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In this paper we give sufficient conditions for a Pontryagin extremal trajectory, consisting of two bang arcs followed by a partially or totally singular one, to be a strong local minimizer for a Mayer problem. The problem is defined on R n and the end-points constraints are of fixed-free type. We use a Hamiltonian approach and its connection with the second order conditions in the form of a LQ accessory problem. An example is proposed. All the results are coordinate free so they also hold on a manifold.

1. Introduction. In this paper we consider a Mayer problem on a fixed time interval [0, T ] and governed by a control affine dynamics. We study the strong local optimality of a trajectory consisting of two bang arcs followed by a singular one.

In Optimal Control literature two different kinds of local optimality are usually considered: weak local optimality, i.e. with respect to the C 0 × L ∞ -distance of the couples (trajectory, associated control); strong local optimality, i.e. with respect to the C 0 -distance of admissible trajectories, without any localization on the controls and which is defined below. An intermediate kind of local optimality, called Pontryagin local optimality, is also studied in the literature, see for example [START_REF] Milyutin | Calculus of Variations and Optimal Control[END_REF]. In our case Pontryagin local optimality reduces to local optimality with respect to the C 0 × L 1distance of the couples (trajectory, associated control).

Here we give sufficient optimality conditions for the reference trajectory to be a strong local minimizer in the case when the end-point constraints are of fixed-free type. We also recall that since a Bolza problem can always be reduced to a Mayer one, sufficient optimality conditions can be also derived for a Bolza problem.

Control affine systems can be modeled in different ways; since we want to consider both bang and partially singular arcs (see Definition 1.2), we model the system as follows: let X 1 , . . . , X m be smooth vector fields on R n and let X be their convex hull, i.e.

X (x) = m i=1 u i X i (x) : u = (u 1 , . . . , u m ) ∈ ∆ , where ∆ := {u ∈ R m : u i ≥ 0, i = 1, . . . , m, m i=1 u i = 1} is the simplex of R m .
Given a smooth function c : R n → R and a point x 0 ∈ R n , we consider a Mayer problem of the following kind minimize c(ξ(T )) subject to (1a) ξ(t) ∈ X (ξ(t)) a.e. t ∈ [0, T ], (1b)

ξ(0) = x 0 . (1c)
Equivalently, by Filippov's theorem, equation (1b) can also be written as ξ(t) = m i=1 υ i (t)X i (ξ(t)), a.e. t ∈ [0, T ], υ ∈ L ∞ ([0, T ], ∆) .

Our aim is to give sufficient conditions for a reference trajectory ξ : [0, T ] → R n of (1b)-(1c) to be indeed a strong local minimizer of the problem according to the following definition Definition 1.1. An admissible trajectory ξ : [0, T ] → R n for an optimal control problem is a strong local minimizer if it is a minimizer among the admissible trajectories which are in a neighborhood of ξ with respect to the C 0 topology.

We consider the case when ξ is the concatenation of bang and singular arcs. Definition 1.2. Given an admissible trajectory ξ and a time interval (t 1 , t 2 ) ⊂ [0, T ], we say that ξ| (t1,t2) is

• a bang arc of ξ if ξ(t) is the same vertex of X (ξ(t)) for any t ∈ (t 1 , t 2 ),

• a singular arc of ξ if ξ(t) is in the relative interior of a face of X (ξ(t)) for any t ∈ (t 1 , t 2 ). A singular arc is called totally singular if the dimension of the face is maximal, otherwise it is called partially singular.

Notice that in the single input case, m = 2, singular means totally singular. This case was considered in [START_REF] Poggiolini | Strong local optimality for bang-bang-singular extremals in single input control problems[END_REF] where a proof was only sketched.

Here we assume there exist times τ 1 , τ 2 such that 0 < τ 1 < τ 2 < T , vector fields h 1 , h 2 , h 3 ∈ {X 1 , . . . X m }, (where h 1 and h 3 might be the same vector field) and a measurable function υ ∈ L ∞ ([ τ 2 , T ], (0, 1)) such that ξ is the absolutely continuous solution to the following Cauchy problem [START_REF] Agrachev | An invariant second variation in optimal control[END_REF] ξ(t) = h 1 (ξ(t))

t ∈ [0, τ 1 ), ξ(t) = h 2 (ξ(t))

t ∈ [ τ 1 , τ 2 ), ξ(t) = υ(t)h 3 (ξ(t)) + (1 -υ(t)) h 2 (ξ(t))

a.e. t ∈ [ τ 2 , T ],

ξ(0) = x 0 .
Thus, if m = 2, then ( τ 2 , T ) is a totally singular arc, else it is a partially singular one.

Denoting by f d := h 3 -h 2 we can write the dynamics on the singular arc as ξ(t) = h 2 (ξ(t)) + υ(t)f d (ξ(t)), t ∈ ( τ 2 , T ).

We also define the time-dependent reference vector field f t as

(3)

f t :=      h 1 t ∈ [0, τ 1 ), h 2 t ∈ ( τ 1 , τ 2 ), h 2 + υ(t)f d a.e. t ∈ ( τ 2 , T ].
Remark 1.1. In this paper we consider a case study for our Hamiltonian approach, i.e. when the final point is not constrained and the initial one is fixed. Indeed in this case the second order conditions give the possibility of constructing a field of non intersecting almost extremals and this is sufficient to obtain the result. The extension to a problem with constrained final point requires adding a penalty term by taking advantage of a classical result on quadratic forms due to Hestenes, see [START_REF] Hestenes | Applications of the theory of quadratic forms in Hilbert space to calculus of variations[END_REF].
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In a future paper, [START_REF] Poggiolini | Strong local optimality for a bang-bang-singular extremal[END_REF], we shall extend the result to the case when the end points are constrained to smooth sub-manifolds of R n and the cost depends on both the end points.

Since the main necessary condition for strong local optimality, Pontryagin Maximum Principle (PMP), is naturally set in the cotangent bundle (R n ) * × R n , we give our sufficient conditions in such framework. We then use a Hamiltonian approach and its connection with the second order conditions.

The main idea is to use the symplectic properties of the cotangent bundle to compare the costs of neighboring admissible trajectories by lifting them to such bundle. To do so we define a suitable Hamiltonian flow H, emanating from a horizontal Lagrangian sub-manifold Λ, 2. We show that the derivative of H t along λ is, up to an isomorphism, the linear Hamiltonian flow associated to the LQ problem, see Section 5.2.

H : (t, ) ∈ [0, T ] × Λ → H t ( ) ∈ T * R n .

3.

From the coercivity of the 2 nd variation we deduce that πH t is locally invertible (Sections 5.3 and 5.4), so that we can compare the costs of neighboring admissible trajectories by lifting them to the cotangent bundle. In our case proving the local invertibility is equivalent to requiring the invertibility of πH t for any t ∈ [ τ 2 , T ] and the sufficient conditions for the optimality of a bang-bang trajectory of a suitable Mayer problem on [0, τ 2 ], see Remark 4.3.

Remark 1.2. The Hamiltonian approach allows to prove strong local optimality of the reference trajectory in the case of a partially singular arc, by giving regularity conditions on the reference control, while in the second order conditions only the singular component of the control is considered.

We also point out out that our result applies also to the case L f d c ≡ 0, a case which, up to the authors knowledge, has not been considered so far. In Section 6.1 we provide an example where this condition holds and to which our theory applies.

Remark 1.3. In [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF] we considered the bang-singular-bang case for the minimum time problem in a single input control system with fixed end points. For technical reasons the construction of almost-extremals provided in [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF] works for Mayer problems only if the singular arc is the first or the last one. The technique can be applied to the concatenation of an arbitrary number of bang arcs and a singular one, provided the singular arc is the initial or the final one. The possibility of modifying the technique in order to consider any concatenation of bang and singular arcs is currently being studied.
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In the case of bang-bang extremals for either a Mayer or a Bolza problem, Hamiltonian methods have been successfully exploited in [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Poggiolini | On local state optimality of bang-bang extremals in a free horizon Bolza problem[END_REF][START_REF] Poggiolini | Sufficient optimality conditions for a bang-bang trajectory in a Bolza problem[END_REF][START_REF] Poggiolini | Strong local optimality for a bang-bang trajectory in a Mayer problem[END_REF], while bang-bang extremals in the minimum time problem have been studied in [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian approach[END_REF][START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF].

Bang-bang extremals are extensively studied in the literature, also with other methods, see for example [START_REF] Ledzewicz | Optimal bang-bang controls for a two-compartment model in cancer chemotherapy[END_REF][START_REF] Osmolovskii | Applications to Regular and Bang-Bang Control[END_REF][START_REF] Chen | L1-minimization for mechanical systems[END_REF] and the references therein.

Hamiltonian methods have also been applied to singular extremals, see [START_REF] Stefani | Strong optimality of singular trajectories[END_REF][START_REF] Chittaro | Minimum-time strong optimality of a singular arc: The multi-input non involutive case[END_REF] and to concatenations of bang and singular arcs, see [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF] and the references therein.

The literature is rich of results that involve some localization of the control and with different approaches, see e.g. [START_REF] Aronna | Quadratic order conditions for bang-singular extremals[END_REF] and the references therein.

We should also like to mention that Hamiltonian methods can also be successfully employed to obtain sufficient conditions to structure stability of minimizers, see e.g. [START_REF] Felgenhauer | Optimality and stability result for bangbang optimal controls with simple and double switch behaviour[END_REF][START_REF] Poggiolini | Structural stability for bang-singular-bang extremals in the minimum time problem[END_REF][START_REF] Poggiolini | Structural stability of bang-bang trajectories with a double switching time in the minimum time problem[END_REF].

2. Preliminaries.

2.1. Notation. We start by recalling some basic facts and by introducing some specific notations. We identify any bi-linear form Q on a vector space W with a linear form Q : W → W * , we write Q(v, w) = Qv , w , and we denote the associate

quadratic form as Q(v, v) = Q[v] 2 .
In this paper we use notation from differential geometry and some basic element of the theory of symplectic manifolds referred to the trivial cotangent bundle [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF]. We take advantage of the intrinsic notation from differential geometry as it is more compact and clear. In particular we distinguish between points in R n , usually denoted as x and tangent vectors to R n , denoted as δx.

T * R n = (R n ) * × R n , see for example
Given a C 1 vector field f on R n , we denote as exp tf (x) the flow at time t emanating from a point x at time 0, i.e. exp tf (x) is the solution to

ξ(t) = f (ξ(t)), ξ(0) = x.
If g is another C 1 vector field, then the Lie bracket between f and g is denoted as

[f, g], i.e. [f, g](x) := Dg(x)f (x) -Df (x)g(x).

If α : R n → R is a C 2 function, dα is its differential, while D 2 α is the second derivative of α. Moreover L f α (x) := dα(x) , f (x) is the Lie derivative of α with respect to the vector field f at the point x.

Finally, if G is a C 1 map from a manifold X in a manifold Y , its tangent map at a point x ∈ X is denoted as T x G, or simply as G * if the point x is clear from the context. In particular, if α : R n → R is a C 2 function and δx ∈ R n , we denote by the

symbol dα * δx the couple D 2 α(x)(δx, •), δx ∈ (R n ) * × R n whenever the point x is clear from the context.
We denote by π : = (p, x) ∈ T * R n → x ∈ R n the projection on the base space.

The symbol s denotes the canonical Liouville one-form on

T * R n : s := n i=1 p i dx i .
The associated canonical symplectic two-form σ = ds = n i=1 dp i ∧ dx i allows one to associate to any, possibly time-dependent, smooth Hamiltonian H t :

T * R n → R, a Hamiltonian vector field -→ H t , by (4) σ V, -→ H t ( ) = dH t ( ) , V , ∀ V ∈ T T * R n , i.e. -→ H t ( ) = - ∂H t ∂x ( ), ∂H t ∂p ( ) , ∀ = (p, x) ∈ T * R n .
We keep this notation throughout the paper, namely the overhead arrow denotes the vector field associated to a Hamiltonian, moreover the script letter denotes its flow from time T , unless otherwise stated.
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Finally we recall that any vector field f on R n defines, by lifting to the cotangent bundle, a Hamiltonian

F : = (p, x) ∈ T * R n → p , f (x) ∈ R.
In particular we denote by H 1 , H 2 , H 3 the Hamiltonians associated with h 1 , h 2 , h 3 , respectively and by H i1i2...i k , i 1 , . . . , i k ∈ {1, 2 3}, the Hamiltonian associated with the vector field h i1i2...

i k := [h i1 , [. . . [h i k-1 , h i k ] . . . ].
The flow from time T of the reference vector field f t defined in (3), is a local diffeomorphism defined in a neighborhood of the point x T := ξ(T ). For each t ∈ [0, T ] we denote such flow as S t : R n → R n , while

F t =      H 1 if t ∈ [0, τ 1 ), H 2 if t ∈ ( τ 1 , τ 2 ), H 2 + υ(t)H 3 if t ∈ ( τ 2 , T ],
denotes the time-dependent reference Hamiltonian and F t denotes its flow.

2.2. The necessary conditions. We start by stating the main necessary condition of optimality, i.e. Pontryagin Maximum Principle (PMP). Since there is no constraint on the final point, then PMP must hold in its normal form: Assumption 1 (Normal PMP). There exists an absolutely continuous mapping

µ : [0, T ] → (R n ) * such that a.e. t ∈ [0, T ] ˙ µ(t) = -µ(t) D f t ( ξ(t)), µ(T ) = -dc( x T ), F t ( µ(t), ξ(t)) = max µ(t) , X : X ∈ X ( ξ(t)) .
µ(t) is called adjoint covector and the trajectory ξ of the system is called a state extremal of problem (1) while the couple λ(t) := µ(t), ξ(t) is called an extremal of problem [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF]. We use the following notation for the end points and for the switching points of λ(t) ∈ T * R n :

f := λ(T ), 2 := λ( τ 2 ) = F τ2 ( f ), 1 := λ( τ 1 ) = F τ1 ( f ), 0 := λ(0) = F 0 ( f ). We call λ [0, τ1)
and λ

( τ1, τ2)
bang arcs, while λ

( τ2,T ]
is a singular arc.

Thanks to the structure of the reference trajectory, PMP gives the following necessary conditions:

1. On the first bang arc, t ∈ [0, τ 1 ], we get H 1 ( λ(t)) ≥ µ(t) , X , ∀X ∈ X ( ξ(t)).

On the second bang arc

, t ∈ [ τ 1 , τ 2 ], we get H 2 ( λ(t)) ≥ µ(t) , X , ∀X ∈ X ( ξ(t)), in particular H 1 ( 2 ) = H 2 ( 2 ).
3. On the singular arc, t ∈ [ τ 2 , T ], we get

(H 2 + υ(t)F d ) ( λ(t)) ≥ µ(t) , X , ∀X ∈ X ( ξ(t)), which implies F d ( λ(t)) ≡ 0 and, by differentiation, (5) d dt F d ( λ(t)) = H 23 ( λ(t)) = 0, d 2 dt 2 F d ( λ(t)) = -H 232 ( λ(t))+ υ(t)L( λ(t)) = 0, L( ) := (H 323 + H 232 )( ) = p , [f d , [h 2 , f d ]] (x) , = (p, x) ∈ T * R n .
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At the first switching time we get

H 12 ( 1 ) = d dt (H 2 -H 1 ) • λ(t) t= τ1
≥ 0, see [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF].

At the second switching time we get

H 232 ( 2 ) = - d 2 dt 2 F d • λ(t) t= τ - 2
≥ 0, see [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF].

Moreover, other necessary conditions are known to hold along singular arcs, namely the Goh condition (which in this case is automatically satisfied) and the generalized Legendre condition (GLC), see e.g. [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF], applied to the sub-problem where the controlled vector field is constrained on the edge whose extrema are h 2 and h 3

(6) L( λ(t)) = µ(t) , (h 323 + h 232 ) ( ξ(t)) ≥ 0 ∀t ∈ [ τ 2 , T ].
We recall that the generalized Legendre condition (GLC) takes this form because we deal with Pontryagin Maximum Principle. If one considers the minimum principle, as in [START_REF] Aronna | Quadratic order conditions for bang-singular extremals[END_REF] and in [START_REF] Vossen | Switching time optimization for bang-bang and singular controls[END_REF], then GLC is given by the reverse inequality.

3. Assumptions and main result.

3.1. Regularity conditions. We now state regularity conditions by requiring strict inequalities to hold whenever necessary conditions yield mild inequalities.

Assumption 2 (Regularity along the bang arcs).

H 1 ( λ(t)) > µ(t) , X , ∀X ∈ X ( ξ(t)) \ {h 1 ( ξ(t))}, ∀t ∈ [0, τ 1 ), H 2 ( λ(t)) > µ(t) , X , ∀X ∈ X ( ξ(t)) \ {h 2 ( ξ(t))}, ∀t ∈ ( τ 1 , τ 2 ),
namely we require that the reference control is the only maximizing control along each bang arc.

Assumption 3 (Regularity along the singular arc). For any a ∈ [0, 1] and any

t ∈ [ τ 2 , T ] H 2 ( λ(t)) + υ(t)f d ( λ(t)) > µ(t) , X , ∀X ∈ X ( ξ(t)), X( ξ(t)) = (h 2 + af d ) ( ξ(t)),
i.e. we require that the set of maximizers along the singular arc is only the edge defined by h 2 and h 3 .

Assumption 4 (Regularity at the switching points).

(7)

H 12 ( 1 ) > 0, H 232 ( 2 ) > 0.
Assumption 5 (Strong generalised Legendre condition).

(SGLC)

R(t) := L( λ(t)) = µ(t) , [f d , [h 2 , f d ]] ( ξ(t)) > 0 t ∈ [ τ 2 , T ].
Thanks to (SGLC) from ( 5) we can recover the control along the singular arc:

υ(t) = H 232 L ( λ(t)) ∀t ∈ ( τ 2 , T ],
so that, by recurrence, one can easily prove that υ ∈ C ∞ ([ τ 2 , T ], (0, 1)).

The condition υ(t) ∈ (0, 1) reads

(8) H 232 ( λ(t)) > 0, H 323 ( λ(t)) > 0 ∀t ∈ [ τ 2 , T ].
Thus the reference vector field is discontinuous at ξ( τ 2 ) if and only if υ( τ + 2 ) > 0, i.e. if and only if the regularity condition at τ 2 , equation [START_REF] Felgenhauer | Optimality and stability result for bangbang optimal controls with simple and double switch behaviour[END_REF], holds.
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3.2.

The extended second variation. The second order conditions will be derived studying a sub-problem of the given one. Namely we consider the reference vector field f t and allow only for perturbations of υ on the singular interval ( τ 2 , T ) and for perturbations of the switching time τ 1 . Following the ideas of [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF], we represent the perturbations of the first switching time τ 1 by a new positive control υ 0 which is a reparametrization of time. The sub-problem can be written as Minimize c(ξ(T )) subject to (9a)

ξ(t) =      υ 0 (t)h 1 (ξ(t)) t ∈ (0, τ 1 ), υ 0 (t)h 2 (ξ(t)) t ∈ ( τ 1 , τ 2 ), h 2 (ξ(t)) + υ(t)f d (ξ(t)) t ∈ ( τ 2 , T ), (9b) 
ξ(0) = x 0 , υ 0 (t) > 0, τ2 0 υ 0 (t) dt = τ 2 , υ(t) ∈ (0, 1). (9c)
Problem [START_REF] Ledzewicz | Optimal bang-bang controls for a two-compartment model in cancer chemotherapy[END_REF] gives rise to a linear quadratic problem on the singular arc [ τ 2 , T ] where the variation of the first switching time τ 1 produces a cost at time τ 2 . Set [START_REF] Milyutin | Calculus of Variations and Optimal Control[END_REF] g

t := S -1 t * f d • S t , t ∈ [ τ 2 , T ], k i := S -1 τ1 * h i • S τ1 , i = 1, 2, k := k 1 -k 2 ,
i.e. g t is the push-forward of f d from time t ∈ [ τ 2 , T ] to time T while k i is the pushforwards of h i , i = 1, 2, from the first switching time τ 1 to T . With this notation the second variation of (9) as defined in [START_REF] Agrachev | An invariant second variation in optimal control[END_REF] and written in terms of the push-forwards to time T instead of pullbacks to time 0, is given by

(11) J [(δx, δυ 0 , δυ)] 2 = T τ2 δυ(t)L δη(t) L gt c ( x T ) dt + ε 2 0 2 L 2 k c ( x T ) + H 12 ( 1 ) subject to δη(t) = δυ(t)g t ( x T ), δη(T ) = δx ∈ R n , δη( τ 2 ) = ε 0 k( x T ), ε 0 = τ1 0 δυ 0 (t) dt = - τ2 τ1 δυ 0 (t) dt.
We then extend the second variation to a new quadratic form called extended second variation. Following the same lines as in the appendix of [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF] and setting

w(t) := τ2 t δυ(s) ds, ε 1 := w(T ),
the extended second variation of ( 9) is given by the following LQ problem on [ τ 2 , T ].

J ext [(δx, ε 0 , ε 1 , w)] 2 = -ε 1 L δx L f d c ( x T ) - ε 2 1 2 L 2 f d c ( x T ) + + ε 2 0 2 L 2 k c ( x T ) + H 12 ( 1 ) + 1 2 T τ2 2 w(t)L ζ(t) L ġt c ( x T ) + w(t) 2 R(t) dt (12) subject to (13) ζ(t) = w(t) ġt ( x T ), ζ( τ 2 ) = ε 0 k( x T ), ζ(T ) = δx + ε 1 f d ( x T ).
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This means that we consider the quadratic form J ext defined by ( 12) on the linear space, called space of admissible variations, given by 13) admits a solution}.

W ext := {(δx, ε 0 , ε 1 , w) ∈ R n × R × R × L 2 ([ τ 2 , T ]) : (
Notice that

(14) ġt = S -1 t * h 23 • S t , t ∈ [ τ 2 , T ].
We consider two cases:

• L f d c ≡ 0. J ext cannot be coercive and we only require its coercivity on the subspace of W ext given by ε 1 = 0. Notice that

f d ( x T ) = 0. Indeed, if f d ( x T ) = 0, then L( f ) = µ(T ) , [f d , h 23 ] ( x T ) = dc , Df d h 23 ( x T ) = L h23 L f d c ( x T ) = 0, a contradiction to (SGLC). • L f d c is not identically zero. Choosing the variation δe = (-f d ( x T ), 0, 1, 0) in (12) we get J ext [δe] 2 = L 2 f d c ( x T ) and we require L 2 f d c ( x T ) > 0.
In this case the set, locally defined near x T in R n ,

M := {x ∈ R n : L f d c (x) = 0} ,
is a hyper-surface whose tangent space at x T is Following [START_REF] Stefani | Strong optimality of singular trajectories[END_REF] it can be shown that the coercivity of ( 12) on W ext is equivalent to

T x T M = {δz ∈ R n : L δz L f d c ( x T ) = 0} .
L 2 f d c ( x T ) > 0 plus the coercivity of J[(δx, ε 0 , w)] 2 = ε 2 0 2 L 2 k c ( x T ) + H 12 ( 1 ) + + 1 2 T τ2 2 w(t)L ζ(t) L ġt c ( x T ) + R(t)w(t) 2 dt (16) subject to (17) ζ(t) = w(t) ġt ( x T ), ζ( τ 2 ) = ε 0 k( x T ), ζ(T ) = δx ∈ R n .
This is exactly the same formula we obtain in the case L f d c ≡ 0 setting c := c.

We can now state our final assumption, concerning the second variation J.

Assumption 6. We assume the following conditions hold:

a) The quadratic form J, [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF], is coercive on

W := {(δx, ε 0 , w) ∈ R n × R × L 2 ([ τ 2 , T ], R) : (17) admits a solution}. b) Either L 2 f d c ( x T ) > 0 or L f d c ≡ 0 in a neighborhood O of x T in R n .
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The main result.

We can now state the main result of this paper Theorem 3.1. Let ξ be the admissible trajectory defined in [START_REF] Agrachev | An invariant second variation in optimal control[END_REF]. Assume that ξ is a state extremal (Assumption 1) satisfying the regularity Assumptions 2-5. If Assumption 6 is satisfied, then ξ is a strict strong local optimal trajectory of (1).

Indeed, in Section 5 we prove that Assumptions 1-5 plus a) of Assumption 6 imply that ξ is a strict strong locally optimal trajectory for the cost c(ξ(T )).

This concludes the proof in the case

L f d c ≡ 0. When L 2 f d c ( x T ) > 0, the claim is
proved by [START_REF] Poggiolini | Strong local optimality for a bang-bang trajectory in a Mayer problem[END_REF].

4. Hamiltonian approach. The first step in applying the Hamiltonian approach described in the Introduction, is the construction of an over-maximized Hamiltonian flow. Indeed the presence of a singular arc prevents us from using the maximized Hamiltonian (see [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF]) which can be used in the classical case, i.e. when it is C 2 , see [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF]. The over-maximized Hamiltonian was introduced in [START_REF] Stefani | Strong optimality of singular trajectories[END_REF] and then used in [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF][START_REF] Poggiolini | Structural stability for bang-singular-bang extremals in the minimum time problem[END_REF][START_REF] Chittaro | Minimum-time strong optimality of a singular arc: The multi-input non involutive case[END_REF] . In [START_REF] Stefani | Variational Methods in Imaging and Geometric Control[END_REF] the authors give a systematic extension of the classical techniques to the case of an over-maximized Hamiltonian whose flow is only Lipschitz continuous.

4.1. The over-maximized flow. In this section we describe how the regularity conditions allow to define in a neighborhood U of the graph of λ in [0, T ] × T * R n , a time-dependent Hamiltonian function H : U → R whose flow satisfies the assumptions stated in [START_REF] Stefani | Variational Methods in Imaging and Geometric Control[END_REF]. We consider the flow of the over-maximized Hamiltonian emanating from the following Lagrangian manifold:

(18) Λ := {(d(-c)(x), x) : x ∈ O} .
In our case the assumptions of [START_REF] Stefani | Variational Methods in Imaging and Geometric Control[END_REF] read as follows.

1. The flow (t, )

∈ [0, T ] × Λ → H t ( ) := (µ t ( ), ξ t ( )) ∈ T * R n is Lipschitz contin- uous.
2. The function Φ : (t, )

∈ [0, T ] × Λ → µ t ( ) , π -→ H t • H t ( ) -H t • H t ( ) ∈ R is
Lipschitz-Caratheodory i.e.

• For almost every t ∈ [0, T ] the map ∈ Λ → Φ(t, ) ∈ R is locally Lipschitz.

• For each ∈ Λ the map t ∈ [0, T ] → Φ(t, ) ∈ R is bounded measurable.

• For any compact set K ⊂ Λ there is an essentially bounded measurable

function m : [0, T ] → R such that Φ(t, 1 ) -Φ(t, 2 ) ≤ m(t) 1 -2 , ∀ 1 , 2 ∈ Λ.
3. The following over-maximality conditions hold:

(a) H t • H t ( ) ≥ H max • H t ( ), for any (t, ) ∈ [0, T ] × Λ, (b) H t • λ(t) = F t • λ(t) = H max • λ(t), for a.e. t ∈ [0, T ], (c) -→ H t • λ(t) = - → F t • λ(t), for a.e. t ∈ [0, T ].
The coercivity of the second variation will then guarantee the invertibility of the projected over-maximized flow of such Hamiltonian.

In order to describe H t , t ∈ [ τ 2 , T ] notice that the SGLC condition (Assumption 5)

implies that there exists a neighborhood O s of the range of the singular arc λ([ τ 2 , T ]) in T * R n such that the sets

Σ := { ∈ O s : F d ( ) = 0} = { ∈ O s : H 2 ( ) = H 3 ( )} , S := { ∈ Σ : H 23 ( ) = 0} = { ∈ O s : H 2 ( ) = H 3 ( ), H 23 ( ) = 0}
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are smooth simply connected manifolds of codimension 1 and 2, respectively. More precisely --→ H 23 is transverse to Σ in O s , while -→ F d is tangent to Σ and transverse to S in Σ, see [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF]. Moreover we can define a smooth function u s : O s → R and the feedback Hamiltonian as follows:

u s ( ) = H 232 L ( ), H S ( ) = H 2 ( ) + u s ( )F d ( ).
Remark 4.1. On the singular interval [ τ 2 , T ], υ(t) = u s ( λ(t)) and λ is the solution to the Cauchy problem

(19) λ(t) = -→ H S (λ(t)), λ( τ 2 ) = 2 .
In [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF] the authors prove that possibly restricting O s , the following implicit function problem has a solution θ : O s → R:

H 23 • exp(θ( ) -→ F d )( ) = 0, θ( ) = 0 if H 23 ( ) = 0, and dθ( S ) , δ = -σ δ , --→ H 23 ( S ) L( S ) , ∀ S : H 23 ( S ) = 0.
The over-maximized Hamiltonian is defined starting from 

H 2 ( ) := H 2 • exp(θ( ) -→ F d )( ).

For any S ∈ S and δ

∈ T S Σ (20) d H 2 -H 2 ( S ) = 0, D 2 H 2 -H 2 ( S )[δ ] 2 = σ δ , --→ H 23 ( S ) 2 L( S ) . 3. 
-→ H 2 is tangent to Σ and, setting,

H t ( ) := H 2 ( ) + υ(t)F d ( ), ∀(t, ) ∈ [ τ 2 , T ] × O s we easily get that -→ H t is tangent to Σ. 4. λ [ τ2,T ] solves the Cauchy problem λ(t) = -→ H t (λ(t)), λ(T ) = f . 5. -→ F d , -→ H t ≡ 0 on Σ hence -→ F d is invariant on Σ with respect to the flow of -→ H t : (22) -→ F d • H t ( ) = H t * -→ F d ( ), ∀(t, ) ∈ [ τ 2 , T ] × Σ. (21) 
The proof of Lemma 4.1 can be done adapting the results in [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF] and completes the analysis of the singular arc.

The bang arcs present problems of a different kind. Namely we need to define the switching times near the reference switching points 1 and 2 .
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For (t, ) near the graph of λ we need H t ( ) ≥ H max ( ) , but in [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF] it is shown that the backwards flow of -→ H 2 from time τ 2 is the maximized one if and only if H 23 ( ) ≥ 0. In order to overcome this problem we introduce a correction of such a flow from time τ 2 by keeping it on Σ whenever H 23 ( ) < 0.

In [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF] it is shown that, thanks to the second inequality in Assumption 4, the implicit function theorem applied to the problem:

H 23 • exp(t 2 -τ 2 ) - → H 2 ( ) = 0, t 2 ( ) = τ 2 if H 23 ( ) = 0. defines, in a neighborhood O 2 of 2 , a function t 2 : O 2 → R such that if ∈ Σ, then t 2 ( ) = τ 2 if and only if ∈ S; moreover dt 2 ( 2 ) , δ = -σ δ , --→ H 23 ( 2 ) H 223 ( 2 ) ∀δ ∈ T * R n .
We set

τ 2 ( ) := min {t 2 ( ), τ 2 } = t 2 ( ) if H 23 ( ) < 0, τ 2 if H 23 ( ) ≥ 0.
The next step is the definition of the switching time

τ 1 : O 2 → R, possibly shrinking O 2 .
Actually, thanks to the first inequality in Assumption 4, the implicit function theorem applies also to

(H 2 -H 1 ) • exp (τ 1 -τ 2 ( )) -→ H 2 • exp (τ 2 ( ) -τ 2 ) -→ H 2 ( ) = 0, τ 1 ( 2 ) = τ 1 ,
see e.g. [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF]. Setting [START_REF] Stefani | Constrained regular LQ-control problems[END_REF] k(x) := S τ2 * k • S -1 τ2 (x), K(p, x) := p , k(x) , the linearization of τ 1 at 2 is given by

(24) dτ 1 ( 2 ) , δ = σ exp ( τ 1 -τ 2 ) -→ H 2 * δ , -→ H 1 - -→ H 2 ( 1 ) H 12 ( 1 ) = σ δ , - → K ( 2 )
H 12 ( 1 ) .

We can now define the flow (t, ) → H t ( ) backwards in time emanating from a neighborhood O f of f in T * R n at time T .

For any t ∈ [ τ 2 , T ] we choose as H t ( ) the flow of -→ H t defined in [START_REF] Poggiolini | Strong local optimality for bang-bang-singular extremals in single input control problems[END_REF].

For t < τ 2 , setting := H τ2 ( ), we define

(25) H t ( ) :=        exp(t -τ 2 ) -→ H 2 ( ) t ∈ [τ 2 ( ), τ 2 ], exp(t -τ 2 ( )) -→ H 2 • H τ2( ) ( ) t ∈ [τ 1 ( ), τ 2 ( )), exp(t -τ 1 ( )) -→ H 1 • H τ1( ) ( ) t ∈ [0, τ 1 ( )), see Figure 1. Remark 4.2. Notice that H is C ∞ on [ τ + 2 , T ] × O f and it is Lipschitz continuous on [0, τ - 2 ] × O f . Actually it is C 1 but on {(t, H t ( )) : t = τ 1 ( )}. Indeed on the set {(t, H t ( )) : t = τ 2 ( )} it is C 1 since H τ2( ) ( ) ∈ S, so that - → H 2 (H τ2( ) ( )) = -→ H 2 (H τ2( ) ( )), by (20) 
.
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H 1 H 2 H 2 H 2 + υ(t)f d t = τ1 ( ) t = τ 1 t = τ 2 t = T t = τ 2 ( )
T * R n t Fig. 1. The over-maximized Hamiltonian along its flow emanating from Λ at time T . The picture shows when the transition from one smooth piece to another is defined and where the overmaxizimed Hamiltonian is actually greater than the maximized Hamiltonian of the control system.

Hamiltonian sufficient conditions.

In this section we state and prove the sufficient conditions for strong local optimality of ξ in terms of Hamiltonian flow.

First we prove that if the projected over-maximized flow emanating from Λ is locally Lipschitz invertible then ξ is a strong local minimizer, Theorem 3.1. Afterwards we give the second order conditions that ensure this invertibility property, Theorem 4.2.

Theorem 4.2. Let Λ be defined in [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian approach[END_REF]. Assume that

(26) id × πH : (t, ) ∈ [0, T ] × Λ → (t, πH t ( )) ∈ U. is locally Lipschitz invertible onto a neighborhood U of the graph of ξ in [0, T ] × R n .
Then ξ is a strict strong locally optimal trajectory for the cost c(ξ(T )) subject to

(1b)-(1c). Proof. Clearly (id × πH) -1 (t, ξ(t)) = (t, f ) for any t ∈ [0, T ]. Let ξ : [0, T ] → R n
be an admissible trajectory for (1) whose graph is in U and let

(t, (t)) := (id × πH) -1 (t, ξ(t)), λ(t) := H t ( (t)) = (µ(t), ξ(t)) , t ∈ [0, T ].
If ϕ : [0, 1] → Λ is a smooth curve such that ϕ(0) = (T ), ϕ(1) = f then we can consider the closed path in [0, T ] × Λ obtained by the concatenation of the curves

t → (t, (t)), s → (T, ϕ(s)), t → (T -t, f ).
Integrating the one-form ω := H * (s -H t dt) (which is exact on [0, T ] × Λ, see [START_REF] Stefani | Variational Methods in Imaging and Geometric Control[END_REF]), we obtain

(27) 0 = ω = id× µ(t) , ξ(t) -H t (λ(t)) dt + ϕ H * t s+ - id× f µ(t) , ˙ ξ(t) -H t ( λ(t)) dt.
By construction of the over-maximized Hamiltonian H t , the integrand is non positive along the curve id × and is identically zero along the curve id × f . Therefore
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µ(t) , ξ(t) -H t (λ(t)) = 0 a.e. t ∈ [0, T ] so that (30) µ(t) , ξ(t) = H max (λ(t)) = H t (λ(t)) a.e. t ∈ [0, T ].
Since ξ(0) = ξ(0), we also have λ(0) = 0 . On the interval [0, τ 2 ), equation ( 30)

and the maximality condition imply that d(

H t -H max )| λ(t) = 0 a.e. t ∈ [0, τ 2 ], so that - → H max (λ(t)) = -→ H t (λ(t)) a.e. t ∈ [0, τ 2 ]. Thus λ(t) = λ(t) for any t ∈ [0, τ 2 ], in particular λ( τ 2 ) = 2 . For t ∈ [ τ 2 , T ], equation (29) yields H 2 (λ(t)) = H 2 (λ(t)), i.e. λ(t) ∈ S. Define Σ ξ(t) := p ∈ (R n ) * : p , f d (ξ(t)) = 0
and consider the function

Ω : p ∈ Σ ξ(t) → p , ξ(t) -H t (p, ξ(t)) ∈ R.
By PMP the function Ω is non positive and by (29) it is null in µ(t), therefore

(31) δp , ξ(t) -π -→ H t (λ(t)) = 0, ∀δp ∈ (R n ) * , such that δp , f d (ξ(t)) = 0.
Hence there exists b(t) ∈ R such that

ξ(t) = π -→ H t (λ(t)) + b(t)f d (ξ(t)) ∀t ∈ [ τ 2 , T ].
By [START_REF] Stefani | Strong optimality of singular trajectories[END_REF], (πH t )

-1 * f d • (πH t ) ( (t)) = -→ F d ( (t)) so that ˙ (t) = (πH t ) -1 * ξ(t) -π -→ H t (λ(t)) = b(t) (πH t ) -1 * f d (ξ(t)) = b(t) -→ F d ( (t)), λ(t) = -→ H t (λ(t)) + H t * ˙ (t) = -→ H 2 (λ(t)) + ( υ(t) + b(t)) -→ F d (λ(t)).
Finally, since λ(t) ∈ S, we get

(32) 0 = σ λ(t), --→ H 23 (λ(t)) = -H 232 (λ(t)) + ( υ(t) + b(t)) L(λ(t)), so that υ(t) + b(t) = u s (λ(t))
. Therefore λ(t) and λ(t) solve the same Cauchy problem [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF]. This proves that λ ≡ λ and hence the strict strong local optimality of ξ.

As we want to obtain second order sufficient conditions, we take a Hamiltonian approach based on the linearization of the flow from

L T := T f Λ = {d(-c) * δx : δx ∈ R n } .
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Our construction is naturally split in two parts by the time t = τ 2 . In particular we point out that if (πH τ2 ) * : L T → R n is an isomorphism, then there exists at least a smooth function α 2 : R n → R such that

(33) dα 2 ( x 2 ) = µ( τ 2 ), H τ2 * L T = {dα 2 * δx : δx ∈ R n } .
We explicitly point out that α 2 is not uniquely determined but only its first and second order derivatives at x 2 are determined by (33).

We can now state a second order sufficient condition for the strong local optimality of the reference trajectory ξ.

Theorem 4.3. Let ξ be the admissible trajectory defined in [START_REF] Agrachev | An invariant second variation in optimal control[END_REF]. Assume that ξ is a state extremal (Assumption 1) satisfying the regularity Assumptions 2-5.

Assume moreover

1. (πH t ) * : L T → R n is an isomorphism for any t ∈ [ τ 2 , T ],
i.e. the kernel of the map is trivial;

2. H 12 ( 1 ) -L 2 k α 2 ( x 2 )
> 0 where α 2 is any smooth function on R n satisfying (33) and k is defined in [START_REF] Stefani | Constrained regular LQ-control problems[END_REF].

Then ξ is a strict strong local minimizer for problem (1).

Proof. According to Theorem 4.2 we only need to prove that the map id ×

πH : [0, T ] × Λ → [0, T ] × R n is one-to-one onto a neighborhood U of the graph of ξ. Since [0, T ] is a compact interval, it suffices to prove that id × πH t is locally bi-Lipschitz in a neighborhood of (t, f ) for any t ∈ [0, T ].
For t = τ 1 Remark 4.2 implies that it suffices to prove that (πH t ) * : L T → R n is an isomorphism while, for t = τ 1 we take advantage of Clarke inverse function theorem.

• Condition 1 ensures the invertibility on [ τ 2 , T ].

• For t ∈ ( τ 1 , τ 2 ), (πH t ) * = exp(t -τ 2 )h 2 * (πH τ2 ) * which is invertible.

• If t = τ 1 , for any δ ∈ L T , set δ = H τ2 * δ . The linearization of πH τ1 at f is given by (πH τ1 ) * δ = exp( τ 1 -τ 2 )h 2 * π δ , dτ 1 ( 2 ) , δ < 0, exp( τ 1 -τ 2 )h 2 * π δ -dτ 1 ( 2 ) , δ k( x 2 ) , dτ 1 ( 2 ) , δ > 0.
If dτ 1 ( 2 ) , δ k( x 2 ) = 0 for any δ ∈ L T , we are done. Otherwise, it suffices to prove that for any a ∈ [0, 1] and any δ ∈ L T , δ = 0

π( δ ) -a dτ 1 ( 2 ) , δ k( x 2 ) = 0.
For a = 0 the claim is obvious thanks to assumption 1. Assume by contradiction there exists a ∈ (0, 1] and δ ∈ L T , δ = 0 such that

(34) π δ -a dτ 1 ( 2 ) , δ k( x 2 ) = 0.
By (34) there exists ρ = 0 such that π δ = ρ k( x 2 ) so that δ = ρ dα 2 * k( x 2 ) and

0 = ρ k( x 2 ) -a dτ 1 ( 2 ) , ρ dα 2 * k( x 2 ) k( x 2 ). Thus 1 -a dτ 1 ( 2 ) , dα 2 * k( x 2 ) = 0, so that 0 = 1 - a H 12 ( 1 ) σ dα 2 * k( x 2 ), - → K ( 2 ) = 1 H 12 ( 1 ) H 12 ( 1 ) -aL 2 k α 2 ( x 2 ) .
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Since this quantity is positive both for a = 0 and for a = 1, it is positive for any 5. Proof of the main result. In this section we prove that the coercivity of J (Assumption 6 a)) guarantees that Assumptions 1 and 2 of Theorem 4.3 hold true.

In particular Assumption 1 will be proven to hold by exploiting the coercivity of J on the subspace V of the admissible variations such that ε 0 = 0, while Assumption 2 is proven to hold by exploiting the coercivity of J on the subspace of the admissible variations which are J-orthogonal to V.

5.1. Coercivity of J in Hamiltonian formalism. We start by exploiting the coercivity of J on V := δe = (δx, 0, w) ∈ W , i.e.

(35)

J[δe] 2 = 1 2 T τ2 2 w(t)L ζ(t) L ġt c ( x T ) + R(t)w(t) 2 dt subject to (36) ζ(t) = w(t) ġt ( x T ), ζ( τ 2 ) = 0, ζ(T ) = δx ∈ R n .
The associated Hamiltonian is given by the quadratic form (37)

H t (δp, δx) = - 1 2R(t) ( δp , ġt ( x T ) + L δx L ġt c ( x T ))
2 and the corresponding Hamiltonian linear system with initial conditions in the Lagrangian subspace of transversality conditions

L T := {(0, δx) : δx ∈ R n } is given by (38)              μ (t) = 1 R(t) µ (t) , ġt ( x T ) + L ζ (t) L ġt c ( x T ) L (•) L ġt c ( x T ) , ζ (t) = -1 R(t) µ (t) , ġt ( x T ) + L ζ (t) L ġt c ( x T ) ġt ( x T ), µ (T ) = 0, ζ (T ) = δx.
We denote the solution of (38) as H t (0, δx).

J is coercive on V if and only if for any t ∈ [ τ 2 , T ],

(39)

δx = 0 =⇒ ζ (t) = 0
where ζ is defined in (38), see for example [START_REF] Stefani | Constrained regular LQ-control problems[END_REF].

If k( x T ) = 0, then we get no more information since V = W.

Assume k( x T ) = 0. Since J is coercive on V, we just need to express its coercivity on

V ⊥ := δe ∈ W : J(δe, δe) = 0 ∀δe ∈ V .
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For any δe = (δx, ε 0 , w), δe = δx, ε 0 , w in W, let ζ and ζ be the corresponding solutions of system [START_REF] Poggiolini | Strong local optimality for a bang-bang-singular extremal[END_REF]. The bilinear form associated with J is given by

J(δe,δe) = ε 0 ε 0 2 H 12 ( 1 ) + L 2 k c ( x T ) + + 1 2 T τ2 w(t)L ζ(t) L ġt c ( x T ) + w(t)L ζ(t) L ġt c ( x T ) + w(t)w(t)R(t) dt. ( 40 
)
If p(t) is the solution of the Cauchy problem

ṗ(t) = -w(t)L (•) L ġt c ( x T ) , p(T ) = 0,
then an integration by parts in (40) gives

J(δe, δe) = 1 2 ε 0 ε 0 H 12 ( 1 ) + L 2 k c ( x T ) + p( τ 2 ) , ζ( τ 2 ) + + 1 2 T τ2 w(t) p(t) , ġt ( x T ) + L ζ(t) L ġt c ( x T ) + w(t)R(t) dt. ( 41 
)
Since ζ(T ) is free, we obtain that w may be any function in

L 2 ([ τ 2 , T ], R). Thus, if δe ∈ V ⊥ then (42) p(t) , ġt ( x T ) + L ζ(t) L ġt c ( x T ) + w(t)R(t) = 0 a.e. t ∈ [ τ 2 , T ].
Comparing ( 42) and (38) we get (p(t),

ζ(t)) = H t (0, δx) = (µ (t), ζ (t)) so that for any δe ∈ V ⊥ we get ζ ( τ 2 ) = ε 0 k( x T ) and (43) J[δe] 2 = ε 2 0 2 H 12 ( 1 ) + L 2 k c ( x T ) + 1 2 µ ( τ 2 ) , ζ ( τ 2 ) .
Without loss of generality we can choose ε 0 = 1, so that the coercivity of J can be expressed as

(44) H 12 ( 1 ) -L 2 k (-c) ( x T ) + σ H τ2 πH τ2 -1 k( x T ), (0, k( x T )) > 0.
5.2. The anti-symplectic isomorphism. In order to relate the coercivity of J with the properties of the flow H t , we define

ι : (δp, δx) ∈ (R n ) * × R n → δ := -δp + D 2 (-c)( x T )(δx, •), δx ∈ (R n ) * × R n so that ι -1 = ι.
The mapping ι is an anti-symplectic linear isomorphism, i.e.

σ ι(δp, δx), ι(δp, δx) = σ (δp, δx), (δp, δx) , ∀(δp, δx), (δp, δx) ∈ (R n ) * × R n .
The choice of the anti-symplectic isomorphism ι, instead of a symplectic one, depends on the fact that we are using PMP while for the accessory problem we are studying a minimization problem.

With this notation we get

ιL T = {d(-c) * δx : δx ∈ T x T R n } = L T .
Following the lines of Lemma 9 in [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF] one can prove the following Lemma:

Lemma 5.1. Let H t and H t be the Hamiltonian flows associated to the quadratic Hamiltonian H t defined in (37) and to the over-maximized Hamiltonian H t defined in [START_REF] Poggiolini | Strong local optimality for bang-bang-singular extremals in single input control problems[END_REF], respectively. Then

(45) ιH t ι -1 = F -1 t * H t * ∀t ∈ [ τ 2 , T ].
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πH t ι -1 δ = π F -1 t * H t * δ .
Since the Hamiltonian F t is the lift of the vector field f t , we get that π F -1 t * = S -1 t * π.

Thus from (39) we obtain that Assumption 1 of Theorem 4.3 holds true. This implies the existence of a function α 2 as defined in (33). 

L 2 k (-c) ( x T ) = σ d(-c) * k( x T ), - → K ( f ) , πH τ2 -1 k( x T ) = ι -1 π F -1 τ2 H τ2 -1 * k( x T ) = ι -1 (πH τ2 ) -1 * k( x 2 ) (46) 
where the vector field k is defined in [START_REF] Stefani | Constrained regular LQ-control problems[END_REF], as well as the associated Hamiltonian K.

We can compute

σ H τ2 πH τ2 -1 k( x T ), (0, k( x T )) = σ ι -1 F -1 τ2 * H τ2 * ι πH τ2 -1 k( x T ), (0, k( x T )) = σ d(-c) * k( x T ), F -1 τ2 * H τ2 * (πH τ2 * ) -1 k( x 2 ) = σ d(-c) * k( x T ), F -1 τ2 * dα 2 * k( x 2 ) . Thus (47) σ H τ2 πH τ2 -1 k( x T ), (0, k( x T )) -L 2 k (-c) ( x T ) = = σ d(-c) * k( x T ), F -1 τ2 * d α 2 * k( x 2 ) - - → K ( f ) = = σ d(-c • S -1 τ2 ) * k( x 2 ), dα 2 * k( x 2 ) - - → K ( 2 ) = = -D 2 α 2 ( x 2 )[ k( x 2 )] 2 + µ( τ 2 ) , D k( x 2 ) k( x 2 ) = -L 2 k α 2 ( x 2 ) .
Equations ( 47) and (44) complete the proof of Assumption 2 of Theorem 4.3.

6. The state-feedback single input case. The standard form for single input control affine systems is

(48) ξ(t) = f 0 (ξ(t)) + u(t)f 1 (ξ(t)), |u(t)| ≤ 1.
This case was dealt with by the authors in [START_REF] Poggiolini | Strong local optimality for bang-bang-singular extremals in single input control problems[END_REF]. We now consider the case when there is a state-feedback control for singular extremals, namely there exists a function

v s : R n → R such that v s ( ξ(t)) = υ(t) for any t ∈ [ τ 2 , T ].
Indeed this is the case when the ratio -F 001 F 101 (p, x) does not depend on p whenever (p, x) ∈ S.

Under this assumption, sufficient second order conditions have been given for optimality of trajectories containing both bang and singular arcs with respect to trajectories with the same switching structure, see [START_REF] Vossen | Switching time optimization for bang-bang and singular controls[END_REF] and the references therein.

Without any loss of generality we can assume that the dynamics driving a bangbang-singular trajectory is given by (49)

f t =      h 1 = f 0 -f 1 t ∈ [0, τ 1 ), h 2 = f 0 + f 1 t ∈ [ τ 1 , τ 2 ), f s := f 0 + v s f 1 t ∈ [ τ 2 , T ],
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hence for any t ∈ [ τ 2 , T ], S t coincides with exp(t -T )f s .

In this case we denote by F 0 , F s and F 1 the Hamiltonians associated to f 0 , f s and f 1 and by F i1i2...i k , i 1 , . . . , i k ∈ {0, s, 1} according to the rules stated in Section 2.1.

In sub-problem (9) the dynamics in the interval [ τ 2 , T ] can be written as

ξ(t) = f s (ξ(t)) + υ(t)f 1 (ξ(t))
with υ(t) taking values in a neighborhood of zero so that the second variation reads

J[(δx, ε 0 , w)] 2 = ε 2 0 2 L 2 k c ( x T ) + H 12 ( 1 ) + + T τ2 w(t) 2 F 1s1 ( λ(t)) + 2w(t)L ζ(t) L ġt c ( x T ) dt subject to ζ(t) = w(t) ġt ( x T ), ζ( τ 2 ) = ε 0 k( x T ), ζ(T ) = δx ∈ R n where k = -2 S -1 τ1 * f 1 • S τ1 , g t := S -1 t * f 1 • S t , ġt := S -1 t * [f s , f 1 ] • S t .
Remark 6.1. As a consequence a necessary condition for the coercivity of J is (50) J 0 := L 2 k c ( x T ) + H 12 ( 1 ) > 0.

In [START_REF] Vossen | Switching time optimization for bang-bang and singular controls[END_REF], for a problem of this class, the author shows that the trajectory is optimal with respect to trajectories associated to controls with the same bang-bang-singular structure if the 2 × 2 matrix associated to the problem obtained by moving both the switching times is positive definite. We point out that J 0 is the (1, 1)-entry of such matrix.

The regularity condition along the singular arc is trivially satisfied; the other ones read as follows:

• Regularity along the bang arcs:

F 1 ( λ(t)) < 0, t ∈ [0, τ 1 ), F 1 ( λ(t)) > 0, t ∈ ( τ 1 , τ 2 ).

• Regularity at the switching points: F 01 ( 1 ) > 0, (F 001 + F 101 ) ( 2 ) > 0.

• Strong generalized Legendre condition (SGLC): This manuscript is for review purposes only.

More precisely the author numerically shows that there are two bang arcs u(t) ≡ -1 ∀t ∈ [0, τ 1 ), u(t) ≡ 1 ∀t ∈ ( τ 1 , τ 2 )

where τ 1 1.3667, τ 2 2.4601 and a singular arc characterized by a state-feedback control where

f s := x 2 ∂ x1 + x 1 ∂ x2 + x 2 1 + x 2 2 2 ∂ x3 , f s1 = -∂ x1 -x 2 ∂ x3 .
Let us notice that the flow of f s can be computed explicitly:

exp(t -T )f s (x) =  
x 1 cosh(t -T ) + x 2 sinh(t -T )

x 1 sinh(t -T ) + x 2 cosh(t -T )

x 3 + x1x2
2 (cosh(2(t -T )) -1) + Using the numerical results in [START_REF] Vossen | Switching time optimization for bang-bang and singular controls[END_REF], in [START_REF] Poggiolini | Strong local optimality for bang-bang-singular extremals in single input control problems[END_REF] the authors prove that the regularity assumptions are satisfied. Here we recall some features which are needed in the following:

µ 3 (t) ≡ 1, t ∈ [0, T ], µ 1 (T ) = ξ 2 (T ) = 0, F 1s1 ( λ(t)) ≡ 1, t ∈ [ τ 2 , T ].
In order to prove that our theory applies to this example we prove that the second variation is coercive by proving (39) and (44). We thus need to write the Hamiltonian H t (δp, δx) and the associated linear system. Since L T = (0, δx) : δx ∈ R This manuscript is for review purposes only.

For

  x = exp(rf d )(z), z ∈ M set c(x) := c(z), i.e. we extend c| M as a constant function along the integral lines of f d . In a sufficiently small neighborhood O of x T , the function c : O → R is smooth and it enjoys the following properties (15) c( x T ) = c( x T ), d c( x T ) = dc( x T ), c(x) ≤ c(x), L f d c (x) = 0 ∀x ∈ O.

Lemma 4 . 1 .

 41 Possibly restricting O s the following properties hold 1. H 2 ( ) ≥ H 2 ( ) for any ∈ Σ and equality holds if and only if ∈ S.

  c)(πϕ(s)) , d ds (πϕ)(s) ds = c(ξ(T )) -c( x T ). Thus c(ξ(T )) ≥ c( x T ), i.e. ξ is a strong local minimizer for the cost c. Let us show that in fact it is a strict one. If c(ξ(T )) = c( x T ), then (27)-(28) imply that (29)

Remark 4 . 3 .

 43 As already said, the switching time τ 2 naturally splits our construction in two parts. In particular Assumption 1 of Theorem 4.3 takes into account only the problem restricted to the singular interval [ τ 2 , T ]. Assumption 2 coincides with the sufficient condition in[START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF] for a fixed-free Mayer problem on [0, τ 2 ] with cost α 2 (ξ( τ 2 )).

5. 4 .

 4 Proof of Assumption 2 of Theorem 4.3. Notice that

F 6 . 1 .

 61 1s1 ( λ(t)) = F 101 ( λ(t)) > 0 ∀t ∈ [ τ 2 , T ]. Van der Pol Oscillator. As an example consider Van der Pol Oscillator with final time T = 4, in the form studied in[START_REF] Vossen | Switching time optimization for bang-bang and singular controls[END_REF] where the author numerically shows the existence of a bang-bang-singular extremal and studies its optimality with respect to trajectories with the same control structure. minimize ξ 3 (T ) subject to (51a)ξ1 (t) = ξ 2 (t), ξ2 (t) = -ξ 1 (t) + ξ 2 (t) 1 -ξ 2 1 (t) + u(t), ξ3 (t) = 1 2 ξ 2 1 (t) + ξ 2 2 (t) ,a.e. t ∈ [0, T ], (51b) ξ(0) = (0, 1, 0) , u ∈ [-1, 1]. (51c)

  can also compute ġt (x) = -cosh(t -T )∂ x1 + sinh(t -T )∂ x2 -x 2 cosh(t -T )∂ x3

3 2 we get μ 1

 321 and H t (δp, δx) = -1 2 (-δp 1 cosh(t -T ) + δp 2 cosh(t -T ) -δx 2 cosh(t -T )) (t) ≡ μ 3 (t) ≡ ζ 3 (t) ≡ 0, µ 1 (T ) = µ 3 (T ) = 0, ζ 3 (T ) = δx 3 so that µ 1 (t) ≡ µ 3 (t) ≡ 0, ζ 3 (t) ≡ δx 3 and μ 2 (t) = -(µ 2 (t) sinh(t -T ) -ξ 2 (t) cosh(t -T )) cosh(t -T ), ξ 1 (t) = (µ 2 (t) sinh(t -T ) -ξ 2 (t) cosh(t -T )) cosh(t -T ), ξ 2 (t) = -(µ 2 (t) sinh(t -T ) -ξ 2 (t) cosh(t -T )) sinh(t -T ).ThusH t (0, δx) = δx 2 sinh(t -T ) dx 2 (δx 1 -δx 2 sinh(t -T )) ∂ x1 + δx 2 cosh(t -T )∂ x2 + δx 3 ∂ x3 hence πH t (0, δx) = 0 implies δx = 0, i.e. (39) is satisfied.Inequality (44) reads J 0 + µ ( τ 2 ) , ζ ( τ 2 ) > 0 when ζ ( τ 2 ) = k( x T ) that is J 0 + k 2 2 ( x T ) tanh( τ 2 -T ) > 0.J 0 215.1022 was computed in[START_REF] Vossen | Switching time optimization for bang-bang and singular controls[END_REF]. The push-forward k(x T ) = -2 S -1 τ1 * ∂ x2• S τ1 can be computed numerically, obtaining k( x T ) 14.5864∂ x1 -14.6632∂ x2 -0.0005∂ x3 . Thus k 2 2 ( x T ) tanh( τ 2 -T ) -196.1122. Hence (44) is satisfied, i.e. the second variation J coercive. This proves that our results apply to the Van der Pol oscillator.

  Since the final point is free, we consider flows backwards in time, with T as a starting time, Section 4.1. The existence of this flow will be ensured by the regularity assumptions on the extremal λ given by PMP, see Assumptions 1-5.

From a Hamiltonian point of view the sufficient conditions sum up to proving the existence of a tubular neighborhood of [0, T ] × { λ(T )} in [0, T ] × Λ where the map id × πH is locally invertible, see Theorem 4.2. Thanks to the compactness of the time interval [0, T ] it suffices to prove that πH t is invertible for any t, see Theorem 4.3. The connection with a suitable second order approximation (2 nd variation) is obtained as shown in the following lines.

1. The 2 nd variation J ext is in the form of a coordinate-free linear-quadratic (LQ) problem on the interval [ τ 2 , T ] and it is obtained applying an intrinsic version of Goh transformation. Indeed we can obtain our sufficient conditions either when J ext is coercive or when L f d c ≡ 0 (a fact which prevents the coercivity), provided a suitable restriction of J ext is coercive, see Section 3.2.

  5.3. Proof of Assumption 1 of Theorem 4.3. Applying (45) to H t |L T we get for δ ∈ L T

This manuscript is for review purposes only.
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