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A CONVERGENT FINITE VOLUME SCHEME FOR DISSIPATION DRIVEN

MODELS WITH VOLUME FILLING CONSTRAINT

CLÉMENT CANCÈS AND ANTOINE ZUREK

Abstract. In this paper we propose and study an implicit finite volume scheme for a general

model which describes the evolution of the composition of a multi-component mixture in a
bounded domain. We assume that the whole domain is occupied by the different phases of

the mixture which leads to a volume filling constraint. In the continuous model this constraint

yields the introduction of a pressure, which should be thought as a Lagrange multiplier for the
volume filling constraint. The pressure solves an elliptic equation, to be coupled with parabolic

equations, possibly including cross-diffusion terms, which govern the evolution of the mixture

composition. Besides the system admits an entropy structure which is at the cornerstone of
our analysis. More precisely, the main objective of this work is to design a two-point flux

approximation finite volume scheme which preserves the key properties of the continuous model,

namely the volume filling constraint and the control of the entropy production. Thanks to these
properties, and in particular the discrete entropy-entropy dissipation relation, we are able to

prove the existence of solutions to the scheme and its convergence. Finally, we illustrate the
behavior of our scheme through different applications.

1. Introduction

In this work we consider in Ω a connected bounded domain of RN and for any arbitrary finite
time horizon T > 0 the evolution of a mixture made of n + 1 components. The evolution of the
mixture composition u = (ui)0≤i≤n is given by the following partial differential equations

∂tui + div(−diui∇µi) = 0 in QT = Ω× (0, T ), i = 0, . . . , n,(1)

where di > 0 is the diffusivity of the ith component, µi is its potential and ui denotes its volume
fraction. The whole domain Ω is occupied by the n + 1 phases, leading to the following volume
filling constraint

〈u,1〉 =
n∑
i=0

ui = 1 in QT ,(2)

where 〈·, ·〉 stands for the canonical scalar product of Rn+1. In what follows, we use the same
notation for the canonical scalar product of R(n+1)×N . The difference of the potentials between
the phase i and the phase 0 is given by

µi − µ0 =
δE

δui
(u)− δE

δu0
(u) in QT , i = 1, . . . , n.(3a)

Here, δE
δu (u) =

(
δE
δui

(u)
)

0≤i≤1
: QT → Rn+1 denotes the first variation (or Fréchet derivative) of

some energy functional E : [0, 1]n+1 → R . Motivated by applications to be discussed later on in
Section 8, the energy functional E is assumed to have the generic form

E(u) =

n∑
i=0

∫
Ω

[αi (ui(log(ui)− 1) + 1) + uiΨi] dx+

∫
Ω

B(u) dx,

In the above definition of E, the coefficients αi > 0 can be thought as related to thermal agitation,
Ψi a given external potential acting on phase i (and assumed to be independent on time for
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2 C. CANCÈS AND A. ZUREK

simplicity) and B : Rn+1 → R is a C1,1 convex function. Using the above definition of E we can
rewrite the equation on the difference of the potentials as

µi − µ0 = αi log(ui)− α0 log(u0) + Ψi −Ψ0 +
∂B

∂ui
(u)− ∂B

∂u0
(u), i = 1, . . . , n.(3b)

Finally, we prescribe no-flux boundary and initial conditions:

diui∇µi · ν = 0 on ∂Ω× (0, T ), ui(·, 0) = u0
i in Ω for i = 0, . . . , n,(4)

where we assume that u0
i is nonnegative for i = 0, . . . , n with

∑n
i=0 u

0
i (x) = 1 for a.e. x ∈ Ω and

ν denotes the exterior unit normal vector to ∂Ω.
The system (1)–(4) is not yet closed. Indeed, the potentials µ = (µi)0≤i≤n are defined up to a

common additive constant due to the no-flux boundary conditions. The approach proposed in [31]
for fixing this degree of freedom consists in enforcing a zero-mean condition on some averaged
potential, i.e.,

n∑
i=0

∫
Ω

ui(x, t)µi(x, t) dx = 0 for 0 ≤ t ≤ T.

Here, we rather impose the condition
n∑
i=0

∫
Ω

ui(x, t)µi(x, t) dx =

n∑
i=0

∫
Ω

ui(x, t)
δE

δui
(u(x, t))dx for 0 ≤ t ≤ T,(5)

the meaning of which will become clear after a reformulation of the problem to be presented in
Section 2.2.

2. Preliminary considerations on the continuous model

Prior to discretizing the model under consideration, we discuss several aspects of the continuous
model. First, we highlight in Section 2.1 that the continuous model can be interpreted as the gen-
eralized gradient flow of the energy E in a geometry related to optimal transportation constrained
by the volume filling condition (2). A reformulation of the problem is then proposed in Section 2.2
in order to explicit the corresponding Lagrange multiplier, while we introduce in Section 2.3 an
entropy production estimate on which the definition for weak solutions and our numerical analysis
will rely. Finally, in Section 2.4 we present the main objectives of this work and give a state of
the art.

2.1. Variational interpretation of the model. The system (1)–(5) can be interpreted as a
generalized gradient flow in some constrained Wasserstein space. More precisely, the space

M =

{
u ∈ L1(Ω;Rn+1

+ )

∣∣∣∣ 〈u,1〉 = 1 a.e. in Ω and

∫
Ω

udx = u

}
,

where the mean values u = (ui)0≤i≤n ∈ (0, 1)n+1 is such that u0 =
(
u0
i

)
0≤i≤n belongs to M.

In particular, 〈u,1〉 = 1. The space M can be equipped by the constrained Wasserstein metric
defined as follows: let u0,u1 be two elements of M, then define the squared distance

(6) W2(u0,u1) = inf
F∈X

n∑
i=0

1

di

∫ 1

0

∫
Ω

B(ui, Fi)dxdt,

where B : R × RN → R+ ∪ {+∞} is the convex lower semi-continuous function introduced by
Benamou and Brenier [10] defined by

B(u, F ) =


|F |2
u if u > 0,

0 if F = 0 and u = 0,

+∞ otherwise.

In (6), the fluxes F = (Fi)0≤i≤n are required to belong to the set

X =
{
F : Ω× (0, T )→ Rn×N

∣∣
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∂tui + divFi = 0, Fi · ν = 0, u(·, 0) = u0, u(·, 1) = u1, 〈divF ,1〉 = 0
}
.

While the first four constraints in the definition of X classically appear in the dynamical formu-
lation of the optimal transportation problem, the last constraint 〈divF ,1〉 = 0 is there to enforce
that u(·, t) ∈M for all t ∈ [0, 1], i.e., all along the geodesics joining u0 to u1. We refer to [11] for
the computation of such geodesics.

Saying that the dynamical system (1)–(5) can be seen as the gradient flow of the energy E
in the metric space M equipped with the metric W means that this systems evolves along the
steepest descent direction of the energy E for the geometry of optimal transportation with con-
straint (2). While the gradient flow structure in this complex geometry was already pointed out
in the pioneering works [64], the mathematical analysis for such problems using a variational ap-
proach has been proposed much more recently. The model for incompressible multiphase porous
media flows considered in [26] is very close to our problem, whereas [31] deals with the extension
to fourth-order dissipative system.

As a consequence of the gradient flow structure of the problem (1), the energy E(u) decays
along time. More precisely, multiplying (1) by µi, summing over i = 0, . . . , n and integrating over
Ω yields after integration by parts∫

Ω

〈∂tu,µ〉dx+

n∑
i=0

∫
Ω

diui |∇µi|2 dx = 0.

Using (2) and (3), the first term rewrites∫
Ω

〈∂tu,µ〉dx =

∫
Ω

〈∂tu,
δE

δu
〉dx =

d

dt
E(u).

Therefore,

(7)
d

dt
E(u) = −

n∑
i=0

∫
Ω

diui |∇µi|2 dx ≤ 0.

This energy-dissipation relation is one of the core properties of the system. However, the analysis
carried out in the paper does not rely on it, but rather on the control of the production rate of an
entropy functional to be introduced in Section 2.3.

2.2. Reformulation of the model (1)–(4). It follows from the condition (3) that the potentials
µ can be rewritten

µi =
δE

δui
(u) + π = αi log(ui) + Ψi + bi(u) + π, i = 0, . . . , n,(8)

where the pressure π : QT → R is the Lagrange multiplier for the constraint (2) and b(u) =
(bi(u))0≤i≤n = (∂B(u)/∂ui)0≤i≤n. Now, our goal is to rewrite the system (1)–(4) with the 2n+ 2
unknown functions µ0, . . . , µn and u0, . . . , un as a system of n+1 unknown functions u1, . . . , un, π.
In this aim, we first rewrite, using the expression (8) of the potential µi, the equation (1) as

∂tui + div (−αidi∇ui − diui∇Ψi − diui∇bi(u)− diui∇π) = 0, i = 0, . . . , n.(9)

Then, summing over i = 0, . . . , n these equations and using the constraint (2) we deduce that

n∑
i=0

div (−αidi∇ui − diui∇Ψi − diui∇bi(u)− diui∇π) = 0.

Thus, the function π solves the following elliptic equation

div

(
−

(
n∑
i=0

diui

)
∇π

)
=

n∑
i=0

div (αidi∇ui + diui∇Ψi + diui∇bi(u)) .

Now, we rewrite the system (1)–(4) as: find a solution u1, . . . , un, π of the system

∂tui + divFi = 0 in QT , i = 1, . . . , n,(10a)
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div

(
−

(
n∑
i=0

diui

)
∇π

)
+ div G = 0 in QT ,(10b)

where the fluxes are given by

Fi = −αidi∇ui − diui∇Ψi − diui∇bi(u)− diui∇π, for i = 0, . . . , n,(11a)

G = −
n∑
i=0

(αidi∇ui + diui∇Ψi + diui∇bi(u)) ,(11b)

and u0 is defined as

u0 = 1−
n∑
i=1

ui in QT .(12)

So far, π is defined up to an additive constant. We eliminate this degree of freedom by imposing
(5), which in the current context simply rewrites∫

Ω

π(x, t)dx = 0 for 0 ≤ t ≤ T.(13)

Eventually we prescribe no-flux boundary conditions

Fi · ν = 0, on ∂Ω× (0, T ), for i = 0, . . . , n,(14)

and initial conditions

u(·, 0) = u0 ∈M,(15)

the vector u of the average values appearing in the definition of M being adapted to the choice
of u0.

From the previous computations we deduce that any (regular enough) solution of (1)–(4) such
that (5) holds, is also a solution to (10)–(15). In the following statement we prove the other way
around.

Lemma 1. Any (regular enough) solution of (10)–(15) is also a solution to (1)–(4) satisfying (5).

Proof. First, using equation (10b) and the definition of G we obtain that

div (α0d0∇u0 + d0u0∇Ψ0 + d0u0∇b0(u) + d0u0∇π) =
n∑
i=1

divFi.(16)

Then, we simply derive in time the constraint (12) and we have

∂tu0 = −
n∑
i=1

∂tui =

n∑
i=1

divFi.

Inserting (16) in the above equation implies that

∂iui + div (−di ui∇µi) = 0 in QT , i = 0, . . . , n.

Moreover, the equality (5) is a direct consequence of (13) and the constraint (12) since

0 =

∫
Ω

π(x, t)dx =

n∑
i=0

∫
Ω

ui(x, t)π(x, t)dx

=

n∑
i=0

∫
Ω

ui(x, t)

(
µi(x, t)−

δE

δui
(u(x, t))

)
dx.

This finishes the proof of Lemma 1. �
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2.3. Control on the entropy production and weak formulation. As already mentioned in
Section 2.1, the numerical analysis to be carried out in the paper does not rely on the energy
dissipation estimate (7) but rather on the control of the dissipation of another functional, that
we call entropy functional in what follows. The purpose of this section is to present this entropy
production estimate at the continuous level, as well as an estimations on the pressure field π.
First, the regularity deduced from these estimates is sufficient to define a proper notion of weak
solution. Second, the Finite Volume scheme presented in Section 3 has been designed in order
to ensure that discrete counterparts of these estimates are satisfied. The rigorous proof for the
convergence of the scheme will then rely on these discrete versions of the estimates below.

Let us introduce the entropy functional H : M→ R+ defined as

H(u) =

n∑
i=0

1

di

∫
Ω

(ui(log(ui)− 1) + 1) dx.(17)

Note that H is bounded on M, hence H(u0) < +∞ whatever u0 ∈M.

Lemma 2. Let u : [0, T ]→M be a regular and positive solution to (10)–(15), then

d

dt
H(u) +

n∑
i=0

2αi

∫
Ω

|∇
√
ui|2 dx+

∫
Ω

〈∇u,∇b(u)〉dx ≤
n∑
i=0

1

2αi

∫
Ω

|∇Ψi|2 dx.(18)

In particular, if Ψ = (Ψi)0≤i≤n = 0, then H is a Lyapunov functional for the system (10)–(15)

since the convexity of B implies that 〈∇u,∇b(u)〉 ≥ 0.

Proof. In this purpose we use the equivalence established in Lemma 1 and we multiply (9) by
log(ui)/di for i = 0, . . . , n, we integrate in space, we use some integration by parts and we sum
over i to obtain the following relation

n∑
i=0

1

di

∫
Ω

∂tui log(ui) dx +

n∑
i=0

∫
Ω

(
αi∇ui + ui∇Ψi + ui∇bi(u) + ui∇π

)
· ∇ log(ui) dx = 0.

Since δH
δui

(u) = 1
di

log(ui), one has

n∑
i=0

1

di

∫
Ω

∂tui log(ui) dx =
d

dt
H(u).

On the other hand, since ui∇ log(ui) = ∇ui and since 〈∇u,1〉 = 0 in view of (2), one gets that

n∑
i=0

∫
Ω

(
ui∇Ψi + ui∇bi(u) + ui∇π

)
· ∇ log(ui) dx =

∫
Ω

〈∇u,∇b(u) +∇Ψ〉dx.

Besides, a simple chain rule together with the uniform bound 0 ≤ ui ≤ 1 leads to

∇ui · ∇ log(ui) = 4|∇
√
ui|2 ≥ |∇ui|2.

Altogether, one obtains that

d

dt
H(u) +

n∑
i=0

∫
Ω

(
2αi|∇

√
ui|2 +

αi
2
|∇ui|2

)
dx+

∫
Ω

〈∇u,∇b(u)〉dx = −
∫

Ω

〈∇u,∇Ψ〉dx.

Then it only remains to use the weighted Young inequality

−〈∇u,∇Ψ〉 ≤
n∑
i=0

(αi
2
|∇ui|2 +

1

2αi
|∇Ψi|2

)
to recover (18). Finally, if Ψ = 0, then the right-hand side in (18) vanishes. As B is a convex
function, one obtains that d

dtH(u) ≤ 0, hence H is a Lyapunov functional. �

Thanks to Lemma 2 together with the L∞(QT ) estimate stemming from u(t) ∈M for t ∈ [0, T ],
we conclude that u is bounded in L2(0, T ;H1(Ω))n+1. It remains now to establish an a priori
estimate for the function π.
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Lemma 3. There exists a constant C > 0 which depends on di, αi, T , H(u0), ‖Dbi‖∞, ‖∇Ψi‖L2(Ω)N

and ‖∇√ui‖L2(Ω)N , which is uniformly bounded thanks to (18), for i = 0, . . . , n such that

‖∇π‖L2(QT )N ≤ C.(19)

Proof. We multiply (10b) by π, we integrate over QT , we use an integration by parts, the Cauchy-
Schwarz inequality, the L∞ estimate 0 ≤ ui ≤ 1 and the Lipschitz regularity of the functions bi
for i = 0, . . . , n to get∫∫

QT

(
n∑
i=0

diui

)
|∇π|2 dx ≤

n∑
i=0

di

(
αi‖∇ui‖L2(QT )N + T 1/2‖∇Ψi‖L2(Ω)N

+ ||Dbi||∞
n∑
j=0

||∇uj ||L2(QT )N

)
‖∇π‖L2(QT )N .

To conclude the proof, it remains to apply the L∞ estimate 0 ≤ ui ≤ 1 and to notice that thanks
to (2), one has (

∑n
i=0 diui) ≥ mini=0,...,n di =: d∗, so that the estimate

‖∇π‖L2(Ω) ≤
1

d∗

n∑
i=0

di

(
αi‖∇ui‖L2(QT )N + T 1/2‖∇Ψi‖L2(Ω)N + 2||Dbi||∞

n∑
j=0

‖∇√uj‖L2(Ω)N

)
,

holds. �

Now applying the Poincaré-Wirtinger inequality and using the zero-mean constraint (13) we
deduce that there exists a constant, still denoted by C and depending only on Ω such that

‖π(t)‖L2(Ω) ≤ C‖∇π(t)‖L2(Ω)N , for a.e. t ∈ (0, T ).

In particular, as a direct consequence of Lemma 3 we conclude that π ∈ L2(0, T ;H1(Ω)).
Thanks to the results obtained in this section we can define a notion of weak solution for the

system (10)–(15).

Definition 1. (u, π) is said to be a weak solution of (10)–(15) if

• π ∈ L2(0, T ;H1(Ω)), u ∈ L∞(QT )n+1 ∩ L2(0, T ;H1(Ω))n+1 with u(·, t) ∈ M for a.e.
t ∈ (0, T ) and π satisfying the zero-mean condition (13) for a.e. t ∈ (0, T );

• for all ϕ ∈ C∞c (Ω× [0, T )) and all i ∈ {0, . . . , n}, there holds

(20)

∫ ∫
QT

ui∂tϕdxdt+

∫
Ω

u0
iϕ(·, 0)dx

= di

∫ ∫
QT

(αi∇ui + ui∇Ψi + ui∇bi(u) + ui∇π) · ∇ϕdxdt.

Note that summing (20), one recovers the weak formulation

n∑
i=0

di

∫ ∫
QT

ui∇π · ∇ϕdxdt =

n∑
i=0

di

∫ ∫
QT

(αi∇ui + ui∇Ψi + ui∇bi(u)) · ∇ϕdxdt,(21)

with ϕ ∈ C∞c (Ω× [0, T )) arbitrary, which implies that (10b) holds in the distributional sense.

2.4. Main objectives and state of the art. Before to enter in the core of this work let us
explain the main goals of the paper and describe its position within the literature of entropy
preserving numerical methods. Our main objective is to design and analyze a fully implicit two-
point flux approximation finite volume scheme for the system (10)–(15) preserving at the discrete
level the following properties:

(i) The conservation of the mass (see Lemma 7);
(ii) The nonnegativity of the mixture composition u (see Lemma 8);
(iii) The volume filling constraint;
(iv) the entropy-entropy dissipation relation (see Proposition 6).
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The property (i) will be a consequence of the conservativity of the finite volume scheme introduce
in Section 3.2, the properties (ii) and (iii) will be established thanks to the monotonicity of the
scheme while the proof of (iv) will rely on the entropy stability of our numerical method. In
particular, this last property is at the cornerstone of the proofs of our main results, namely the
existence of nonnegative solutions to the scheme at each iteration (Theorem 4) and its convergence
(Theorem 5).

Let us notice that the idea to build finite-volume schemes which preserved at the discrete level
the entropy production inequality, in order to study these numerical methods, for dissipation
driven models is far from being new. Indeed, there exists a wide literature concerning the design
and the analysis of entropy stable finite volume schemes. For instance, let us mention the following
(non-exhaustive) list of contributions [7, 13, 15, 16, 17, 18, 21, 23, 29, 32, 33, 34, 47, 62, 50, 66].

Now, in the particular framework of cross-diffusion systems which admit an entropy structure as
described in [56, 57], we would like to mention the papers [1, 3] where the authors proposed some
convergent two-point flux approximation with upwind mobilities schemes for a seawater intrusion
model in an unconfined and confined aquifer. In [5] a first order in space convergent finite volume
scheme is considered for the approximation of the cross-diffusion Shigesada-Kawazaki-Teramoto
(SKT) model [67]. The results established in this last work have been recently generalized in
[60] by employing a two-point flux approximation finite volume scheme with mobilities given by
logarithmic mean ensuring the preservation of the entropy structure of the models exhibited in [37].
We also refer to [35] where an entropy preserving finite volume scheme is analyzed for a spinorial
matrix drift-diffusion model for semiconductors, and to [45] where two energy stable two-point flux
approximation finite volume schemes are studied for a generalized Poisson-Nernst-Planck system
accounting for the excess chemical potential of the solvent in multicomponent ionic liquids.

Let us point out that the previous contributions did not deal with the development and the
analysis of finite volume schemes for cross-diffusion systems with volume filling constraint. In fact
there exists only few papers on this subject. Let us cite [22, 24, 27, 38] where the authors studied,
using similar techniques than in this paper, some convergent finite volume schemes for an ion
transport, the Maxwell-Stefan, a thin-film solar cells and a biofilm cross-diffusion system with a
volume filling constraint. However, in these former works the numerical schemes was designed for
particular models. This differs from the present study where we consider, thanks to (10)–(15), a
rather general model (including or not cross-diffusion terms). Up to our knowledge, there does not
exist, so far, “black-box” results which state the existence of solutions to a finite volume scheme
and its convergence for a general class of (cross-diffusion) systems with volume filling constraint.
This fact is one of the main source of originality of this paper.

Let us also notice that in the literature other numerical methods have been proposed for the
discretization of models (with or whithout volume filling constraint) admitting an entropy struc-
ture. Indeed, some authors designed finite element/finite difference schemes. Let us mention the
following list [8, 19, 44, 46, 52, 58, 59] (again far from being exhaustive) of such contributions.
Closer to our study we mention [25], where a model admitting a gradient flow structure for a
constraint Wasserstein metric, similar to the one presented in Section 2.1, is discretized thanks
to a minimizing JKO scheme [12, 55]. An other approach dealing with discontinuous Galerkin
method has been used in [20, 68, 69]. Finally, we also refer to [2, 28, 53] for numerical schemes
based on the control volume finite element method which preserved the entropy structure of some
dissipative models.

3. Numerical scheme and main results

3.1. Notation and definitions. We present the discretization of the domain QT = Ω × (0, T ).
Let Ω ⊂ RN be a bounded, polygonal (or polyhedral if N ≥ 3) domain. An admissible mesh of
Ω is given by (i) a family T of open polygonal (or polyhedral) control volumes (also referred as
cells in what follows), (ii) a family E of edges (or faces if N ≥ 3), and (iii) a family P of points
(xK)K∈T associated to the control volumes and satisfying Definition 9.1 in [43]. This definition
implies that the straight line xKxL between two centers of neighboring cells is orthogonal to the
edge σ = K|L between two cells. For instance, Voronöı meshes satisfy this condition [43, Example
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9.2]. The size of the mesh is denoted by ∆x = maxK∈T diam(K). The family of edges E can be
split into interior edges Eint satisfying σ ∈ Ω and boundary edges σ ∈ Eext satisfying σ ⊂ ∂Ω. For
given K ∈ T , EK is the set of edges of K, i.e.

⋃
σ∈EK σ = ∂K. It splits into EK = Eint,K ∪ Eext,K ,

with Eint,K = EK ∩Eint and Eext,K = EK ∩Eext. For any σ ∈ E , there exists at least one cell K ∈ T
such that σ ∈ EK .

We need the following definitions. For σ ∈ E , we introduce the distance

dσ =

{
d(xK , xL) if σ = K|L ∈ Eint,K ,

d(xK , σ) if σ ∈ Eext,K ,

where d is the Euclidean distance in RN , and the transmissibility coefficient

(22) τσ =
m(σ)

dσ
,

where m(σ) denotes the (N − 1)-dimensional Lebesgue measure of σ, which is set to 1 if N = 1.
The mesh is assumed to satisfy the following regularity assumption: There exists ζ > 0 such that
for all K ∈ T and σ ∈ EK ,

(23) d(xK , σ) ≥ ζdσ and Card(EK) ≤ 1

ζ
.

Let T > 0, let NT ∈ N be the number of time steps, and set ∆t = T/NT the time step as well
as tk = k∆t for k = 0, . . . , NT . We denote by D the admissible space-time discretization of QT
composed of an admissible space discretization (T , E , (xK)K∈T ) and the values (∆t,NT ). Note
that the choice of a uniform time discretization is made only to avoid extra notations, and that
our study can be extended in a straightforward way to the case of variable time steps, as used in
practice for the simulations presented in Section 8.

We also introduce suitable function spaces for the analysis of the numerical scheme. The space
of piecewise constant functions is defined by

HT =

{
v : Ω→ R : ∃(vK)K∈T ⊂ R, v(x) =

∑
K∈T

vK1K(x)

}
,

where 1K is the characteristic function on K. Since there is a one to one correspondence between
a function v ∈ HT and a vector (vK)K∈T in Rθ (with θ = #T ) we will make a slight abuse of
notation by writing v = (vK)K∈T ∈ HT . In order to define a norm on this space, we also introduce
the notation

vK,σ =

{
vL if σ = K|L ∈ Eint,K ,

vK if σ ∈ Eext,K ,

for K ∈ T , σ ∈ EK and the discrete operators

DK,σv = vK,σ − vK , Dσv = |DK,σv| ∀v ∈ HT .

The discrete H1 seminorm and discrete H1 norm on HT are given by

|v|21,2,T =
∑
σ∈E

τσ (Dσv)
2
, ‖v‖21,2,T = |v|21,2,T + ‖v‖20,2,T ,

where ‖v‖0,2,T denotes the L2(Ω) norm for v ∈ HT .
Finally, we introduce the space HD of piecewise constant in time functions with values in HT ,

HD =

{
v : Ω× [0, T ]→ R : ∃(vk)k=1,...,NT ⊂ HT , v(x, t) =

NT∑
k=1

vk(x)1(tk−1,tk](t)

}
,

equipped, with the discrete L2(0, T ;H1(Ω)) norm( NT∑
k=1

∆t‖vk‖21,2,T
)1/2

.
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3.2. Numerical scheme. We define now the finite volume scheme for the cross-diffusion model
(10)–(15). We first approximate the functions u0

i and the external potential fields Ψi by

u0
i,K =

1

m(K)

∫
K

u0
i (x)dx, Ψi,K =

1

m(K)

∫
K

Ψi dx, for K ∈ T , i = 0, . . . , n.(24)

With the above definition,
(
u0
K

)
K∈T ∈ (HT )

n+1
belongs to M if u0 does.

For k ≥ 1, let uk−1
K = (uk−1

1,K , . . . , u
k−1
n,K) be given for each K ∈ T . Then, for i = 1, . . . , n the

value uki,K is determined by the implicit Euler finite volume scheme

(25) m(K)
uki,K − u

k−1
i,K

∆t
+
∑
σ∈EK

Fki,K,σ = 0, ∀K ∈ T ,

where for all K ∈ T and σ ∈ EK the fluxes Fki,K,σ are given by

(26) Fki,K,σ = −τσdi
[
αiDK,σu

k
i + uki,σ

(
DK,σbi(u

k) + DK,σΨi

)
+ uk,πi,σ DK,σπ

k
]
.

Moreover, the value πkK is obtained by solving

−
∑
σ∈EK

τσ

(
n∑
i=0

diu
k,π
i,σ

)
DK,σπ

k +
∑
σ∈EK

GkK,σ = 0, ∀K ∈ T ,(27)

with

GkK,σ = −
n∑
i=0

τσdi
(
αiDK,σu

k
i + uki,σ

(
DK,σbi(u

k) + DK,σΨi

))
, ∀K ∈ T , σ ∈ EK ,(28)

where uk0,K is discretized thanks to the constraint (12) by

uk0,K = 1−
n∑
i=1

uki,K , ∀K ∈ T .(29)

Furthermore, in the relations (26)–(28) the components of the vector ukσ = (uki,σ)0≤i≤n are defined
as

(30) uki,σ =


uki,K if uki,K = uki,K,σ > 0,

0 if min(uki,K , u
k
i,K,σ) ≤ 0,

DK,σu
k
i

DK,σ log(uki )
otherwise,

while uk,πi,σ is an upwind mobility given by

(31) uk,πi,σ =

{
uki,K if πkK ≥ πkK,σ,
uki,K,σ if πkK,σ > πkK ,

for every σ ∈ Eint,K and i = 0, . . . , n. Finally, we approximate (13) in a straightforward way by
imposing ∑

K∈T
m(K)πkK = 0.(32)

Let us notice that we design our scheme in such a way that uk0,K satisfies an equation of the

form (25) for every K ∈ T and k ≥ 1. Indeed, summing over i = 1, . . . , n equation (25), using
(27) and the constraint (29) we obtain that uk0,K is solution to

(33) m(K)
uk0,K − u

k−1
0,K

∆t
+
∑
σ∈EK

Fk0,K,σ = 0, ∀K ∈ T ,

where Fk0,K,σ is defined by (26) with i = 0. Thus, similarly to the result established in Lemma

1, the scheme (24)–(32) is equivalent to (24)–(26) and (29)–(33). In the sequel depending on our
needs we will consider either of them.
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3.3. Main results. Let us first gather our hypotheses.

(H1) Domain: Ω ⊂ RN is a connected bounded, polygonal (or polyhedral if N ≥ 3) domain.
(H2) Discretization: D is an admissible discretization of QT satisfying (23).
(H3) Initial data: u0 ∈M.
(H4) External potentials: Ψi ∈ H1(Ω) for i = 0, . . . , n.
(H5) Function B: B is a C1,1 convex function.
(H6) Given constants: di > 0 and αi > 0 for i = 0, . . . , n.

We introduce the discrete counterpart of the entropy functionals H as follows

H(uk) =

n∑
i=0

1

di

∑
K∈T

m(K)
(
uki,K(log(uki,K)− 1) + 1

)
for k ≥ 0.

Our first main result deals with the existence of nonnegative solutions to scheme (24)–(32) at each
time step.

Theorem 4 (Existence of discrete solutions). Let Hypotheses (H1)–(H6) hold. Then there exists
(at least) one solution (uk,πk)k≥1 to scheme (24)–(32). Moreover, this solution satisfies the
following properties:

(i) Mass conservation:∑
K∈T

m(K)uki,K =

∫
Ω

u0
i dx, ∀k ≥ 0, i = 1, . . . , n.

(ii) L∞ bounds: 0 < uki,K < 1 for all K ∈ T , k ≥ 1 and i = 0, . . . , n.

(iii) Volume-filling constraint:
∑n
i=0 u

k
i,K = 1 for all K ∈ T and k ≥ 1.

(iv) Entropy production estimate: for all k ≥ 1 there exists a constant Cζ > 0 only depending
on ζ such that

H(uk)−H(uk−1)

∆t
+

n∑
i=0

2αi
∑
σ∈E

τσ

(
Dσ

√
uki

)2

+
∑
σ∈E

τσ〈DK,σu
k,DK,σb(u

k)〉 ≤
n∑
i=0

Cζ
2αi
‖Ψi‖2H1(Ω).

Note that, due to the convexity of B, each term 〈DK,σu
k,DK,σb(u

k)〉 is nonnegative. The
proof of Theorem 4 is based on a topological degree argument. In this aim, we establish in Section
4 some a priori estimates and we prove Theorem 4 in Section 5.

Now, thanks to Theorem 4 we deduce the existence of a solution (uk,πk)k≥1 for each ∆x and
∆t. In the sequel we will prove that when ∆x → 0 and ∆t → 0 then there exists a subsequence
of solutions to the scheme (24)–(32) which converges towards a weak solution to (10)–(15) in the
sense of Definition 1. In order to state precisely our convergence result, we need some notation.
For K ∈ T and σ ∈ EK , we define the cell TK,σ of the so-called dual mesh:

• If σ = K|L ∈ Eint,K , then Tσ is that cell (“diamond”), the vertices of which are given by
xK , xL, and the end points of the edge σ.

• If σ ∈ Eext,K , then Tσ is that cell (“half-diamond”), the vertices of which are given by xK
and the end points of the edge σ.

The cells (Tσ)σ∈E define a partition of Ω up to a negligible set. It follows from the property that
the straight line xKxL between two neighboring centers of cells is orthogonal to the edge σ = K|L
that

m(σ)dσ = N m(Tσ) for σ ∈ E .
Following [36, 42], the approximate gradient of v ∈ HD is defined by

∇Dv(x, t) =
m(σ)

m(Tσ)
(DK,σv

k) νK,σ for x ∈ TK,σ, t ∈ (tk−1, tk],

where νK,σ is the unit vector that is normal to σ and points outwards of K.
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We introduce a family (Dm)m∈N of admissible space-time discretizations of QT indexed by the
size ηm = max{∆xm,∆tm} of the mesh, satisfying ηm → 0 as m → ∞. We denote by Tm the
corresponding meshes of Ω and by ∆tm the corresponding time steps. Finally, for every m ∈ N
we set (um, πm) = (u1,m, . . . , un,m, πm)m∈N ∈ HDm and ∇m = ∇Dm .

Theorem 5 (Convergence of the scheme). Let the assumptions of Theorem 4 hold, let (Dm)m∈N
be a family of admissible space-time distretizations of QT satisfying (23) uniformly in m ∈ N.
Let (um, πm)m∈N be a family of finite volume solutions to (24)–(32) constructed in Theorem 4.
Then there exists a weak solution (u, π) to (10)–(15) in the sense of Definition 1 such that, for
i = 0, . . . , n, the following convergences hold up to a subsequence:

ui,m → ui strongly in L2(QT ) as m→∞,
∇mui,m ⇀ ∇ui weakly in L2(QT )N as m→∞,

πm ⇀ π weakly in L2(QT ) as m→∞,
∇mπm ⇀ ∇π weakly in L2(QT )N as m→∞.

In order to prove Theorem 5 we establish in Section 6 some uniform w.r.t. ∆x and ∆t estimates.
These estimates will allow us to apply a compactness result obtained in [6] and prove the existence
of (u, π). Finally, following [36], we will identify the functions (u, π) as a weak solution to (10)–
(15).

The remaining of the paper is organized as follows. In Section 4 we establish some a priori
estimates needed for the proof of our existence result. Then, we prove Theorem 4 in Section 5.
In Section 6 we show some uniform estimates w.r.t. ∆x and ∆t, while we prove Theorem 5 in
Section 7. Section 8 is devoted to numerical experiments in one and two space dimensions for
some models which enter in the framework described by (10)–(15). Eventually, Section 9 gathers
some concluding remarks on possible extensions of the present work.

4. A priori estimates

One of our main objectives in this section is to show the following entropy dissipation inequality:

Proposition 6. Let the assumptions (H1)–(H6) hold and let (uk,πk)k≥1 be a solution to (24)–
(26) and (29)–(33). Then for all k ≥ 1 there exists a constant Cζ > 0 only depending on ζ such
that

H(uk)−H(uk−1)

∆t
+

n∑
i=0

2αi
∑
σ∈E

τσ

(
Dσ

√
uki

)2

(34)

+
∑
σ∈E

τσ〈DK,σu
k,DK,σb(u

k)〉 ≤
n∑
i=0

Cζ
2αi
‖Ψi‖2H1(Ω).

The proof of Proposition 6 is a transcription to the discrete setting of the proof of Lemma 2.
To prove that (34) holds true we will use log(uki,K) as “test function” in the equations (25) and

(33). Then, we first need to show that uki,K > 0 for all K ∈ T and i = 0, . . . , n. In this aim, let us
first prove that ∑

K∈T
m(K)uki,K > 0, i = 0, . . . , n.

Lemma 7. Let the assumptions of Proposition 6 hold. Then, the solutions to (24)–(26) and
(29)–(33) satisfy ∑

K∈T
m(K)uki,K =

∫
Ω

u0
i dx > 0, ∀k ≥ 0, i = 0, . . . , n.(35)

Proof. We simply sum equation (25) or (33) over K and using the conservativity of the scheme
lead to ∑

K∈T
m(K)uki,K =

∑
K∈T

m(K)uk−1
i,K , ∀k ≥ 1, i = 0, . . . , n.
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We conclude the proof by induction and thanks to definition (24) of u0
i,K for all K ∈ T and

assumption (H3) on the initial data. �

Let us now show that the discrete concentrations are positive.

Lemma 8. Let the assumptions of Proposition 6 hold. Then the solutions to (24)–(26) and (29)–
(33) satisfy

0 < uki,K < 1, ∀K ∈ T , k ≥ 1, i = 0, . . . , n.(36)

Proof. Let i ∈ {0, . . . , n} be fixed. Assume by induction that for k ≥ 1 we have 0 ≤ uk−1
i,K and∑

K m(K)uk−1
i,K > 0 (we recall that this property has been already established for every k ≥ 1 in

Lemma 7). Let us now define the subset Ki ⊆ T by

(37) Kki = {K ∈ T |uki,K ≤ 0}.

Our goal is to show that Kki = ∅. In this aim, we proceed by contradiction by assuming that
Kki 6= ∅.

The case Kki = T easily leads to a contradiction with
∑
K∈T m(K)uki,K > 0 obtained in Lemma

7. We restrict then our attention to the situation where Kki ( T .
Let us introduce the subset

Eki = {σ ∈ EK | K ∈ Kki } ⊂ E .
Such edges σ ∈ Eki are of three different types:

(i) σ ∈ Eki,ext = Eki ∩ Eext;

(ii) σ = K|L ∈ Eki,− if both K and L belong to Kki ;

(iii) σ = K|L ∈ Eki,+ if K ∈ Kki whereas L /∈ Kki .

Since Ω is connected, and since Kki ( T , then the subset Eki,+ of Eki is not empty. It follows from

the definition (30) that uki,σ = 0 for any σ ∈ Eki , hence, assuming that
(
πkK
)
K∈T and

(
uki,K

)
K∈T \Kki

are given, the vector ũki =
(
uki,K

)
K∈Kki

solves the linear system: ∀K ∈ Kki ,

uki,K m(K) + ∆t
∑

σ∈Eki,−

τσ

[
αi
(
uki,K − uki,K,σ

)
+ uki,K

(
πkK − πkK,σ

)+ − uki,K,σ (πkK,σ − πkK)+]
+ ∆t

∑
σ∈Eki,+

τσ

[
αiu

k
i,K + uki,K

(
πkK − πkK,σ

)+]
= uk−1

i,K m(K) + ∆t
∑

σ∈Eki,+

τσ

[
αiu

k
i,K,σ + uki,K,σ

(
πkK,σ − πkK

)+]
,

or for short
Aki ũki = r̃ki ,

where Aki is a column M -matrix, and where r̃ki is component-wise nonnegative. Moreover, the
contributions related to edges σ ∈ Eki,+ yield strictly positive values of some components of r̃ki for

each irreducible component of Aki . So Perron-Froebenius theorem implies that uki,K > 0 for all

K ∈ Kki , which is absurd in view of the definition (37) if Kki . �

Thanks to the previous result the values log(uki,K) has a meaning for all K ∈ T and i = 0, . . . , n.
Therefore we are in position to prove Proposition 6.

Proof of Proposition 6. We multiply (25) by log(uki,K)/di, equation (33) by log(uk0,K)/d0, we sum
over K ∈ T and i = 0, . . . , n, and after some discrete integration by parts we have

J1 + J2 = 0,

with

J1 =

n∑
0=1

∑
K∈T

m(K)
(uki,K − uk−1

i,K )

∆t

1

di
log(uki,K),
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J2 =

n∑
i=0

∑
σ∈Eint
σ=K|L

τσ
(
αiDK,σu

k
i + uki,σ

(
DK,σbi(u

k) + DK,σΨi

)
+ uk,πi,σ DK,σπ

k
)

DKσ log(uki ).

For J1, using the convexity of x 7→ x(log(x)− 1) + 1 allows us to conclude that

J1 ≥
H(uk)−H(uk−1)

∆t
.(38)

For J2 thanks to definition (30) of uki,σ and the inequality

(a− b)(log a− log b) ≥ 4(
√
a−
√
b)2 ∀a, b ∈ (0,∞),

we deduce that

J2 ≥
n∑
i=0

∑
σ∈Eint
σ=K|L

τσ

(
4αi

(
Dσ

√
uki

)2

+ DK,σu
k
i

(
DK,σbi(u

k) + DK,σΨi

))

+

n∑
i=0

∑
σ∈Eint
σ=K|L

τσDK,σπ
k uk,πi,σ DK,σ log(uki ).

Now using the definition (31) of uk,πi,σ and the inequality

a(log a− log b) ≥ a− b ≥ b(log b− log a) ∀a, b ∈ [0,∞),

which follows from the convexity of the exponential function we get

J2 ≥
n∑
i=0

∑
σ∈Eint
σ=K|L

τσ

(
4αi

(
Dσ

√
uki

)2

+ DK,σu
k
i

(
DK,σbi(u

k) + DK,σΨi

)
+ DK,σπ

kDK,σu
k
i

)
.

For the last term, thanks to the constraint (29), we notice that the following relation∑
σ∈Eint
σ=K|L

τσ

(
n∑
i=1

DK,σu
k
i + DK,σu

k
0

)
DK,σπ

k = 0,

holds. Thus

J2 ≥
n∑
i=0

∑
σ∈Eint
σ=K|L

τσ

(
4αi

(
Dσ

√
uki

)2

+ DK,σu
k
i

(
DK,σbi(u

k) + DK,σΨi

))
.(39)

Gathering the inequalities (38) and (39), we conclude that

H(uk)−H(uk−1)

∆t
+

n∑
i=0

4αi
∑
σ∈E

τσ

(
Dσ

√
uki

)2

+
∑
σ∈E

τσ〈DK,σu
k,DK,σb(u

k)〉 ≤
∑
σ∈E

τσ〈DσΨ,Dσu
k〉.

Finally, we use that 2Dσ

√
uki ≥ Dσu

k
i since 0 ≤ uki,K ≤ 1 to control the right-hand side of the

above inequality, leading to

H(uk)−H(uk−1)

∆t
+

n∑
i=0

2αi
∑
σ∈E

τσ

(
Dσ

√
uki

)2

+
∑
σ∈E

τσ〈DK,σu
k,DK,σb(u

k)〉 ≤
n∑
i=0

1

2αi

∑
σ∈E

τσ (DσΨi)
2
.

It remains to apply [43, Lemma 9.4] in order to complete the proof of Proposition 6. �

Let us now establish the discrete counterpart of Lemma 3.
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Proposition 9. Let the assumptions (H1)–(H6) hold and let (uk,πk)k≥1 be a solution to (24)–
(26) and (29)–(33). Then, for all k ≥ 1 we have

|πk|1,2,T ≤
n∑
i=0

di
d∗

αi ∣∣uki ∣∣1,2,T + ‖Dbi‖∞
n∑
j=1

∣∣ukj ∣∣1,2,T + |Ψi|1,2,T

 ,(40)

with d∗ = mini=0,...,n di.

Proof. In this aim we multiply (27) by πkK , we sum over K and after some integration by parts
we have ∑

σ∈Eint
σ=K|L

(
n∑
i=0

diu
k,π
i,σ

)(
Dσπ

k
)2

= J3,

where

J3 =
n∑
i=0

∑
σ∈Eint
σ=K|L

τσdi
(
αiDK,σu

k
i + uki,σ

(
DK,σbi(u

k) + DK,σΨi,K

))
DK,σπ

k.

Now thanks to Lemma 8 we notice that for every K ∈ T we have 0 < uki,K < 1 for i = 0, . . . , n.

Then for i = 0, . . . , n and σ ∈ Eint,K we obtain by definition (30)

0 < min(uki,K , u
k
i,K,σ) ≤ uki,σ ≤ max(uki,K , u

k
i,K,σ) < 1.

Hence, using these L∞ bounds, the Lipschitz regularity of the functions bi for i = 0, . . . , n and the
Cauchy-Schwarz inequality we find that

|J3| ≤
n∑
i=0

di

αi ∣∣uki ∣∣1,2,T + ‖Dbi‖∞
n∑
j=0

∣∣ukj ∣∣1,2,T + |Ψi|1,2,T

∣∣πk∣∣
1,2,T .(41)

Let us notice that depending on the sign of DK,σπ
k then either

∑n
i=0 u

k,π
i,σ =

∑n
i=0 u

k
i,K = 1 or∑n

i=0 u
k,π
i,σ =

∑n
i=0 u

k
i,K,σ = 1 which implies∑

σ∈Eint
σ=K|L

(
n∑
i=0

diu
k,π
i,σ

)(
Dσπ

k
)2 ≥ d∗ ∣∣πk∣∣21,2,T ,(42)

where d∗ = mini=0,...,n di. Thus, collecting (41) and (42) we obtain

∣∣πk∣∣
1,2,T ≤

n∑
i=0

di
d∗

αi ∣∣uki ∣∣1,2,T + ‖Dbi‖∞
n∑
j=0

∣∣ukj ∣∣1,2,T + |Ψi|1,2,T

 .

This concludes the proof of Proposition 9. �

5. Proof of Theorem 4

First, we notice that the scheme (24)–(26) and (29)–(33), denoted (S) in the sequel, is an
overdetermined system of equations, (n+ 2)θ + 1 equations for (n+ 2)θ unknowns with θ = #T .
However, for k ≥ 1 and uk−1 ∈M given, let K0 ∈ T and consider the set of equations

(43) m(K)
uki,K − u

k−1
i,K

∆t
+
∑
σ∈EK

Fki,K,σ = 0, ∀K ∈ T , i = 0, . . . , n,

where for all K ∈ T and σ ∈ EK the fluxes Fki,K,σ are given by (26). We also impose the constraint

n∑
i=0

uki,K = 1, ∀K ∈ T \ {K0},(44)
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and the zero-mean constraint ∑
K∈T

m(K)πkK = 0.(45)

Hence the system (43)–(45) has (n + 2)θ equations for (n + 2)θ unknowns. Moreover, we claim
that (S) and (43)–(45) are equivalent. Indeed, it is clear that a solution to (S) is also a solution
to (43)–(45). Besides, we have the following result:

Lemma 10. For k ≥ 1, let uk−1 ∈ M be given. Then every solutions to (43)–(45) is also a
solution to (S).

Proof. In this aim we need to show that
∑n
i=0 u

k
i,K0

= 1. We first notice, thanks to equation (43)
that it holds ∑

K∈T
m(K)uki,K =

∑
K∈T

m(K)uk−1
i,K i = 0, . . . , n.

Then
n∑
i=0

∑
K∈T

m(K)uki,K =

n∑
i=0

∑
K∈T

m(K)uk−1
i,K = m(Ω),

since uk−1 ∈M. Moreover, the constraint (44) yields∑
K∈T

n∑
i=0

m(K)uki,K =

n∑
i=0

m(K0)uki,K0
+ m(Ω \K0).

Therefore we deduce that

m(K0)

(
n∑
i=0

uki,K0
− 1

)
= 0,

which implies the result. �

Hence the systems are equivalent and in the remaining of this section we will focus on (43)–
(45). Now for k ≥ 1, we assume that uk−1 ∈ M is given. In order to prove the existence of
(uk,πk) we will use a topological degree argument, see [40, Chap. 1]. In particular, we will build
(uk,πk) as a solution to a nonlinear system F 1(uk,πk) = 0 where the map F 1 correspond to
the scheme (43)–(45). Roughly speaking in the sequel we will define an homotopy Fλ, where λ
denotes a parameter in [0, 1], such that if λ = 0 the system F 0(u0,π0) = 0 is linear and admits
a unique solution. Then, we will conclude thanks to the invariance by homotopy of the Brouwer
topological degree that the nonlinear set of equation F 1(u,π) = 0 admits at least one solution,
i.e., the scheme (43)–(45) (or equivalently (S)) possesses at least one solution at time tk denoted
by (uk,πk).

In this aim we introduce, for R > 0, the set

ZR =

{
(u,π) = (u0, . . . ,un,π) ∈ Hn+2

T
∣∣ ‖π‖0,2,T +

n∑
i=0

‖ui‖0,1,T < R

}
,

and for each λ ∈ [0, 1] a map Fλ : ZR → R(n+2)θ with θ = #T . In the following instead of defining
the map Fλ we define the zero finding problem Fλ(uλ,πλ) = 0 for every λ ∈ [0, 1]. Since the
construction of the homotopy Fλ is non-trivial we split those definitions in two cases.

Case 1. If λ ∈ [0, 1/2], then the problem Fλ(uλ,πλ) = 0 is given for every K ∈ T and
i = 0, . . . , n by

m(K)
uλi,K − u

k−1
i,K

∆t
− d∗

2

∑
σ∈EK

τσ

(
αiDK,σu

λ
i +

(
ui + 2λ

(
uλ,πi,σ − ui

))
DK,σπ

λ
)

= 0,
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where d∗ = mini=0,...,n di and ui = m(Ω)−1
∑
K∈T m(K)uλi,K = m(Ω)−1

∫
Ω
u0
i (x) dx. Moreover we

add the constraints

n∑
i=0

uλi,K = 1 ∀K ∈ T \ {K0},
∑
K∈T

m(K)πλK = 0.

We notice that for λ = 0 the map F 0 reduces to

m(K)u0
i,K −∆t

d∗
2

∑
σ∈EK

τσ
(
αiDK,σu

0
i + uiDK,σπ

0
)

= m(K)uk−1
i,K , ∀K ∈ T , i = 0, . . . , n,(46)

and

n∑
i=0

u0
i,K = 1 ∀K ∈ T \ {K0},

∑
K∈T

m(K)π0
K = 0.(47)

This system is linear and correspond to a matrix L ∈ M(n+2)θ,(n+2)θ. Now our objective is to
show that the system (46)–(47) is well-posed. In this aim we study the kernel of L, i.e., we set
the right hand side of the previous system to 0. Using the constraint

∑n
i=0 u

0
i,K = 0 for all

K ∈ T (we simply adapt the proof of Lemma 10) and the fact that by construction we have∑n
i=0 ui = 1, then summing (46) over i = 0, . . . , n we readily deduce that π0

K is a constant for
every K ∈ T . Moreover, thanks to the constraint

∑
K∈T m(K)π0

K = 0 we conclude that π0
K = 0

for all K ∈ T . Thus, ui is solution to the classical backward Euler TPFA scheme for the heat
equation for i = 0, . . . , n which is well-posed. In particular this implies that ker(L) = {0(n+2)θ},
i.e., the system (46)–(47) admits a unique solution given by π0

K = 0 for every K ∈ T and u0
i is

the “solution” to the heat equation with diffusion constant equal to αid∗/2 for i = 0, . . . , n.
We conclude that deg(F 0, ZR, 0) = 1, where deg denotes the Brouwer topological degree, for

any R > 0 such that

R > m(Ω)1/2
n∑
i=0

‖uk−1
i ‖0,2,T = C1.(48)

In order to obtain this condition on R we simply multiply (46) by ∆tu0
i,K and we sum over

K ∈ T and i = 0, . . . , n. Furthermore, arguing as before we notice that deg(Fλ, ZR, 0) = 1 for all
λ ∈ [0, 1/2] where the solution to Fλ(uλ,πλ) = 0 is given by (u0,π0).

Case 2. If λ ∈ [1/2, 1], then the problem Fλ(uλ,πλ) = 0 is given for every K ∈ T and
i = 0, . . . , n by

m(K)
uλi,K − u

k−1
i,K

∆t
− dλi

∑
σ∈EK

τσ

(
αiDK,σu

λ
i(49)

+ 2

(
λ− 1

2

)
uλi,σ

(
DK,σbi(u

λ) + DK,σΨi

)
+ uλ,πi,σ DK,σπ

λ

)
= 0,

where dλi = (λ− 1/2)(2di − d∗) + d∗/2 and we impose the constraints

n∑
i=0

uλi,K = 1 ∀K ∈ T \ {K0},
∑
K∈T

m(K)πλK = 0.(50)

Let us notice that for λ = 1 and thanks to Lemma 10 we recover the scheme (S).
Now our main objective is to prove that deg(F 1, ZR, 0) = 1 for R > 0 large enough. In

this purpose, thanks to the invariance by homotopy of deg, and since we already know that
deg(Fλ, ZR, 0) = 1 for every λ ∈ [0, 1/2], it is sufficient to prove that any solution (uλ,πλ) ∈ ZR
to the zero finding problem Fλ(uλ,πλ) = 0 satisfies (uλ,πλ) /∈ ∂ZR for every λ ∈ [1/2, 1] and for
sufficiently large values of R > 0.
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Hence we establish in the following some a priori estimates uniform w.r.t. λ. First, adapting
the proof of Proposition 6 we deduce that (uλ,πλ) satisfies the following inequality

H(uλ)−H(uk−1)

∆t
+

n∑
i=0

2αi
∑
σ∈E

τσ

(
Dσ

√
uλi

)2

(51)

+ 2

(
λ− 1

2

)∑
σ∈E

τσ〈DK,σu
λ,DK,σb(u

λ)〉 ≤
n∑
i=0

Cζ
2αi
||Ψi||2H1(Ω).

Now, we notice that for every C > 0 it holds

log(1 + C)x− C ≤ x(log(x)− 1) + 1, ∀x ≥ 0.

Then, adapting the proof of Lemma 8 and using the positivity of uλi,K for all K ∈ T , i = 0, . . . , n

and the convexity of the function B, we deduce thanks to (51) that

n∑
i=1

‖uλi ‖0,1,T ≤
d∗

log(1 + C)

(
H(uk−1) +

nC m(Ω)

d∗
+ ∆t

n∑
i=0

Cζ
2αi
||Ψi||2H1(Ω)

)
= C2,(52)

with d∗ = maxi=0,...,n di. Moreover, adapting the proof of Proposition 9 we have

|πλ|1,2,T ≤
n∑
i=0

di
d∗

αi|uλi |1,2,T + ‖Dbi‖∞
n∑
j=0

|uλj |1,2,T + |Ψi|1,2,T

 .

Now applying the inequality

(a− b)2 ≤ 4(
√
a−
√
b)2 ∀a, b ∈ [0, 1],

we obtain

|πλ|1,2,T ≤
n∑
i=0

di
d∗

2αi

∣∣∣√uλi ∣∣∣
1,2,T

+ 2‖Dbi‖∞
n∑
j=0

∣∣∣√uλj ∣∣∣
1,2,T

+ |Ψi|1,2,T

 .

Thanks to (51) we remark that it holds

2
∣∣∣√uλi ∣∣∣2

1,2,T
≤ H(uk−1)

αi∆t
+

n∑
i=0

Cζ
2α2

i

||Ψi||2H1(Ω) = C3, for i = 0, . . . , n.

Thus

|πλ|1,2,T ≤
n∑
i=0

di
d∗

(
αi

√
C3

2
+

√
C3

2
‖Dbi‖∞ + |Ψi|1,2,T

)
= C4.(53)

Furthermore, applying the zero-mean condition
∑
K∈T m(K)πλK = 0 and the discrete Poincaré-

Wirtinger inequality obtained in [14, Theorem 5] we deduce the existence of a constant C5 > 0
only depending on Ω such that

‖πλ‖0,2,T ≤
C5

ζ1/2
|πλ|1,2,T .

Hence, thanks to (53) we conclude that

‖πλ‖0,2,T ≤
C4C5

ζ1/2
= C6.(54)

Finally, defining R = max{C1 + 1, C2 + C6 + 1} we deduce from (48), (52) and (54) that

‖πλ‖0,2,T +

n∑
i=1

‖uλi ‖0,1,T < R ∀λ ∈ [0, 1],

which implies that (uλ,πλ) /∈ ∂ZR and deg(I −Fλ, ZR, 0) = 1 for all λ ∈ [0, 1]. Thus, the scheme
(S) (or equivalently (24)–(32)) admits at least one solution denoted (uk,πk). Moreover, thanks
to the a priori estimates established in Section 4 we conclude that (uk,πk) satisfied the properties
(i)–(iv) stated in Theorem 4.
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6. Uniform estimates

Let us first collect the a priori estimates uniform w.r.t. ∆x and ∆t already established in
Section 4 and Section 5.

Proposition 11. Let the assumptions of Theorem 4 hold. Then, there exists a constant C7 > 0
only depending on Ω, T , γmin, ζ, H(u0) and the sum over i = 0, . . . , n of the H1 norm of Ψi such
that

n∑
i=0

NT∑
k=1

∆t‖uki ‖21,2,T ≤ C7 i = 0, . . . , n.(55)

Furthermore, there exists a constant C8 > 0 only depending on Ω, T , γmin, ζ, H(u0), αi and the
sum over i = 0, . . . , n of the L∞ norm of Dbi and the H1 norm of Ψi such that

NT∑
k=1

∆t‖πk‖21,2,T ≤ C8.(56)

Proof. First let us notice that (55) is a direct consequence of the L∞ estimate uki,K ≤ 1 for every

K ∈ T , k ≥ 1 and i = 1, . . . , n obtained in Theorem 4 and the entropy dissipation inequality (34).

Indeed applying the inequality Dσu
k
i ≤ 2Dσ

√
uki for all σ ∈ E and summing over k (34) yield

n∑
i=0

NT∑
k=1

∆t|uki |21,2,T ≤
2

αi
H(u0) + T

n∑
i=0

Cζ
α2
i

||Ψi||2H1(Ω).

Moreover, estimate (56) is a straightforward consequence of Proposition 9 (see also the end of the
proof of Theorem 4). �

Let us now establish an other estimate uniform w.r.t. ∆x and ∆t needed for the convergence
proof.

Proposition 12. Let the assumptions of Theorem 4 hold. Then there exists a constant C9 > 0
only depending on Ω, N , T , ζ, αi, di, C7, C8 and the sum over i = 0, . . . , n of the L∞ norm of
Dbi and the H1 norm of Ψi such that for all ϕ ∈ C∞0 (QT ) we have

NT∑
k=1

∑
K∈T

m(K)
(
uki,K − uk−1

i,K

)
ϕ(xK , tk) ≤ C9‖∇ϕ‖L∞(QT ), i = 1, . . . , n.(57)

Proof. Let i ∈ {1, . . . , n} be fixed. In the sequel for ϕ ∈ C∞0 (QT ) we denote for all K ∈ T and
k ≥ 1 by ϕkK = m(K)−1

∫
K
ϕ(x, tk)dx and by ϕk the sequence (ϕkK)K∈T . Then, we multiply (25)

by ∆tϕkK , we sum over K ∈ T and 1 ≤ k ≤ NT and we obtain after some discrete integration by
parts

NT∑
k=1

∑
K∈T

m(K)
(
uki,K − uk−1

i,K

)
ϕkK = J5 + J6 + J7 + J8,

with

J5 =

NT∑
k=1

∆t
∑
σ∈Eint
σ=K|L

τσ di αi DK,σu
k
i DK,σϕ

k,

J6 =

NT∑
k=1

∆t
∑
σ∈Eint
σ=K|L

τσ di u
k
i,σ DK,σbi(u

k) DK,σϕ
k,

J7 =

NT∑
k=1

∆t
∑
σ∈Eint
σ=K|L

τσ di u
k
i,σ DK,σΨi DK,σϕ

k,
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J8 =

NT∑
k=1

∆t
∑
σ∈Eint
σ=K|L

τσ di u
k,π
i,σ DK,σπ

k DK,σϕ
k.

For |J5|, using the regularity of ϕ, the Cauchy-Schwarz inequality and the regularity assumption
(23) we have

|J5| ≤ diαi‖∇ϕ‖L∞(QT )

NT∑
k=1

∆t|uki,K |1,2,T

( ∑
K∈EK

∑
σ∈Eint,K

m(σ)dσ

)1/2

≤ diαi
ζ1/2
‖∇ϕ‖L∞(QT )

NT∑
k=1

∆t|uki,K |1,2,T

( ∑
K∈EK

∑
σ∈Eint,K

m(σ)d(xK , σ)

)1/2

.

Now, we notice that it holds ∑
K∈EK

∑
σ∈Eint,K

m(σ)d(xK , σ) ≤ N m(Ω),

which implies together with the Cauchy-Schwarz inequality and estimate (55) that

|J5| ≤ diαi

√
NC7 m(Ω)T

ζ
‖∇ϕ‖L∞(QT ).(58)

For |J6| since

0 ≤ min(uki,K , u
k
i,K,σ) ≤ uki,σ ≤ max(uki,K , u

k
i,K,σ) ≤ 1, ∀K ∈ T , σ ∈ Eint,K , k ≥ 1,

we deduce, thanks to the Lipschitz regularity of the functions bi, that

|J6| ≤ ||Dbi||∞
n∑
j=0

NT∑
k=1

∆t
∑
σ∈Eint
σ=K|L

τσ Dσu
k
j Dσϕ

k.

Then, using the same techniques as for the term J5 we directly deduce that it holds

|J6| ≤ ||Dbi||∞

√
NC7 m(Ω)T

ζ
‖∇ϕ‖L∞(QT ).(59)

For |J7| arguing as for the term J6 we get

|J7| ≤ diT

√
N m(Ω)

ζ
|Ψi|1,2,T ‖∇ϕ‖L∞(QT ).

Thanks to [43, Lemma 9.4] we deduce that there exists a constant Cζ > 0 only depending on ζ
such that

|J7| ≤ diTCζ

√
N m(Ω)

ζ
‖Ψi‖H1(Ω) ‖∇ϕ‖L∞(QT ).(60)

Finally, bearing in mind the L∞ estimate uk,πi,σ ≤ 1 for all K ∈ T , σ ∈ Eint,K and k ≥ 1 and using

the same techniques as for the term J5 (for instance) we conclude that

|J8| ≤ di

√
NC8 m(Ω)T

ζ
‖∇ϕ‖L∞(QT ).(61)

Collecting estimates (58)–(61) yields the existence of C9 > 0 such that (57) holds true. This
finishes the proof of Proposition 12. �
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7. proof of Theorem 5

Throughout this section we will assume that the assumptions of Theorem 5 hold and we will
consider the notations introduce in Section 3.3. Before to prove Theorem 5, we show some com-
pactness properties.

7.1. Compactness properties. Let (um, πm)m∈N be a family of finite volume solutions to (24)–
(32) constructed in Theorem 4. Our first aim is to prove some compactness properties on (um)m∈N.
In this aim we will use the black-box result [6, Theorem 3.9] (see also [32, Lemma B.1]).

Proposition 13. Let the assumptions of Theorem 5 hold and let (um, πm)m∈N be a sequence of
discrete solutions to (24)–(32) constructed in Theorem 4. Then there exists a subsequence of (um),
which is not relabeled, and u = (u1, . . . , un) ∈ A a.e. in QT and u0 = 1−

∑n
i=1 ui such that

ui,m → ui a.e. in QT as m→∞, i = 0, . . . , n.

Proof. Let i ∈ {1, . . . , n}. Assumptions (Ax1) and (Ax3) in [6, Theorem 3.9] are satisfied due to
the choice of finite volumes method. Assumption (At) is always fulfilled for one-step methods like
the implicit Euler discretization. Assumptions (a) and (b) are a consequence of the L∞ bound,
while Lemma 12 ensures assumption (c). Thus, the result, for i = 1, . . . , n, is a direct consequence
of the black-box result obtained in [6, Theorem 3.9]. Now, since

u0,m = 1−
n∑
i=1

ui,m,

we also deduce the existence of a u0 such that u0 = 1−
∑n
i=1 ui. �

Proposition 14. Under the assumptions of Proposition 13, there exists u = (u1, . . . , un) ∈
L2(0, T ;H1(Ω))n ∩ L∞(QT )n and u0 = 1−

∑n
i=1 ui and a subsequence of (um)m∈N such that for

i = 0, . . . , n, as m→∞,

ui,m → ui strongly in Lp(QT ), 1 ≤ p <∞,(62)

∇mui,m ⇀ ∇ui weakly in L2(QT ),(63)

where ∇m is defined in Section 3.3.

Proof. The strong convergence (62) is a consequence of Proposition 13 and the L∞ estimate

0 < ui,m ≤ 1 a.e. in QT ,

obtained in Theorem 4 which allow to apply the dominated convergence theorem. Moreover,
the estimate (55) implies that (∇mui,m)m∈N is bounded in L2(QT ). Thus, for a subsequence,
∇mui,m ⇀ vi weakly in L2(QT ) as m→∞. Following the proof of [36, Lemma 4.4] we show that
vi = ∇ui. This concludes the proof of Proposition 14. �

Proposition 15. Let the assumptions of Theorem 5 hold and let (um, πm)m∈N be a sequence of
discrete solutions to (24)–(32) constructed in Theorem 4. Then there exists a subsequence of (πm),
which is not relabeled, and π ∈ L2(0, T ;H1(Ω)) such that

πm ⇀ πi weakly in L2(QT ),(64)

∇mπm ⇀ ∇π weakly in L2(QT ).(65)

Proof. This result is a direct consequence of estimate (56). Indeed from this estimate we deduce
that the sequence (πm)m∈N is uniformly bounded in L2(QT ) which implies the existence of π ∈
L2(QT ) such that (64) holds. The same argument shows that (∇mπm)m∈N is uniformly bounded
in L2(QT ) and applying the proof of [36, Lemma 4.4] we directly deduce that the convergence
result (65) also holds. �
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7.2. Convergence of the scheme. To finish the proof of Theorem 5, we need to show that the
function (u, π) obtained in Proposition 13–Proposition 15 are weak solutions to (10)–(15) in the
sense of Definition 1. To this end, we first notice that we can rewrite (32) for every 1 ≤ k ≤ NT
as ∫

Ω

πm(x, t) dx = 0, ∀t ∈ ((k − 1)∆tm, k∆tm].

Now for an arbitrary function φ ∈ C∞0 (0, T ), we multiply the previous equality by

1

∆tm

∫ k∆tm

(k−1)∆tm

φ(t) dt,

and we sum over k ∈ {1, . . . , NT } and we have∫ ∫
QT

πm(x, t)φ(t) dxdt = 0.

Now using the weak convergence in L2(QT ) of πm towards π established in Proposition 15, we
deduce that after passing to the limit m→ +∞ it holds∫ ∫

QT

π(x, t)φ(t) dxdt = 0.

Thus π satisfies (13) for a.e. t ∈ (0, T ).
It remains to prove that (u, π) satisfies (20)–(21). Since the proofs are similar we will only

show that (u, π) fulfills (20). In this aim we follow the strategy of [36]. Let ϕ ∈ C∞0 (Ω × [0, T ))
be given, and let ηm = max{∆xm,∆tm} be sufficiently small such that supp(ϕ) ⊂ {x ∈ Ω :
d(x, ∂Ω) > ηm} × [0, T ). For the limit, we introduce the following notation:

Fm10 = −
∫ T

0

∫
Ω

ui,m∂tϕdxdt−
∫

Ω

ui,m(x, 0)ϕ(x, 0)dx,

Fm20 = diαi

∫ T

0

∫
Ω

∇mui,m · ∇ϕdxdt,

Fm30 = di

∫ T

0

∫
Ω

ui,m∇mΨi · ∇ϕdxdt,

Fm40 = di

∫ T

0

∫
Ω

ui,m∇mbi(um) · ∇ϕdxdt,

Fm50 = di

∫ T

0

∫
Ω

ui,m∇mπm · ∇ϕdxdt.

The convergence results of Proposition 13, Proposition 14 and Proposition 15, the regularity of
the functions bi and Ψi, and the assumption on the initial data show that

5∑
j=1

Fmj0 −→
m→+∞

−
∫ T

0

∫
Ω

ui∂tϕdxdt−
∫

Ω

u0
i (x)ϕ(x, 0)dx

+ diαi

∫ T

0

∫
Ω

∇ui · ∇ϕdxdt+ di

∫ T

0

∫
Ω

ui∇Ψi · ϕdxdt

+ di

∫ T

0

∫
Ω

ui∇bi(u) · ∇ϕdxdt+ di

∫ T

0

∫
Ω

ui∇π · ∇ϕdxdt.

We proceed with the limit m → ∞ in (25). For this, we set ϕkK = ϕ(xK , tk), multiply (25) by

∆tmϕ
k−1
K and sum over K ∈ Tm, leading to

Fm1 + Fm2 + Fm3 + Fm4 + Fm5 = 0, where(66)

Fm1 =

NT∑
k=1

∑
K∈T

m(K)
(
uki,K − uk−1

i,K

)
ϕk−1
K ,
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Fm2 = −diαi
NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eint,K

τσDK,σu
k
i ϕ

k−1
K ,

Fm3 = −di
NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eint,K

τσu
k
i,σDK,σΨi ϕ

k−1
K ,

Fm4 = −di
NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eint,K

τσ u
k
i,σ DK,σbi(u

k)ϕk−1
K ,

Fm5 = −di
NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eint,K

τσu
k,π
i,σ DK,σπ

k ϕk−1
K .

The aim is to show that Fmj0 − Fmj → 0 as m → ∞ for j = 1, . . . , 5. Then (66) shows that
Fm10 + Fm20 + Fm30 + Fm40 + Fm50 → 0, which finishes the proof.

It is proved in [36, Theorem 5.2], using the L1(QT ) bound for um and the regularity of ϕ, that
Fm10 − Fm1 → 0. Using the bound (55) and arguing as in the proof of [36, Theorem 5.1] we easily
show that Fm20 − Fm2 → 0. Moreover, applying similar arguments as in the proof of [60, Theorem
2] we deduce that Fm40 − Fm4 → 0.

Let us now prove that Fm30−Fm3 → 0 as m→∞. In this aim we first apply a discrete integration
by parts and write Fm3 = Fm31 + Fm32 where

Fm31 = di

NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eint,K

τσu
k
i,KDK,σΨi DK,σϕ

k−1,

Fm32 = di

NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eint,K

τσ
(
uki,σ − uki,K

)
DK,σΨiDK,σϕ

k−1.

The definition of the discrete gradient ∇m in Section 3.3 gives

|Fm30 − Fm31 | ≤ di
NT∑
k=1

∑
K∈T

∑
σ∈Eint,K

m(σ)|uki,K ||DK,σΨi|

×
∣∣∣∣ ∫ tk

tk−1

(
DK,σϕ

k−1

dσ
− 1

m(TK,σ)

∫
TK,σ

∇ϕ · νK,σdx

)
dt

∣∣∣∣.
It is shown in the proof of [36, Theorem 5.1] that there exists a constant C > 0 only depending
on ϕ such that ∣∣∣∣ ∫ tk

tk−1

(
DK,σϕ

k−1

dσ
− 1

m(TK,σ)

∫
TK,σ

∇ϕ · νK,σdx

)
dt

∣∣∣∣ ≤ C∆tmηm.

Hence, thanks to the bound uki,K ≤ 1 for all K ∈ T , k ≥ 1 and by the Cauchy-Schwarz inequality,

|Fm30 − Fm31 | ≤ diCηmT
∑
K∈T

∑
σ∈Eint,K

m(σ) |DK,σΨi|

≤ diCηmT |Ψi|1,2,Tm

( ∑
K∈T

∑
σ∈Eint,K

m(σ)dσ

)1/2

.

It follows from the mesh regularity (23) that∑
σ∈Eint

m(σ)dσ ≤
1

ζ

∑
K∈T

∑
σ∈EK

m(σ)d(xK , σ) =
N

ζ

∑
K∈T

m(K) =
N m(Ω)

ζ
.

Moreover, applying [43, Lemma 9.4] there exists a constant, still denoted Cζ , only depending on
ζ such that

|Ψi|1,2,Tm ≤ Cζ‖Ψi‖H1(Ω)
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Therefore, we obtain

|Fm30 − Fm31 | ≤

√
N m(Ω)

ζ
C Cζ di T ‖Ψi‖H1(Ω)ηm → 0, as m→∞.

Finally, we estimate Fm32 according to

|Fm32 | ≤ Cηm‖ψi‖C1(ΩT )G
m, where

Gm =

NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eint,K

τσ
∣∣uki,σ − uki,K∣∣ |DK,σΨi|.

we deduce from the Cauchy-Schwarz inequality that

Gm ≤ T 1/2

( NT∑
k=1

∆tm
∑
σ∈E

τσ(Dσu
k
i )2

)1/2(∑
σ∈E

τσ(DσΨi)
2

)1/2

.

By Proposition 11 and [43, Lemma 9.4], the right-hand side is bounded uniformly in m. Thus, we
infer that |Fm32 | ≤ Cηm → 0 and Fm30 − Fm3 → 0 as m → ∞. Finally, arguing as in the previous
case one can show that Fm50 − Fm5 → 0 as m→∞ This finishes the proof.

8. Numerical experiments

8.1. About the practical implementation.

8.2. A vertically-integrated model for three-phase porous media flows. Multiphase porous
media flows have an important role in many applications, including oil engineering, water resource
management, carbone dioxide sequestration, or subsurface hydrogen storage. Dupuit’s approxi-
mation [41] leads to vertically integrated model with reduced dimension. The computational gain
when compared to the direct resolution of full Darcy problems makes this approach popular. We
refer for instance to [9, 51, 48, 49, 63, 54, 30] for examples of such reduced models, the list being far
from being exhaustive. Here, we are interested in the situation where three phases i ∈ {0, 1, 2} (say
two liquid phases i ∈ {1, 2} and one gas phase i = 0) are flowing within a (N + 1)-dimensional
porous medium with impervious boundaries. This situation typically occurs in the context of
oil engineering where water, oil and gas share the available porous space. We assume that the
(N + 1)-dimensional physical domains is of the form

Ω× (0, h), Ω ⊂ RN ,

where h > 0 denotes the thickness of the porous layer.The phases flowing within the porous
medium are supposed to be separated because of gravity and to fill the whole porous space, see
figure 1.

z

x

Ω

u0(x, t)

u1(x, t)

u2(x, t)

h

Figure 1. Schematic representation of the (N + 1) dimensional porous medium
with the stratified repartition of the 3 phases.
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Taking inspiration in [61] for the Wasserstein gradient flow, in [54] for the treatment of the
congestion, and approach and in [39] for the so-called sharp-diffused interface approximation,
consistent models for the evolution of the phase heights enter our framework. Concerning the con-
tributions appearing in the definition of the energy E(u), the external potentials Ψ = (Ψi)0≤i≤n
are all taken identically equal to 0, whereas the convex function B appearing in the energy is
defined by

B(u) =
1

2
〈u,Bu〉 with B = g

ρ0 ρ0 ρ0

ρ0 ρ0 + ρ1 ρ0 + ρ1

ρ0 ρ0 + ρ1 ρ0 + ρ1 + ρ2

 ,

where ρ0 < ρ1 < ρ2 denote the densities of the phases, while g is the gravitational constant.
Concerning the quantities appearing in the definition of M and in the constrained Wasserstein
metric (6), we set di = κ

φ ηi
where κ > 0 is the permeability of the porous medium, where φ ∈ (0, 1)

is its porosity, and where ηi > 0 denotes the viscosity of the ith phase.
We use this example to validate experimentally our convergence result. We set N = 1, Ω = (0, 1)

and h = 1. The characteristics of the porous medium are φ = 0.35, κ = 10−11 m2, while the gravity
constant is set to g = 9.81 kg · s−2. The properties of the fluids are described in Tabular 1.

ρi di αi
i = 0 0.2 3.4 5× 10−2

i = 1 0.8 2.5× 10−2 5× 10−2

i = 2 1 5.5× 10−2 5× 10−2

Table 1. Fluid properties

The initial profile u0 is defined by

u0
1(x) = max(0,min(1,−2 + 3x)), u0

2(x) = max(0,min(1, 2− 3x)), u0
0(x) = 1− u0

1(x)− u0
2(x)

for x ∈ (0, 1), while the final time is set to T = 1. Since we do not have an explicit exact solution
at hand, we use a solution (uref, πref) computed on a reference (uniform) grid made of 25600 cells
to compare the results obtained on coarser meshes. The time discretization is not chosen uniform
is the same for all the meshes, and the kth time step is given by

∆tk = min(∆tmax, (1.1)k−1 ×∆t1).

In Figure 2, we plot the evolution of the errors

(67) erru =

∫ T

0

∫
Ω

(|u1,m − u1,ref|+ |u2,m − u2,ref|) dxdt and errπ =

∫ T

0

∫
Ω

|πm − πref|dxdt

as a function of the number of cell in the mth mesh. Only the error related to the space discretiza-
tion is recorded here since the time discretization is the same for all grids. One observes a first
order error decay, which was expected since we used upwinding in the definition of the scheme.

8.3. Diffusion in multicomponent solutions. In our second example, we consider an incom-
pressible mixture made of three inert species , inert in the sense that there is no reaction. The
vector u = (ui)0≤i≤2 denotes the volume fractions. Each specie has its own diffusion coefficient

as well as its own density ρi, the external potential Ψi(x) = −ρig ·x accounting for gravity, where
|g| = 9.81, ρ0 = 0.4, ρ1 = 1.6, and ρ2 = 6.4. The convex function B is identically equal to 0, and
all the self-diffusion coefficients αi are taken equal to 0.1. The model then corresponds to the one
discussed for instance in [65, Sec. 6.2].

For the test case, we consider a two-dimensional domain Ω = (0, 1)2, which is discretized with
a Delaunay triangulation made of 97908 triangles. We used a adaptive time stepping strategy.
Starting from an initial time step ∆t0 = 10−10, the time step ∆tk at the kth iteration in the march
in time is initially set to ∆tk = min

(
1.1×∆tk−1, 5× 10−4

)
. If the Newton-like method fails to

converge after 40 iterations, we restart the simulation with a reduced time step divided by 5.
All the phases aim at going to the bottom of the domain, but the Lagrange multiplier π

introduces buoyancy, so that the lighter phase progressively moves to the top of the domain, cf.
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102 103 104

10−6

10−5

10−4

10−3

1

1

number of cells

re
la

ti
ve
L

1
er

ro
r

erru
errπ

Figure 2. Evolution of the space-time L1 errors (67) as a function of the number
of cells in the spatial discretization.

Figure 3. The most dense phase will concentrate at the bottom of the computational domain,
as observed on Figure 5, while the one with mid-range density locates at intermediate height, cf.
Figure 4.

9. Concluding remarks and possible generalizations

In this paper we have shown the convergence of a finite volume scheme for a class of parabolic
systems (possibly including cross-diffusion terms) coupled with an elliptic equation ensuring the
volume filling constraint. In particular, our scheme preserves the conservation of the mass, the
nonnegativity of u, the volume filling constraint 〈u,1〉 = 1 and the decay of the entropy. However,
even though the problem we consider in this paper is rather general, several generalizations are
natural and worth being discussed:

(i) Generalizing the volume filling constraint. In the context of multicomponent mixtures as
discussed in Section 8.3, rather than choosing the volume fractions as main unknowns, it
is more usual to consider concentrations. Doing so, the volume filling constraint (2) should
turn to

〈u,v〉 =

n∑
i=0

uivi = 1,

where vi is the molar volume of the ith chemical component. Such non-constant molar
volumes leads to a change in (8), which then turns to

µi =
δE

δui
(u) + viπ, i = 0, . . . , n.

Another natural generalization of the volume filling constraint (2) consists in incorporating
a space dependent constraint

〈u,1〉 =

n∑
i=0

ui(x, t) = ω(x),

for some smoothly varying ω bounded away from 0 and from above. This situation naturally
occurs for multiphase Darcy flows where ω is the porosity, or in their Dupuit approximation,
cf. Section 8.2, where the thickness h could vary. To generalize our approach to this case,
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t = 0 t = 0.01

t = 0.1 t = 0.2

t = 0.3 t = 0.5

Figure 3. Evolution of the volume fraction u0 along time.

the entropy H(u) has to be modified into

Hω(u) =

n∑
i=0

1

di

∫
Ω

(
ui log

(ui
ω

)
+ ω − ui

)
dx,

as it was for instance done in [26].
(ii) Dirichlet boundary conditions. Following [38], we could consider mixed boundary conditions

and include (at least) constant Dirichlet boundary conditions on ΓD a subset of Γ = ∂Ω and
no-flux boundary condition on ΓN = Γ \ ΓD such that Γ = ΓD ∪ ΓN . However, in this case



FINITE VOLUME SCHEME FOR DIFFUSIVE MODELS 27

t = 0 t = 0.01

t = 0.1 t = 0.2

t = 0.3 t = 0.5

Figure 4. Evolution of the volume fraction u1 along time.

we need to consider the relative entropy functional given by

H(u|uD) =

n∑
i=0

1

di

∫
Ω

(
ui log

(
ui
uDi

)
+ uDi − ui

)
dx,

where (uD0 , . . . , u
D
n ) ∈M is a constant vector such that ui(x, t) = uDi for (x, t) ∈ ΓD×(0, T ).

Then, since H(u,uD) distinguishes from H(u) by linear terms we can easily adapt the proof
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t = 0 t = 0.01

t = 0.04 t = 0.08

t = 0.12 t = 0.2

Figure 5. Evolution of the volume fraction u2 along time.

of Lemma 2 to obtain that any regular enough solution u : [0, T ]→M satisfies

d

dt
H(u|uD) +

n∑
i=0

2αi

∫
Ω

|∇
√
ui|2 dx+

∫
Ω

〈∇u,∇b(u)〉dx ≤
n∑
i=0

1

2αi

∫
Ω

|∇Ψi|2 dx.

Moreover, we can establish a discrete counterpart of this modified entropy production in-
equality.

(iii) Reaction terms. If we want to incorporate reaction terms f = (f0, . . . , fn) in the system
(10)–(15), we first need to assume that

∑n
i=0 fi(u) = 0 for all u ∈ Rn+1 such that the total
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t = 0.01 t = 0.02

t = 0.1 t = 0.5

Figure 6. Evolution of the Lagrange multiplier π along time.

volume is conserved and the volume filling constraint 〈u,1〉 = 1 still holds. We also need to
preserve the positivity of the solutions to our scheme. In this aim we impose the condition
fi(u) ≥ 0 for all u ∈ Rn+1 with ui ≤ 0 for i = 0, . . . , n. Furthermore, in order to include
a suitable reaction term f which fit with the entropy structure of the model (10)–(15), we
need to assume, following [56], that there exists a constant Cf > 0 such that

n∑
i=0

1

di
fi(u) log(ui) ≤ Cf (1 + h(u)),

where

h(u) =

n∑
i=0

1

di
(ui(log(ui)− 1) + 1) .

Then, assuming that ∆t < 1/Cf and adapting the proof of [60, Lemma 5] we can show that
the solutions to our scheme satisfy

(1− Cf∆t)H(uk) + ∆t

n∑
i=0

2αi
∑
σ∈E

τσ

(
Dσ

√
uki

)2

+ ∆t
∑
σ∈E

τσ〈DK,σu
k,DK,σb(u

k)〉 ≤ H(uk−1) + Cf∆tm(Ω) + ∆t

n∑
i=0

Cζ
2αi
‖Ψi‖2H1(Ω).
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Let us remark that in this case, even if Ψi = 0 for i = 0, . . . , n, then H is no longer a Lyapunov
functional for the system (10)–(15) but the above inequality yields enough estimates in order
to generalize the proofs of our main results.

(iv) Deep quench limit αi = 0. In this case we have to assume that B is a C2 strictly convex
function such that its Hessian matrix B is a positive definite matrix with smallest eigenvalue
µ > 0. Then, adapting the proof of Lemma 2, for every regular enough function u : [0, T ]→
M we have

d

dt
H(u) +

∫
Ω

〈∇u,B(u)∇u〉dx = −
∫

Ω

〈∇u,∇Ψ〉dx.

Moreover, since it holds∫
Ω

〈∇u,B(u)∇u〉dx ≥ µ
n∑
i=0

∫
Ω

|∇ui|2 dx,

we obtain

d

dt
H(u) +

µ

2

n∑
i=0

∫
Ω

|∇ui|2 dx ≤ 1

2µ

n∑
i=0

∫
Ω

|∇Ψi|2 dx.

Finally, replacing in the scheme (24)–(32) the logarithmic mean mobilities by upwind mobil-
ities, i.e. for all σ ∈ E and i = 0, . . . , n we consider

uki,σ =

{
uki,K if DK,σbi(u

k) + DK,σΨi ≤ 0,

uki,K,σ if DK,σbi(u
k) + DK,σΨi > 0,

then we can extend the proofs of our main results in this setting, which is the one of [25].

References

[1] A. Ait Hammou Oulhaj. Numerical analysis of a finite volume scheme for a seawater intrusion model with

cross-diffusion in an unconfined aquifer. Numer. Methods Partial Differential Equations, 34:857–880, 2018.
[2] A. Ait Hammou Oulhaj and D. Maltese. Convergence of a positive nonlinear control volume finite element

scheme for an anisotropic seawater intrusion model with sharp interfaces. Numer. Methods Partial Differential
Equations, 36(1):133–153, 2019.

[3] A. Ait Hammou Oulhaj, D. Maltese, and N. Stali. Convergence and long time behavior of a Finite Volume

scheme for an isotropic seawater intrusion model with a sharp-diffuse interface in a confined aquifer. Hal-
02865698 (2020).

[4] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures,

Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, 2008.
[5] B. Andreianov, M. Bendahmane, and R. Ruiz Baier. Analysis of a finite volume method for a cross-diffusion

model in population dynamics. Math. Models Meth. Appl. Sci., 21:307–344, 2011.
[6] B. Andreianov, C. Cancès, and A. Moussa. A nonlinear time compactness result and applications to discretiza-

tion of degenerate parabolic-elliptic PDEs. J. Funct. Anal., 273:3633–3670, 2017.
[7] R. Bailo, J. A. Carrillo, H. Murakawa, and M. Schmidtchen. Convergence of a fully discrete and energy-

dissipating finite-volume scheme for aggregation-diffusion equations. Math. Models Methods Appl. Sci.,
30(13):2487–2522, 2020.

[8] J.W. Barrett and J.F. Blowey. Finite element approximation of a nonlinear cross-diffusion population model.
Numer. Math., 98(2):195–221, 2004.

[9] J. Bear. J. Bear. Hydraulics of groundwater. McGraw-Hill, Inc., New York, 1979.
[10] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass

transfer problem. Numer. Math., 84:375–393, 2000.

[11] J.-D. Benamou, Y. Brenier, and K. Guittet. Numerical analysis of a multi-phasic mass transport problem.

Contemp. Math., 353:1–17, 2004.
[12] J.-D. Benamou, G. Carlier, and M. Laborde. An augmented Lagrangian approach to Wasserstein gradient

flows and applications. In Gradient flows: from theory to application, volume 54 of ESAIM Proc. Surveys,
pages 1–17. EDP Sci., Les Ulis, 2016.

[13] M. Bessemoulin-Chatard. A finite volume scheme for convection-diffusion equations with nonlinear diffusion

derived from the Scharfetter-Gummel scheme. Numer. Math., 121(4):637–670, 2012.
[14] M. Bessemoulin-Chatard, C. Chainais-Hillairet, and F. Filbet. On discrete functional inequalities for some

finite volume schemes. IMA J. Numer. Anal., 35:1125–1149, 2015.
[15] M. Bessemoulin-Chatard, C. Chainais-Hillairet, and H. Mathis. Analysis of numerical schemes for semiconduc-

tors energy-transport models. Hal-02940224, 2020.



FINITE VOLUME SCHEME FOR DIFFUSIVE MODELS 31

[16] M. Bessemoulin-Chatard, C. Chainais-Hillairet, and M.-H. Vignal. Study of a finite volume scheme for the

drift-diffusion system. Asymptotic behavior in the quasi-neutral limit. SIAM J. Numer. Anal., 52(4):1666–

1691, 2014.
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