend on two non-dimensional parameters, that
are often defined as the Reynolds number Re and Mach number Ma,

Re =
u0D

ν0

, Ma =
u0

cs
. (23)

For inertial flows, a set of non-dimensional physical quantities can be defined as u∗ =
u/u0, ρ∗ = c2

s(ρ − ρ0)/ρ0u
2
0, ν∗ = ν/ν0 and S∗ = SD/u0. The non-dimensional flow

equations read

∇ · (u∗) +Ma2∇ · (ρ∗u∗) = 0, (24a)

∇ · (u∗u∗) +Ma2∇ · (ρ∗u∗u∗) = −∇(ρ∗) +
2

Re
∇ · (ν∗S∗) +

2

Re
Ma2∇ · (ρ∗ν∗S∗). (24b)

If the Mach number is small enough, these equations recover the steady incompressible
Navier-Stokes equations,

∇ · (u∗) = 0, (25a)

∇ · (u∗u∗) = −∇(ρ∗) +
2

Re
∇ · (ν∗S∗). (25b)

Note that ν∗ = 1 in the Newtonian case.
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Alternatively, if the flow is expected to be dominated by viscous stresses, as in the present
study, the non-dimensional density should be defined as ρ̂∗ = c2

s(ρ− ρ0)D/µ0u0. A different
set of non-dimensional equations is then obtained,

∇ · (u∗) +
Ma2

Re
∇ · (ρ̂∗u∗) = 0, (26a)

Re∇ · (u∗u∗) +Ma2∇ · (ρ̂∗u∗u∗) = −∇(ρ̂∗) + 2∇ · (ν∗S∗) + 2
Ma2

Re
∇ · (ρ̂∗ν∗S∗). (26b)

In this case, the incompressible Navier-Stokes equations (25) are recovered if the Mach and
Reynolds numbers satisfy Ma2 � Re, or equivalently T = Ma2/Re = τ+

0 u0/D � 1, where
T is the viscous incompressibility factor.

In summary, the above theoretical analysis indicates that highly viscous flow simulations
can be performed using the proposed TRT-LB method, provided that the effective Knudsen
number Kn∗ =

√
τ+

0 τ
−
0 cs/D =

√
Λcs/D and the viscous incompressibility factor T =

Ma2/Re are small enough. These features are numerically investigated in the following on
the basis of simulations of the flow past a square cylinder.

4. Physical and numerical setup

The theoretical analysis developed in §3 is applied in the following to the simulation
of the flow past a square cylinder. Complex fluids are described using a Non-Newtonian
Herschel-Bulkley model, described in §4.1. Details on the physical setup are presented in
§4.2, and the numerical parameters are discussed in §4.3.

4.1. Non-Newtonian Herschel-Bulkley model

The Herschel-Bulkley model is employed to simulate non-Newtonian flows of viscoplastic
fluids. The local dynamic fluid viscosity follows

µ =
σ0

γ̇
+ kγ̇n−1, (27)

where σ0 is the yield stress, k is the flow consistency, n is the flow index, γ̇ is the local
shear-rate magnitude, expressed as [22, 31, 32, 33, 34]

γ̇ =
√

2S : S, (28)

and S is the shear-rate tensor. When the fluid is Newtonian, σ0 = 0 and n = 1, thus
the fluid viscosity is equal to the fluid consistency. When n < 1, the fluid exhibits a
shear-thinning behavior, i.e. its viscosity decreases as a function of the shear rate. The
opposite trend, when n > 1, is called shear-thickening behavior. The yield stress introduces
a rapid variation of the viscosity as the shear rate approaches σ0/µ0. This behavior aims
at reproducing the shear-dependent solid/fluid transitions observed in many complex flows.
The solid -like behavior is thus modeled by an infinitely large viscosity.

11



In practice, the local fluid viscosity is varied through the viscous relaxation time τ̂+,

τ̂+ =
1

2
+

µ

ρc2
s

. (29)

The value of µ is determined by computing the local shear-rate tensor based on the non-
equilibrium distribution functions, following equation (21),

S = − 1

2ρc2
s τ̂

+

8∑
i=1

(
fi − f (eq)

i

)
cici. (30)

As τ̂+ is involved in the expression of S, the value of τ̂+ from the previous time step is used.
This has no effect of the numerical results since only steady solutions are considered in this
work.

In many numerical works, the Herschel-Bulkley law is truncated in order to avoid ex-
cessive viscosities in the computational domain that may deteriorate the numerical stability
and accuracy. Regularized viscosity models have been proposed to achieve this truncation
while avoiding sharp transitions between truncated and non-truncated regions [35]. The
effect of this regularization has been analyzed in prior works [12, 36]. Here, an original
Herschel-Bulkley law without truncation is employed, taking advantage of the viscosity-
independence of the present numerical framework. However, the viscosity remains restricted
by the floating point approximation and thus it can not reach infinite values. In particular,
the shear-rate γ̇ = 0 must be avoided in expression (27). In practice, the maximum value of
the viscosity is thus set by controlling the minimum shear-rate value in expression (27), by
redefining γ̇ as γ̇ ← max(γ̇, εγ̇), with εγ̇ = 10−14.

4.2. Physical setup

The physical configuration is schematized in figure 1. A square cylinder of size D is
immersed in an oncoming flow characterized by its velocity u0, density ρ0, consistency k,
flow index n and yield stress σ0. A square computational domain is used; its size is denoted
by L. The flow inlet is set by a velocity Dirichlet condition based on the bounce-back
method. The density at the boundary is set to the reference velocity ρ0. At the outlet, a
pressure Dirichlet condition is ensured through a non-equilibrium bounce-back method. The
boundary density and tangential velocity are set to ρ0 and 0, and the normal flow velocity
is derived from density and momentum balance [37]. Periodic boundary conditions are set
on the upper and lower boundaries. Finally, the no-slip condition on the square cylinder is
enforced by a halfway bounce-back method.

While the bounce-back method is expected to achieve viscosity-independent numerical
errors at the boundary [15, 17], ensuring an accurate solution at the cylinder surface, the
viscosity independence is not theoretically ensured at the outlet where the non-equilibrium
bounce-back approach is applied. However, this boundary has a smaller effect on the overall
flow as it is placed far from the cylinder. In practice, a good viscosity-independence of the
flow solution close to the cylinder is obtained in the present simulations, as illustrated in
the following.
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Figure 1: Schematic view of the physical configuration: a square cylinder of size D is immersed in a flow
characterized by its velocity u0, density ρ0, consistency k, flow index n and yield stress σ0.

Several non-dimensional numbers can be defined to characterize the physical setup. First,
the Reynolds number reads

Re =
ρ0u0D

µ0

, (31)

where µ0 is the reference viscosity. It is associated with a reference viscous relaxation time
τ̂+

0 . If the fluid is Newtonian or if it is a Bingham fluid (n = 1 and σ0 ≥ 0), the reference
viscosity is equal to the fluid consistency, µ0 = k. When n 6= 1, the reference viscosity
depends on the physical configuration. A reference shear rate can be defined as γ̇0 = u0/D,
allowing one to derive the reference viscosity µ0 = kγ̇0

n−1. Overall, the general definition of
the Reynolds number is [36]

Re =
ρ0u

2−n
0 Dn

k
. (32)

Then, the Bingham number,

Bn =
σ0

k

(
D

u0

)n
, (33)

is used to quantify the ratio between the yield stress and the viscous stresses in the flow.
The drag force exerted by the fluid on the body is used to examine the accuracy of the

numerical simulations. The drag force is often normalized by the reference inertial stress to
define the drag coefficient,

Cx =
2Fx
ρ0u2

0D
, (34)
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where Fx is the fluid force in the x direction. However, when the flow is governed by
viscous stresses, it is more convenient to define another coefficient, referred to as viscous
drag coefficient in the following,

Cx,µ = CxRe =
2Fx

kun0D
1−n . (35)

Finally, a third definition should be introduced when a creeping flow is dominated by the
yield stress σ0 at large Bingham numbers, namely

Cx,σ0 =
CxRe

Bn
=

2Fx
σ0D

. (36)

In the present LB implementation, the fluid force F = (Fx, Fy) exerted on the cylinder is
determined through a momentum balance approach. Considering a surface Γ encompassing
the cylinder, the fluid force is balanced, when the steady solution is reached, by the integrated
stresses on Γ, namely

F +

∫
Γ

σ · ndS = 0, (37)

where σ = −pI + 2µS is the stress tensor, I is the unit tensor and n is the unit normal
vector on Γ. Note that the shear-rate tensor S is computed locally using expression (30).
The force F is determined at each time step using equation (37), after the update of the
macroscopic quantities.

4.3. Numerical parameters

The theoretical analysis performed in §3 has shown that a number of numerical param-
eters has to be carefully set in order to ensure the reliability of the simulations. First, the
two relaxation times τ̂+ and τ̂− have to be chosen so that the effective Knudsen number
Kn∗ remains small. In practice, this is achieved by setting the relaxation time product
Λ = (τ̂+− 1/2)(τ̂−− 1/2) to a constant value, equal to 1/6 in the following. This value has
been reported to be optimal for diffusive problems [2] and it keeps Kn∗ to a reasonably small
value: Kn∗ =

√
Λcs/D remains lower than 0.01 as long as the cylinder size D is larger than

10∆n. In non-Newtonian simulations, the free relaxation time τ̂− is thus varied together
with τ̂+ in order to maintain the constant value of Λ.

Then, the viscous incompressibility factor T = Ma2/Re, with Ma = u0/cs, is set to
control the incompressibility of the flow. If the value of the Reynolds number is fixed, T
determines the reference velocity u0 which drastically impacts the computational cost: when
the flow velocity is decreased, transient simulations get longer and more time steps have to
be performed to reach a steady solution. The optimal value of T will be discussed in §5.

When the fluid is non-Newtonian, the local viscosity varies across the computational
domain. This variation may be seen as a variation of the local Reynolds number, which in
turn alters the incompressibility factor. The local Reynolds number is defined as the local
ratio between inertial and viscous stresses, expressed as

Rel =
ρ|u|2

µγ̇
, (38)
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where |u| is the local velocity magnitude. A local Mach Number is also defined as Mal =
|u|/cs. Consequently, the local incompressibility factor reads

Tl =
µγ̇

ρc2
s

. (39)

According to the previous analysis, the fluid viscosity has no influence on the simulation
accuracy as long as the incompressibility factor is small enough. Therefore, the local quantity
Tl is employed to control the variation of the viscosity and ensure the simulation reliability.
Given a maximum value of Tl that is acceptable to satisfy the incompressibility condition,
called Tmax, the local maximum fluid viscosity is defined as µmax = Tmaxρc2

s/γ̇. Following
this procedure, it is seen that µmax tends to infinity when the shear rate tends to zero, which
is expected to allow major viscosity variations in the simulations. In practice, when µmax
is reached during a simulation, the Herschel-Bulkley law is artificially truncated, altering
the accuracy of the non-Newtonian modelling. In this case, the reference incompressibility
factor T can be further decreased until the whole flow solution satisfies the incompressibility
condition, reproducing a realistic Herschel-Bulkley law without any cut-off and achieving
major viscosity ratios across the computation domain.

5. Numerical results

The reliability of the present numerical method for the simulation of creeping non-
Newtonian flows is examined in the following. First, a series of simulations is performed for
intermediate values of the Reynolds number (Re ≥ 1) in order to set the grid resolution and
illustrate the reliability of the method in this well-documented flow regime; these results are
presented in §5.1. Then, the creeping flow regime (Re� 1) is explored in §5.2, in particular
to demonstrate the viscosity independence of the present numerical strategy. The method is
then applied to viscoplastic fluids, namely yield-stress fluid in §5.3 and shear-thinning and
shear-thickening fluids in §5.4.

5.1. Validation results at Re ≥ 1

Figure 2(a) shows the evolution of the drag force coefficient as a function of the mesh
refinement, quantified by D/∆n. The Reynolds number is set to Re = 1 and the size of the
computational domain is L = 50D. A clear converging trend is noted, although the overall
variation of Cx remains small over the considered range of D/∆n. Indeed, it should be
noted that the relative amplitude of the Cx axis in this plot is only about 5%. The influence
of the domain size on the drag force coefficient at Re = 1 is examined in figure 2(b), for
D/∆n = 5. The domain size significantly impacts Cx, even when large domains are used,
as expected due to the low value of the Reynolds number.

In the following, the domain size is limited in order to keep a reasonable computational
cost and allow some parametric analyses. It should be mentioned that, as confinement
effects are expected to increase as the Reynolds number decreases, the following simulations
performed for Re � 1 are necessarily expected to be altered by the domain size, unless a
very large domain is used [39]. Convergence regarding this parameter is thus not required

15



11.4

11.6

11.8

12

12.2

12.4

12.6

0 10 20 30 40 50

(a)

11

11.5

12

12.5

13

13.5

0 50 100 150

(b)

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

(c)

C
x

D/∆n

C
x

L/D

C
x

Re

Sen et al [38]
Present

Figure 2: Flow past a square cylinder for Re ≥ 1: evolution of the drag force coefficient Cx as a function of
(a) the mesh resolution D/∆n and (b) domain size L/D for Re = 1, and (c) as a function of the Reynolds
number for D = 21∆n and L = 50D.

in this study. An intermediate domain size, avoiding strong interactions between boundary
layers close to the body and the domain boundaries, while limiting the computational cost,
is employed in the following. The reference numerical setup is chosen as D = 21∆n and
L = 50D. These parameters allow a reasonably accurate prediction of the flow in the range
Re ∈ [2, 20], as depicted in figure 2(c). Values of the drag coefficient are compared to
the empirical drag law proposed by Sen et al. [38] based on high-definition finite-element
simulations over the range Re ∈ [2, 40], expressed as

Cx = 0.7496 + 10.5767Re−0.66. (40)

This value of the drag force corresponds to simulations involving negligible blockage effects.
It is seen in figure 2(c) that the present numerical setup accurately reproduces this drag
evolution.

In addition, as described in §5.3 and §5.4, the present numerical framework leads to
accurate flow predictions in configurations involving viscoplastic fluids. The effect of the
domain size, which varies as a function of fluid properties, is also further discussed in the
following.
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5.2. Creeping Newtonian flow past a square cylinder

The reliability of the present numerical framework in simulating highly viscous flows is
examined in the following, in the case of a Newtonian fluid. Figure 3(a) shows the predicted
drag force coefficient Cx,µ = CxRe for two Reynolds numbers, Re = 10−2 and Re = 10−3,
over a range of the incompressibility factor T . In order to keep the Reynolds number
constant, T is varied together with the viscous relaxation time τ+ and Mach number Ma.
This procedure drastically impacts the computational efficiency, since more time steps have
to be performed to achieve steady flow solutions when the flow velocity is reduced. According
to the analysis performed in §3, T should be the only numerical parameter impacting the
simulations, and numerical accuracy should be ensured as long as T � 1. This is supported
by the results in figure 3(a), where the drag coefficient exhibits a converging trend as the
incompressibility factor is decreased. The constant value of Cx,µ in the range T � 1 indicates
that other numerical parameters, in particular the viscous relaxation time, have no effect
on the simulation result. Numerical simulations are considered to be reliable in this range,
where numerical parameters approach their regular values, namely τ̂+ ∼ 1, Ma � 1 and
Kn� 1 (see table 1 described hereafter).

Some additional simulations have been performed using a domain length L = 100D to
allow quantitative comparison with the numerical data reported by Pantokratoras[39] based
on this particular geometry. In this configuration, for Re = 0.01, the drag predicted by
the present method Cx,µ = 6.74 is comparable to the value of 7.2 reported in that paper.
Small differences between both simulations may however be due to the employed boundary
conditions, since velocity Dirichlet conditions are set on the upper and lower boundaries
of the domain in Pantokratoras’ simulations, and thus the confinement conditions differ
between both studies. Further comparison with the data issued from that study, including
a discussion on the domain boundary effects, will be presented in §5.4.

Values of Cx,µ are very similar for both values of the Reynolds number, suggesting that
the creeping flow regime Re ≈ 0 is reached. The relative variation of Cx,µ when T is varied
from 0.001 to 0.1 is lower than 1%. Therefore, T = 0.1 appears to be the optimal value in
order to ensure numerical accuracy while minimizing the computational cost.

The effect of T on the flow in the vicinity of the cylinder is depicted in figures 3(b,c). Both
the streamwise flow velocity and shear-rate magnitude remain almost unaltered for T ≤ 0.1.
In this range, the flow patterns are consistent with the expected creeping flow features. In
particular, the flow presents symmetries along both the streamwise and cross-flow directions.
The highest shear regions are found close to the edges of the cylinder. In contrast, important
flow variations occur for T > 0.1 due to the emergence of compressibility effects. A high
shear region emerges downstream of the body and the flow symmetry is broken. Overall,
the evolution of the flow pattern is consistent with the rapid variation of the drag coefficient
observed in figure 3(a) for T > 0.1.

Details on the numerical setups associated with the data plotted in figure 3 are provided
in table 1. It can be noted that the Mach number, Knudsen number and viscous relaxation
time increase as functions of T . It should be recalled that Kn designates the von Kármán
Knudsen number, namely Kn = Ma/Re. The value of Kn varies over a wide range and
it typically violates the condition Kn � 1. Moreover, the viscous relaxation time greatly

17



8

8.1

8.2

8.3

8.4

0.001 0.01 0.1 1

1 2

3

(a)

C
x
,µ

T

Re = 10−2

Re = 10−3

−2

−1

0

1

2

−2 −1 0 1 2

(b)

−2

−1

0

1

2

−2 −1 0 1 2

ux/u0

−2

−1

0

1

2

−2 −1 0 1 2

y
/D

x/D

−2

−1

0

1

2

−2 −1 0 1 2

1

x/D

−2

−1

0

1

2

−2 −1 0 1 2

0 1

2

x/D

−2

−1

0

1

2

−2 −1 0 1 2

3

−2

−1

0

1

2

−2 −1 0 1 2

(c)

−2

−1

0

1

2

−2 −1 0 1 2

γ̇D/u0

−2

−1

0

1

2

−2 −1 0 1 2

y
/D

x/D

−2

−1

0

1

2

−2 −1 0 1 2

1

x/D

−2

−1

0

1

2

−2 −1 0 1 2

0 1

2

x/D

−2

−1

0

1

2

−2 −1 0 1 2

3

Figure 3: Effect of the incompressibility factor on Newtonian creeping flow simulations: (a) evolution of the
drag force coefficient as a function of T , for two values of the Reynolds number Re � 1, and iso-contours
of the non-dimensional (b) streamwise flow velocity and (c) shear-rate magnitude close to the cylinder, for
Re = 10−2 and for three values of T indicated by the labels in (a).
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T Ma Kn τ̂+ Cx,µ

Fig. 3

Re = 10−2

10−3 3.16× 10−3 3.16× 10−1 12 8.27
10−2 10−2 1 36.9 8.27
10−1 3.16× 10−2 3.16 115.4 8.25

1 10−1 10 364.2 8.13

Re = 10−3

10−3 10−3 1 36.9 8.26
10−2 3.16× 10−3 3.16 115.4 8.26
10−1 10−2 10 364.2 8.25

1 3.16× 10−2 31.6 1149.9 8.13

Fig. 4 Re = 10−4 0.1 3.16× 10−3 31.6 1149 8.25
Re = 10−5 0.1 10−3 100 3638 8.25
Re = 10−6 0.1 3.16× 10−4 316 11494 8.25

Table 1: Details on the numerical setups analyzed in figures 3 and 4.

departs from unity. In particular, the case Re = 10−3 and T = 10−1 shows that accurate
simulations can be performed up to Kn = 10 and τ̂+ ≈ 360.

To further illustrate that the simulation is not altered by the numerical parameters if
the incompressibility factor is fixed, the flow past a square cylinder has been computed
over a range of Reynolds numbers Re � 1 for T = 0.1. The resulting evolution of the
drag force coefficient is plotted in figure 4(a). As the Reynolds number decreases, the flow
solution approaches the asymptotic creeping flow regime and the drag coefficient Cx,µ rapidly
converges to a constant value equal to 8.25, approximately. This limit value is close to the
drag value of 8.4 obtained using a linear lattice-Boltzmann model, i.e. by keeping only the
first two terms of the equilibrium functions in equation (8), to model the Stokes regime.
The viscosity-independence of the drag force in the Stokes regime using the TRT model
has been investigated in prior works [9, 10, 13]. Here, the constant evolution of the drag in
the range Re � 1 indicates that the non-linear simulations remain accurate even at very
low Reynolds numbers. Other flow quantities also remain unaltered by variations of the
Reynolds number in the region Re � 1. This is depicted in figures 4(b,c), which show the
evolutions of the streamwise flow velocity and shear rate along the cross-flow direction for
Re = 10−3 and Re = 10−5, in the vicinity of the body for x/D = 0. It can be noted that
both simulations result in identical flow solutions. The numerical setups corresponding to
the data plotted in figure 4 have also been reported in table 1. Knudsen numbers up to
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Figure 4: Effect of the Reynolds number Re � 1 on Newtonian creeping flow simulations, for a fixed
incompressibility factor T = 0.1: (a) evolution of the drag force coefficient Cx,µ as a function of Re, and
cross-flow evolution of the non-dimensional (b) streamwise velocity and (c) shear-rate magnitude close to
the upper square surface at x/D = 0, for two values of the Reynolds number.

Kn ≈ 310 and relaxation times up to τ̂+ ≈ 11000 can be achieved without altering the
simulation accuracy, which further supports the theoretical analysis proposed in §3.

5.3. Creeping yield-stress flow past a square cylinder

According to the previous numerical analysis of the Newtonian flow past a square cylin-
der, the fluid viscosity can be freely varied in the present numerical framework as long as
the condition T ≤ 0.1 is satisfied. In the following, the focus is placed on yield-stress flow
simulations. In this case, large variations of the local incompressibility factor Tl (39) are
expected due to local variations of the flow viscosity. In particular, Tl may locally exceed
the nominal incompressibility factor T based on the reference viscosity. As described in
§4.3, the numerical accuracy is thus ensured by setting the maximum value of Tl in the
simulations. Based on the previous Newtonian analysis, this value is chosen as Tmax = 0.1.
Tmax controls the local value of the maximum fluid viscosity, possibly resulting in the trun-
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Figure 5: Effect of the global incompressibility parameter T = Ma2/Re on yield-stress flow simulations,
for Re = 0.01 and Bn = 1: (a) evolution of the yield drag coefficient Cx,σ0

as a function of T , and (b) iso-
contours of the normalized viscous relaxation time for three values of T , indicated by the labels reported in
(a). Note that the maximal local incompressibility factor Tmax is set to 0.1 (see §4.3). In (a), the horizontal
dashed line indicates the drag value reported by Nirmalkar et al. [40].

cation of the Herschel-Bulkley law. The nominal incompressibility factor remains a free
parameter, that should be chosen in the range T ∈]0, Tmax]. Small values of T are expected
to allow large viscosity variations. In contrast, viscosity truncation is expected to occur if
T is too close to Tmax. In practice, the value of Tl is controlled at each time step. In the
present implementation, warning messages are sent to the simulation output when viscosity
truncation occurs on one or more lattice nodes. Truncated simulations should be carefully
considered: while small and localized viscosity truncations may have negligible effects on
the overall flow solution, important truncations can significantly alter the flow accuracy, as
illustrated hereafter. Therefore, it is generally recommended to avoid viscosity truncation
(by decreasing T ) in order to ensure the numerical accuracy.

The effect of T is examined in the following in the case Bn = 1 and Re = 0.01. Figure
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5(a) shows the evolution of the drag force coefficient over the range T ∈ [0.001, 0.1]. The
drag force exhibits a constant evolution for T ≤ 0.01. In this region, no viscosity truncation
occurs, i.e. the Herschel-Bulkley law is fully recovered in the limit of the floating point
approximation (see §4.1). In addition, the predicted value of the drag is in agreement
with the force computed by Nirmalkar et al. [40], which has been reported in the figure.
As expected, the case T = Tmax = 0.1 results in viscosity truncation. The effect of the
truncation on the drag force is clearly noted in figure 5(a).

The viscosity patterns associated with the three simulations reported in figure 5(a) are
depicted in figure 5(b) using iso-contours of the local viscous relaxation time. As expected
from figure 5(a), similar patterns are observed for T = 0.001 and T = 0.01. The flow
exhibits sharp interfaces between solid- and fluid -like regions, called yield surfaces [40].
These interfaces are associated with considerable viscosity ratios, extending over more than
10 orders of magnitude. In particular, substantially large viscosities appear in low-shear
regions, as allowed by the present definition of µmax. The viscosity pattern is in agreement
with previously reported simulation results [40]. The fluid region exhibits a figure-eight
shape in the vicinity of the body. Three types of solid regions are observed: (i) the far-field
region, where the fluid follows a solid motion, (ii) two isolated regions of solid rotation on
the upper and lower sides of the body, and (iii) two triangular stagnation regions attached
to the upstream and downstream sides of the cylinder. A major alteration of the flow is
noted when the Herschel-Bulkley law is truncated, as illustrated by the case T = 0.1.

The described flow pattern has implications on the effect of the domain size on the flow
solution. Indeed, the emergence of a solid -like region away from the body indicates that the
flow is close to uniform in these regions. If the computational boundaries are far enough
from the body surface to allow this fluid/solid transition, their effect on the flow is thus
expected to be limited, even though the Reynolds number is small. This is confirmed by the
domain size convergence study performed by Nirmalkar et al. [40].

The evolution of the drag force as a function of the Bingham number is examined in
figure 6(a). The maximum incompressibility factor is maintained to Tmax = 0.1. As Bn
increases, the global incompressibility factor has to be decreased in order to avoid viscosity
truncation. The values T = 10−2, 10−3, 10−4, 10−5 have been employed for the cases
Bn = 1, 10, 100, 1000, respectively. Note that the relevant value of T can be estimated
a priori, thus avoiding unnecessary numerical tests. Indeed, the typical value of Tl can be
expressed, using γ̇ ≈ u0/D, as Tl = T (1 + Bn). The condition Tl < Tmax thus leads to
T < Tmax/(1 +Bn), indicating that in the range Bn� 1, T should be divided by 10 when
Bn is multiplied by 10. The data issued from the numerical work of Nirmalkar et al. [40]
have been reported in figure 6(a) for comparison purpose. An excellent agreement is noted
between both studies.

The solid and fluid regions are determined by defining the yield surface as the iso-contour
γ̇ = ε, with ε � 1. The value ε = 10−3 is used in the following. The resulting patterns
are plotted in figure 6(b) for three values of the Bingham number. The evolution of the
yield surface is well-captured by the present simulations, and the predicted patterns are
consistent with the numerical results of Nirmalkar et al. [40]. Overall, the size of the fluid
region tends to decrease as a function of Bn. In contrast, solid regions are extended, leading
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Figure 6: Effect of the Bingham number Bn on yield-stress flow simulations, for Re = 0.01: (a) evolution
of the yield drag coefficient Cx,σ0

as a function of Bn, predicted by the present simulations and reported
by Nirmalkar et al. [40], and (b) visualization of the yield surface for three values of Bn, indicated by the
labels reported in (a).

to the formation of two equilateral triangular stagnation regions and two large solid -rotation
regions at large Bingham numbers.

5.4. Creeping shear-thinning and shear-thickening flows past a square cylinder

Simulations of shear-thinning and shear-thickening flows are considered in the following.
The Bingham number is set to zero, and the simulations are performed over a range of the
flow index n for Re = 0.01. Following the same procedure as that employed in the previous
section, the maximum incompressibility parameter Tmax is set to 0.1. All simulations are
performed with T = 0.01, a value that is small enough to avoid any viscosity cut-off over
the range n ∈ [0.2, 1.8].

The evolution of the drag force coefficient is plotted in figure 7(a). The drag force signif-
icantly decreases as a function of the flow index. The numerical data of Pantokratoras [39]
have also been reported in the figure. These data correspond to the unconfined simulations
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Figure 7: Effect of the flow index n of shear-thinning and shear-thickening simulations: (a) evolution of the
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(c) the non-dimensional streamwise flow velocity in the vicinity of the body in the case L = 100D, for
n = 0.2 and n = 1.8.
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performed in that study, carried out with a domain size L = 50000D. A good agreement is
observed between both studies in highly shear-thinning and highly shear-thickening regions.
However, the drag force predicted by the present simulations is substantially higher when
the flow index in close to one. These deviations are expected to relate to blockage effects,
as Pantokratoras [39] pointed out that very large computational domains must be used in
this case to achieve unconfined simulations. Additional computations with larger domains
have been performed in order to examine this aspect. These simulations, also reported in
figure 7(a), confirm that the present drag force tends to the one computed by Pantokratoras
[39] as the domain size increases. The effect of the domain size is however contrasted over
the range of flow indices, as important variations of the drag force are principally observed
when n is close to 1.

Figures 7(b,c) present visualizations of the flow in the vicinity of the cylinder for two
values of the flow index, namely n = 0.2 and n = 1.8, corresponding to highly shear-thinning
and highly shear-thickening cases. Figure 7(b) shows iso-contours of the viscous relaxation
time. Overall, it can be noted that variations of the flow viscosity are much less pronounced
than in the case of the yield-stress flow, visualized in figure 5. Shear-thinning and shear-
thickening simulations can thus be considered to be less critical regarding the effect of the
fluid viscosity on the numerical accuracy. It should be noted that when n = 0.2, the flow
tends to exhibit large viscosities in low-shear regions, i.e. the shear-thinning property does
not systematically result in a viscosity decrease compared to the reference viscosity. These
low-shear regions are encountered in the far-field region, but also close to the body near
the upstream and downstream square surfaces. Similarly, low-viscosity regions emerge in
the shear-thickening case. In both cases, viscosity variations are mostly found close to
the body surface. The shear-thinning case however exhibits larger viscosity gradients; in
particular, thin low-viscosity layers are noted on the upper and lower body surfaces. These
smaller flow length scales can be clearly noted in figure 7(c), which shows iso-contours of
the streamwise flow velocity. The important viscosity decrease close to the cylinder surface
in the shear-thinning case results in remarkably thin boundary layers. Similar behaviors,
especially characterized by a major increase of the wall vorticity when the flow index n
decreases, have been observed in prior simulations of shear-thinning flows past bluff bodies
[41]. Consequently, the far-field flow velocity is rapidly recovered away from the body. This
is consistent with the small blockage effects observed in the low-n region in figure 7(a). In
contrast, the shear-thickening flow exhibits much smoother velocity variations, which might
increase the effect of the domain size in this case. The important effect of n on the flow
length scale is further illustrated in figure 8, which shows far-field iso-contours of the non-
dimensional streamwise flow velocity for n = 0.2 and n = 1.8. This evolution has important
numerical implications, as either large computational domains or fine mesh resolutions may
be required to achieve high numerical accuracy, depending on the value of the flow index.

6. Summary

This paper provides general guidelines for the simulation of highly viscous steady flows
based on a general two-relaxation-time lattice-Boltzmann framework. The analysis of the
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space-continuous mesoscopic equations, performed through Hermite projection and multi-
scale expansion, shows that hydrodynamic behavior can be recovered at the macroscopic
scale for any fluid viscosity, provided that the product of both relaxation times τ+τ− remains
small enough. An alternative definition of the Knudsen number, controlling the magnitude
of the non-equilibrium part of the mesoscopic solution, must however be considered, namely
Kn∗ =

√
τ+τ−cs/D. Its magnitude can be controlled by varying τ− which is a free numerical

parameter. The present analysis supports previous works showing that bulk numerical
solutions of the discrete TRT lattice-Boltzmann equation are viscosity-independent if Λ =
τ+τ−, which controls the magnitude of numerical errors, is kept constant [17].

The main limitation concerning the fluid viscosity emerges when deriving the non-
dimensional macroscopic equations, which involves viscosity-dependent compressibility terms.
In order to achieve incompressibility, the incompressibility parameter T = Ma2/Re must
satisfy T � 1. A local definition of T is proposed to control the accuracy of the flow in
simulations involving variable viscosities, i.e. non-Newtonian fluids. This analysis shows
that considerably large fluid viscosities can be numerically allowed in low-shear regions, a
feature that proved to be useful for yield-stress flow simulations.

These properties have been confirmed based on a series of numerical simulations of the
creeping flow past a square cylinder. When the fluid is Newtonian, incompressibility of the
flow is ensured for T = 0.1. This value of T should be used in future works to set the value of
the Mach number in low-Reynolds-number simulations and to minimize the computational
cost. Once T and Kn∗ are fixed, highly viscous simulations can be performed: relaxation
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times up to 104 are employed in the present work without any effect on the flow solution.
Non-Newtonian flows have been simulated using an Herschel-Bulkley fluid model. If the

local value of T is properly controlled, major viscosity variations can be reproduced. Yield-
stress flow solutions exhibit sharp yield-surfaces associated with viscosity ratios larger than
1010. Simulations have been performed over the range of Bingham numbers Bn ∈ [1, 1000],
i.e. including regimes that had not been simulated using the LB method; the predicted flow
solutions are in agreement with previous numerical results based on Navier-Stokes methods.
Shear-thinning and shear-thickening flows are also accurately reproduced over a wide range
of flow indices n ∈ [0.2, 1.8].
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Appendix A. Symmetric and anti-symmetric population properties

Equilibrium and non-equilibrium populations are decomposed into symmetric and anti-
symmetric parts,

f eq+i =
1

2
(f eqi + f eq

i
) ; f eq−i =

1

2
(f eqi − f

eq

i
), (A.1)

and

fneq+i =
1

2
(fneqi + fneq

i
) ; fneq−i =

1

2
(fneqi − fneq

i
), (A.2)

satisfying f eqi = f eq+i +f eq−i and fneqi = fneq+i +fneq−i . It should be recalled that the following
identities are also satisfied by these functions:∑

i

f eqi =
∑
i

fi = ρ ;
∑
i

f eqi ci =
∑
i

fici = ρu (A.3)

and ∑
i

fneqi = 0 ;
∑
i

fneqi ci = 0. (A.4)

Furthermore, moments of fi are fully recovered by the symmetric populations at even orders
and by the anti-symmetric ones at odd orders. At orders 0 and 1, this is expressed as∑

i

f eq+i = ρ ;
∑
i

f eq−i = 0 ;
∑
i

fneq+i =
∑
i

fneq−i = 0, (A.5)

and ∑
i

f eq+i ci = 0 ;
∑
i

f eq−i ci = ρu ;
∑
i

fneq+i ci =
∑
i

fneq−i ci = 0. (A.6)
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More generally, this property may be expressed for any n-order moment P (n) =
∑

i fic
n
i as

P (n) = P (n)+ =
∑
i

f+
i c

n
i if n is even (A.7)

and
P (n) = P (n)− =

∑
i

f−
i c

n
i if n is odd. (A.8)

Appendix B. Second-order Hermite projection of the TRT Boltzmann equation

The second-order projection of the TRT Boltzmann equation reads

∂

∂xα
(Qαβγ − ρc2

suαδβγ) = − 1

τ+
Πneq+
βγ − 1

τ−
Πneq−
βγ , (B.1)

where Qαβγ is the third-order moment defined by Qαβγ =
∑

i fici,αci,βci,γ and Πneq+
βγ and

Πneq−
βγ are the symmetric and anti-symmetric parts of Πneq

βγ . It can be shown that, due to

symmetry (ci,βci,γ = ci,βci,γ), Πneq−
βγ = 0 and Πneq+

βγ = Πneq
βγ :

Πneq−
βγ =

1

2

∑
i

fneqi ci,βci,γ −
1

2

∑
i

fneq
i
ci,βci,γ = 0, (B.2a)

Πneq+
βγ =

1

2

∑
i

fneqi ci,βci,γ +
1

2

∑
i

fneq
i
ci,βci,γ = Πneq

βγ . (B.2b)

The equilibrium part of Qαβγ can be computed using the equilibrium distributions, namely
Qeqαβγ = ρuαuβuγ + ρc2

s(uαδβγ + uβδαγ + uγδαβ). Equation (B.1) thus becomes

∂

∂xα
(ρuαuβuγ + ρc2

s(uβδαγ + uγδαβ) +Qneqαβγ) = − 1

τ+
Πneq
βγ . (B.3)

This second-order projection is then simplified by linear combination with the first-order
equation (16). Multiplying (16) by uγ gives

∂

∂xα
(ρuαuβuγ)− ρuαuβ

∂

∂xα
(uγ) + uγ

∂

∂xβ
(ρc2

s) + uγ
∂

∂xα
(Πneq

αβ ) = 0. (B.4)

A similar expression can be obtained by expressing (16) on indices α and γ and multiplying
it by uβ, namely

∂

∂xα
(ρuαuβuγ)− ρuαuγ

∂

∂xα
(uβ) + uβ

∂

∂xγ
(ρc2

s) + uβ
∂

∂xα
(Πneq

αγ ) = 0. (B.5)

Subtracting (B.4) and (B.5) to (B.3), a new second-order projection is obtained:

− ∂

∂xα
(ρuαuβuγ) + ρuα

∂

∂xα
(uβuγ) + ρc2

s

(
∂uγ
∂xβ

+
∂uβ
∂xγ

)
+

∂

∂xα
(Qneqαβγ)− uγ

∂

∂xα
(Πneq

αβ )− uβ
∂

∂xα
(Πneq

αγ ) =
−Πneq

βγ

τ+
.

(B.6)
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Noticing that ρuα
∂

∂xα
(uβuγ) =

∂

∂xα
(ρuαuβuγ) due to the mass conservation equation (14),

and defining the shear-rate tensor Sαβ =
1

2
(
∂uα
∂xβ

+
∂uβ
∂xα

), equation (B.6) simplifies to

2ρc2
sSβγ +

∂

∂xα
(Qneqαβγ)− uγ

∂

∂xα
(Πneq

αβ )− uβ
∂

∂xα
(Πneq

αγ ) =
−Πneq

βγ

τ+
. (B.7)

Appendix C. Equilibrium solutions of the TRT Boltzmann equation

First, the dynamic equation for the symmetric populations f+
i is derived using

∂

∂xα

(
ciαf

+
i

)
=

1

2

∂

∂xα
(ciαfi)−

1

2

∂

∂xα
(ciαfi) , (C.1)

which can be rewritten as a function of the collision operators using equation (11),

∂

∂xα

(
ciαf

+
i

)
= − 1

2τ+
fneq+i − 1

2τ−
fneq−i +

1

2τ+
fneq+
i

+
1

2τ−
fneq−
i

. (C.2)

Noticing that f+
i

= f+
i and f−

i
= −f−

i , this equation becomes

∂

∂xα

(
ciαf

+
i

)
= − 1

τ−
fneq−i . (C.3)

Similarly, it can be shown that the dynamics of the antisymmetric populations is governed
by

∂

∂xα

(
ciαf

−
i

)
= − 1

τ+
fneq+i . (C.4)

Summing equations (C.3) and (C.4), the non-equilibrium functions satisfy

−fneqi = τ−
∂

∂xα

(
ciαf

+
i

)
+ τ+ ∂

∂xα

(
ciαf

−
i

)
. (C.5)

Developing f+
i as a function of fi and f−

i , namely f+
i = fi − f−

i , gives

−fneqi = τ−
∂

∂xα
(ciαfi) + (τ− − τ+)

∂

∂xα

(
ciαf

+
i

)
. (C.6)

A similar equation can be obtained by developing f−
i as a function of fi and f+

i ,

−fneqi = τ+ ∂

∂xα
(ciαfi) + (τ+ − τ−)

∂

∂xα

(
ciαf

−
i

)
. (C.7)

Finally, the non-equilibrium distribution functions can be expressed as functions of fi and
fi by summing equations (C.6) and (C.7),

−2fneqi = (τ+ + τ−)
∂

∂xα
(ciαfi)− (τ+ − τ−)

∂

∂xα
(ciαfi) . (C.8)
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On the other hand, non-equilibrium populations fneq
i

also satisfy

−2fneq
i

= (τ+ − τ−)
∂

∂xα
(ciαfi)− (τ+ + τ−)

∂

∂xα
(ciαfi) . (C.9)

When the non-equilibrium functions vanish, namely fneqi = fneq
i

= 0, equations (C.8) and
(C.9) lead to

∂

∂xα
(ciαfi) =

τ+ − τ−

τ+ + τ−
∂

∂xα
(ciαfi) , (C.10a)

∂

∂xα
(ciαfi) =

τ+ + τ−

τ+ − τ−
∂

∂xα
(ciαfi) , (C.10b)

which is equivalent to
τ+ − τ−

τ+ + τ−
=
τ+ + τ−

τ+ − τ−
⇐⇒ τ+τ− = 0. (C.11)
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