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Abstract12

Human brain connectome studies aim at both exploring healthy brains, and extracting and analyzing13

relevant features associated to pathologies of interest. Usually this consists in modeling the brain14

connectome as a graph and in using graph metrics as features. A fine brain description requires graph15

metrics computation at the node level. Given the relatively reduced number of patients in standard16

cohorts, such data analysis problems fall in the high-dimension low sample size framework. In this17

context, our goal is to provide a machine learning technique that exhibits flexibility, gives the investigator18

grip on the features and covariates, allows visualization and exploration, and yields insight into the data19

and the biological phenomena at stake. The retained approach is dimension reduction in a manifold20

learning methodology, the originality lying in that one (or several) reduced variables be chosen by the21

investigator. The proposed method is illustrated on two studies, the first one addressing comatose22

patients, the second one addressing young versus elderly population comparison. The method sheds light23
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on the differences between brain connectivity graphs using graph metrics and potential clinical24

interpretations of theses differences.25

AUTHOR SUMMARY

Human brain connectome studies aim at both exploring healthy brains, and extracting and analyzing26

relevant features associated to pathologies of interest. Usually this consists in modeling the brain27

connectome as a graph and in using graph metrics as features. A fine brain description requires graph28

metrics computation at the node level. Given the relatively reduced number of patients in standard29

cohorts, such data analysis problems fall in the high-dimension low sample size framework. In this30

context, our goal is to provide a machine learning technique that exhibits flexibility, gives the investigator31

grip on the features and covariates, allows visualization and exploration, and yields insight into the data32

and the biological phenomena at stake. The retained approach is dimension reduction in a manifold33

learning methodology, the originality lying in that one (or several) reduced variables be chosen by the34

investigator. The proposed method is illustrated on two studies, the first one addressing comatose35

patients, the second one addressing young versus elderly population comparison. The method sheds light36

on the differences between brain connectivity graphs using graph metrics and potential clinical37

interpretations of theses differences.38

INTRODUCTION

Brain modeling and understanding is a very active field of research involving different disciplines, such39

as neuroscience, image and signal processing, statistics, physics, and biology. These last years,40

neuroimaging modalities have been developed to explore the brain for both structural and functional41

features. It is now recognized that these images are providing very promising noninvasive observations of42

the brain (Bullmore & Sporns, 2009b; Mwangi, Tian, & Soares, 2014; Richiardi, Achard, Bunke, & Van43

De Ville, 2013). One consequence of the availability of such massive datasets is the need to develop more44

and more sophisticated models to unravel the possible alteration of brains due to the impact of different45

pathologies. In this context, representing the brain as a global system is capital. This may be achieved46

using a network (Bullmore & Sporns, 2009a). A brain network is a graph where nodes correspond to47
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specific regions and edges describe interactions and links between those regions. Different kinds of links48

and interactions may be of interest. Anatomical tracts are identified using diffusion imaging (Sporns,49

Tononi, & Kötter, 2005) and used in anatomical connectivity studies, where the whole set of links is50

called an anatomical connectome. Functional interactions are identified in functional imaging studies,51

whether in resting-state or in task-performing (Fallani, Richiardi, Chavez, & Achard, 2014; Rosazza &52

Minati, 2011), and used in functional connectivity studies. The whole set of functional links is called a53

functional connectome. In the functional case, brain networks are particularly adequate in encapsulating54

both spatial and temporal information in a single model. Indeed, brain networks are constructed using55

brain parcellation, namely spatial features, and time series interactions, namely temporal features. This56

model has attracted lots of attention these last twenty years by providing both very intuitive and spatial57

maps of brain networks.58

Brain networks can be quantified using graph metrics such as minimum path length, clustering (Watts &59

Strogatz, 1998), global and local efficiency (Latora & Marchiori, 2001), modularity (Newman, 2006),60

and assortativity (Newman, 2002), among others. As these metrics are associated to specific network61

features, it is often possible to find the appropriate metrics to use given specific neuroscience hypotheses62

of the study. For the study of brain disorders, these metrics have been used in order to extract biomarkers63

for pathologies such as for example Alzheimer’s disease (Supekar, Menon, Rubin, Musen, & Greicius,64

2008), schizophrenia (Lynall et al., 2010), and multiple sclerosis (Filippi et al., 2014). Extracting65

quantitative parameters of brain networks is compulsory to conduct any statistical analysis. In this66

framework, statistical and machine learning approaches on graph metrics on all nodes allow the67

quantification of differences between groups (Richiardi et al., 2013).68

For any dataset, any graph metric can be computed either at the global level with one value for an entire69

network or at the nodal level with one value for each node and a vector of values for the entire network. It70

has already been shown that global values may not discriminate two groups of subjects (Achard et al.,71

2012), which shows their limits as biomarkers. Few attempts have been made to use directly distances72

between networks such as the edit distance (Mokhtari & Hossein-Zadeh, 2013), or network similarities73

(Mheich et al., 2017). However, nodal level approaches are challenging since hundreds of brain areas can74

be extracted whereas the number of subjects is generally small. This corresponds to the High Dimension75

Low Sample Size (HDLSS) configuration and falls under the curse of dimensionality (Bellman, 1961). In76
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particular, standard classification and regression algorithms are not robust anymore in such a context77

(chapter 2 section 5 and chapter 18 of (Hastie, Tibshirani, & Friedman, 2001)).78

Dimension reduction techniques tackle curse of dimensionality issues (Hastie et al., 2001). In this79

framework, feature selection, where a subset of the original variables is considered, and feature80

extraction, where the original variables are transformed to a smaller set, may be envisaged (Webb, 2002).81

We resort here to the ISOMAP methodology, which is a well-known nonlinear feature extraction82

algorithm generalizing Principal Component Analysis dimension reduction (Huo, Ni, & Smith, 2007;83

Tenenbaum, de Silva, & Langford, 2000). ISOMAP may be seen as a manifold learning approach, where84

the degrees of freedom of the data are captured by the latent variables, and where the structure of points85

in the latent space (the reduced space) mimics the structure of data in the original space. Nevertheless,86

ISOMAP raises two issues: interpreting the latent variables and determining the effect a change in the87

latent variables incurs in the data space, that is the corresponding changes in brain networks and the88

underlying neuroscience hypotheses at stake in the case of the present study.89

Dimension reduction is not new in the field of brain connectivity studies. Several methods have been90

proposed to extract nodal features at the level of brain regions. Using the Hub Disruption Index (the κ91

index) to analyze a set of brain networks may be considered as a feature extraction approach: this is a92

user-defined transformation of the original space to a 1D latent space (Achard et al., 2012). Principal93

Component Analysis (PCA) was previously applied on graph metrics in (Robinson, Hammers, Ericsson,94

Edwards, & Rueckert, 2010) with vectors representing brains at the nodal level. We proposed in (Renard,95

Heinrich, Achard, Hirsch, & Kremer, 2012) to use kernel PCA, a nonlinear version of PCA. Besides,96

interpreting latent variables may be addressed by correlating the reduced space with clinical data (Gerber,97

Tasdizen, Thomas Fletcher, Joshi, & Whitaker, 2010). Covariates may also be mapped or regressed on the98

reduced space as proposed in (Aljabar, Wolz, & Rueckert, 2012), thus shedding light on latent variables.99

Dimension reduction methods have also been applied to connectivity matrices (Ktena et al., 2018; Kumar,100

Toews, Chauvin, Colliot, & Desrosiers, 2018; Yamin et al., 2019) or to the voxels time series (Saggar et101

al., 2018) mainly for classification purposes. It is indeed difficult using the whole connectivity matrices102

or voxels time series to give an interpretation at the nodal or voxel level (Gallos & Siettos, 2017; Haak,103

Marquand, & Beckmann, 2018; Laurienti et al., 2019). Network embedding framework can be viewed as104

a dimension reduction method and was also applied to brain connectivity graphs (Rosenthal et al., 2018).105
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The objective of this article is to integrate all features cited above in one method: working at the nodal106

level, applying dimension reduction techniques, and mapping covariates to ease interpretation. In107

addition, a new methodology is proposed to incorporate interesting networks features already identified108

in specific datasets directly in the manifold learning approach. Contrary to statistical tests at nodal levels109

where each feature is treated independently of others, our approach based on machine learning is able to110

analyze joint variations between local descriptors.111

This paper is focusing on two already published datasets. The first one consists in fMRI datasets on 20112

healthy controls and 17 coma patients from Achard et al. (Achard et al., 2012). The second one is based113

on (Achard & Bullmore, 2007) where 15 young healthy subjects and 11 elderly healthy subjects were114

scanned using resting state fMRI. Our first experiment compares data driven approaches such as Linear115

Discriminant Analysis (LDA) and Random Forests (RF) to an ad hoc description such as the hub116

disruption index κ. This allows to compare classical machine learning approaches where the117

interpretability of the results is often difficult with approaches resorting to descriptors constructed using118

neuroscientific hypotheses. This first experiment can be seen as preliminaries of the sequel of the paper,119

where a feature is extracted for each individual in order to optimize classification of the two groups either120

using classical machine learning approaches or ad hoc descriptors. The second experiment consists in121

constructing a data-driven manifold, ISOMAP, using the graph metrics as features. ISOMAP is providing122

a compact representation of brain connectomes in a reduced space where it is straightforward to map the123

available covariates. In addition, we may interpret changes in connectomes by regressing covariables like124

κ on the reduced space using latent variables.125

This representation allows a visualization of each subject relatively to the whole population, which is126

crucial in clinical studies for example in order to better understand brain changes for each specific127

subject. Besides, κ has been shown to be both a meaningful descriptor and a good classifying feature for128

brain connectomes of coma patients. Therefore, we propose a new method based on a covariate129

constrained manifold learning (CCML) using κ as an input of ISOMAP. This allows us to propose a new130

generative model based on our new data representation, to better predict the variation in each patient131

given the changes of covariables. Based on the results of the first experiment, the choice of the covariate,132

κ in this work, can be adjusted to the studied data sets.133
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MATERIALS AND METHODS

Resting state fMRI data134

Comatose study The data were acquired in a previous study aimed at characterizing resting state135

connectivity brain networks for patients with consciousness disorders. The description of the data and136

results is reported in (Achard et al., 2012). The patients were scanned a few days after major acute brain137

injury, when sedative drug withdrawal allowed for spontaneous ventilation. Therefore, all patients were138

spontaneously ventilating and could be safely scanned at the time of fMRI. The causes of coma are139

patient-dependent: 12 had cardiac and respiratory arrest due to various causes; 2 had a gaseous140

cerebrovascular embolism; 2 had hypoglycemia; and 1 had extracranial artery dissection. A total of141

twenty-five patients were scanned (age range, 21-82 y; 9 men). Data on eight patients were subsequently142

excluded because of unacceptable degrees of head movement. The coma severity for each patient was143

clinically assessed using the 62 items of the WHIM scale: scores range from 0, meaning deep coma, to144

62, meaning full recovery. Six months after the onset of coma, 3 patients had totally recovered, 9 patients145

had died, and 5 patients remained in a persistent vegetative state. The normal control group is composed146

of 20 healthy volunteers matched for sex (11 men) and approximately for age (range, 25-51 y) to the147

group of patients. This study was approved by the local Research Ethics Committee of the Faculty of148

Health Sciences of Strasbourg on October 24, 2008 (CPP 08/53) and by the relevant healthcare149

authorities. Written informed consent was obtained directly from the healthy volunteers and from the150

next of kin for each of the patients. Resting-state data were acquired for each subject using gradient echo151

planar imaging technique with a 1.5-T MR scanner (Avanto; Siemens, Erlangen, Germany) with the152

following parameters: relaxation time = 3 s, echo time = 50 ms, isotropic voxel size = 4 x 4 x 4 mm3,153

405 images, and 32 axial slices covering the entire cortex. The preprocessing of the data is detailed in our154

previous study (Achard et al., 2012).155

Young and elderly study The data used in this study have already been analyzed in two papers (Achard156

& Bullmore, 2007) and (Meunier, Achard, Morcom, & Bullmore, 2009). The goal of these papers was to157

identify the changes in brain connectomes for elderly subjects in terms of topological organization of158

brain graphs. The data consist of 15 young subjects aged 18-33 years, mean age=24 and 11 elderly159

subjects aged 62-76 years. Each subject was scanned using resting-state fMRI as described in (Achard &160
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Bullmore, 2007) (Wolfson Brain Imaging Centre, Cambridge, UK). For each dataset, a total of 512161

volumes was avalaible with number of slices, 21 (interleaved); slice thickness, 4 mm; interslice gap, 1162

mm; matrix size, 64 × 64; flip angle, 90◦; repetition time (TR), 1100 ms; echo time, 27.5 ms; in-plane163

resolution, 3.125 mm.164

Preprocessing and wavelet graph estimation165

Brain network graphs were determined following (Achard et al., 2012) for comatose study and (Achard166

& Bullmore, 2007) for young and elderly study. For each subject, data were corrected for head motion167

and then coregistered with each subject’s T1-weighted structural MRI. Each subject’s structural MRI was168

nonlinearly registered with the Colin27 template image. The obtained deformation field image was used169

to map the fMRI datasets to the automated anatomical labeling (AAL) or to a customized parcellation170

image with 417 anatomically homogeneous size regions based on the AAL template image171

(Tzourio-Mazoyer et al., 2002). Regional mean time series were estimated by averaging the fMRI time172

series over all voxels in each parcel, weighted by the proportion of gray matter in each voxel of the173

segmented structural MRIs. We estimated the correlations between wavelet coefficients of all possible174

pairs of the N = 90 or 417 cortical and subcortical fMRI time series extracted from each individual175

dataset. For the coma, only scale 3, 0.02-0.04 Hz, wavelet correlation matrices were considered. For the176

young and elderly, the wavelet scale considered corresponds to 0.06-0.11 Hz. The choice of these177

wavelet scales or frequency bands is explained precisely in the corresponding papers (Achard &178

Bullmore, 2007; Achard et al., 2012). To generate binary undirected graphs, a minimum spanning tree179

algorithm was applied to connect all parcels. The absolute wavelet correlation matrices were thresholded180

to retain 2.5 % of all possible connections. Each subject was then represented by a graph with nodes181

corresponding to the same brain regions, and with the same number of edges.182

Graph metrics183

The objective is to extract differences between the two groups with respect to the topological184

organization of the graphs. Each graph is summarized by graph metrics computed at the nodal level.185

Three metrics are considered here: degree, global efficiency, and clustering (Bullmore & Sporns, 2009b).186
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The degree is quantifying the number of edges belonging to one node. Let G denote a graph with Gij = 0

when there is no edge between nodes i and j, and Gij = 1 when there is an edge between nodes i and j.

The degree Di of node i is computed as

Di =
∑

j∈G,j 6=i

Gij. (1)

The global efficiency measures how the information is propagating in the whole network. A random

graph will have a global efficiency close to 1 for each node, and a regular graph will have a global

efficiency close to 0 for each node. The global efficiency Eglob is defined as the inverse of the harmonic

mean of the set of the minimum path lengths Lij between node i and all other nodes j in the graph:

Eglobi =
1

N − 1

∑
j∈G

1

Lij
(2)

Clustering is a local efficiency measure corresponding to information transfer in the immediate

neighborhood of each node, defined as:

Clusti =
1

NGi
(NGi

− 1)

∑
j,k∈Gi, j 6=k

1

Ljk
, (3)

where Gi is the subgraph of G defined by the set of nodes that are the nearest neighbors of node i. A high187

value of clustering corresponds to highly connected neighbors of each node, whereas a low value means188

that the neighbors of each node are rather disconnected.189

Each graph metric emphasizes a specific property at the nodal level. With a view to statistical190

comparison, several methods have already been developed, representing data in specific spaces. Each191

method aims at separating classes. Usually these methods are very general and can be applied without192

careful inspection of the data. We used here four different methods (Richiardi, Achard, Bullmore, &193

Ville, 2011): the κ index resulting from a careful inspection of the data, mean over graph metrics194

(denoted here MEAN), LDA and Feature Selection (FS) by selecting the best feature based on a195

univariate statistical Student t-test. Like the κ index, each of these methods provides, for each patient, a196

scalar feature corresponding to particular property of the data. Figure 1 gives an illustration of the197

different methods.198

κ index definition203
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Figure 1. General framework from graphs of cerebral connectomes to the different scalar features. Brain connectivity graphs are extracted from fMRI data.

Graph metrics are computed at the nodal level for each subjects. The matrices of graph metrics can then be analysed using different methods: the hub disruption

index based on regression analyses (κ); Linear Discriminant Analysis (LDA); average of metrics (MEAN); and Feature Selection (FS). Each of these methods

allow to summarize the graph metric in one scalar for each subject in order to better differentiate the studied populations.

199

200

201

202

In our previous study (Achard et al., 2012), κ was devised to compare graph metrics obtained on each

node of a subject or of a group with reference group (see figure 2). In classical comparisons between a

group of patients and a group of healthy volunteers, the reference is the group of healthy volunteers. In

the present study, for a given graph metric and two groups, we first compute the average of this metric for

each node over the group of healthy volunteers, denoted as the reference. Each subject is then

summarized as a vector of values of dimension the number of nodes. Then, for each patient, κ

corresponds to the slope of the regression of a nodal graph metric between the given patient minus the

reference and the reference. Let N denote the number of nodes in the graph, np the number of patients,

and nc the number of controls. Let (m1, . . . ,mnp) ∈ RN×np denote a matrix of graph metric extracted

given the graphs of patients, for j, 1 ≤ i ≤ np, mj ∈ RN . For each j, mj is equal to one graph metric

such as D, Eglob or Clust. Let us also define a similar matrix for the controls, (h1, . . . , hnc) ∈ RN×nc .

Let us define the average metric for controls, for each i, 1 ≤ i ≤ N ,

h̄i =
1

nc

nc∑
j=1

hij (4)

κ is defined by the following regression:

mi − hi = κh̄i + εi, (5)
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where εi is the classical error term in linear regression. In order to give a simple interpretation of κ, we208

assume that the global graph metric computed as an average over the nodes is the same in both groups. A209

value of zero for κ is showing that the graph metric obtained at the node level is the same for the patient210

and the reference. A positive value of κ is indicating that the hubs and non-hubs of the patient in211

comparison to the reference are located on the same nodes. However, the values of the graph metrics are212

increased for the hubs and decreased for the non-hubs. Finally, when the value of κ is negative, the hubs213

of the reference are no longer hubs of the patient, and the non-hubs of the reference are hubs for the214

patient. In (Achard et al., 2012), we showed that the κ index is able to discriminate both groups (coma215

patients and healthy volunteers) while the global metric is unable to identify any significant difference.216

Instead of averaging the graph metrics, the κ index is capturing a joint variation of the metrics computed217

for each node.

Short-range connections Long-range connections 

Healthy volunteers Patients

Extraction of graph metrics

H
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h
y 
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Graph metric for each brain region
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ti
en

ts

Graph metric for each brain region

0

Extraction of hub disruption index

0 0

Hubs Reorganisation similar to health volunteers Increased role of hubs

A

B

C

D

Figure 2. Extraction of hub disruption index κ: A. brain connectomes inferred for each subjects; B. for each brain connectome, extraction of graph metrics

for each region of the brain; C. matrix representation of the graph metrics where a row corresponds to a subject and a column corresponds to a brain region; D.

computation of the hub disruption index by regressing the average of brain metrics of the difference of patients and average of healthy volunteers against the

average of healthy volunteers. The hub disruption index corresponds to the slope coefficient. We give several illustrations following the sign of this coefficient.

204

205

206

207

218
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Mean over the nodes (MEAN)219

For each graph metric, the mean over the nodes of the graph captures a global property of the network.220

These global metrics have been previously used to discriminate two populations of networks, for example221

for Alzheimer’s disease (Supekar et al., 2008) and for schizophrenia (Lynall et al., 2010). Such a222

coefficient can discriminate well two networks when their topologies are really different. However, such223

metrics do not take into account the specificity of the nodes. Indeed, when permuting the nodes of the224

graph, the global metric is not changed, but the hubs of the graph are not associated to the same nodes225

anymore. Therefore, a graph reorganization cannot be detected using such global metrics.226

Linear discriminant analysis (LDA)227

LDA (Fisher, 1936) is a classification method, aiming at identifying the linear projection optimally228

separating two groups. It can be considered as a gold standard for linear group discrimination. It is not229

specific to the analysis of networks.230

LDA has been previously used for network discrimination in (Robinson et al., 2010). This algorithm231

amounts to computing a scalar for each graph. However, there is no simple clinical interpretation of the232

discriminating parameter.233

Feature Selection (FS)234

As for LDA, FS determines the features yielding the best separation of the two groups. Several features235

may be used simultaneously. In order to establish a fair comparison with the other methods, we choose to236

extract the single feature yielding the best separation. Several methods exist for FS. We choose univariate237

FS implemented in (Pedregosa et al., 2011). An advantage of FS is that it is capturing discriminative238

features at the node level. As the selected features are extracted directly from the data, it is usally239

possible to derive a clinical interpretation. However, joint variations are not modeled and on the comatose240

study, FS is not able to yield results of the same quality as those obtained using κ.241

Modeling populations of networks with manifold learning242
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ISOMAP (Tenenbaum et al., 2000) is used as a manifold learning approach to describe population243

networks. We propose here an original approach based on ISOMAP, where we constrain one variable of244

the reduced space (the latent space) to correspond to a covariate.245

Manifold learning using ISOMAP ISOMAP devises a reduced dimension version of the original set of246

points. Interpoint distances in the reduced space reproduce as much as possible interpoint distances in the247

original space. Euclidean and geodesic distances are respectively used. Principal component analysis248

may be seen as a particular case of ISOMAP, where Euclidean distances are used in the original space,249

instead of geodesic distances. The reader is referred to (Tenenbaum et al., 2000) for details about the250

algorithm.251

In our case, the original data correspond to a vector of graph metrics for each subject, the dimension of252

the vector being the number of nodes times the number of metrics. For each analysis, only one metric is253

considered here. However, this method could be applied using jointly several metrics. Covariates may be254

regressed on the reduced space. In the present work, this was achieved using a classic radial basis255

function interpolation.256

The choice of the ISOMAP is two fold: firstly, the estimated reduced space is a smooth manifold, and257

preserves the global structure of the dataset. Notably, the reduced space exhibits a continuum function of258

subjects. Secondly, the cost function of the ISOMAP allows the integration of additional constrained259

scores. ISOMAP was performed by computing a nearest neighbor graph connecting the four nearest260

neighbors according to the euclidean distance. This distance reflects correctly the local topology of the261

graph metrics space. The choice of four neighbors is driven by the relatively small number of subjects in262

the study.263

The classification score of the ISOMAP was computed using a non linear Support Vector Machine264

(SVM) approach with radial basis function kernel in the reduced space Hearst, Dumais, Osuna, Platt, and265

Scholkopf (1998).266

Covariate constrained manifold learning One drawback of manifold learning algorithms is the difficulty267

to interpret the reduced coordinates because they are usually meaningless. The original method proposed268
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in this work consists in constraining one coordinate of the reduced space to correspond to a specific269

covariate. The other coordinates are left unconstrained, as in classical ISOMAP. Such a procedure270

requires special care regarding the optimization aspect. We apply a strategy proposed in Brucher,271

Heinrich, Heitz, and Armspach (2008), where points are introduced one by one.272

Moreover, a scale factor α is considered for the axis corresponding to the covariate. This parameter,273

obtained by optimization, balances the scales of the different axes.274

The reduced point x̃i is defined by x̃i = [αci;xi]
T , where ci is the chosen covariate and xi are the other

coordinates. The cost function E is defined as:

E =
∑
i,i<j

(
||x̃i − x̃j||2 − ||yi − yj||2

)2
, (6)

where {yi}i=1..N is the graph metric vectors over N graph nodes. For an incoming data point i, the cost275

function E is optimized three times with regard to 1) xi as min
xi

E , 2) α as min
α
E and 3) xj for each point276

that has already been included as min
{xj}j=1...i−1

E. We consider i < j in the sum of the cost function to avoid277

counting twice the errors between two samples.278

The distance in the cost function is the Euclidean one. Since the samples are added sample by sample,279

this distance reflects only the local neighborhood of the new added one.280

To facilitate optimization and to avoid possible local minima, instead of inserting the samples at random,281

we choose the sample to be incorporated next as the one with the largest geodesic distance to the samples282

already incorporated. Indeed, interpolation problems are always easier than extrapolation problems283

where greater uncertainty may occur. We initialize the procedure by taking the two samples with the284

largest geodesic distance. The first two samples are used as landmarks of the border of the reduced space,285

and the insertion of new samples will generate only small displacements of the already inserted samples.286

The algorithm is described in Algorithm 1 and available here287

https://github.com/renardfe/CCML.288

Application: a generative model for the prediction of the variation in a subject with regard to the changes of a289

covariate290
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Algorithm 1 – covariate constrained manifold learning (CCML)
Input – dataset: N vectors (samples) {yi}i=1..N of a graph metric over n graph nodes

Result: reduced space representation {x̃i}i=1..N of the dataset, where the first coordinate of each x̃i

corresponds to the covariate.

Initialization: select the two most distant samples

Determine their reduced coordinates by minimizing E with α = 1

Update the scale α by minimizing E wrt α, xi fixed, as min
α
E.

while All points are not included do

1) Select the most distant sample yk to the already selected samples

2) Compute xk by minimizing E wrt xk (α and other xi’s fixed) as min
xk

E.

3) Update the scale α by minimizing E wrt α (xi’s fixed) as min
α
E.

4) Update xj’s of samples already included by minimizing E as min
{xj}j=1...k−1

E.

end while

From the obtained embedding, a generative model

ŷ = f(x̃) (7)

can be devised, where ŷ is a vector in the original space (the connectome space), x̃ is a vector from the

manifold embedding, and f is a regression function. Multivariate adaptive regression splines (MARS)

(Friedman, 1991) is chosen for the regression function f for its nice properties (one regression for each

coordinate of f , i.e. n regressions): locally linear and globally nonlinear. The parameters of f can be

determined using the dataset {yi}i=1..N and the corresponding reduced vectors {x̃i}i=1..N using equation:

yi = f(x̃i) + εi = ŷi + εi, (8)

where εi is the residual between a sample and its prediction ŷi. The residuals allow to evaluate the291

accuracy of the regression function.292

This kind of model is not original, PCA being the most well known case where the model is defined as293

y = A x̃ + ε, see e.g. (Lawrence, 2004; Sfikas & Nikou, 2016) for references. Such a generative model294
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used in the CCML framework allows to determine changes in the original space (the connectome space)295

generated by a displacement in the reduced space, for example along the covariate axis.296

RESULTS

The different algorithms have been implemented in the Python language using the scikit learn toolbox297

(Pedregosa et al., 2011). When left unspecified, coma data are used. The use of the young and elderly298

data is explicitely stated.299

Local analysis using dimension reduction300

Permutation tests are performed on the κ index and on the three other measures (LDA, FS, MEAN) to301

assess the ability of those four metrics to discriminate two populations. More precisely, for each302

coefficient separately, the difference of the means of the two populations is determined for the observed303

populations. The labels of the samples are then shuffled and the difference of the means of the shuffled304

two populations is determined. This latter step is performed 104 times. It avoids to make any assumption305

on the distribution of the statistic. Simultaneously the correlations between the observed κ index and the306

other coefficients are estimated.307

The results corresponding to the different methods aiming at discriminating the two groups (control and310

coma) are given in Table 1. As expected, the machine learning algorithms (ie, LDA and FS) show good311

performances in separating the two groups for different graph metrics. This is consistent with the fact that312

these methods have been tailored to classify the two groups. The results with the κ index show similar313

performances in separating the two groups. The large correlations between machine learning algorithms314

on the one hand and the graph metric κ on the other hand show retrospectively that similar performances315

were to be expected.316

Besides, a strong relationship can be observed between κ and LDA (correlation scores greater than 0.87317

for each metric). The FS correlation scores are lower than the LDA correlation ones. The difference318

between the two methods is that LDA considers a linear combination of features, with a global319

perspective, whereas FS selects one feature and acts locally. Since κ reflects a global reorganization of320

the brain, it is expected that the correlation score of LDA be greater than the FS one. Finally, MEAN321

scores reveal that this measure is not appropriate in this study.322
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Table 1. P-value of permutation tests comparing the mean of the two groups (104 permutations, which bounds the p-values). The correlation scores are

estimated between the κ index and the three other measures (LDA, FS, and MEAN ).

308

309

Mean diff. or Eglob corr. Clust corr. D corr.

correlation (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)

κ
0.79 0.75 0.81

(< 10−4) (< 10−4) (< 10−4)

LDA
-2.89 0.88 -1.78 0.87 -2.39 0.88

(< 10−4) (< 10−4) (< 10−4) (< 10−4) (< 10−4) (< 10−4)

FS
0.12 0.6 -0.5 −0.66 21.93 0.6

(< 10−4) (10−4) (< 10−4) (10−4) (< 10−4) (10−4)

MEAN
0.14 0.25 -0.013 −0.19

(0.58) (0.78) (0.43) (0.85)

Standard ISOMAP manifold learning and the κ index323

In this section, the goal is to link the reduced space obtained by manifold learning to different covariates327

such as the κ index. We want to assess whether a given covariate varies smoothly across the reduced328

space, and is therefore predictible using this space.329

Figure 3 represents the reduced space obtained using standard ISOMAP, as opposed to using CCML. The330

values of the different covariates are color-coded. The reduced space representation allows to separate331

both populations. Besides, by visual inspection of the color-coded maps, it appears that those regression332

maps are capturing features corresponding to κ and MEAN.333

In order to quantify these visual observations, covariates are regressed on the reduced space. The root334

mean square error (RMSE) and the maximum error M are determined in a leave-one-out procedure. The335

results are given in Table 2. It can be noted that the MEAN strategy gives the same values for the graph336

metric degree D for all graphs since the number of edges is set to be the same for all graphs.337
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Figure 3. Standard ISOMAP reduced space representation of the original dataset. Pi: (comatose) patient #i ; Cj: control #j. Covariates are mapped

onto the reduced space (covariate value is color-coded). Top left: κ index mapping; top right: MEAN mapping; bottom left: LDA mapping; bottom right: FS

mapping.

324

325

326

In this table, the lower the values, the better the adequacy with the reduced space. It appears that κ is the341

best choice across all metrics, except for Eglob where it is outperformed by MEAN. In the case of Eglob,342

this suggests that both κ and MEAN scores correspond to degrees of freedom of the intrinsic manifold of343

the functional connectivity graphs.344

Figure 4 displays the probability of belonging to a specific class computed using logistic regression on345

the reduced space stemming from standard ISOMAP. The probability of belonging to the comatose class346

is color-coded in Figure 4.347

This probability estimation using logistic regression is compared with covariates such as κ or MEAN, in349

Table 3. A high correlation score is observed between κ and logistic regression probablity. The350

correlation score between the MEAN coefficient and the probabilistic mapping is lower than the one with351

κ as expected.352
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Covariate Eglob Eglob Clust Clust D D

RMSE M RMSE M RMSE M

κ 0.51 2.44 0.68 2.59 0.26 2.14

LDA 0.97 7.97 0.9 5.44 0.66 4.13

FS 0.64 2.2 1.1 9.12 0.83 7.49

MEAN 0.15 0.73 1.02 5.44
Table 2. Assessment of the regression of covariates on the reduced space. Three different reduced spaces are at stake, one for each graph metric. Root mean

square error (RMSE) and maximal errorM are displayed. The MEAN strategy is not relevant for the degree D since the degrees D for all graphs are equal (the

number of edges is set to be the same for all graphs).

338

339

340

Figure 4. Logistic regression using reduced space stemming from standard ISOMAP. The color codes the probability of belonging to the comatose class.348

Taken together, these observations demonstrate the importance of κ in the classification of these355

populations. Obviously, for the special case of global efficiency metric, the MEAN score describes356

correctly the reduced space, but does not correspond to the classification pattern.357

Covariate constrained manifold learning358

Comatose population First we evaluate the convergence of the optimization problem (Algorithm 1). To359

assess the difficulty of the optimization problem, we ran it with 500 random initializations. Only 63% of360

the runs converged to the same solution, whereas 37% of the runs converged to a local (worse) optimum.361

It thus appears that our initialization procedure addresses the local optimum issue. Nevertheless, this362

optimization problem would probably deserve further investigations which are out of the scope of this363

paper.364
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Coefficients Eglob Clus D

κ 0.87 0.87 0.81

MEAN 0.55 0.42
Table 3. Correlation scores between the probabilistic mapping and the different coefficients (κ index and MEAN measure). A high correlation score of the

κ index indicates a good fitting between the reduced space representation and the classification of the two groups. The p-values are all smaller than 10−12.

353

354

In Figure 5, we display the reduced space corresponding to our new manifold learning algorithm. We can365

observe that the two populations are well discriminated in the case of κ, but not for the MEAN366

coefficient. This is quantified by applying a classical SVM procedure in the reduced space. The obtained367

results are the following: for CCML 1; for ISOMAP 0.86; for LDA 0.91 ; for κ, 0.89 and for MEAN and368

FS 0.57.369

We observe the strong interaction between κ and the MEAN in the top right of Figure 5, where the370

reduced space on one axis is κ and the mapping corresponds to the MEAN. To quantify this, in the case371

of κ, we estimate the correlation between the second coordinate and the MEAN score. The obtained372

score equals to 0.92, which confirms the intrinsic relationship between κ and the MEAN coefficient.373

Elderly and young population The elderly and young groups are investigated in this section.382

In Figure 6, the manifold obtained by standard ISOMAP is displayed. It is interesting to highlight that the389

κ index is not a pertinent feature to discriminate the old from the young, whereas the MEAN is a better390

discriminating feature. In both cases, the interpretation of the mapping is complex since it is not smooth.391

In Figure 7, results from CCML are displayed for the MEAN coefficient. We can observe that the MEAN392

mapping discriminates the two groups.393

Application: a generative model for the prediction of the variation in a subject with regard to the changes of a394

covariate395

Using the algorithm detailed in the last section, a map of the population is determined, with one of the396

reduced coordinates corresponding to a chosen covariate. To highlight the potential of the proposed397
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Figure 5. Covariate mapping onto the reduced space given by our method CCML using global efficiency as graph metric. The reduced space is computed

using Eglob as a graph metric (the yi’s). Covariate value is color-coded. For each subfigure, the coordinates correspond to [αci;xi]
T , where ci is the

constrained variable and xi the free parameter. Top left: κ mapping with a κ-constrained reduced space, Top right: MEAN mapping with a κ-constrained

reduced space; Bottom : MEAN mapping with a MEAN-constrained reduced space. As expected, we can observe that the mappings correlate well with the

first coordinate by construction (top left and bottom). It is also clear that using a κ-constrained reduced space is facilitating the discrimination between the two

populations. Indeed, the controls and patients are not covering the same part of the reduced space. On the contrary, as expected using the MEAN-constrained

reduced space, the method is not providing a very clear discrimination between patients and controls. Especially, patients 9 and 18 are very close to controls.

Finally, the top right figure is showing a correlation between the second coordinate of CCML and the MEAN.

374

375

376

377

378

379

380

381

method, we compute the transformation of a patient with regard to the changes of a covariate by creating398

a map from the reduced space back to the original space where we can make brain-related interpretations.399

This gives insight into the effect of the covariate on the patient. To perform this analysis, a regression is400

used to map the reduced space to the initial space (we used MARS regression (Friedman, 1991),401

coordinate-wise). This application is illustrated in Figure 8.402
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Figure 6. Left: κ mapping with the standard ISOMAP reduced space, Right: MEAN mapping with the same reduced space using global efficiency as graph

metric. The old controls (resp. young controls) are labeled O (resp. Y). For these groups, the κ index cannot discriminate the two groups. However the MEAN

index behaves better for the discrimination between the two groups. In each case, the interpretation is complex since the mapping of the covariate is not linear.

383

384

385

Figure 7. CCML approach using global efficiency as graph metric. Left: κ mapping with the κ-constrained reduced space, Right: MEAN mapping with

the MEAN-constrained reduced space. The old controls (resp. young controls) are labeled O (resp. Y). Two manifolds (one for each constraint) have been

determined. However only the MEAN-constrained manifold discriminates both groups.

386

387

388

DISCUSSION

Assessment of graph metric descriptors408

The handcrafted design of graph metric descriptors is interesting since such descriptors carry409

straightforward physical meaning, like the κ index for hub reorganization. However, in a classification410

framework, such new scalar descriptors may not be optimal. To assess the pertinence of a new ad hoc411

graph metric descriptor for a classification task, it will be interesting to confront it to specific scalar412

coefficients used in standard classification algorithms (like LDA or FS), and examine if there is some413

correlation between the scalars at stake. It is also worth mentioning that other approaches are dedicated414

to classifications using directly the connectivity matrices (Dadi et al., 2019; Richiardi et al., 2013).415

Usually, the objective of these approaches is to obtain classification scores, i.e. assign a subject to a416
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A B C

B

C

A

0 10.5

Figure 8. Variation in one patient along the covariate axis using global efficiency as graph metric. The size and the color of the nodes on the right part of the

figure are proportional to the graph metric, global efficiency, at each node. We consider the patient P18 in state B in the reduced space (left part of the figure).

We predict its changes when the κ index is decreased (point A) or increased (point C). Intuitively, point A and point C correspond respectively to a degradation

and to an improvement of the health of the patient. Interestingly, these trends can be directly observed in the graph space for clinical insights (right part of the

figure). It can be noticed that the variations are not linear.

403

404

405

406

407

group, patient or control. To our knowledge, these approaches do not allow to explore the underlying417

brain mechanisms at the nodal level using the results of classification (Ktena et al., 2018; Kumar et al.,418

2018; Yamin et al., 2019). Graph metrics are known to capture important topological indicators in419

networks which are impossible to capture using classical data mining approaches (Zanin et al., 2016) or420

network embedding (Rosenthal et al., 2018).421

No free lunch for graph metric descriptors422

We hypothesize that there is no best descriptor adapted to all datasets. The optimality depends on 1) the423

kind of the data and 2) the kind of question/task addressed. This idea is known as the ”no free lunch424
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theorem” (Wolpert, 1996): if an algorithm performs well on a certain class of problems then it has425

necessarily poorer performances on the set of all remaining problems.426

In the present study, we showed that the κ index yields good classification performances in separating a427

comatose population from a healthy population. However the MEAN index better describes the groups of428

elderly and young people (see Fig. 3): for this dataset, the κ index cannot separate the two groups, but the429

MEAN score can. It is interesting to notice that several descriptors can map correctly a population, while430

providing different information.431

The ”no free lunch theorem” also applies to manifold learning algorithms. The underlying question is the432

one of choosing an interpoint distance in the data space. A given interpoint distance will yield a specific433

structure of samples in the reduced space. Therefore, the retained interpoint distance chosen will depend434

on the final goal: mimicking the structure of the initial data points, enhancing class separation with a435

view to achieving better classification performances, focusing on a specific property of the data,436

etc. . . The proposed algorithm CCML aims at mimicking the structure of the initial data points, and this437

to be done using explicitly a particular characteristic, chosen and imposed by the investigator.438

Manifold learning for brain graph analysis439

Manifold learning is well suited for brain graph analysis for several reasons. Firstly, global descriptors of440

graph metrics represent an entire graph by a scalar value, which is generally ultimately insufficient to441

model correctly the complexity of a graph population. Manifold learning is better suited to capturing the442

complexity and variability of a given graph population, since more degrees of freedom are structuring the443

reduced space.444

Secondly, connectomes have been studied for their capacity to represent the brain as a system and not445

merely as a juxtaposition of independent anatomical/functional regions. Classical statistical tests are not446

adapted to analyze joint variations between local descriptors of graph metrics since those tests assume447

independence between features. Brain graph manifold learning for comparing groups of graphs is448

promising because joint variations are accounted for.449

Thirdly, manifold learning may be turned to a generative model, when resorting to a mapping from the450

reduced space to the data space. Brain graph manifold learning can be seen as a trade-off between global451
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and local brain graph metrics analysis. In other words, manifold learning is considered as a model at the452

level of the group while preserving the information of the individuals. However this technique is hard to453

interpret by its own. The addition of explicative covariables as proposed with the CCML method can454

provide an understandable and generative model of population with the possibility of focusing at the455

individual level (Costa et al., 2015). Using either global or local metrics is usually a hard task to456

appropriately link these features to clinical information. Statistical approaches suffer from a lack of457

interpretability where null and alternative hypothesis are tested. This is usually the case for coma studies458

where simple univariate statistical tests are computed on graph metrics (Demertzi et al., 2014;459

Malagurski et al., 2019). Using manifold learning, as illustrated in Fig. 8, it is possible to provide a460

smooth description of the changes of the brain graphs of the patient in the reduced space. This approach461

is very well adequate to relate the changes in brain connectivity along with the changes in clinical462

features. More generally, manifold learning can be an interesting solution for personalized and predictive463

medicine purposes. In our paper, we illustrate the result of our new proposed approach CCML on one464

graph metric, namely global efficiency. However, including several graph metrics is also a possibility and465

would lead to a more accurate description of the data, maybe at the cost of interpretability.466

CONCLUSION

467

The originality and contribution of this paper is the devising of a nonlinear manifold model of brain468

graph metrics. The essence of the approach is the capture of a metric through all nodes of a graph, across469

all graphs of an entire population: a population of graphs is represented by a population of vectors, each470

vector holding the variation of a metric through the nodes at stake. The population is then represented in471

a reduced space. This is to be opposed to the standard representation of a given brain graph by a mere472

scalar.473

The proposed approach has several advantages. First and foremost, the data are represented with several474

degrees of freedom, corresponding to the dimensions of the reduced space. The structure of the original475

data set is captured by a compact representation. This allows to account for the complex variability of476

populations of brain graphs. Secondly, such an approach naturally offers analysis of joint variations of477
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those brain graph metrics. Besides, the investigator has the possibility to analyze the data at the478

population scale and simultaneously at the individual scale.479

The investigation tool corresponding to the proposed approach allowed us to retrospectively assess the480

hub disruption index (HDI), denoted κ, and proposed in one of our former works. Earlier work showed481

that κ is a very good candidate for discriminating patients and controls in the case of coma.482

Retrospectively, its performances are here assessed in comparison with machine learning methods483

dedicated to linear group classification such as LDA. Besides yielding nice classification performances,484

the present study showed that an advantage of κ, put in the perspective of a manifold model, is to give485

clinical clues related to the pathology mechanism.486

We observed strong relationships between scalar coefficients such as κ and MEAN, and the coordinates487

of the manifold. It is important to notice that MEAN, which can separate groups in several pathologies488

(Lynall et al., 2010; Supekar et al., 2008), is not able to discriminate the comatose patients from the489

normal population. However it brings additional information in terms of description of the population.490

The manifold at stake shows that a scalar coefficient cannot capture the whole information encapsulated491

in the graphs. One interest of manifold learning, and more specifically our new proposed method, is its492

ability to reach a new level of interpretation of the brain graph metrics and the interaction between them.493
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A: ELBOW CURVE

The choice for the dimension 2 of the reduced space takes into account mainly the ability to interpret the

results. However, we checked also the curve of the error of the fitting, refelbow. This shows clearly that

the dimension 2 is a good trade-off between minimisation of error and visualisation, it may be also worth

exploring the dimension 3.
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Figure A.1. Elbow curve604
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