
HAL Id: hal-03165874
https://hal.science/hal-03165874v1

Submitted on 11 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HOMENAJE A CERVANTES: FOR VIOLIN,
COMPUTER AND PROJECTIONS

Richard Hoadley

To cite this version:
Richard Hoadley. HOMENAJE A CERVANTES: FOR VIOLIN, COMPUTER AND PROJECTIONS.
International Conference on Technologies for Music Notation and Representation – TENOR’17, 2017,
A Coruña, Spain. �hal-03165874�

https://hal.science/hal-03165874v1
https://hal.archives-ouvertes.fr

HOMENAJE A CERVANTES: FOR VIOLIN, COMPUTER AND
PROJECTIONS

Richard Hoadley
rhoadley.net

music@rhoadley.net

ABSTRACT

This is a presentation of the dynamic score Homenaje a
Cervantes (Homage to Cervantes) created for violin, com-
puter and projections, originally commissioned for and first
performed at the University of A Coruna, Spain in May
2017. The piece has been composed using the software
packages SuperCollider and INSCORE; the violin part should
be played live from a laptop screen or a projection. The
texts used are the original Cervantes text, an English trans-
lation and a series of original poems created specially for
this project by the poet Phil Terry.

1. INTRODUCTION

This paper seeks to demonstrate selected aspects of the
technical and aesthetic structure of the composition Hom-
enaje a Cervantes; in particular it exposes and examines
the layers of code constructed to generate the notations for
performance by the violinist. Algorithmic material ma-
nipulating audio, text and graphics is generated through
scheduling of functions, audio analysis and in certain con-
figurations physical computing or a combination of these
elements. Functions and processes are constructed within
SuperCollider’s native language (sclang)[1]. Parts of the
piece have been arranged to allow interaction with a dancer
should one be available. These parts (primarily the sus-
tained violin material towards the end of the piece) utilise
the Microsoft Kinect for Xbox One sensor. SuperCollider
algorithms generate time, frequency, amplitude and con-
trol values which are then sent either to the SC synth or
via Open Sound Control (OSC), (using a custom SC class
developed by the author) to the programme INSCORE [2].
INSCORE is able to generate and control a variety of nota-
tions, including common practice music notation. While,
for both technical and musical reasons, I am currently most
involved with the latter aspect, I am involved in other col-
laborative projects making use of generative graphics and
text.

One way in which SuperCollider can be used is by select-
ing a line or larger region of code and ‘evaluating’ it. The
relevant code is rendered immediately (i.e. just in time, or
as soon as possible). If a section of code is enclosed within
two parentheses — (code here) — inserting the cursor at

Copyright: ©2017 Richard Hoadley et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

any point between these and pressing <enter> or equiva-
lent will evaluate that section of code. As the piece is to
a significant extent performed through such live evaluation
of code segments it can be said to exploit certain live cod-
ing practices. Due to the complex construction of much of
the code, however, only a minimal quantity of actual typed
coding is undertaken during any given performance. De-
ciding what is coded, when and how during a live coding
performance is a fascinating issue worthy of significant fu-
ture research. There is further discussion of live coding in
my own work in [3] and more about the generic idea of live
coding in [4].

To fully appreciate what follows some familiarity with
SuperCollider’s built in language sclang and Guido nota-
tion is desirable. The code is provided here for illustrative
purposes only. It will not run successfully without a variety
of dependencies.

At various points in the text I refer to passages from a
demonstration video. This can be found at the following
web address: http://rhoadley.net/video/homage.

2. TITLE

Figure 2 shows Homenaje’s title screen and code list-
ing 1 shows the relevant ‘live’ source code. The latter
demonstrates an important aspect of my use of INSCORE
in this case: the necessity to ‘reset’ particular groups of
elements at strategic moments. In this case, if Homenaje
has been played or rehearsed and we wish to return to the
beginning, many objects will have been displaced and re-
formatted. The apparently redundant codes here, such as
moving, scaling and (re-)setting the origin are necessary
for this reason. The code also shows the way in which
even in this digital environment, there is still a need for
reference to physical aspects of the score (e.g. page height
and width).

Lines of code beginning ~homage reference the INSCORE
class for SuperCollider prepared by the author. This is
purely a convenience class designed to make the coding
of Guido music notation within INSCORE easier and more
straightforward. In the following case, the following line
of code:

~homage.note("homageWin", 0, "a")

outputs to INSCORE the following OSC string:

/ITL/homageWin/score0 set gmn [a]

which INSCORE converts into the notation snippet shown
in figure 1. The INSCORE class, once complete, including

mailto:music@rhoadley.net
http://creativecommons.org/licenses/by/3.0/
http://rhoadley.net/video/homage

Figure 1: A simple INScore score.

properly prepared SC help files, will be made available for
public download 1 . As can be seen in line 19 of code list-
ing 1, the class makes use of INSCORE’s ability to make
use of fully formattable HTML code.

Figure 2: the title screen.

1
2 // the code listing below displays the title and formats the

score
3 (
4 ~pageWidth="28cm";
5 ~pageHeight="36cm";
6 ~myNoteArray = " "; // empty score
7 ~homage.note("homageWin", 0, ~myNoteArray);
8 ~homage.scale("homageWin", "score", 0, 0.5); // size the score
9 ~homage.move("homageWin", "score", 0, -1.4, -0.8, 1); //

position the score
10 ~homage.origin("homageWin", "score", 0, -1, -1); // position

the score
11 ~homage.htmlFull("homageWin", "html", 0, "Helvetica", "50pt",

"normal", "normal", 0.1, ~argbConvert.value([255, 100,
100, 100]), " ");

12
13 Task({ 0.25.wait;
14 ~homage.move("homageWin", "text", 0, 3.0, 3.0);
15 ~homage.scale("homageWin", "html", 0, 1);
16 ~homage.rotate("homageWin", "html", 0, 0, 0); // due to

later transformations, make sure the rotation of the text
is reset

17 ~homage.origin("homageWin", "html", 0, 0, 0);
18 ~homage.move("homageWin", "html", 0, 0, 0);
19 ~homage.htmlFull("homageWin", "html", 0, "Helvetica",

"50pt", "normal", "normal", 0.1, ~argbConvert.value([255,
100, 100, 100]), "homenaje a cervantes"); // this is the
title

20 }).play;
21)

Code listing 1: the title screen listing

3. MELODY

Once the title has faded, sounds of horses walking and
the wind blowing emerge, creating an atmospheric sonic

1 The current version can be downloaded here:
http://rhoadley.net/inscore/INScore.sc , but without documentation

Figure 3: Initial melody.

backdrop. Blurred coloured areas fade in and out. The
colours used (green, blue, grey and brown) are algorithmi-
cally generated variants of four prominent colours present
in the landscape of La Mancha[5] (see figures 4 and 5, the
latter of which shows the background colours in use).

Figure 4: Windmills and landscape at La Mancha, Spain,
showing the colours of the landscape used as backdrops for
the notations.

Figure 5: Example of colours from figure 4 used as back-
drop

Figure 3 shows a rendition of Homenaje’s opening melody,
and code listing 2 the equivalent code. Please refer to
the inline comments for more explanatory detail about the
code itself.

1
2 (

http://rhoadley.net/inscore/INScore.sc
http://rhoadley.net/inscore/INScore.sc

3 ~playViolin = true; ~myType = 1; // '~playViolin' set to true
will play an audio rendition of the melody. If a real
violinist is available, this should be set to false.
'~myType' provides options in the style of the rendition.
If '~playViolin' is true, then '~myStyle' set to 1 will
play louder, more vigorous sounding violin samples

4
5 Task({
6 // this is the Task that generates a version of the melody.

Note that there are still a lot of formatting issues to be
dealt with as music notation is so predominantly a
graphic/semantic language.

7
8 ~homage.colour("homageWin", "text", 0, [0,0,0,255]); // set

the colour
9 4.do({|i| ~homage.text("homageWin", 0, text: 4 - i);

0.5.wait; }); // generate a count in
10
11 // the three functions using ".stop" end any already running

function. We then clear the score and run the melody
generator (~doViolinMelWithCursorFunc) again.

12 ~colourFadeTask.stop; ~homageViolinMelTask.stop;
~homageCursorTask.stop;

13 ~homageViolinMelody = ~scoreFormat ++ " \\intens<\"f\",
dy=-10hs>";

14
15 // ~doViolinMelWithCursorFunc is the main function, which

calls on a further function to generate the melody, play
it, display it and synchronise it with a cursor to aid
real-time performance

16 ~doViolinMelWithCursorFunc.value(rrand(6, 15), [55, 74], 2,
[~minMaxAmp[0], ~minMaxAmp[1]], 120, ~myType, ~playViolin,
durFactor: 8, countIn: 2);

17
18 // the below displays the instruction "sempre tenuto e

marcato".
19 // both ~doViolinMelWithCursorFunc and ~colourFadeGlobal

fade the relevant element.
20 ~homage.text("homageWin", 0, text: "sempre tenuto e

marcato"); ~homage.colour("homageWin", "text", 0,
[0,0,0,255]);

21 ~colourFadeGlobal.value("~homage", "homageWin", "text", 0,
[255, 0], 4);

22 }).play; // end of melody generating task.
23)

Code listing 2: Top level code of opening melody

Code listing 2 is top level code. In performance, evalu-
ation of this complete section causes the main work to be
done by the function ~doViolinMelWithCursorFunc (see
code listing 3). This function synchronises
~doHomageViolinMel (line 4) with a moving cursor in-
tended to help the performer.

1
2 (
3 ~doViolinMelWithCursorFunc = ({ arg noteNum=4, range=[55, 62],

octaves=2, amplitude=[0.6, 0.8], time=120, type = 1,
play=true, durFactor=1.0, countIn = 2; // bpm

4 var cursorPosX=0.1, cursorPosY = -0.5;
5
6 // colour the score black
7 ~homageGuido[0][10] = [0,0,0,255];

~homage.colour("homageWin", "score", 0, [0,0,0,255]);
8
9 ~homageViolinMelTask.stop; ~homageCursorTask.stop; // stop

any existing tasks
10 ~homage.scale("homageWin", "score", 0, 0.45); // set the

scale
11 ~homage.tempo("homageWin", "cursor", 0, time); // set the

cursor tempo
12
13 // the function that generates the melody itself
14 ~doHomageViolinMel.value(noteNum, range, octaves,

amp:{amplitude.choose}, type: type, wait: true, play:
play, sayDone: true, waitFactor: (60/time)*0.5, mm: time,
scoreSize: ~scoreSize, durFactor: durFactor, countIn:
countIn);

15
16 ~homage.date("homageWin", "cursor", 0, 0); // the cursor
17
18 // describe the movement of the cursor
19 ~homageCursorTask = Task({
20 var date, noteWait, totalWait=0;
21 noteNum.do({|i|
22 ~homage.position("homageWin", "cursor", 0, cursorPosX,

cursorPosY);
23 if (cursorPosY == -0.5, { cursorPosY = -0.7 }, {

cursorPosY = -0.5 });
24 noteWait = (60/time);
25 totalWait = totalWait + noteWait;

26 noteWait.wait;
27 });
28
29 (totalWait*0.75).wait;
30
31 ~homageGuido[0][10][3] = 255; // set alpha channel to

opaque
32 ~colourFadeGlobal.value("~homage", "homageWin", "score",

0, [~homageGuido[0][10][3], 0], 3); // fade the score
33 }).play;
34 });
35);

Code listing 3: ⇠doViolinMelWithCursorFunc

The violin melody itself is generated (and optionally ei-
ther played, displayed or both) by ~doHomageViolinMel,
shown in code listing 4. Available arguments include:

• the number of notes;

• the range of the notes in terms of midi pitch;

• the range of the notes in terms of the number of oc-
taves potentially covered;

• the variety of durations to be used and the weight-
ings of those durations;

• the duration and amplitude of each audio rendered
note;

• whether to display the score at once or in real time,
whether to play it, whether to display it at all.

The process of ‘composing’ these algorithms is itself an
essential part of the creative act: each compositional ges-
ture will require different musical options. Arguments are
added (or, more rarely, taken away) as the aesthetic need
arises. If a function is used in a subsequent composition it
is likely that these arguments will be tidied up in order to
promote clarity and ease of use.

1 (
2 ~doHomageViolinMel = ({ arg num=10, range=[67, 74], numOct=2,

durRange=[0,1,2,3,4,5],
durWeight=[0.15,0.24,0.21,0.21,0.12,0.08], durFactor=1.0,
amp=1.5, wait=true, play=true, display=true,
waitFactor=0.25, type=1, halo=[4.0, 10.0], sceneNum=0,
sayDone=false, mm=120, scoreSize =
"\\pageFormat<w=20cm,h=24cm>", countIn = 2;

3 var durDictionary= Dictionary.newFrom(List[0, " ", 1,
"*1/8", 2, "*1/4", 3, "*1/4.", 4, "*1/2", 5, "*5/8", 6,
"*1/2.", 7, "*7/8", 8, "*1/1", 9, "*9/8"]), score =
scoreSize + "\\clef<\"treble\"> \\meter<\"2/4\">
\\tempo<\"[1/4]=" + mm + "\" ,dx=-5, dy=4> _ _", dur = 1,
note = rrand(range[0], range[1]), prevNote = 0, octave = [
0, 1].choose, chordInt = 0, chordDurString, chordDurNum;

4
5 ~homageViolinMelTask.stop; // stop any existing running tasks
6
7 if (~homageViolinMelody != "", { score =

~homageViolinMelody });
8
9 ~homageViolinMelTask = Task({

10 num.do({
11 if (durWeight == "choose", { dur = durRange.choose},

{ dur = durRange.wchoose(durWeight) }); // dur is the
number (1-8)

12
13 octave = numOct.rand; // choose octave
14
15 // if there is a repeated note, get a new one
16 while ({ note == prevNote },
17 {
18 note = rrand(range[0], range[1]); // pick a

pitch within the range
19 note = note + (octave*12); // transpose the

pitch to the octave chosen earlier
20 });
21

22 prevNote = note; // keep a record of the chosen note
23
24 // if there's a chord, you have to notate it

differently (a chord is indicated by setting 'dur' to 0)
25
26 if (dur == 0, {
27 chordInt = [8, 9, 10].choose; // choose the chord

interval. The interval will be a minor 6th, a major 6th
or a minor 7th as these are relatively straightforward
intervals for a violinist to play. If a chord is needed,
'dur' is set to zero, so we have to pick another duration.
We pick from the original list, but without the zero

which we don't want to pick again.
28
29 if (durWeight == "choose", { chordDurNum =

durRange.choose}, { chordDurNum =
durRange.wchoose(durWeight); });

30
31 // if zero has been chosen, pick something else from the list

until it isn't zero (the chord still needs a duration)
32 while ({chordDurNum == 0}, {
33 if (durWeight == "choose", { chordDurNum =

durRange.choose}, { chordDurNum =
durRange.wchoose(durWeight); });

34 });
35
36 chordDurString = durDictionary[chordDurNum]; //

string of the chord duration (i.e. "*1/4")
37
38 // add to the score string, if we are using a chord
39 score = score + "{" ++ ~guidoNoteMap.value(note) ++

chordDurString ++ "," ++
~guidoNoteMap.value(note+chordInt) ++ "}";

40
41 }, { // add to the score string if there *isn't* a

chord
42 score = score + ~guidoNoteMap.value(note) ++

durDictionary[dur];
43 });
44
45 // send to INScore if display is true
46 if (display == true, { ~homage.note("homageWin",

sceneNum, score) });
47
48 ~homageViolinMelody = score; // store the score data

in an environment variable
49
50 if (play == true, { // do we want to hear it?
51 if (dur == 0, { // if it's a chord
52
53 // for aggressive playback, type = 1
54 if (type == 1 , {
55 ~playViolinArcoSforzando.value(((chordDurNum)*waitFactor)*durFactor,

0.01, 0.5, 0.49, (note), 1.0, amp);
56 ~playViolinArcoSforzando.value(((chordDurNum)*waitFactor)*durFactor,

0.01, 0.5, 0.49, (note + chordInt), 1.0, amp); // second
note

57 },{
58 ~playViolinArcoGentle.value(((chordDurNum)*waitFactor)*durFactor,

0.01, (note + chordInt), 1.0, amp)
59 });
60
61 // the 'halo' effect generates a longer (usually quieter)

sustained note emanating from each `formally' played note,
creating a `halo' of sound. To switch off use halo = [0,0]

62 ~playViolinArcoGentle.value(rrand(halo[0],
halo[1]), 0.01, (note + chordInt), 1.0, amp);

63 });
64
65 if (type == 1 , { // aggressive or gentle?
66

~playViolinArcoSforzando.value((dur*waitFactor)*durFactor,
0.01, 0.5, 0.49, note, 1.0, amp)

67 }, {
68 ~playViolinArcoGentle.value((dur*waitFactor)*durFactor,

0.01, note, 1.0, amp);
69 });
70
71 ~playViolinArcoGentle.value(rrand(halo[0], halo[1]),

0.01, note, 1.0, amp);
72 }); // if play is false, we skip the above
73
74
75 if (wait == true, { // do we want the whole score at

once (false, we don't want to wait)?
76 if (dur == 0, { ((chordDurNum)*waitFactor).wait;

}, {(dur*waitFactor).wait; });
77 });
78 }); // end do
79
80 // tell us if you've finished playing/printing the melody
81 if (sayDone == true, {
82 "homageViolinMelody done".postln;
83 ~homage.colour("homageWin", "score", 0, [0,0,100,255]);
84 ~homageGuido[0][10] = [0,0,100,255];
85 });
86 }).play;
87 });

Code listing 4: ⇠doHomageViolinMel

3.1 The Aesthetics of Melody Generation

Straightfoward algorithms govern the details of the gen-
eration of this initial melody. It terms of compositional
process, the ideas are developed in ways that mirror (my
own) ‘standard’, non-digital compositional methods, fo-
cusing on traditional musical elements such as atmosphere,
tempo, dynamics, articulation and tessitura. The develop-
ment of the construction of the algorithm relies very much
on trial and error, although previous experience gained through
the previous development of algorithms has a substantial
influence.

In code listing 4, one of the first ‘decisions’ involves the
choice of duration for a new event. This involves a variety
of durations (line 2):

durRange=[0,1,2,3,4,5]

and corresponding probability weightings:

durWeight=[0.15,0.24,0.21,0.20,0.12,0.08]

Because the creative intention was to create short, inten-
sive, active and rhythmically metrical phrases, durRange
only consists of whole notes, where ‘1’ represents one qua-
ver’s duration. As the intended mood of these melodies is
vigorously active, the weightings favour the shorter dura-
tions with the most weighted duration being one crotchet
(one quarter note) in length. Ultimately, the final values for
these are achieved through repeated generation and regen-
eration until the aesthetically required balance is achieved.

Subsequent algorithms choose the octave of the pitch,
and the pitch itself, in this case a randomised value from
the provided range. A previous duration value of zero in-
dicates that a chord should be created, and as the violin-
ist must navigate the dynamic part at sight, only the most
straightforward violin diads are allowed: a minor or major
sixth or a minor seventh (code listing 4, line 26+).

The algorithm also includes the possibility of specifying
one of two different ‘styles’ of playback (should playback
be required in the absence of a human violinist). These
styles are either using louder samples with a sharp attack
or quieter samples with a more gentle attack.

4. TEXTS, CHORDS AND LINES

The next section of Homenaje (from about 2:50 of the
demonstration video) introduces sections of text from Cer-
vante’s original version of Don Quixote 2 as well as an En-
glish translation 3 . Text excerpts are accompanied by a va-
riety of musical figures, described as either lines or chords.
Each of these types of figures has originally appeared in
earlier compositions (e.g. Calder’s Violin[6] and How To
Play the Piano[7]).

4.1 Texts

The digital texts were converted into UTF-8 format text
files allowing for the straightforward inclusion of Span-
ish accents. During the set-up of the piece these files are
loaded into environment variables:

2 Original available here
3 English translation available here

http://www.gutenberg.org/ebooks/996
http://www.gutenberg.org/files/5921/5921-h/5921-h.htm

g = File(~path ++
"text/quijote_sp_text_only_utf-8.txt","r");

~homSpWords = g.readAllString;
g.close;

The entire text is then converted to lowercase so avoid-
ing difficulties of sentence construction using upper-case
lettering:

~stanzaTextInputSp = ~homSpWords.toLower;

Only small pieces of the text are chosen for display. Due
to the size of the entire text and the time it can take to
choose a range within it, a smaller section is chosen in ad-
vance, and the smaller chunk to be used is taken from that
and stored in another environment variable. In the below,
a starting point is chosen from within the entire text, and
then a chunk of 1000 characters is chosen from that start-
ing point:

// used in ~generateFullStanza
~randPlaceInStream =

((~stanzaTextInputSp.size)-1200).rand;
~stanzaTextInputSpSmall =

~stanzaTextInputSp[~randPlaceInStream..
(~randPlaceInStream+1000)];

Below is the function ~homageTextFunc which auto-
mates this process. The arguments mean that the main
function will be run just once, and will produce a ‘stanza’
of one word and one line. After it has appeared, it will
fade out in between 0.2 and 6 seconds. The language cho-
sen will be English (a zero value is Spanish and a value
in between is the probability that one language or the other
will be chosen — a value of 0.5 will mean each language is
equally likely. At the same time a fragment is chosen from
audio files of readings of each version. This will have an
amplitude of between 0.1 and 0.35 (maximum amplitude
is nominally 1.0), and the function will pause between 1
and 4 seconds between lines and 2 and 7 seconds between
‘stanzas’:

~homageTextFunc.value(1, [1, 1], [0.2,
6.0], 1.0, [0.1, 0.35], [1.0, 4.0],
[2.0, 7.0]);

Code listing 5 contains a full listing of the function.

1 (
2 ~homageTextFunc = ({ arg doNum=40, stanzaDoNum=[1, 6],

stanzaFadeTime=[0.2, 6.0], langVar=0.5, ampArray=[0.1,
0.35], lineWait=[1.0, 4.0], stanzaWait=[2.0, 7.0];

3 ~stanzaRepeatTask.stop; ~stanzaTask.stop; // stop any
running tasks

4 ~stanzaRepeatTask = Task({
5 var lang = ~voiceBufEn;
6 doNum.do({ |i|
7 ("~homageTextFunc stanza:" + i ++ "/" ++

doNum).postln; // keep us informed
8 (
9 ~stanzaWordNum = [3, 6]; ~stanzaLineNum = [1, 3];

10 ~stanzaTask = Task({
11 var stanzaTaskNum = rrand(stanzaDoNum[0],

stanzaDoNum[1]);
12 stanzaTaskNum.do({ |i|
13 ("stanzaTaskNum:" + i ++ "/" ++

stanzaTaskNum).postln;
14

~generateFullStanzaOrig.value(rrand(stanzaFadeTime[0],
stanzaFadeTime[1]));

15 if (langVar.coin, { lang = ~voiceBufEn }, {
lang = ~voiceBufSp });

16 // here is the audio taken from readings of
the book in Spanish and English. Currently the audio is

chosen at random from within the files
17 if (0.99.coin, { ~fragmentSynthEnv =

Synth.new("fragmentSynthEnv", [\dur, rrand(3.1, 8.0),
\amp, rrand(ampArray[0], ampArray[1]), \bufnum,
lang.bufnum, \startPos, rrand(0, lang.numFrames), \rate,
1, \attack, 0.3, \sustain, 0.4, \release, 0.3, \effectBus,
~effect]); });

18 rrand(lineWait[0], lineWait[1]).wait;
19 });
20 }).play;
21);
22 rrand(stanzaWait[0], stanzaWait[1]).wait;
23 });
24 }).play;
25 });
26);

Code listing 5: ⇠homageTextFunc

1
2 (
3 // initialise variables
4 if (~stanzaLayerNum == nil, { ~stanzaLayerNum = 0 });
5 if (~stanzaSceneArray == nil, { ~stanzaSceneArray = [

nil,nil,nil,nil,nil,nil,nil,nil,nil,nil,nil] }); // this
array is to keep track of which object layers contain what
information and whether they are fading, rotating, growing
or shrinking, etc.

6 ~fullStanzaFontSize=10;
7
8 // the function
9 ~generateFullStanzaOrig=({ arg fadeTime=((4.0.rand)+0.5);

10 var colourRand=155.rand, alphaRand=(155.rand)+100,
hexColour, textStreamPortion="", randPlaceInStream,
fadeInAndOutRoutine;

11
12 // choose a layer that is not already involved (e.g. fading)
13 while ({ (~homageHTML[~stanzaLayerNum][12][1] == true) ||

~stanzaSceneArray.includes(~stanzaLayerNum) == true }, {
~stanzaLayerNum = 12.rand });

14
15 // set the font size, face, colour and alpha values
16 ~homageHTML[~stanzaLayerNum][15] =

((~fullStanzaFontSize.rand)+5).asString ++ "pt";
17 ~homageHTML[~stanzaLayerNum][14] = ~fontArray.choose;
18 hexColour = ~argbConvert.value([alphaRand, colourRand,

colourRand, colourRand]);
19 ~homageHTML[~stanzaLayerNum][10] = [colourRand, colourRand,

colourRand, alphaRand];
20 ~homageHTML[~stanzaLayerNum][11] = alphaRand;
21
22 // choose the larger section
23 randPlaceInStream =

((~stanzaTextInputSpSmall.size)-120).rand;
24
25 // choose the smaller text from within this
26 textStreamPortion =

~stanzaTextInputSpSmall[randPlaceInStream..(randPlaceInStream+120)];
27
28 ~stanzaText = ~createTextStreams.value(textStreamPortion,

~stanzaWordNum, ~stanzaLineNum);
29
30 ~phonemeSigns[~stanzaLayerNum] = ~stanzaText;
31
32 // this actually sets the text on screen
33 ~homage.htmlFull("homageWin", "html", ~stanzaLayerNum,

~homageHTML[~stanzaLayerNum][14],
~homageHTML[~stanzaLayerNum][15],
~homageHTML[~stanzaLayerNum][2],
~homageHTML[~stanzaLayerNum][3], 0.1, hexColour,
~phonemeSigns[~stanzaLayerNum]);

34
35 // move the text
36 ~homageHTML[~stanzaLayerNum][4] = (rrand(~winSize[0].neg,

~winSize[0]))*0.6;
37 ~homageHTML[~stanzaLayerNum][5] = (rrand(~winSize[1].neg,

~winSize[1]))*0.6;
38 // set to (slightly smaller than) the window bounds
39 ~homage.move("homageWin", "html", ~stanzaLayerNum,

~homageHTML[~stanzaLayerNum][4],
~homageHTML[~stanzaLayerNum][5], ~stanzaLayerNum);

40
41 // scale the text
42 ~homageHTML[~stanzaLayerNum][9] = rrand(4.0, 8.0);
43 ~homage.scale("homageWin", "html", ~stanzaLayerNum,

~homageHTML[~stanzaLayerNum][9]);
44
45 // now start to fade the text
46 ~htmlFadeFull.value("~homage","homageWin", "html",

~stanzaLayerNum, ~homageHTML[~stanzaLayerNum][14],
~homageHTML[~stanzaLayerNum][15],
~homageHTML[~stanzaLayerNum][2],
~homageHTML[~stanzaLayerNum][3], 0.1,
~phonemeSigns[~stanzaLayerNum],
[~homageHTML[~stanzaLayerNum][11], 0],

~homageHTML[~stanzaLayerNum][10], fadeTime);
47
48 // collect more than one to avoid repetition when the

actions overlap...
49 ~stanzaSceneArray = ~stanzaSceneArray.add(~stanzaLayerNum);
50 if (~stanzaSceneArray.size > 10, { ~stanzaSceneArray =

~stanzaSceneArray.drop(1) });
51 });
52)

Code listing 6: ⇠generateFullStanzaOrig

4.2 Lines and Chords

Lines and chords are two types of generative musical fig-
ures both of which have appeared in earlier compositions.
More detail about lines and chords, their construction, and
the manner of their representation can be found in [7].

5. WINDMILLS

One of the main focuses of Homenaje must be, of course,
La Mancha’s infamous windmills (see figure 4). I had dis-
cussed with Phil Terry whether he might have any ideas re-
garding the text of Don Quixote and he composed a series
of twelve ‘quixotes’, each of which took a famous scene
from the book and created a ‘concrete’ poem from each in
the shape of a windmill. Below is the text of the first one:

Wicked breed
Unimaginable adventures
Monstrous giants
Happy memory

“What giants?"
Said Sancho Panza.
“Those giants that you
can see over there"

replied his master
“with long arms".

Great service, raw novice, arduous combat,
cowardly creatures 4

We made audio recordings of Phil reading out each of
the poems and these recordings accompany the concrete
visualisations during performance.

Figure 9 shows its implementation visually in INSCORE.
This demonstrates more of the text-based features of the
programme. In the demonstration video the passage begins
at about 4:40.

4 The scene to which this refers can be found in Book 1, Chapter 8,
available here

Figure 9: Quixotes: concrete poetry by Phil Terry.

Code listing 7 is rather lengthy, combining as it does
complex graphical placements of textual elements.

1
2 ~quixotes = ({ arg windmillNum = 1, num,

wmSpeedOffsetMinMax=[0.35, 0.45], dilapidation=10,
scale=1.0, xOffset=0.5, yOffset=0.5;

3
4 // font size needs to be mapped onto the number of

characters in each word or line so that the cosmetic
appearance of the windmill graphics can be maintained.

5 var font = "Garamond", text, fontSize, fontSizePt,
fontSizeSpec = ControlSpec(26, 10, 'lin', 1, 20),
wmSpeedOffset = [rrand(wmSpeedOffsetMinMax[0],
wmSpeedOffsetMinMax[1]), rrand(wmSpeedOffsetMinMax[0],
wmSpeedOffsetMinMax[1]), rrand(wmSpeedOffsetMinMax[0],
wmSpeedOffsetMinMax[1]), rrand(wmSpeedOffsetMinMax[0],
wmSpeedOffsetMinMax[1])], windmillVarNum =
((windmillNum-1) * 14), var windmillTask;

6
7 ~homageHTML.size.do({ |i|
8 ~homageHTML[i][9] = scale; // define scale (html 9)
9 ~homage.scale("homageWin", "html", i, ~homageHTML[i][9]);

10 });
11
12 // windmill blades (lines 0 - 3) text and size
13 4.do({|i|
14 ~homageHTML[i+windmillVarNum][13] =

~quixotesArray[num][i];
15 fontSize =
16 fontSizeSpec.map((~homageHTML[i+windmillVarNum][13].size/12.0)-1.0);
17 ~homageHTML[i+windmillVarNum][17] = fontSize.asString ++

"pt";
18 fontSizePt = ~homageHTML[i+windmillVarNum][17];
19 ~homage.htmlFull("homageWin", "html", i+windmillVarNum,

font, fontSizePt, text: ~homageHTML[i+windmillVarNum][13]);
20 // move them
21 ~homage.move("homageWin", "html", i+windmillVarNum,

~homageHTML[i+windmillVarNum][4] + yOffset * scale;,
~homageHTML[i+windmillVarNum][5] + xOffset * scale);

22 });
23
24 // middle lines text size
25 7.do({ |i|
26 ~homageHTML[i+4+windmillVarNum][13] =

~quixotesArray[num][i+4];
27 ~homageHTML[i+4+windmillVarNum][17] = "18pt";
28 ~homage.htmlFull("homageWin", "html", i+4+windmillVarNum,

font, ~homageHTML[i+4+windmillVarNum][17], text:
~homageHTML[i+4+windmillVarNum][13]);

29 });
30
31 // last three lines text size
32 3.do({|i|
33 ~homageHTML[i+11+windmillVarNum][13] =

~quixotesArray[num][i+11];
34 fontSize =
35 fontSizeSpec.map((~homageHTML[i+11+windmillVarNum][13].size/12.0)-1.0);
36 ~homageHTML[i+11+windmillVarNum][17] = fontSize.asString

++ "pt";
37 fontSizePt = ~homageHTML[i+11+windmillVarNum][17];
38
39 ~homage.htmlFull("homageWin", "html",

i+11+windmillVarNum, font, fontSizePt, text:
~homageHTML[i+11+windmillVarNum][13]);

40 });
41
42 // position of body
43 if (dilapidation == 0, { 7.do({|i|

~homageHTML[i+4+windmillVarNum][7][2] = 0; }) });
44
45 // note the role of dilapidation here. Each time the

function is run during performance, the value of

http://www.online-literature.com/cervantes/don_quixote/12/

dilapidation increases and so the windmills gradually
become more and more uneven.

46 7.do({ |i|
47 ~homage.move("homageWin", "html", i+4+windmillVarNum,

~homageHTML[i+4+windmillVarNum][4] + yOffset +
rrand(dilapidation.neg*0.005, dilapidation*0.005) * scale,
~homageHTML[i+4+windmillVarNum][5] + xOffset +
rrand(dilapidation.neg*0.005, dilapidation*0.005) * scale);

48 });
49
50 // create and rotate the last three lines...
51 ~homage.rotate("homageWin", "html", 11+windmillVarNum, zPos:

0);
52 ~homage.rotate("homageWin", "html", 12+windmillVarNum, zPos:

110);
53 ~homage.rotate("homageWin", "html", 13+windmillVarNum, zPos:

250);
54
55 // and move them
56 3.do({|i|
57 ~homageHTML[i+11+windmillVarNum][4] =

~homageHTML[i+11+windmillVarNum][4];
58 ~homage.move("homageWin", "html", i+11+windmillVarNum,

~homageHTML[i+11+windmillVarNum][4] + yOffset * scale,
~homageHTML[i+11+windmillVarNum][5] + xOffset * scale);

59 });
60
61 // spin the blades
62 windmillTask = Task({
63 var zPos1 = (rrand(1.75, 2.25)*wmSpeedOffset[0]);
64
65 while ({ ~homageHTML[0+windmillVarNum][12][3] == true },

{
66 ~homage.drotate("homageWin", "html", 0+windmillVarNum,

zPos: zPos1);
67 ~homage.drotate("homageWin", "html", 1+windmillVarNum,

zPos: (rrand(1.75, 2.25)*wmSpeedOffset[1]));
68 ~homage.drotate("homageWin", "html", 2+windmillVarNum,

zPos: (rrand(1.75, 2.25)*wmSpeedOffset[2]));
69 ~homage.drotate("homageWin", "html", 3+windmillVarNum,

zPos: (rrand(1.75, 2.25)*wmSpeedOffset[3]));
70 0.04.wait;
71 });
72 }).play;
73 });

Code listing 7: ⇠quixotes

Figure 10: ⇠quixotes showing increasing dilapidation.

Figure 11: ⇠quixotes flying off.

5.1 Dilapidation

One of the more expressive arguments of the function
~quixotes (code listing 7) is dilapidation. This value
determines the ‘tidiness’ of the windmills generated and,
reflecting Don Quixote’s deteriorating hold on reality, each
time the function is called the value is increased and as a
consequence the windmills’ movements become increas-
ingly uneven and unpredictable. Figure 10 shows two wind-
mills demonstrating this. After a certain level of dilapida-
tion is reached in performance, the windmills disintegrate
completely (see Figure 11) and ‘fly off’ the ‘page’.

As dilapidation increases, so too does the disintegration
Phil Terry’s reading of his Cervantes-inspired poems. With
each verse the audio is rendered using decreasing bit and
sample rates, making it increasingly incomprehensible. The
effects of dilapidation are clearly visible and audible from
about 6:00 in the demonstration video.

6. PICASSO

The final section of Homenaje features Picasso’s 1955
black on white sketch of Don Quixote, his horse Roci-
nanate, his sidekick Sancho Panza as well as a number of
windmills. The drawing was made on August 10, 1955
for the August 18-24 issue (No. 581) of Les LETTRES
françaises, a weekly French journal directed by Aragon, in
celebration of the 350th anniversary of the publication of
Don Quixote, Part I [8].

The image has been cut into 23 pieces, some of which can
be seen in figure 12. These pieces appear and fade along
with the musical algorithms used. In the case of this scene,
the musical ideas are initially based around guitar samples
(along with occasional harp samples), reflecting the impor-
tance of the guitar in Picasso’s output: in 2011 there was
an exhibition at MOMA — Picasso: Guitars 1912-1914
(here: https://www.moma.org/calendar/exhibitions/1088).
The music consists of a variety of idiomatic guitar ideas
and gestures: mordents and turns, strumming, and plucked
melody lines (see code listing 8), which combine and build
into a rhythmic texture (see about 7:40 in the demonstra-
tion video and code listing 9).

1
2 // a single guitar note

https://www.moma.org/calendar/exhibitions/1088

3 // throughout this section the amplitude of the guitar is
governed by the environment variable ~guitarAmp which
makes it easier to balance the sound in performance
environments with different acoustics.

4
5 1.do({ ~guitarNote = ([50, 57].choose)-12;

~playGuitar.value(2.1, 0.01, ~guitarNote, 1.0,
~guitarAmp); }); ~picassoPartAppearFunc.value(rrand(0.001,
0.01), 1, false, false);

6
7 1.do({ ~guitarNote = ([50, 57, 62, 64, 67, 69, 71, 73

].choose)-12; ~playGuitar.value(2.1, 0.01, ~guitarNote,
1.0, ~guitarAmp); });
~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1, false,
false);

8
9 // a few notes

10 // included are functions ~picassoPartAppearFunc and
~picassoPartAppearNoFadeFunc which manage the appearance
and fading of the divided Picasso sketch

11 // the guitar notes are taken from a central array of values
12 (
13 Task({
14 var numNotes = rrand(4, 8);
15 var waitTime = rrand(0.05, 0.13);
16
17 numNotes.do({ |i|
18 1.do({ ~guitarNote = ([50, 57, 62, 64, 67, 69, 71, 73

].choose)-12; ~playGuitar.value(2.1, 0.01, ~guitarNote,
1.0, ~guitarAmp); });

19 if (i == (numNotes-1), {
20 ~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1,

false, false);
21 }, {
22 ~picassoPartAppearNoFadeFunc.value(2.0, 1, false,

false, rrand(100, 255), 0);
23 });
24 (waitTime*(rrand(0.95, 1.05))).wait;
25 });
26 }).play;
27);
28
29
30 // low strum
31 4.do({ ~guitarNote = ([50, 57, 62, 64, 67, 69, 71, 73

].choose)-24; ~playGuitar.value(2.1, 0.01, ~guitarNote,
1.0, ~guitarAmp); });
~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1, false,
false);

32
33 // arg octave = 0, amp = 3.0;
34 ~guitarStrumFunc.value(2, ~guitarAmp);
35
36 // a variety of twists and turns
37 ~guitarTwistFunc.value(2, ~guitarAmp*0.25, true);

~picassoPartAppearFunc.value(rrand(0.005, 0.05), 1, false,
false);

38 ~guitarTwistFunc.value(6, ~guitarAmp*0.25, false);
~picassoPartAppearFunc.value(rrand(0.005, 0.05), 1, false,
false);

39 ~guitarTwistFunc.value(12, ~guitarAmp*0.25, false);
~picassoPartAppearFunc.value(rrand(0.005, 0.05), 1, false,
false);

40
41 // many turns
42 Task({ rrand(2, 8).do({ ~guitarTwistFunc.value(12,

~guitarAmp*0.25, false); rrand(0.1, 0.4).wait;
~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1, false,
false); }); }).play;

43
44 Task({ 4.do({ ~picassoPartAppearFunc.value(rrand(0.001, 0.01),

1, false, false); ~guitarTwistFunc.value(12,
~guitarAmp*0.3, false); rrand(0.1, 0.4).wait; }); }).play;

45
46 Task({ rrand(4, 12).do({ ~guitarTwistFunc.value(12,

~guitarAmp*0.25, false); rrand(0.1, 0.4).wait; }); }).play;
47
48 ~playGuitar.value(0.1, 0.01, 55, 1.0, ~guitarAmp);

~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1, false,
false);

49
50 ~playTinyGuitarStream.value(rrand(4, 24), true,

{rrand(~guitarAmp*0.01,~guitarAmp)});
~picassoPartAppearFunc.value(rrand(0.001, 0.01), 2, false,
false);

51
52 ~playTinyGuitarStream.value(rrand(4, 24), true,

{rrand(~guitarAmp*0.01,~guitarAmp)});
53
54 // guitar 'strum' function in funcs
55 ~guitarStrumFunc.value(14, ~guitarAmp);
56
57 // a small, quiet, relatively metrical guitar melody:
58 ~playTinyGuitarStream.value(rrand(4, 24), true);

~guitarStrumFunc.value(2, amp: ~guitarAmp);
59
60 // play short burst of guitar melody
61 (
62 Task({
63
64 rrand(4, 12).do({
65 ~guitarNote = [50, 57, 62, 64, 67, 69, 71, 73].choose;

66 ~playGuitar.value(2.1, 0.01, ~guitarNote, 1.0,
~guitarAmp);

67 ~picassoPartAppearFunc.value(rrand(0.001, 0.01), 2,
false, false);

68 });
69
70 rrand(4, 18).do({
71 ~playGuitar.value(10.5, 0.01, ([50, 57, 62, 64, 67, 69,

71, 73].choose)-12, 1.0, ~guitarAmp);
72 rrand(0.125, 0.13).wait;
73 ~picassoPartAppearFunc.value(rrand(0.001, 0.01), 2,

false, false);
74 });
75 }).play;
76);
77
78 // harp
79 (
80 Task({
81
82 rrand(4, 12).do({
83 ~guitarNote = [50, 57, 62, 64, 67, 69, 71, 73].choose;
84 ~playHarp.value(2.1, 0.01, ~guitarNote, 1.0, 0.4);
85 ~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1,

false, false);
86 });
87
88 rrand(4, 18).do({
89 ~playHarp.value(10.5, 0.01, ([50, 57, 62, 64, 67, 69,

71, 73].choose)-12, 1.0, 0.4);
90 rrand(0.125, 0.13).wait;
91 ~picassoPartAppearFunc.value(rrand(0.001, 0.01), 1,

false, false);
92
93 });
94 }).play;
95)
96
97 // guitar and harp together
98 (
99 Task({

100
101 rrand(8, 18).do({
102 ~guitarNote = [50, 57, 62, 64, 67, 69, 71, 73].choose;
103 ~playGuitar.value(2.1, 0.01, ~guitarNote, 1.0,

~guitarAmp);
104 });
105
106 rrand(8, 18).do({
107 if (0.25.coin, {
108 ~playGuitar.value(10.5, 0.01, ([50, 57, 62, 64, 67,

69, 71, 73].choose)-12, 1.0, ~guitarAmp);
109 }, {
110 ~playHarp.value(10.5, 0.01, ([50, 57, 62, 64, 67, 69,

71, 73].choose)-12, 1.0, 0.5);
111 });
112 rrand(0.125, 0.13).wait;
113 });
114 }).play;
115)

Code listing 8: Picasso and guitars ’live coding’

1
2 // then automated and strictly in time
3 (
4 ~guitarTranspose = 0;
5 ~guitarOctave = 0;
6 ~picassoCol = [100, 255];
7
8 ~autoGuitarTask = Task({
9 var myWait = 0.125;

10
11 ~autoGuitarTask.stop;
12 ~strumTask.stop;
13
14 ~strumTask = Task({ // the initial 'strum'
15 rrand(4, 10).do({
16 ~guitarNote = [50, 57, 62, 64, 67, 69, 71, 73

].choose;
17 ~playGuitar.value(2.1, 0.01,

~guitarNote+~guitarTranspose+~guitarOctave, 1.0,
~guitarAmp);

18 if (0.9.coin, {
19 ~picassoPartAppearFunc.value(rrand(0.01, 0.01),

16, false, false, ~picassoCol);
20 }, { ~picassoPartAppearFunc.value(rrand(0.1, 1.2),

16, false, false, ~picassoCol);
21 });
22 });
23
24 rrand(16, 36).do({
25 ~playGuitar.value(10.5, 0.01, (([50, 57, 62, 64,

67, 69, 71, 73
].choose)-12)+~guitarTranspose+~guitarOctave, 1.0,

~guitarAmp);
26
27 if (0.9.coin, {
28 ~picassoPartAppearFunc.value(rrand(0.01, 0.01),

16, false, false, ~picassoCol);
29 }, { ~picassoPartAppearFunc.value(rrand(0.1, 1.2),

16, false, false, ~picassoCol);
30 });
31 myWait.wait;
32 });
33 }).play;
34 myWait.wait;
35 }).play;
36)

Code listing 9: The guitar texture algorithm

(i)

(ii)

(iii)

Figure 12: Three renditions of Picasso, guitars and
melody.

The guitar-sound-based texture is then augmented by vi-
olin melodies, to be played by the live violinist, based on

the original melody developed earlier in the piece, but now
using the tonality of the rhythmic guitar texture as a tonal
basis. These melodies gradually take over the texture, be-
coming more and more sustained as the guitar fades (from
about 10:30, see code listing 10). The notes from which
those played are chosen are provided by the array

~chordNotes

which can be coded live, or taken from a set of arrays
(see code listing 10) based on the chords shown in figure
13. Harmonically, they comprise fourths and fifths with a
more complex overtones and harmonics.

Figure 13: Two tonally ambiguous chords forming the ba-
sis of some of the harmonies of the ‘sustained string’ sec-
tion of Homenaje

1
2 // chord Notes
3 ~chordNotes = [50, 57, 62, 64, 67, 69]; // d, a, d, e, g, a
4 ~chordNotes = [50, 57, 62, 64, 67, 69, 71]; // + b
5 ~chordNotes = [50, 57, 62, 64, 67, 69, 71, 73]; // + c#
6
7 ~chanceOfNote = 0.8;
8
9 ~chordNotes = [50, 57]; // fifth

10 ~chordNotes = [50, 57, 64]; // two fifths
11 ~chordNotes = [50, 57, 64, 71]; // three fifths
12 ~chordNotes = [50, 57, 64, 67, 71]; // three fifths
13
14 ~chordNotes = [50, 57, 61, 64, 66, 68, 78];
15 ~chordNotes = ~chordNotes + 8
16 ~chordNotes = ~chordNotes - 8
17 ~chordNotes = [43, 50, 57, 64, 71];
18 ~chordNotes = [43, 50, 57, 61, 64, 66, 68, 78];
19
20 ~chanceOfNote = 0.7;
21
22 ~chordNotes = [37, 43, 50, 57, 66, 73, 80, 83, 87]; // d, a,

f#, c#, g#, b, d#
23 ~chordNotes = [50, 57, 66, 73, 80, 83];
24 ~chordNotes = [50, 57, 66, 73, 80];
25
26 ~chanceOfNote = 0.6;
27
28 ~chordNotes = [50, 57, 66, 73]; // d, a, f#, c#
29 ~chordNotes = [66, 74, 73];
30 ~chordNotes = [73];

Code listing 10: Sustained string texture at end

At this point the Picasso sketch is complete and its parts
fade in and out, rotating, until they disappears altogether
along with the violin music.

7. CONCLUSIONS

Homenaje is a composition that consciously extends the
integration of text and image with music, a process that be-

(i)

(ii)

(iii)

Figure 6: Other renditions of the melody are shown here.
Note that in (iii) the melody changes colour from black to
dark blue when the fade out begins to indicate this to the
instrumentalist.

Figure 7: A rendition of text, lines and chords.

gan with the music-dance-text piece Choreograms in which
18th century dance notations appeared alongside contem-
porary poetry, audio and music notations. It formalises the
structures put in place in earlier pieces, most notably the
sets of object arrays that allow the storage of each objects
state (e.g. location, colour, alpha value, rotation).

Each project spent composing with SuperCollider and IN-
SCORE convinces me of the flexibility and power of these
pieces of software, both individually and in combination.
Each piece of software allows virtually complete control
not only over the tools and mechanisms involved, they also
allow maximum freedom over how they themselves can be
controlled. Both SuperCollider and INSCORE can be used
as standalone pieces of software, or as engines to be con-
trolled from other preferred resources. The fact that sclang
is able to deal so effectively with rather obscure and arbi-
trary text-based functionality such as converting text to all
lower (or all upper, or any number of other string trans-
formations) demonstrates both its flexibility and the im-
portance of that flexibility in cross-domain work. There is
little doubt that all of these factors make the investigation
of links and mappings between diverse expressive domains
particularly suitable for these resources and there is enor-
mous potential for discovery and expression.

8. REFERENCES

[1] S. Wilson, D. Cottle, and N. Collins, Eds., The Super-
Collider Book. Cambridge, MA: MIT Press, 2011.

[2] D. Fober, Y. Orlarey, and S. Letz, “Inscore – an envi-
ronment for the design of live music scores,” in Pro-
ceedings of the Linux Audio Conference, 2012, pp. 47–
54.

[3] R. Hoadley, “Live coding, live notation, live per-
formance,” in Electronic Visualisation and the Arts
(EVA 2016), ser. Electronic Workshops in Computing
(eWiC), J. P. Bowen, G. Diprose, and N. Lambert, Eds.,
British Computer Society. British Computer Society,
2016, pp. 34–41.

[4] N. Collins, A. McLean, J. Rohrhuber, and A. Ward,
“Live coding in laptop performance,” Organised
Sound, vol. 8, no. 3, pp. 321–330, 2003.

[5] Google, “Google map,” June 2017. [Online]. Avail-
able: https://goo.gl/maps/EmhqzZdmeA52

[6] R. Hoadley, “Calder’s violin (performance),” in Pro-
ceedings of the International Computer Music Confer-
ence. Athens, Greece: ICMA, September 2014.

[7] ——, “How to play the piano,” in Proceedings of the
ICMC, H. Timmermans, Ed., ICMA. Utrecht, Nether-
lands: HKU University of the Arts Utrecht, 2016, pp.
176–180.

[8] A. G. L. Ré, “A possible source for picasso’s drawing
of don quixote,” Cervantes: Bulletin of the Cervantes
Society of America, vol. 12, no. 1, pp. 105–110, 1992.

https://goo.gl/maps/EmhqzZdmeA52

	 1. Introduction
	 2. Title
	 3. Melody
	3.1 The Aesthetics of Melody Generation

	 4. Texts, chords and lines
	4.1 Texts
	4.2 Lines and Chords

	 5. Windmills
	5.1 Dilapidation

	 6. Picasso
	 7. Conclusions
	 8. References

