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In this paper we consider the problem of structural stability of strong local optimisers for the minimum time problem in the case when the nominal problem has a bang-bang strongly local optimal control which exhibits a double switch.

1.

Introduction. An important issue in optimal control problem where the optimal control is bang-bang is the stability of the switching structure under small perturbations of the data. This problem may arise either in practical optimal control problems, where the data are not known exactly, or in numerical approximation techniques of the optimal control.

In this paper we address such issue for the minimum time problem between two submanifolds of a finite dimensional manifold M in the case when the dynamics is affine with respect to the control and the control takes values in a box of R m . Namely, the following optimal control is studied: For such a problem, the triple (T, ξ, u) is said to be an admissible triple for problem [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF] if T > 0 and the couple (ξ, u) ∈ W 1,∞ ([0, T ], M ) × L ∞ ([0, T ], R m ) satisfies (1b), (1c) and (1d). We are going to consider a triple ( T , ξ, u), that satisfies the necessary conditions for optimality (i.e. Pontryagin Maximum Principle), where the control is bang-bang with multiple switching.

T → min, (1a) ξ(t) = f 0 (ξ(t)) +
We recall that for a control affine system where the control set is a compact convex polyhedron ∆, a control function u is said to be bang-bang if it is piecewise constant with values in the vertexes of ∆, i.e. there exist 0 = τ 0 < τ 1 < τ 2 . . . < τ r < τ r+1 = T such that u| ( τi-1, τi) is a vertex of ∆ for any i = 1, . . . , r + 1 and u| ( τi-1, τi) = u| ( τi, τi+1)

for any i = 1, . . . , r. The times τ 1 , . . . , τ r are called switching times of u. For each switching time τ i , the multiplicity of τ i is defined as the dimension of the face of ∆ containing the vertexes u| ( τi-1, τi) and u| ( τi, τi+1) . Thus, if ∆ = [-1, 1] m is the standard box of R m , the multiplicity of the switching time τ i is given by the number of components that change sign at time τ i .

The literature on bang-bang controls is by now very rich for the case of simple switches, i.e. for the case when all the switching times have multiplicity one. See, for example, [START_REF] Agrachev | Strong optimality for a bang-bang trajectory[END_REF][START_REF] Maurer | Second order sufficient conditions for time-optimal bangbang control problems[END_REF][START_REF] Maurer | Second order optimality conditions for bangbang control problems[END_REF][START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian approach[END_REF] for local optimality results and [START_REF] Kim | Sensitivity analysis of optimal control problems with bangbang controls[END_REF][START_REF] Felgenhauer | Optimality and sensitivity for semilinear bang-bang type optimal control problems[END_REF] for structural stability results. On the other hand, at least to the author's knowledge, the literature on bang-bang controls with multiple switches is much more scarce than the one with simple switches only. L 1 -local optimality results for bang-bang controls with multiple switches in the minimum time problem between two fixed end points were given in [START_REF] Sarychev | First-and second-order sufficient optimality conditions for bang-bang controls[END_REF].

The problems of strong local optimality and structural stability of bang-bang extremals with a double switch, and a finite number of simple switches, in a Mayer problem were addressed in [START_REF] Poggiolini | Strong local optimality for a bang-bang trajectory in a Mayer problem[END_REF] and [START_REF] Felgenhauer | Optimality and stability result for bangbang optimal controls with simple and double switch behaviour[END_REF], respectively. The minimum time problem was studied in [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF] where the authors consider the case when a double switch occurs and all the other switches are simple. They prove that under suitable regularity conditions, and assuming the coercivity of the second order approximation of a certain finitedimensional subproblem of the given one, the triple ( T , ξ, u) is in fact a state-local minimiser of the problem. See Definition 1 for a precise definition of this kind of strong local optimality.

Here we consider the same case as in [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF] and we study the structural stability of the locally optimal control u under smooth perturbations of the data of the problem: the drift f 0 , the controlled vector fields f 1 , f 2 , . . . , f m and the submanifolds of the initial and final constraints.

In particular we are interested in understanding how the existence of the double switch and the bang-bang structure of the locally optimal control are affected by small perturbations of the data. Such a situation is in fact not generic and we are going to show that under the same assumptions that ensure state-local optimality of the reference triple plus a full rank condition, the bang-bang structure of the locally optimal control is stable under small perturbations, even though the double switching time may decouple into two simple switching times, i.e. the number of bang arcs may increase of one unit as the double switch may decouple in two simple switches but the number of switches of each control component and the sequence of values it takes are stable under small perturbations of the data.

The proof is carried out by Hamiltonian methods, which were also used in [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF] to prove the state local optimality result for the nominal problem. The same methods were also used in [START_REF] Poggiolini | Bang-singular-bang extremals: sufficient optimality conditions[END_REF] and [START_REF] Poggiolini | Structural stability for bang-singular-bang extremals in the minimum time problem[END_REF] to prove state local optimality and structural stability of a bang-singular-bang extremal in the minimum time problem between two fixed end points.

As in [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF], for the sake of notational simplicity we shall confine ourselves to the case when M = R n , m = 2 and only the double switch occurs. However, as all the results are invariant under a change of coordinates, they can be easily generalised to the case when the state space is a smooth finite dimensional manifold. Moreover, the presence of a finite number of simple switches occuring either before and/or after the double one can be treated at the expenses of a much heavier notation, see for example [START_REF] Poggiolini | Sufficient optimality conditions for a bang-bang trajectory in a Bolza problem[END_REF][START_REF] Poggiolini | Strong local optimality for a bang-bang trajectory in a Mayer problem[END_REF]. Thus the nominal problem (1) simplifies to

T → min, (P 0 ) ξ(t) = f 0 (ξ(t)) + u 1 (t)f 1 (ξ(t)) + u 2 (t)f 2 (ξ(t)) a.e. t ∈ [0, T ], ξ(0) ∈ N 0 , ξ(T ) ∈ N f , |u s (t)| ≤ 1 s = 1, 2 a.e. t ∈ [0, T ].
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Without loss of generality we can assume that u is given by

u(t) = ( u 1 (t), u 2 (t)) = (-1, -1) t ∈ [0, τ ), (1, 1) t ∈ ( τ , T ].
We assume that (P 0 ) is the problem we obtain when r = 0 in the following parameter dependent problem (P r ):

T → min, (P r ) ξ(t) = f r 0 (ξ(t)) + u 1 (t)f r 1 (ξ(t)) + u 2 (t)f r 2 (ξ(t)) a.e. t ∈ [0, T ], ξ(0) ∈ N r 0 , ξ(T ) ∈ N r f , |u s (t)| ≤ 1 s = 1, 2 a.e. t ∈ [0, T ].
The parameter r belongs to some ball B R centered at the origin of R k and radius R > 0. For notational simplicity we choose R n as state-space; all the data are assumed to be smooth, more precisely the maps

(r, x) ∈ B R × R n → f r i (x) ∈ R n , i = 0, 1, 2
are assumed to be C 2 and the submanifolds of the initial and final constraints are given as regular intersections of zero-level sets of

C 2 maps from B R × R n to R, i.e. N r 0 = n0 i=1 Φ 0,r i -1 (0) 
, DΦ 0,r i (x) are linearly independent at x ∀(r, x)

∈ B R × R n .
and

N r f = n f j=1 Φ f,r j -1 (0), DΦ f,r j (x) are linearly independent at x ∀(r, x) ∈ B R × R n .
We are interested in state-local optimisers according to the following definition: i.e. one considers only triples (T, ξ, u) where the graph of the trajectory ξ is close to the graph of the reference trajectory ξ, and T is close to T , see e.g. [START_REF] Maurer | Second order sufficient conditions for time-optimal bangbang control problems[END_REF].

Assuming that T , ξ, u satisfies normal PMP with adjoint covector λ, the sufficient conditions for state-local optimality as stated in [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF] plus a full rank condition which ensures the uniqueness of the adjoint covector, we prove that for small R each problem
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(P r ), r ∈ B R has a state-local optimal trajectory (T r , ξ r , u r ) (with adjoint covector λ r ) where u r componentwise preserves the bang-bang structure of u and T r is close to T . Moreover the switching times and the final time depend smoothly on the parameter r and λ r is the only Pontryagin extremal of (P r ) whose graph is close to the graph of λ.

We would like to recall that this set of assumptions (which concern the nominal problem only) is the same set of assumptions that is required in the classical regular case for the stability of weak local optimisers, see [START_REF] Malanowski | Two-norm approach in stability and sensitivity analisys of optimization and optimal control problems[END_REF][START_REF] Malanowski | Regularity of solutions in stability analisys of optimization and optimal control problems[END_REF][START_REF] Malanowski | Stability and sensitivity analysis for optimal control problems with controlstate constraints[END_REF].

Notation.

We are going to use some basic notions from symplectic geometry.

For any manifold N ⊂ R n and any x ∈ N , the tangent space and the cotangent space to N in x are denoted as T x N and T * x N , respectively. We recall that the cotangent bundle T * R n to R n can be identified with the Cartesian product (R n )

* × R n = T * x R n × T x R n for any x ∈ R n . The projection from T * R n onto R n is denoted as π : ∈ T * R n → π ∈ R n .
We shall write T x R n instead of R n , to emphasize the fact that we are dealing with tangent vectors.

The canonical Liouville one-form s on T * R n and the associated canonical symplectic two-form σ = ds allow to associate to any, possibly time-dependent, smooth

Hamiltonian F t : T * R n → R, the unique Hamiltonian vector field - → F t such that σ(v, - → F t ( )) = dF t ( ) , v , ∀v ∈ T T * R n . Choosing coordinates = (p, x) ∈ (R n ) * × R n , we have - → F t (p, x) = -∂F t ∂x , ∂F t ∂p (p, x).
To any vector field f : R n → R n we associate the Hamiltonian function

F F : ∈ T * R n → , f (π ) ∈ R, so that - → F (p, x) = -p df (x), f (x) .
We denote by f t the piecewisely time-dependent vector field associated to the reference control:

f t := f 0 + u 1 (t)f 1 + u 2 (t)f 2
and by h 1 , h 2 its restrictions to the time intervals [0, τ ) and ( τ , T ], respectively:

h 1 := f t [0, τ ) = f 0 -f 1 -f 2 , h 2 := f t ( τ , T ] = f 0 + f 1 + f 2 .
In what follows we shall also need the vector fields

k 1 := f 0 + f 1 -f 2 = h 1 + 2f 1 = h 2 -2f 2 , k 2 := f 0 -f 1 + f 2 = h 1 + 2f 2 = h 2 -2f 1 .
The associated Hamiltonian functions are denoted by the same letter, but capitalized.

Namely

H 1 ( ) := , h 1 (π ) , H 2 ( ) := , h 2 (π ) , K 1 ( ) := , k 1 (π ) , K 2 ( ) := , k 2 (π ) .
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Analougously we define the parameter dependent vector fields

h r 1 := f r 0 -f r 1 -f r 2 , h r 2 := f r 0 + f r 1 + f r 2 , k r 1 := f r 0 + f r 1 -f r 2 , k r 2 := f r 0 -f r 1 + f r 2 ,
and the associated parameter dependent Hamiltonians

H r 1 := F r 0 -F r 1 -F r 2 , H r 2 := F r 0 + F r 1 + F r 2 , K r 1 := F r 0 + F r 1 -F r 2 , K r 2 := F r 0 -F r 1 + F r 2 .
The maximised Hamiltonian of the nominal control system (P 0 ) is well defined in the whole cotangent bundle T * R n and is denoted by H max :

H max ( ) := max F 0 ( ) + u 1 F 1 ( ) + u 2 F 2 ( ) : (u 1 , u 2 ) ∈ [-1, 1] 2 =F 0 ( ) + |F 1 ( )| + |F 2 ( )| .
Throughout the paper, the symbol O(x) denotes a neighborhood of x in its ambient space. The flow starting at time t = 0 of the time-dependent vector field f t is defined in a neighborhood O( x 0 ) for any t ∈ [0, T ] and is denoted by

S t : O( x 0 ) → R n , i.e. d dt S t (x) = f t • S t (x) a.e. t ∈ [0, T ], S 0 (x) = x.
We denote by x 0 := ξ(0) and by x f := ξ( T ) = S T ( x 0 ) the end points of the reference trajectory and by x d := ξ( τ ) = S τ ( x 0 ) the point corresponding to the switching time.

Analougously, the flow starting at time t = 0 of the time-dependent Hamiltonian vector field associated to F t ( ) := , f t (π ) is defined in a neighborhood O( 0 ) of 0 := λ(0) for any t ∈ [0, T ] and is denoted by

F t : O( 0 ) → T * R n : d dt F t ( ) = - → F t • F t ( ) a.e. t ∈ [0, T ], F 0 ( ) = .
Given a smooth function γ : O(x) ⊂ R n → R and a vector δx ∈ T x R n , the Lie derivative of γ with respect to the vector δx at the point x is denoted by δx

• γ (x), i.e. δx • γ (x) = Dγ(x) , δx . If f : O(x) → R n is a smooth vector field, then f • γ (x)
is the Lie derivative of γ at x with respect to the vector f (x), i.e. f • γ (x) := Dγ(x) , f (x) . Given two smooth vector fields f, g : R n → R n , then the Lie bracket [f, g] is given by the vector field (Dg)f -(Df )g.

We identify any bilinear form Q on a vector space V with a linear form

Q : V → V * : Q(v, w) = Qv , w . Given W , linear subspace of V we thus say that a vector v ∈ V is in W ⊥ Q if Q(v, w) = 0 for any w ∈ W .
We denote the associate quadratic form with the same letter but calligraphic:

Q[v] 2 = Q(v, v).
Finally, given an interval [t 1 , t 2 ] and a function ϕ : (t 1 , t 2 ) → R n we use the symbol ffl t2 t1 ϕ(s) ds to denote the mean value of ϕ in (t 1 , t 2 ):

t2 t1 ϕ(s) ds := 1 t 2 -t 1 ˆt2 t1 ϕ(s) ds.

Assumptions.

We now state the assumptions on the nominal extremal triple T , ξ, u of (P 0 ). Besides the necessary conditions for optimality, namely Pontryagin Maximum Principle (PMP) -which we assume to hold in its normal form-we require This manuscript is for review purposes only.

that the triple T , ξ, u satisfies the conditions that ensure state-local optimality, as stated in [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF]: regularity along the bang arcs, regularity at the switching time and the coercivity of the second order variation associated to some finite-dimensional subproblem of the given one. Moreover we assume the uniqueness of the adjoint covector associated to the reference triple T , ξ, u in Pontryagin Maximum Principle for (P 0 ).

Assumption 1 (Normal PMP).

There exists an absolutely continuous curve

λ : [0, T ] → T * R n satisfying the following properties π λ(t) = ξ(t), ∀t ∈ [0, T ], (2a) ˙ λ(t) = - → F t ( λ(t)), a.e. t ∈ [0, T ], (2b) F t ( λ(t)) = H max ( λ(t)) = 1, a.e. t ∈ [0, T ], (2c) λ(0) T x 0 N0 = 0, λ( T ) T x f N f = 0. (2d) In coordinates we put λ(t) := µ(t), ξ(t) where µ(t) ∈ T * ξ(t) R n ∀t ∈ [0, T ].
Here and in what follows we shall use the following notation:

0 := λ(0), d := λ( τ ), f := λ( T ), p 0 := µ(0), p d := µ( τ ), p f := µ( T ).
Remark 3.1. The adjoint covector µ is a solution to the ODE

μ(t) = -∂F t ∂x µ(t), ξ(t) = -µ(t) , d f t ( ξ(t)) so that µ(t) = p 0 S -1 t *
∀t ∈ [0, T ] and the transversality conditions (2d) read

p 0 = n-n0 i=1 a i DΦ 0,0 i ( x 0 ), p f = n-n f j=1 b j DΦ f,0 i ( x f ), for some a = a 1 , . . . , a n-n0 ∈ R n-n0 , b = b 1 , . . . , b n-n f ∈ R n-n f . Remark 3.2.
As λ is a normal extremal then the transversality conditions (2d)

together with the maximality condition (2c

) yield h 1 ( x 0 ) / ∈ T x0 N 0 and h 2 ( x f ) / ∈ T x f N f .
Maximality condition (2c) implies, for any i = 1, 2 and for almost every t ∈ [0, T ],

u i (t)F i ( λ(t)) = u i (t) λ(t) , f i ( ξ(t)) ≥ 0.
We assume that the bang arcs of λ are regular, i.e., we assume that at each point λ(t), t = τ , the maximum of the Hamiltonian is achieved only by

u = u(t) = ( u 1 (t), u 2 (t)), i.e., F 0 ( λ(t)) + u 1 F 1 ( λ(t)) + u 2 F 2 ( λ(t)) < H max ( λ(t)) = 1 ∀(u 1 , u 2 ) ∈ [-1, 1] 2 \ {( u 1 (t), u 2 (t))}.
In terms of the controlled Hamiltonians F 1 and F 2 this can be stated as follows:
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Assumption 2 (Regularity along the bang arcs).

Let i = 1, 2. If t = τ , then (3) 
u i (t)F i ( λ(t)) = u i (t) λ(t) , f i ( ξ(t)) > 0. Remark 3.3. Because of the normality condition in PMP, it holds F 0 ( λ(t))-1 = -u 1 (t)F 1 ( λ(t)) -u 2 (t)F 2 ( λ(t)) for all t ∈ [0, T ]. By continuity, from (3) 
, we get

F 1 ( d ) = F 2 ( d ) = 0 so that F 0 ( d ) = 1. Therefore f 0 ( x d ) / ∈ span{f 1 ( x d ), f 2 ( x d )}.
From the necessary maximality condition (2c) we get

d dt 2 F i • λ(t) t= τ - = d dt (K i -H 1 ) • λ(t) t= τ - ≥ 0, d dt 2 F i • λ(t) t= τ + = d dt (H 2 -K j ) • λ(t) t= τ + ≥ 0, i, j ∈ {1, 2}, i = j.
We assume that the above inequalities are strict:

Assumption 3 (Regularity at the double switching time).

d dt (K ν -H 1 ) • λ(t) t= τ - > 0, d dt (H 2 -K ν ) • λ(t) t= τ + > 0, ν = 1, 2.
Assumption 3 is called the Strong bang-bang Legendre condition for the double switching time. Equivalently, this assumption can be expressed in terms of the Lie brackets of vector fields or in terms of the canonical symplectic structure

σ (•, •) on T * R n . Proposition 2. Assumption 3 is equivalent to d , [h 1 , k ν ] ( x d ) = σ -→ H 1 , -→ K ν ( d ) > 0, d , [k ν , h 2 ] ( x d ) = σ -→ K ν , -→ H 2 ( d ) > 0, ν = 1, 2.
An easy computation proves the following equivalent condition Proposition 3. Assumption 3 is equivalent to

(4) d , [f 0 , f i ] ( x d ) > d , [f 1 , f 2 ] ( x d ) , i = 1, 2, i.e. σ -→ F 0 , - → F i ( d ) > σ -→ F 1 , -→ F 2 ( d ) , i = 1, 2.
In what follows we shall also need to reformulate Assumption 3 in terms of the pullbacks of the vector fields h ν and k ν along the reference flow S t . Define

(5)

g ν (x) := S -1 τ * h ν • S τ (x), j ν (x) := S -1 τ * k ν • S τ (x), ν = 1, 2
and let G ν , J ν be the associated Hamiltonians. Then a straightforward computation yields.

Proposition 4. Assumption 3 is equivalent to

0 , [g 1 , j ν ] ( x 0 ) = σ - → G 1 , -→ J ν ( 0 ) > 0, 0 , [j ν , g 2 ] ( x 0 ) = σ -→ J ν , - → G 2 ( 0 ) > 0, ν = 1, 2. (6)
Also, we assume that ξ has no self-intersection:

Assumption 4. The reference trajectory ξ : [0, T ] → R n is injective.
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4.

The second order variation. The second order variation is the second order approximation of a finite-dimensional subproblem of (P 0 ) obtained by keeping the same endpoint constraints and restricting the set of admissible controls. Namely, we allow for independent variations of the switching times of each of the two reference control components u 1 and u 2 . This subproblem is then extended by allowing for variations of the initial points of trajectories on a neighborhood of x 0 in R n . We penalise the latter variations with a smooth cost α that vanishes on N 0 .

We allow for perturbations of the final time, of the initial point of trajectories on N 0 , of the final point on N f and of the switching time of either component of the reference control: let τ 1 := τ + ε 1 and τ 2 := τ + ε 2 be the perturbed switching times of the first and of the second component of u, respectively, and let τ 3 := T + ε 3 be the perturbation of the final time T .

Let α : R n → R be a smooth nonnegative function vanishing on N 0 . We remove the constraint on the initial point ξ(0) introducing the penalty cost α on such point.

We thus obtain the following problem in the unknowns x, ε 1 , ε 2 , ε 3 :

α(x) + T + δ 3 → min, (7a) ξ =      h 1 (ξ(t)) t ∈ (0, τ + δ 1 ), k ν (ξ(t)) t ∈ ( τ + δ 1 , τ + δ 2 ), h 2 (ξ(t)) t ∈ ( τ + δ 2 , T + δ 3 ), (7b) 
ξ(0) = x ∈ R n , ξ( T + δ 3 ) ∈ N f , (7c) 
δ 1 := min{ε 1 , ε 2 }, δ 2 := max{ε 1 , ε 2 }, δ 3 := ε 3 , (7d) ν = 1 if ε 1 ≤ ε 2 , 2 if ε 1 > ε 2 . (7e)
Let g ν , j ν , ν = 1, 2 be the pullbacks along the reference flow of the vector fields h ν and k ν , as defined in equation [START_REF] Kim | Sensitivity analysis of optimal control problems with bangbang controls[END_REF]. Let N f be the pullback of N f to time t = 0 along the reference flow:

N f := S -1 T (N f ) and let T x0 N f = S -1 T * (T x f N f ) be its tangent space at x 0 .
By the transversality condition (2d) at the reference final time T , there exists a smooth function β : R n → R that vanishes on N f and such that dβ( x f ) =f . Also let β be the pull-back of β along the reference flow, β := β • S T so that, by Remark 3.1,

β : O( x 0 ) → R, β O( x0)∩ N f ≡ 0, d β( x 0 ) = -p 0 .
Let us set

a 1 := δ 1 , b := δ 2 -δ 1 = |ε 2 -ε 1 | , a 2 := δ 3 -δ 2 ;
then the second order approximations of problem [START_REF] Malanowski | Regularity of solutions in stability analisys of optimization and optimal control problems[END_REF], for ν = 1, 2, are defined on the closed half-spaces

V + ν := (δx, a 1 , b, a 2 ) ∈ T x0 R n × R × R + × R : δx + a 1 g 1 ( x 0 ) + b j ν ( x 0 ) + a 2 g 2 ( x 0 ) ∈ T x0 N f
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and are given by

Q ν [δx, a 1 , b, a 2 ] 2 = D 2 (α + β)( x 0 )[δx] 2 + 2 δx • (a 1 g 1 + b j ν + a 2 g 2 ) • β( x 0 ) + (a 1 g 1 + b j ν + a 2 g 2 ) 2 • β( x 0 ) + a 1 b [g 1 , j ν ] • β( x 0 ) + a 1 a 2 [g 1 , g 2 ] • β( x 0 ) + b a 2 [j ν , g 2 ] • β( x 0 ), (8) 
see [START_REF] Poggiolini | Strong local optimality for a bang-bang trajectory in a Mayer problem[END_REF] for the construction. The restrictions of Q ν to the sets

V + 0, ν := (δx, a 1 , b, a 2 ) ∈ T x0 N 0 × R × R + × R : δx + a 1 g 1 ( x 0 ) + b j ν ( x 0 ) + a 2 g 2 ( x 0 ) ∈ T x0 N f , ν = 1, 2,
are indeed the second order approximation of (P 0 ).

We are now in a position to state our assumption on the second order approximation of subproblem [START_REF] Malanowski | Regularity of solutions in stability analisys of optimization and optimal control problems[END_REF].

Assumption 5. For each ν = 1, 2, Q ν is coercive on V + 0,ν .
Since both Q 1 and Q 2 are quadratic forms, we may as well remove the constraint b ≥ 0 and let them be defined and coercive on the linear spaces

(9) V 0,ν := (δx, a 1 , b, a 2 ) ∈ T x0 N 0 × R 3 : δx + a 1 g 1 ( x 0 ) + b j ν ( x 0 ) + a 2 g 2 ( x 0 ) ∈ T x0 N f , ν = 1, 2.
Also let

(10) V ν := (δx, a 1 , b, a 2 ) ∈ T x0 R n × R 3 : δx + a 1 g 1 ( x 0 ) + b j ν ( x 0 ) + a 2 g 2 ( x 0 ) ∈ T x0 N f , ν = 1, 2.
By [START_REF] Hestenes | Applications of the theory of quadratic forms in Hilbert space to calculus of variations[END_REF] we obtain the following:

Theorem 5. If the second order approximations Q 1 and Q 2 are coercive on V 0, 1 and V 0, 2 respectively, then there exists a smooth function α : R n → R such that α| N0 ≡ 0, dα( x 0 ) = 0 and both Q 1 and Q 2 are coercive quadratic forms on V 1 and V 2 , respectively.

The main result of [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF] is the following: Theorem 6. Assume T , ξ, u is an admissible triple for the minimum time problem (1). Assume the triple is bang-bang with only one switching time which is a double switching time. Assume the triple satisfies Assumptions 1-5, i.e. PMP, the regularity assumptions along the bang arcs and at the double switching time, insjectivity of the trajectory, and the coercivity assumption. Then, ξ is a strict state-locally optimal trajectory.

5. The uniqueness of the adjoint covector. In order to prove our structural stability result we need one further assumption which was not required in [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF], i.e.

the uniqueness of the adjoint covector associated to the reference triple T , ξ, u in PMP for problem (P 0 ). Assumption 6. µ is the only adjoint covector associated to ξ.
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The uniqueness assumption can in fact be stated in terms of the data of the nominal problem (P 0 ). For any i = 0, 1, 2, let f i be the pull-back of f i along the reference flow from the double switching time τ to time 0:

f i (x) := S -1 τ * f i • S τ (x) = exp(-τ h 1 ) * f i • exp τ h 1 (x).
Lemma 7. Assumption 6 holds if and only if

span T x0 N 0 , T x0 N f , f 0 ( x 0 ), f 1 ( x 0 ), f 2 ( x 0 ) = R n .
Proof. For ease of notation set

C := span T x0 N 0 , T x0 N f , f 0 ( x 0 ), f 1 ( x 0 ), f 2 ( x 0 ) .
1. Let Assumption 6 hold and assume, by contradiction, that C = R n . Then there exists p ∈ C ⊥ , p = 0:

p , δx = 0 ∀δx ∈ T x0 N 0 + T x0 N f , p , f i ( x 0 ) = 0 ∀i = 0, 1, 2. Let µ(t) := ( p 0 + p) S -1 t * = µ(t) + p S -1 t * . If t ∈ [0, τ ] then p S -1 t * , h 1 ( ξ(t)) = p , f 0 -f 1 -f 2 ( x 0 ) = 0. If t ∈ ( τ , T ], then p S -1 t * , h 2 ( ξ(t)) = p S -1 τ * , h 2 ( ξ( τ )) = p , f 0 + f 1 + f 2 ( x 0 ) = 0. As µ(0)| T x 0 N0+T x 0 N f = p 0 | T x 0 N0+T x 0 N f , it is easily checked that λ(t) := µ(t), ξ(t)
satisfies PMP, a contradiction.

2. Assume C = R n and suppose, by contradiction, there exists a pair (µ(t), p 0 ) in T * ξ(t) R n × {0, 1} which, together with the reference triple T , ξ, u satisfies PMP.

Thus the following conditions hold:

µ(t) , f 0 ( ξ(t)) + u 1 (t) µ(t) , f 1 ( ξ(t)) + u 2 (t) µ(t) , f 2 ξ(t)) = = F 0 (µ(t), ξ(t)) + F 1 (µ(t), ξ(t)) + F 2 (µ(t), ξ(t)) = p 0 ∈ {0, 1}; (11) ∃p ∈ (T x0 N 0 ) ⊥ ∩ T x0 N f ⊥ : µ(t) = p S -1 t * . ( 12 
)
As in t = τ the double switch of u occurs, we have

µ( τ ) , f 1 ( ξ( τ )) = µ( τ ) , f 2 ( ξ( τ )) = 0, so that µ( τ ) , f 0 ( ξ( τ )) = p 0 , that is: (13) p , f 1 ( x 0 ) = p , f 2 ( x 0 ) = 0, p , f 0 ( x 0 ) = p 0 .
We now distinguish between two cases:

1. if µ(t), ξ(t) is an abnormal extremal (p 0 = 0) then, by ( 12) and ( 13), p ∈ C ⊥ .

As C = R n this means that p = 0, so that µ(t) ≡ 0, a contradiction in PMP.

2. if µ(t), ξ(t) is a normal extremal (p 0 = 1) then, by ( 12) and ( 13), p acts on C = R n in the same way as p 0 , so that p = p 0 and µ(t) = µ(t), i.e. µ is the only adjoint covector associated to ξ.
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6. The main result. We are now in a position to state the main results of this paper, which will be proved in the following sections. Theorem 9. Under Assumptions 1-6 there exists R ∈ (0, R), ε > 0 and a neighborhood V of the graph of λ in R × T * R n such that for any r ∈ B R , the extremal pair λ r associated to the local minimum time triple (T r , u r , ξ r ) of Theorem 8 is the only extremal pair whose final time is in [ T -ε, T + ε] and whose graph is in V.

6.1. The coercivity of the second order variations. In [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF], in order to prove the strong local optimality result, the authors consider the bilinear form

Q ν associated to Q ν , ν = 1, 2, i.e. if δe = (δx, a 1 , b, a 2 ), δf = (δy, c 1 , d, c 2 ) ∈ V 0,ν then Q ν [δe, δf ] = D 2 (α + β)( x 0 )(δx, δy) + δy • (a 1 g 1 + b j ν + a 2 g 2 ) • β ( x 0 ) + δx • (c 1 g 1 + d j ν + c 2 g 2 ) • β ( x 0 ) + (c 1 g 1 + d j ν + c 2 g 2 ) • (a 1 g 1 + b j ν + a 2 g 2 ) • β ( x 0 ) + da 1 [g 1 , j ν ] • β ( x 0 ) + c 2 a 1 [g 1 , g 2 ] • β ( x 0 ) + c 2 b[j ν , g 2 ] • β ( x 0 ) .
The bilinear forms Q ν can be written in a more compact way by introducing the linear Hamiltonians

G i : (δp, δx) ∈ (R n ) * × R n → δp , g i ( x 0 ) + δx • g i • β ( x 0 ) ∈ R, J ν : (δp, δx) ∈ (R n ) * × R n → δp , j ν ( x 0 ) + δx • j ν • β ( x 0 ) ∈ R,
and the associated constant Hamiltonian vector fields -→ G i and -→ J ν . An easy computation shows that

σ (δp, δx), - → G 1 = G i (δp, δx), σ (δp, δx), -→ J ν = J ν (δp, δx), G i ( - → G j ) = [g j , g i ] • β ( x 0 ) , G i ( -→ J ν ) = [j ν , g i ] • β ( x 0 ) = -J ν ( - → G i ).
With these equalities at hand it is just a straightforward computation to prove the following proposition.

Proposition 10. For any admissible variation δe = (δx, a 1 , b, a 2 ) ∈ V ν and any

δp ∈ (R n ) * let (δp T , δx T ) := (δp, δx) + a 1 - → G 1 + b -→ J ν + a 2 - → G 2 .
Then

Q ν [δe, δf ] = D 2 (α + β)( x 0 )(δx, δy) + δp , δy -δp T , δy + c 1 g 1 + dj ν + c 2 g 2 +c 1 G 1 (δp, δx) + dJ ν (δp, δx) + a 1 - → G 1 + c 2 G 2 (δp, δx) + a 1 - → G 1 + d -→ J ν .
Proposition 11. Let δe = (δx, a 1 , b, a 2 ) be an admissible variation such that

δe ∈ V 0,ν . 1. δe ∈ V ⊥ Qν 0,ν if and only if there exists δp ∈ (R n ) * such that δp = -D 2 (α + β)( x 0 )(δx, •) + ω 0 , ω 0 ∈ (T x0 N 0 ) ⊥ , (14a) G 1 (δp, δx) = σ (δp, δx), - → G 1 = 0, (14b) J ν (δp, δx) + a 1 - → G 1 = σ (δp, δx) + a 1 - → G 1 , -→ J ν = 0, (14c) G 2 (δp, δx) + a 1 - → G 1 + b -→ J ν = σ (δp, δx) + a 1 - → G 1 + b -→ J ν , - → G 2 = 0, (14d) δp T ∈ T x0 N f ⊥ . (14e)
2. Assume the coercivity assumption, Assumption 5, holds. If there exists δp ∈ (R n ) * such that equations (14) hold, then δe is the trivial variation (0, 0, 0, 0).

Consider the Lagrangian manifold of the initial transversality conditions

Λ 0 := = dα(x) + ω : x ∈ N 0 , ω ∈ (T x N 0 ) ⊥ , H 1 ( ) = 1 so that T 0 Λ 0 := δ = dα * δx + ω : δx ∈ T x0 N 0 , ω ∈ (T x0 N 0 ) ⊥ , σ δ , -→ H 1 ( 0 ) = 0 . Let i : (δp, δx) ∈ (R n ) * × R n → δ := -δp + d(-β)δx ∈ T * R n . The map i is an antisymplectic isomorphism. Moreover i - → G 1 = -→ H 1 ( 0 ) = - → G 1 ( 0 ) = F -1 τ * -→ H 1 • F τ ( 0 ), i - → G 2 = - → G 2 ( 0 ) = F -1 τ * -→ H 2 • F τ ( 0 ) = F -1 T * -→ H 2 • F T ( 0 ), i -→ J ν = -→ J ν ( 0 ) = F -1 τ * -→ K ν • F τ ( 0 ) ν = 1, 2,
and T 0 Λ 0 = iL 0 where

L 0 := (δp, δx) : δx ∈ T x0 N 0 , δp = -D 2 (α + β)( x 0 )(δx, •) + ω, ω ∈ (T x0 N 0 ) ⊥ , σ (δp, δx), - → G 1 = 0 .
Lemma 12. Under Assumptions 1 to 6 there exist R ∈ (0, R), ε > 0 and a neighborhood O( 0 ) of 0 in T * R n such that for any r ∈ B R , there exists a unique bang-bang extremal pair λ r = (µ r , ξ r ) of (P r ) having the following properties:

1. λ r is a normal extremal and λ r (0) ∈ O( 0 ); 4. τ r 1 , τ r 2 , T r and λ r (0) depend smoothly on r, 5. the bang arcs are regular: for i = 1, 2 u r i (t)F r i (λ r (t)) > 0 ∀t = τ r i ,

6

. each switching time is regular:

d dt u r i (t)F r i (λ r (t)) t=τ r i ± > 0, i = 1, 2.
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Proof. We prove claims 1-4 applying the implicit function theorem: for ν = 1, 2 consider the following system of 2n + 3 scalar equations in the unknowns r ∈ B R , = (p, x) ∈ T * R n , t 1 , t 2 , t 3 ∈ R:

∈ (T π N r 0 ) ⊥ × N r 0 , (15a) H r 1 ( ) -1 = 0, (15b) K r ν • exp t 1 -→ H r 1 ( ) -1 = 0, (15c) H r 2 • exp(t 2 -t 1 ) -→ K r ν • exp t 1 -→ H r 1 ( ) -1 = 0, (15d) exp(t 3 -t 2 ) -→ H r 2 • exp(t 2 -t 1 ) -→ K r ν • exp t 1 -→ H r 1 ( ) ∈ T π exp(t3-t2) -→ H r 2 •exp(t2-t1) -→ K r ν •exp t1 -→ H r 1 ( ) N r f ⊥ × N r f . (15e) 
Equations ( 15) represent the structure of the reference extremal that we want to preserve: equation (15a) is the initial condition of problem (P r ), together with the initial transversality condition. Equations (15b) to (15d) represent the control structure (i.e. each compoment switches from the value -1 to the value 1), while equation (15e) is the final condition of problem (P r ), , together with the final transversality condition.

The linearised equations with respect to ( , t 1 , t 2 , t 3 ) at the point (r, , t 1 , t 2 , t 3 ) = (0, 0 , τ , τ , T ) are given by

δ = (δp, δx) ∈ T 0 (T x0 N 0 ) ⊥ × N 0 , (16a) σ δ , -→ H 1 ( 0 ) = 0, (16b) σ exp τ -→ H 1 * δ + δt 1 -→ H 1 ( d ), ( -→ K ν - -→ H 1 )( d ) = 0, (16c) σ exp τ -→ H 1 * δ -δt 1 ( -→ K ν - -→ H 1 )( d ) + δt 2 -→ K ν ( d ), ( -→ H 2 - -→ K ν )( d ) = 0, (16d) 
F T * δ + exp( T -τ ) -→ H 2 * δt 1 -→ H 1 + (δt 2 -δt 1 ) -→ K ν + (δt 3 -δt 2 ) -→ H 2 ( d ) ∈ T f T x f N f ⊥ × N f . (16e)
Notice that α| N0 ≡ 0 so that dα(x) ∈ (T x N 0 )

⊥ for any x ∈ N 0 . Thus for every

= (p, x) ∈ (T π N 0 ) ⊥ × N 0 , it holds p -dα(x) ∈ (T x N 0 ) ⊥ so that, if δ = (δp, δx) we get δx ∈ T x0 N 0 δp -D 2 α( x 0 )[δx, •] ∈ (T x0 N 0 ) ⊥ .
Thus, taking the pull-back to time t = 0, the homogeneous linear system ( 16) admits a nontrivial solution if and only if there exists δ = (δp, δx) ∈ T 0 T * R n , δt 1 , δt 2 , δt 3 ∈ R, with at least one of them being different from zero, such that

δ = dα * δx + ω 0 , δx ∈ T x0 N 0 , ω 0 ∈ T p0 (T x0 N 0 ) ⊥ , (17a) σ δ , - → G 1 ( 0 ) = 0, (17b) σ δ + δt 1 - → G 1 ( 0 ), ( -→ J ν - - → G 1 )( 0 ) = 0, (17c) σ δ -δt 1 ( -→ J ν - - → G 1 )( 0 ) + δt 2 -→ J ν ( 0 ), ( - → G 2 - -→ J ν )( 0 ) = 0, (17d) δx f := δx + (δt 1 g 1 + (δt 2 -δt 1 )j ν + (δt 3 -δt 2 )g 2 ) ( x 0 ) ∈ T x0 N f , (17e) δ + δt 1 - → G 1 + (δt 2 -δt 1 ) -→ J ν + (δt 3 -δt 2 ) - → G 2 ( 0 ) = d(-β) * δx f + ω f , ω f ∈ T p0 T x0 N f ⊥ . (17f) 
Applying the anti symplectic isomorphism i -1 and denoting i -1 δ = (δp, δx), equations [START_REF] Poggiolini | Structural stability for bang-singular-bang extremals in the minimum time problem[END_REF] can also be written as

(δp, δx) = -D 2 (α + β)( x 0 )(δx, •) + ω 0 , δx ∈ T x0 N 0 , ω 0 ∈ (T x0 N 0 ) ⊥ , (18a) σ (δp, δx), - → G 1 = 0, (18b) σ (δp, δx) + δt 1 - → G 1 , -→ J ν = 0, (18c) σ (δp, δx) + δt 1 - → G 1 + (δt 2 -δt 1 ) -→ J ν , - → G 2 = 0, (18d) (δp T , δx T ) := (δp, δx) + δt 1 - → G 1 + (δt 2 -δt 1 ) -→ J ν + (δt 3 -δt 2 ) - → G 2 ∈ T x0 N f ⊥ × T x0 N f . (18e) 
Thus, by claim 1 of Proposition 11, the variation (δx,

δt 1 , δt 2 -δt 1 , δt 3 -δt 2 ) is in V 0,ν ∩ V ⊥ Qν 0,ν .
As Q ν is coercive on V 0,ν we can apply claim 2 of Proposition 11 and we get δx = 0, δt 1 = δt 2 = δt 3 = 0, so that δp = 0 if and only if ω 0 = 0. By equations [START_REF] Sarychev | First-and second-order sufficient optimality conditions for bang-bang controls[END_REF],

ω 0 ∈ span T x0 N 0 , T x0 N f , g 1 ( x 0 ), j ν ( x 0 ), g 2 ( x 0 ) ⊥ = = span T x0 N 0 , T x0 N f , f 0 ( x 0 ), f 1 ( x 0 ), f 2 ( x 0 ) ⊥ ,
so that Assumption 6 and Lemma 7 yield the claim.

Thus we can apply the implicit function theorem to system [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian approach[END_REF]. For r ∈ B R let ( r 0 , τ r 1 , τ r 2 , T r ), r 0 = (p r 0 , x r 0 ) be the solution of system [START_REF] Poggiolini | State-local optimality of a bang-bang trajectory: a Hamiltonian approach[END_REF]. The piecewise smooth curve λ r (t) = (µ r (t), ξ r (t)) defined by

                                       exp t -→ H r 1 ( r 0 ), t ∈ [0, τ r 1 ], exp(t -τ r 1 ) -→ K r 1 • exp τ r 1 -→ H r 1 ( r 0 ), t ∈ [τ r 1 , τ r 2 ], exp(t -τ r 2 ) -→ H r 2 • exp(τ r 2 -τ r 1 ) -→ K r 1 • exp τ r 1 -→ H r 1 ( r 0 ), t ∈ [τ r 2 , T r ],        if τ r 1 < τ r 2 exp t -→ H r 1 ( r 0 ), t ∈ [0, τ r 2 ], exp(t -τ r 2 ) -→ K r 2 • exp τ r 2 -→ H r 1 ( r 0 ), t ∈ [τ r 2 , τ r 1 ], exp(t -τ r 1 ) -→ H r 2 • exp(τ r 1 -τ r 2 ) -→ K r 2 • exp τ r 2 -→ H r 1 ( r 0 ), t ∈ [τ r 1 , T r ],        if τ r 2 < τ r 1 , exp t -→ H r 1 ( r 0 ), t ∈ [0, τ r 1 ], exp(t -τ r 2 ) -→ H r 2 • exp τ r 2 -→ H r 1 ( r 0 ), t ∈ [τ r 1 , T r ], if τ r 2 = τ r 1 ,
is a normal extremal of problem (P r ) and satisfies claims 1-4

We can now complete the proof by proving claims 5-6: possibly restricting R and O( 0 ) we can assume, by continuity

F r i (λ r (t)) < 0 ∀t ∈ [0, τ -ε], F r i (λ r (t)) > 0 ∀t ∈ [ τ + ε, T r ], i = 1, 2,
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the half spaces

V +,r ν := δe = (δx, a 1 , b, a 2 ) ∈ T x r 0 N r 0 × R × R + × R : δx + a 1 g r 1 ( x 0 ) + b j r ν ( x 0 ) + a 2 g r 2 ( x 0 ) ∈ T x r 0 (S r T r ) -1 (N r f ) , ν = 1, 2
and the second order approximation is given by

Q r ν [δx, a 1 , b, a 2 ] = D 2 (α r + β r ) (x r 0 )[δx] 2 + 2δx • (a 1 g r 1 + b j r ν + a 2 g r 2 ) • β r (x r 0 ) + (a 1 g r 1 + b j r ν + a 2 g r 2 ) 2 • β r (x r 0 ) + a 1 b[g r 1 , j r ν ] • β r (x r 0 ) + a 1 a 2 [g r 1 , g r 2 ] • β r (x r 0 ) + b a 2 [j r ν , g r 2 ] • β r (x r 0 ) .
With the same contradiction argument used in the previous case it is easy to show that Q r ν is coercive on V +,r ν , ν = 1, 2. Thus (T r , ξ r , u r ), together with λ r satisfies all the assumptions of Theorem 4.2 in [START_REF] Poggiolini | Bang-bang trajectories with a double switching time in the minimum time problem[END_REF], so that ξ r is a state-locally optimal trajectory for problem (P r ). For any δ ∈ (0, δ] and i = 1, 2 define α a i (δ) = min u i (t)F i • λ(t) = -F i • λ(t) : t ∈ [0, τ -δ] ,

α p i (δ) = min u i (t)F i • λ(t) = F i • λ(t) : t ∈ [ τ + δ, T ] ,
and let

m(δ) := min σ -→ F 0 , -→ F 1 ( λ(t)) -σ -→ F 1 , -→ F 2 ( λ(t)) , i = 1, 2, t ∈ [ τ -δ, τ + δ] .
By continuity there exists O( 0 ) ⊂ T * R n such that

F i • F t ( ) < -α a i (δ) 2 ∀(t, ) ∈ [0, τ -δ] × O( 0 ), F i • F t ( ) > α p i (δ) 2 ∀(t, ) ∈ [ τ + δ, T ] × O( 0 ), σ -→ F 0 , -→ F 1 ( F t ( )) -σ -→ F 1 , -→ F 2 ( F t ( )) > m(δ) 2 ∀(t, ) ∈ [ τ -δ, T + δ] × O( 0 ),
and, again by continuity, there esists R > 0 such that hence there exists t i ∈ ( τ -δ, τ + δ) such that F r i • λ( t i ) = 0. We now prove that t i is the only time at which F r i • λ is zero. More precisely we show that F Thus each component of the control u associated to ξ := π λ switches once and only once from the value -1 to the value +1.

u

  s (t)f s (ξ(t)) a.e. t ∈ [0, T ], (1b) ξ(0) ∈ N 0 , ξ(T ) ∈ N f , (1c) u(t) = (u 1 (t), . . . , u m (t)) ∈ [-1, 1] m a.e. t ∈ [0, T ]. (1d)

Theorem 8 .i = 1 , 2 . 1 .Remark 6 . 1 .

 812161 Under Assumptions 1-6 there exists R ∈ (0, R) such that for any r ∈ B R , problem (P r ) has a bang-bang state-local minimiser (T r , u r , ξ r ). Each control component of u r has exactly one switching time. Let τ r i be the switching time of u r i , At time τ r i the control component u r i switches from the value -1 to the value The final time T r and the switching times τ r 1 , τ r 2 depend smoothly on r. Notice that the switching times τ r 1 , τ r 2 in Theorem 8 may either coincide or be different, i.e. we may either have a double switching time or two simple switching times, still the bang-bang structure is preserved and singular arcs cannot occur.

2 .

 2 each component u r i , i = 1, 2 of the associated control u r = (u r 1 , u r 2 ) has exactly one switching time τ r i ; τ r 1 , τ r 2 ∈ [ τ -ε, τ + ε]; at time τ r i the control component u r i switches from the value -1 to the value +1; 3. T r ∈ [ T -ε, T + ε];

7 .

 7 Local uniqueness. We now prove the local uniqueness of the extremal λ r in the cotangent bundle T * R n , namely we prove Theorem 9. The proof is carried out by showing that there exists a tubular neighborhoodV in R × T * R n of the graph of λ such that, if λ : [0, T ] → T * R n is an extremal of (P r ) whose graph is in V, withT close to T , then the associated control u = ( u 1 , u 2 ) is bang-bang and each control component switches once and only once from the value -1 to the value 1. This implies that λ satisfies system (15) which, by the implicit function theorem, admits one and only one solution, i.e. λ = λ r .By the regularity assumption at the switching time (Assumption 3) and by continuity, there exists δ > 0 such that λ(t) , [f 0 , f i ] ( ξ(t)) > λ(t) , [f 1 , f 2 ] ( ξ(t)) , ∀t ∈ [ τ -δ, τ + δ], i = 1, 2.

  , ) ∈ [0, τ -δ] × O( 0 ), ∀r : |r| ≤ R,(24)F r i • F t ( ) > α p i (δ) 4 ∀(t, ) ∈ [ τ + δ, T ] × O( 0 ), ∀r : |r| ≤ R,(25)This manuscript is for review purposes only.

2 (

 2 F t ( )) > m(δ) 4 ∀(t, ) ∈ [ τ -δ, T + δ] × O( 0 ), ∀r : |r| ≤ R. (26)Let λ : [0, T ] → T * R n be an extremal of (P r ) whose graph is in the tubular setV δ = (t, F t ( )) : t ∈ [0, T + δ], ∈ O δ ( 0 )and such that T -T < δ.By (24)-(25), for i = 1, 2,F r i • λ(t) < -α a i 4 ∀t ∈ [0, τ -δ], F r i • λ(t) > α p i 4 ∀t ∈ [ τ + δ, T ]

2 (

 2 r i • λ(t) is strictly monotone increasing in the interval [ τ -δ, τ + δ] . Let τ -δ ≤ s 1 < s 2 ≤ τ + δ: F r i • λ(s 2 ) -F r i • λ(s 1 ) = λ(s)) ds > (s 2 -s 1 ) m(δ)4.
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By construction, λ r is a normal Pontryagin extremal of (P r ). We prove claim 5 in the case when τ r 1 < τ r 2 . The other cases are analougous. For any t ∈ ( τ -ε, τ r 1 ) there exists θ 1 ∈ (t, τ r 1 ) such that 2F r 1 (λ r (t)) = 2F r 1 (λ r (τ r 1 )) + (t -τ r 1 )

which is negative by (19). Analougously, for any t ∈ (τ r 1 , τ r 2 ] there exists θ 2 ∈ (τ r 1 , t)

which is positive by (19). Finally, if t ∈ (τ r 2 , τ + ε) there exists

which is positive by ( 19) and (20). The proof for the sign of F r 2 (λ r (t)) follows the same line.

Finally, the switching times τ r i are regular (claim 6) thanks to inequalities (19).

We can now prove Theorem 8, i.e. we prove that projection ξ r of the extremal λ r defined in Lemma 12 is a state-local optimal trajectory for problem (P r ).

Proof of Theorem 8. By construction and by Lemma 12, (T r , ξ r = πλ r , u r ) satisfies PMP in its normal form and the regularity assumptions for problem (P r ). Thus it suffices to prove that ξ r has no self-intersection and that the second order variation associated to (P r ) is coercive.

Injectivity of ξ r . We prove that, possibly restricting R, then for any r ∈ B R , the trajectory ξ r has no self intersection. The proof is carried out by showing, with a contradiction argument, that there can be no sequence {r k } k∈N ⊂ B R that converges to 0 and such that the trajectory ξ r k is not injective.

Assume by contradiction there exists a sequence {r k } k∈N ⊂ B R that converges to 0 and such that there exist

, that is a contradiction. Assume then t 1 = t 2 =: t.

Different cases may occur:
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Applying the mean value theorem componentwise we get:

Thus, as k → ∞ in (21) we obtain h 1 ( ξ(t)) = 0, a contradiction since t ∈ [0, τ 1 ] and

Up to a subsequence there exists lim

, so that passing to the limit in ( 22) we obtain

Up to a subsequence there exist

so that passing to the limit in (23) we obtain

In the other cases the proof follows the same line.

Coercivity of the second variation. Let (T r , λ r , u r ) be the extremal defined in Lemma 12, let ξ r := πλ r and x r 0 := ξ r (0). Assume τ r 1 < τ r 2 . In this case the trajectory ξ r is driven by the dynamics

Let S r t be the flow at time t associated to φ r t and consider the pull-back vector
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Let α r be a function that vanishes on N r 0 and such that dα r (ξ r (0)) = λ r (0). Let β r be a smooth function that vanishes on (S r T r ) -1 (N r f ), such that dβ r (ξ r (0)) = -λ r (0).

Finally consider the linearisation of the constraints

Then the second variation at the switching points, see e.g. [START_REF] Poggiolini | On local state optimality of bang-bang extremals in a free horizon Bolza problem[END_REF], is given by

We now show, with a contradiction argument, that Q r is coercive on V r 0 : assume there exists a sequence {r k } k∈N ⊂ (0, R) that converges to 0 and such that Q r k is not coercive on V r k 0 , i.e. there exists

Up to a subsequence δe k converges to some δe = δx, a 1 , b, a 2 ∈ V 0,1 and such that δx

We have thus proved that (T r , ξ r , u r ), together with λ r satisfies all the assumptions of Theorem 1 in [START_REF] Poggiolini | On local state optimality of bang-bang extremals in a free horizon Bolza problem[END_REF], so that ξ r is a state-locally optimal trajectory for problem (P r ). If τ r 2 < τ r 1 the proof follows the same lines.

Let us consider the case τ r 1 = τ r 2 =: τ r . In this case, as in the nominal problem (P 0 ) we have to consider two different second order approximations and to prove that they are coercive on the respective half-space of linearised constraints.

The trajectory ξ r is driven by the dynamics

Denoting again by S r t the flow at time t associated to φ r , we consider the pullback vector fields g r i (x) := (S r τ r * ) -1 h r 1 • S r τ r (x), i = 1, 2, j r ν (x) := (S r τ r * ) -1 k r ν • S r τ r (x), ν = 1, 2.

Let α r , β r and γ r be as before. Then the linearisation of the constraints is given by This manuscript is for review purposes only.