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Abstract 

Nuclear RNA exosome is the main 3'→5' RNA degradation and processing complex in eukaryotic cells 

and its dysregulation therefore impacts gene expression and viability. In this work we show that RNA 

exosome activity is necessary for maintaining cell wall stability in yeast Saccharomyces cerevisiae. While 

the essential RNA exosome catalytic subunit Dis3 provides exoribonuclease catalytic activity, the second 

catalytic subunit Rrp6 has a non-catalytic role in this process. RNA exosome cofactors Rrp47 and Air1/2 

are also involved. RNA exosome mutants undergo osmoremedial cell lysis at high temperature or at 

physiological temperature upon treatment with cell wall stressors. Finally, we show that a defect in 

protein glycosylation is a major reason for cell wall instability of RNA exosome mutants. Genes encoding 

enzymes that act in the early steps of the protein glycosylation pathway are downregulated at high 

temperature in cells lacking Rrp6 protein or Dis3 exoribonuclease activity and overexpression of the 

essential enzyme Psa1, that catalyzes synthesis of the mannosylation precursor, suppresses temperature 

sensitivity and aberrant morphology of these cells. Furthermore, this defect is connected to a temperature-

dependent increase in accumulation of non-coding RNAs transcribed from loci encoding relevant 

glycosylation-related genes. 

Summary 

RNA exosome activity, accomplished through Dis3 exonuclease activity and a non-catalytic function of 

Rrp6, is necessary for maintaining cell wall stability in yeast Saccharomyces cerevisiae. 

A defect in protein glycosylation is a major reason for cell wall instability of RNA exosome mutants. 

Genes encoding proteins involved in the early steps of protein glycosylation are dysregulated in RNA 

exosome mutants through mechanisms that involve increased accumulation of non-coding RNAs at high 

temperature. 
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Introduction 

In eukaryotic cells, 3'→5' RNA degradation and processing is accomplished through activity of the RNA 

exosome complex (Chlebowski et al., 2013; Zinder and Lima, 2017; Lingaraju et al., 2020). It plays a 

major part in RNA metabolism in the nucleus and cytoplasm since it targets almost all RNA classes: its 

roles include RNA surveillance, mRNA turnover, processing and maturation of rRNAs, snRNAs and 

snoRNAs, and degradation of non-coding transcripts (Allmang et al., 1999a; Hilleren et al., 2001; Wyers 

et al., 2005). It is therefore not surprising that dysregulation of RNA exosome activity broadly impacts 

gene expression (Van Dijk et al., 2007; Lardenois et al., 2011; Gudipati et al., 2012; Schneider et al., 

2012; Bresson et al., 2017; Davidson et al., 2019) and is also implicated in various human malignancies 

and disorders (Fasken et al., 2020). Rare diseases caused by mutations in genes that encode human 

exosome subunits (EXOSC proteins) have been termed exosomopathies. They usually encompass single 

amino acid substitutions rather than more substantial mutations, as RNA exosome activity is essential for 

viability (Amorim et al., 2020). 

 The central part of the highly conserved RNA exosome complex is the exosome core (Exo9). It 

encompasses nine subunits that form a doughnut-shaped channel that has a structural and regulatory role 

(Wasmuth and Lima, 2012; Wasmuth et al., 2014). Catalytic activity is provided by two additional 

subunits - Rrp6, which has exonuclease activity, and Dis3/Rrp44, which has exonuclease and 

endonuclease activities (Briggs et al., 1998; Dziembowski et al., 2007; Lebreton et al., 2008). In yeast, 

Dis3 is found in both the nuclear and the cytoplasmic isoforms of the exosome complex, whereas Rrp6 is 

only found in the nuclear isoform, where it additionally associates with its stabilization partner Rrp47 to 

form the 12-subunit complex Exo12
Dis3/Rrp6/Rrp47 

(Feigenbutz et al., 2013; Makino et al., 2015). Activity of 

the nuclear RNA exosome is also stimulated by its cofactors Mpp6 and the TRAMP complex, which 

function to guide substrate specificity and aid RNA degradation (Schilders et al., 2005; Stuparevic et al., 

2013; Wasmuth et al., 2017). The three-subunit TRAMP complex provides RNA-binding (Air1 or Air2), 

RNA-helicase (Mtr4) and poly(A)-polymerase (Trf4 or Trf5) activities which play a major role in non-

coding RNA degradation (LaCava et al., 2005; Wyers et al., 2005). 

 All core exosome subunits, as well as catalytic subunit Dis3, are essential in yeast (Mitchell et al., 

1997). In contrast, deletion of the gene encoding the catalytic subunit Rrp6 is viable, however it results in 

slow growth at physiological temperature and temperature sensitivity (Allmang et al., 1999b; Phillips and 

Butler, 2003). Interestingly, these two phenotypes are not both caused by the lack of Rrp6 catalytic 

activity, as Rrp6 catalytic mutants also grow slowly at physiological temperature, but are not temperature-

sensitive (Phillips and Butler, 2003). Because of that, it has long been clear that Rrp6 has a non-catalytic 

role in maintaining cell viability upon heat stress, but the molecular nature of this predicament has not 

been explained. Recent work connected RNA degradation to the cell wall integrity (CWI) pathway which 

regulates gene expression to ensure cellular integrity upon stress, through a MAPK signaling cascade 

(Catala et al., 2012; Wang et al., 2020). Involvement of Rrp6 in this process was inferred from the 

additive cell wall instability phenotype of rrp6Δ mpk1Δ mutant cells, in which CWI signal transduction is 

inhibited (Wang et al., 2020). Specifically, a role was proposed for a solitary ''moonlighting'' function of 

Rrp6, independent of other exosome subunits and its interactors Rrp47 and Isw1, in maintaining cell wall 

integrity at high temperature (Wang et al., 2020). 

 In this work, we show that the RNA exosome complex is a major regulator of yeast cell wall 

stability. Exoribonuclease catalytic activity of Dis3 subunit is essential for maintaining cellular integrity 

upon heat stress or treatment with cell wall stressors, together with the second catalytic subunit Rrp6 that 

has a non-catalytic role in this process. The RNA exosome cofactors Rrp47 and Air1/2 also contribute in 

a significant way. Cells lacking these proteins or Dis3 exoribonuclease activity are not viable at high 

temperature because of compromised cell wall stability. Importantly, cell bursting and aberrant cell 

morphology of RNA exosome mutants are suppressed by osmotic support, as well as by overexpression 
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of Psa1 enzyme, which enables increased production of GDP-mannose that is incorporated into 

mannoproteins, indicating that protein glycosylation is a major reason for cell wall instability of RNA 

exosome mutants. Expression of protein glycosylation-related genes PSA1, DPM1 and ALG7 is 

dysregulated in these mutants at high temperature, presumably through mechanisms that involve 

accumulation of specific non-coding RNAs transcribed from their gene loci. 

 

Results 

RNA exosome mutants undergo osmoremedial cell lysis at high temperature 

All subunits of yeast RNA exosome complex are essential for viability except for the nuclear-specific 

catalytic subunit Rrp6, whose inactivation is lethal only above 37°C (Allmang et al., 1999b; Phillips and 

Butler, 2003). The reason for temperature sensitivity of the rrp6Δ mutant remained unknown, especially 

since Rrp6 catalytic mutants are not temperature-sensitive (Phillips and Butler, 2003), and lack of Rrp6 

was not linked to significant RNA processing defects at high temperature (Allmang et al., 2000). In order 

to test if rrp6Δ cells are inviable at 37°C due to compromised cellular integrity, we supplemented the 

growth medium with 1 M sorbitol, which acts as osmotic support. We performed all experiments in the 

W303-derived BMA41 genetic background in which Rrp6-related phenotypes are most pronounced 

(Klauer and Van Hoof, 2013; Wasmuth and Lima, 2017). Interestingly, osmotic stabilization of the 

growth medium completely suppressed its temperature-sensitive phenotype and enabled wild type-level 

of growth after 3 days at 37°C both on YPD and synthetic YNB medium (Fig. 1A). This was due to 

osmotic stabilization and not sorbitol itself, since the addition of 1 M sucrose, NaCl or KCl led to similar 

level of suppression (Fig. S1). Also, this effect was not specific to BMA41 genetic background, as growth 

at 37°C could also be restored with the less temperature-sensitive rrp6Δ haploid BY4741 and diploid 

JHY222 genetic backgrounds (Fig. 1B). 

 Osmotic instability results in cell lysis, so we grew cells in liquid medium for 3 days at 37°C and 

measured the activity of alkaline phosphatase released into the medium. Alkaline phosphatase is an 

intracellular enzyme so its release into the medium implies membrane and cell wall lysis. Cells lacking 

Rrp6 released almost 5-fold higher amount of alkaline phosphatase than wild type or Rrp6-Y361A 

catalytic mutant cells, and cell lysis in all strains was completely suppressed by addition of 1 M sorbitol 

(Fig. 1C) or upon growth at 30°C regardless of sorbitol addition (data not shown). As higher activity 

measured with rrp6Δ cells could also be due to a change in expression of alkaline phosphatase, we 

measured intracellular alkaline phosphatase activity with the same cells and found practically no 

differences between the strains (Fig. S2), confirming that the extracellular activity observed for the rrp6Δ 

strain is indicative of cell lysis. We also examined the cells by fluorescent microscopy after Calcofluor 

White (CFW) staining. CFW stains chitin, which in yeast is localized primarily in bud necks and bud 

scars, as it forms the primary septum (Klis et al., 2002). It was revealed that morphology of rrp6Δ cells 

without osmotic support at 37°C was also consistent with weakened cellular integrity, as the cells were 

enlarged, unevenly shaped and grew in clumps (Fig. 1D). Based on the intensive staining of cell septa by 

CFW, it was clearly visible that two or more rrp6Δ cells stuck together at their bud necks, meaning the 

clumps result from a defect in cell separation after division (Fig. 1D). 

 Deletion of DIS3 gene encoding the second exosome catalytic subunit is lethal, but it is possible 

to generate mutants deficient in Dis3 exo- or endoribonuclease activity (Dziembowski et al., 2007; 

Lebreton et al., 2008). Exo
-
 (dis3-D551N) mutant displays temperature sensitivity   ra  ko ska et al., 

2013; Milbury et al., 2019), so we wandered if the cause is similar as for rrp6Δ. Indeed, addition of 1 M 

sorbitol restored growth and morphology of this mutant at 37°C and suppressed its cell lysis, as measured 

by release of alkaline phosphatase (Figs. 2A-C). Furthermore, we tested viability at 37°C of mutants in 

monomeric cofactors Mpp6 and Rrp47, as well as viable mutants in subunits of the TRAMP complex, 
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which function as coactivators of the nuclear exosome, and found that the temperature sensitivity and the 

temperature-induced cell lysis of air1Δair2Δ and rrp47Δ mutants are also suppressed by osmotic 

stabilization (Figs. 2D and E). Taken together, temperature-sensitive mutants of RNA exosome catalytic 

subunits rrp6Δ and dis3 exo
-
,
 
as well as mutants in exosome cofactors Rrp47 and Air1/2, undergo 

osmoremedial cell lysis at 37°C, which is a phenotype indicative of a weakened cell wall. 

 

RNA exosome mutants are hypersensitive to cell wall stressors  

To investigate if it is possible to detect cell wall-related phenotypes in RNA exosome mutants at the 

physiological temperature of 30°C, we examined their growth on media containing known cell wall 

stressors Congo Red (CR), Calcofluor White (CFW), Caffeine and SDS. CR and CFW interfere with 

glucan and chitin assembly, respectively (Roncero and Duran, 1985; Kopecká and Gabriel, 1992), 

caffeine primarily affects TOR signaling (Kuranda et al., 2006) and SDS is a general cell wall and 

membrane destabilizer (Popolo et al., 2001). rrp6Δ and dis3 exo
-
 mutants were hypersensitive to all of 

these compounds, thereby demonstrating that their cell walls are weaker than that of the corresponding 

wild type cells even at the permissive temperature of 30°C when faced with cell wall stressors (Fig. 3). 

Furthermore, their growth was significantly restored by addition of 1 M sorbitol, which strengthens the 

argument that the effect is related to cell wall stability (Fig. 3).  

 Regarding mutants in RNA exosome cofactors, for air1Δair2Δ and rrp47Δ that are temperature-

sensitive we found that they are also hypersensitive to all tested cell wall stressors, while mpp6Δ showed 

specific sensitivity to Caffeine (Fig. S3). The fact that single mutants in the TRAMP RNA-binding 

subunits air1Δ and air2Δ did not show cell wall-related phenotypes, but their combined inactivation in the 

double air1Δair2Δ mutant did, indicates their functional redundancy. Inactivation of either Trf4 or Trf5 

TRAMP poly(A)-polymerase also did not lead to any cell wall-related phenotypes, while in this case it 

was not possible to explore if it is due to functional redundancy because the double mutant is not viable.  

 

Genes involved in protein glycosylation are dysregulated in RNA exosome mutants at high 

temperature and aiding this process suppresses their temperature sensitivity 

The Rrp6-containing RNA exosome is located in the nucleus of the yeast cells, which precludes any 

direct link to the cell periphery. Instead, given the ubiquitous role of the RNA exosome in gene 

expression, its role in maintaining cell wall stability upon stress should be visible at the level of mRNAs 

encoding proteins that are important for cell wall biosynthesis and remodeling. To this aim, we made use 

of the recently published genome-wide RNA-sequencing analysis that included the datasets of rrp6Δ 

mutant before and after a 45 min heat shock at 42°C (Wang et al. 2020). We inspected gene expression 

profiles of ~180 genes involved in cell wall biogenesis (Orlean, 2012) and visualized them as rrp6Δ/wt 

mRNA ratios on a log2 scale (Figs. 4A-B and S4). Heat shock-dependent downregulation in rrp6Δ cells 

as compared to wild type cells could be seen for a number of genes, such as GPI12, encoding an essential 

protein involved in GPI anchor assembly, and YPS3, encoding an aspartic protease (Fig. S4). However, 

cell wall-related gene subcategories that encompassed genes with most prominent transcript 

downregulation in rrp6Δ cells compared to wild type cells at high temperature were the precursor supply 

gene category, which includes enzymes involved in synthesis of sugar nucleotides and dolichol phosphate 

sugars that are precursors for cell wall components, and the N- and O-glycosylation category (Fig. 4A-B). 

In the precursor supply gene category, we noticed a strong heat shock-dependent downregulation of PSA1 

and DPM1 genes in rrp6Δ cells as compared to wild type cells (Fig. 4A). These genes are involved in 

synthesis of GDP-mannose and its binding to the dolichol carrier, respectively (Fig. 4C). Mannose is 
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exclusively bound to cell wall proteins through N- or O-linked glycosylation in the endoplasmic 

reticulum and Golgi (Klis et al., 2002). Inspection of the N- and O-glycosylation category revealed that 

ALG7, which catalyzes the initial step in synthesis of the oligosaccharide precursor for N-glycosylation 

(Fig. 4C), also showed heat shock-dependent downregulation in rrp6Δ cells compared to wild type cells 

(Fig. 4B). Even though a large number of genes in this category seemed to be upregulated in rrp6Δ 

relative to wild type cells, we hypothesized that protein glycosylation in this mutant should nevertheless 

be affected, because precursor synthesis and the very early steps in the glycosylation pathway are severely 

impaired. To experimentally verify whether protein glycosylation is affected in RNA exosome mutants, 

we analyzed the degree of glycosylation of periplasmic invertase, normally a heavily N-glycosylated 

protein, by following its electrophoretic mobility with subsequent in-gel activity staining. Periplasmic 

invertase is easily inducible and is secreted even upon glycosylation defects so it provides a simple read-

out of the glycosylation status of the cell (Esmon et al., 1987; Belcarz et al., 2002). Positively, we noticed 

the appearance of a non-glycosylated form of invertase in periplasmic extracts of rrp6Δ cells after 

staining the gel for invertase activity (Fig. 4D). This form was also present in periplasmic extracts of 

other RNA exosome mutants whose cell wall is destabilized: rrp47Δ, air1Δair2Δ and dis3 exo
-
, and was 

mostly absent from periplasmic extracts of wild type and dis3 endo
-
 cells (Fig. S5). Since protein 

mannosylation is essential for cell viability and its impairment leads to cell wall defects (Janik et al., 

2012), this analysis opened the possibility that a general defect in protein glycosylation may be the cause 

of cell wall instability and therefore temperature sensitivity of RNA exosome mutant cells.  

 Quantification of PSA1, DPM1 and ALG7 mRNAs by RT-qPCR showed that their levels are 

lower in rrp6Δ, air1Δair2Δ and dis3 exo
-
 cells than in corresponding wild type and dis3 endo

- 
cells at high 

temperature (3 h at 37°C) (Fig. 5A), in line with their downregulation observed with rrp6Δ cells as 

compared to wild type cells upon 45 min of heat shock at 42°C (Figs. 4A-B). For some of these genes, 

downregulation in certain RNA exosome mutant cells in comparison to wild type cells could be observed 

already at 30°C (Fig. 5A), which could explain why glycosylation defects can be detected already at this 

temperature (Figs. 4D and S5), even though the effect is not strong enough to cause a detectable 

phenotype. Out of these three genes, PSA1 acts most upstream in the protein glycosylation pathway, as it 

encodes the enzyme GDP-mannose pyrophosphorylase, which synthesizes the activated form of mannose 

that is incorporated into N- and O-linked glycoproteins (Hashimoto et al., 1997). Psa1 is essential, but 

partial loss of function of this enzyme or its downregulation result in phenotypes such as sensitivity to 

hypoosmolarity, cell leakage and cell separation defects (Zhang et al., 1999; Tomlin et al., 2000; Warit et 

al., 2000), that are reminiscent of those noticed with the rrp6Δ mutant at 37°C. In order to explore 

whether the decrease in PSA1 mRNA level is reflected by a decrease in Psa1 protein level in rrp6Δ 

mutant, we C-terminally tagged Psa1 with a Myc tag at its genomic locus and quantified the protein by 

Western blotting. Psa1 protein level corresponded well with mRNA level and confirmed a decrease in 

Psa1 level in rrp6Δ cells after incubation at 37°C (Fig. 5B). Therefore, low expression level of the 

essential Psa1 enzyme, or a more general and additive defect in protein glycosylation, could be the reason 

for lethality of rrp6Δ and other RNA exosome mutant cells at 37°C. To test this hypothesis, we 

overexpressed Psa1 in these cells from a 2μ plasmid under regulation of its o n promoter. Interestingly, 

overexpression of Psa1 restored viability of rrp6Δ, rrp47Δ and air1Δair2Δ mutants at 37°C to a similar 

degree as osmotic stabilization (Fig. 5C), confirming that protein glycosylation was limiting for growth of 

these cells at 37°C. Overexpression of PSA1 also partially suppressed the temperature sensitivity of dis3 

exo
-
 cells (Fig. 5C), while in this case the incomplete suppression could be due to the necessity to stably 

replicate two plasmids (centromeric plasmid carrying the DIS3-D551N allele and the 2μ plasmid carrying 

the PSA1 gene) in order to survive. Additionally, overexpression of Psa1 completely suppressed 

aberrancies in the cell morphology of rrp6Δ cells, such as the enlargement of cells and the defect in cell 

separation (Fig. 5D). Taken together, these results demonstrate a role for the RNA exosome in enabling 

proper protein mannosylation that is needed to preserve cell viability upon temperature-induced stress. 
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 The Rrp6-containing RNA exosome is responsible for degradation of a class of non-coding RNA 

transcripts termed CUTs (Cryptic Unstable Transcripts) and inactivation of Rrp6 therefore results in 

increased CUTs accumulation (Xu et al., 2009). Intriguingly, CUT488 is transcribed in the sense direction 

through the PSA1 gene promoter and the 3' end of this transcript overlaps with the PSA1 transcription 

start site (Fig. 6A). Quantification of CUT488 by RT-qPCR showed its stabilization in rrp6Δ and dis3 

exo
-
 cells compared to wild type cells and revealed an additional increase in its level at 37°C (Fig. 6B). 

Since promoter sense transcripts have previously been shown to have gene regulatory roles in yeast 

(Hainer et al., 2011; Van Werven et al., 2012; Yu et al., 2016), this represents a possible mechanism for 

PSA1 downregulation in rrp6Δ and dis3 exo
-
 cells. We also found that recruitment of RNA Polymerase II 

to the PSA1 gene promoter was not significantly changed in these mutant cells compared to wild type 

cells at physiological temperature (Fig. S6). However, at high temperature the occupancy of RNA 

Polymerase II at the PSA1 gene promoter was drastically decreased in rrp6Δ and dis3 exo
-
 mutants as 

compared to wild type cells or the Rrp6-Y361A catalytic mutant cells (Fig. 6C). This was not due to a 

general effect on gene transcription in these mutant cells at high temperature, as this effect was not 

present when probing for RNA Polymerase II occupancy at the promoter of the TAF10 gene (Fig. 6D), 

which is constitutively expressed and does not show any non-coding transcription at its locus. This is 

conceivably in line with a regulatory mechanism in which accumulation of the normally unstable non-

coding RNAs in rrp6Δ and dis3 exo
-
 cells out-titrates the NNS termination system, thereby promoting 

read-through of CUT488 into the PSA1 promoter region, which was recently shown to be a transcriptome-

wide phenomenon (Moreau et al., 2019; Villa et al., 2020). Read-through of CUT488 could limit 

transcription factor and/or RNA Polymerase II recruitment to the PSA1 promoter region and negatively 

influence transcription of PSA1 gene. We also found that the gene loci of the two other downregulated 

glycosylation-related genes, DPM1 and ALG7, show transcription of non-coding antisense transcripts at 

their genomic loci, which are stabilized in rrp6Δ cells at high temperature (Fig. S7). The antisense 

transcript at the DPM1 locus was previously mapped as CUT923, while the antisense transcript at the 

ALG7 locus was not mapped but can be seen upon inspection of whole-transcriptome tiling array datasets 

(Xu et al., 2009). Taken together, a possible mechanism for dysregulation of glycosylation-related genes 

in RNA exosome mutants involves a temperature-dependent increase in accumulation of non-coding 

transcripts transcribed from their genomic loci. 

 

Discussion  

In this work we demonstrate that the activity of RNA exosome is necessary for maintaining cell wall 

stability in yeast Saccharomyces cerevisiae. RNA exosome mutants undergo osmoremedial cell lysis and 

show numerous cell wall-related phenotypes which are exacerbated at high temperature. Importantly, this 

explains that aberrancies in cell wall structure are the reason for temperature sensitivity of these mutants. 

The essential RNA exosome catalytic subunit Dis3 provides exoribonuclease catalytic activity, while the 

second catalytic subunit Rrp6 has a non-catalytic role in this process. Besides RNA exosome catalytic 

subunits, exosome cofactors Rrp47 and Air1/2 are also involved. We show a role for these proteins in 

maintaining cellular integrity upon heat stress, but also upon treatment with cell wall stressors at 

physiological temperature, clearly showing that their role is not specific to temperature but to conditions 

of cell wall stress. Importantly, we provide mechanistic insight into cell wall instability of RNA exosome 

mutants, as we highlight differential expression of protein glycosylation genes as the factor that disrupts 

their cell wall integrity. Specifically, downregulation of genes encoding proteins that act in the early steps 

of the protein mannosylation pathway (PSA1, DPM1 and ALG7) in RNA exosome mutant cells compared 

to wild type cells leads to aberrant morphology and temperature sensitivity of these mutants. In addition, 

artificially aiding protein glycosylation through overexpression of Psa1 suppresses their temperature-

sensitive phenotypes, which were previously shown to be due to cell wall instability. 
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 Our results partially contrast with a study that was published during preparation of this 

manuscript, which highlighted the role of RNA exosome catalytic subunit Rrp6 in promoting cell survival 

during heat stress, but argued against involvement of other RNA exosome subunits and cofactors (Wang 

et al., 2020). They proposed that Rrp6 alone has a highly specialized ''moonlighting'' function in this 

process, that is independent of all of its currently known interactors, including its stabilization partner 

Rrp47 (Wang et al., 2020). Our results clearly show the importance of the essential RNA exosome 

catalytic subunit Dis3 in this process, as the catalytically inactive dis3 exo
-
 (dis3-D551N) mutant displays 

practically identical cell wall aberrancies as rrp6Δ mutant (Figs. 1-3), which is also the case for mutants 

in exosome cofactors Rrp47 and Air1/2 (discussed below). This challenges the idea of a highly 

specialized Rrp6 function in maintaining cell wall integrity and is important to delineate, especially as 

exosome-independent roles of Rrp6 are a highly debated topic in the field (Callahan and Butler, 2008). 

Furthermore, potential role of Rrp6 in the CWI pathway was inferred from the additive cell wall 

instability phenotype of the double mutant rrp6Δ mpk1Δ, in which a major CWI signaling component was 

inactivated (Wang et al., 2020). Additivity is suggestive of parallel and redundant functions, and this 

interpretation was previously applied to the equally severe phenotype of the rnt1Δ mpk1Δ mutant, which 

harbors deletion of the dsRNA-specific ribonuclease Rnt1 (Catala et al., 2012). It is, however, clear that 

Rrp6 has a non-catalytic role in maintaining cellular integrity upon heat stress, as previously implied by 

the fact that all tested Rrp6 catalytic mutants grow normally at high temperature (Phillips and Butler, 

2003). The most straightforward explanation, that fits well with our results, could lie in the well-

documented role of Rrp6 in allosterically stimulating the activity of RNA exosome through its C-terminal 

domain, a process which is independent of Rrp6 catalytic activity (Makino et al., 2015; Wasmuth and 

Lima, 2017). In line with this, deletion of only the Rrp6 EAR (exosome-interacting region) domain leads 

to temperature sensitivity, which pinpoints it as the region of Rrp6 that is necessary for stress resistance 

(Wasmuth and Lima, 2017). 

 Besides mutants in the RNA exosome catalytic subunits, we show that for mutants in RNA 

exosome cofactors temperature sensitivity is also associated with cell wall instability (Figs. 2D-E and S3). 

Inactivation of RRP47 gene, encoding the obligate stabilization partner of Rrp6, results in osmoremedial 

temperature sensitivity and hypersensitivity to cell wall stressors. Since Rrp47 is critical for Rrp6 protein 

stability (Feigenbutz et al., 2013; Stuparevic et al., 2013), this result confirms the necessity of Rrp6 

protein presence for maintaining cellular integrity upon heat stress. Also, simultaneous inactivation of two 

homologous genes that encode the TRAMP complex subunits Air1 and Air2 results in cell wall-related 

phenotypes, in contrast to their individual inactivation. Since Air1 and Air2 function as RNA-binding 

subunits in different isoforms of the TRAMP complex, this indicates that these isoforms have fully 

redundant roles in ensuring cellular integrity, which is interesting considering that these isoforms were 

previously shown to have some non-overlapping roles based on differential substrate specificity (Schmidt 

et al., 2012; Stuparevic et al., 2013), somehow similar to what has been recently shown for Trf4 and Trf5 

(Delan-Forino et al., 2020). Finally, cell wall instability is an elegant explanation for the observation that 

rrp6Δ phenotype, i.e. its temperature sensitivity, is most pronounced in W303 and its derived genetic 

backgrounds, as wild type of this strain was shown to have an already more destabilized cell wall 

compared to wild types of other backgrounds (Trachtulcová et al., 2003; Schroeder and Ikui, 2019). 

 Yeast cell wall is the outermost part of the cell, which determines its shape and provides physical 

and osmotic protection. It is a polysaccharide network built out of glucan and chitin to which cell wall 

proteins are bound (Klis et al., 2002). Cell wall proteins function as structural components of the cell wall 

or enzymes that modify cell wall composition and are often heavily mannosylated through N- or O-linked 

glycosylation. This modification is vital for yeast, as well as for humans, because it ensures proper protein 

activity, stability and localization (Lehle et al., 2006). The essential cytoplasmic enzyme GDP-mannose 

pyrophosphorylase Psa1 catalyzes the production of GDP-mannose, which is the activated form of 

mannose that gets incorporated into glycoproteins (Hashimoto et al., 1997). Its partial loss of function or 

downregulation leads to multiple strong cell wall-related phenotypes such as sorbitol-dependence, cell 
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rupture and cell separation defects (Zhang et al., 1999; Tomlin et al., 2000; Warit et al., 2000). 

Importantly, we found that transcription of PSA1 gene is downregulated in RNA exosome mutant cells at 

high temperature, leading to a lower Psa1 protein level and potentially resulting in psa1 phenotypes (Fig. 

4A and 5A-B). This is strongly supported by rescuing the temperature-sensitive growth and aberrant 

morphology of these mutants through overexpression of Psa1 (Figs. 5C-D). Because of the previously 

mentioned strong effects of PSA1 downregulation, it is plausible that about a 50% downregulation of 

Psa1 protein level observed in rrp6Δ compared to wild type cells at high temperature can push the 

protein's enzymatic activity below a physiologically critical level. However, we cannot exclude the 

possibility that dysregulating expression of genes encoding other proteins involved in the early steps of 

the glycosylation pathway, such as DPM1 and ALG7 (Figs. 4A-B and 5A) plays a significant contribution 

in cell wall phenotypes of RNA exosome mutants and that Psa1 overexpression rescues them by 

generating more precursor supply (Janik et al., 2003). We also hypothesize that a possible reason for 

transcriptional downregulation of PSA1 gene in RNA exosome mutant cells compared to wild type cells is 

the temperature-induced increased accumulation of CUT488, a non-coding transcript transcribed through 

the PSA1 gene promoter, which is accompanied by a decrease in RNA Polymerase II recruitment at this 

promoter (Fig. 6). At the PHO84 gene, which is regarded as a model gene for transcriptional regulation 

through non-coding RNA transcription, loss of Rrp6 was shown to lead to higher production of the 

antisense transcript due to the decreased recruitment of the NNS complex which normally terminates its 

transcription (Castelnuovo et al., 2013). Recent transcriptome studies from ours and D. Libri laboratory 

showed that out-titration of the NNS complex, accomplished either by perturbation of mRNP biogenesis 

or inactivation of the RNA exosome, leads to termination defects at ncRNA-producing target (Moreau et 

al., 2019; Villa et al., 2020). In line with this mechanism, out-titration of the NNS complex in rrp6Δ and 

dis3 exo
-
 cells, because of the more prominent accumulation of ncRNAs in these mutant cells at high 

temperature, could lead to transcriptional read-through of CUT488 through the PSA1 gene promoter and 

negatively influence PSA1 gene transcription. Notable examples of loci regulated by non-coding promoter 

transcription in yeast include SER3, HO and IME1 genes, which are all negatively regulated by 

transcription of a sense transcript at their promoter regions (Winston et al., 2005; Hainer et al., 2011; Van 

Werven et al., 2012; Yu et al., 2016). While these are non-essential genes expressed specifically under a 

certain physiological or life/cell cycle condition, PSA1 is essential and constitutively expressed. However, 

it is strongly cell cycle regulated, peaking at START phase of the cell cycle (Benton et al., 1996), so the 

possibility of a cell cycle-based regulation of its transcription through non-coding RNA transcription 

could be an exciting subject for future investigation. Of course, such broad dysregulation of cell wall 

stability in rrp6Δ cells is most probably due to effects on expression of multiple cell wall-related genes 

and could involve regulatory roles of non-coding transcription  Novačić et al., 2020), as well as the CWI 

pathway (Wang et al., 2020). In line with this, we also noticed increased accumulation of non-coding 

antisense transcripts that are transcribed at DPM1 and ALG7 gene loci in rrp6Δ cells at high temperature 

(Fig. S7). 

 Another interesting point is that the increase in accumulation of CUT488 at high temperature is 

independent of Rrp6 catalytic activity but is dependent on the presence of Rrp6 protein and the 

exoribonuclease activity of Dis3 (Fig. 6B). This implies that this CUT is degraded primarily by Dis3 at 

high temperature and that Rrp6 provides a non-catalytic function in this process, probably that of an 

equivalent of an RNA exosome cofactor (as discussed in the second paragraph of the Discussion). 

Allosteric stimulation of Dis3 activity by Rrp6 probably happens by direct RNA binding, as well as the 

widening of the RNA exosome channel through which RNAs need to be threaded to reach the active site 

of Dis3 (Kilchert et al., 2016). Transcripts termed as CUTs were originally identified as ones that 

accumulate in rrp6Δ deletion mutant (Xu et al., 2009) and comparison of the transcriptome of this mutant 

with that of Dis3 catalytic mutants revealed some unique and some specific roles of the two catalytic 

subunits (Gudipati et al., 2012), however the transcriptome of the Rrp6 catalytic mutant was studied only 

with S. pombe cells (Mukherjee et al., 2016). The study with S. pombe revealed that some RNA targets of 

Rrp6 depended mainly on its structural role, such as RNAs of early meiotic and iron metabolism genes 
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(Mukherjee et al., 2016). Non-catalytic roles of Rrp6 have not yet been explored transcriptome-wide in S. 

cerevisiae but could be an interesting subject to study, especially with relation to unique cellular states, 

such as meiosis or conditions of heat shock. 

 The cell wall structure is absent from mammalian cells, however protein glycosylation is 

conserved and essential for viability from yeast to human. The importance of protein glycosylation is 

underscored by the CDG (congenital disorders of glycosylation) syndrome, which encompasses multi-

systemic diseases in children that result from defects in various steps along glycan modification pathways 

(Chang et al., 2018). While final sugar composition and branching differs between yeast and human, the 

earliest steps in the glycosylation pathway, precursor synthesis and initial N-glycosylation reactions, are 

highly conserved (Lehle et al., 2006). Our work in yeast clearly shows that one of the molecular 

consequences of RNA exosome inactivation is impairment of protein glycosylation at these early steps. 

Given the high conservation of both the RNA exosome complex and the glycosylation pathway, as well 

as the association of both with human diseases, this study opens the possibility for future investigation 

with human cells. 

  

Experimental procedures 

Strains, media, plasmids and strain construction 

Yeast strains and primers used in this study are listed in Supplementary Tables S1 and S2, respectively. 

Experiments were performed with the BMA41 (W303-derived) strain background, unless noted 

otherwise. Yeast strains were grown in YPD (containing per liter 20 g peptone, 10 g yeast extract, 20 g 

glucose, 0.1 g adenine) or YNB medium (containing per liter 6.7 g Yeast Nitrogen Base without Amino 

Acids, 2 g drop-out mix as in (Musladin et al., 2014), 20 g glucose) supplemented with the required 

amino acids and uracil (80 mg/l each). Plasmid YEp352-PSA1 is a high copy vector which carries the 

PSA1/MPG1 gene (Janik et al., 2003). 

Psa1 was tagged at its genomic locus with a C-terminal 9xMyc tag. The tagging cassette was PCR 

amplified from plasmid pYM20 (Janke et al., 2004) using the primer pair PSA1Ctag_fwd/ PSA1Ctag_rev 

and transformed into BMA41 wild type and rrp6Δ strain by a standard lithium acetate procedure. 

Transformants were selected on Hygromycin B (0.3 mg/ml, Roche) plates and the presence of the tag was 

confirmed by Western blotting. RRP6 gene was deleted in BY4741 strain using a disruption cassette 

generated by PCR with primers RRP6-Kan1 and RRP6-Kan2 (Mosrin-Huaman et al., 2009). 

Phenotypic assays 

Sensitivities to Congo Red, Calcofluor White, Caffeine and SDS were tested by spotting assays. 

Exponential phase cultures were adjusted to an OD600 of 1 and four 10-fold serial dilutions of that sample 

were spotted onto plates supplemented with indicated amounts of each compound. Plates were incubated 

at 30°C or 37°C for 3 days and photographed using UVIDOC HD6 camera (Uvitec, Cambridge). 

Alkaline phosphatase activity assays 

Activity of alkaline phosphatase released into the medium was measured as in (Molina et al., 1998) with 

slight modifications. 500 μl of supernatant from liquid culture  as mixed  ith equal volume of 20 mM p-

nitrophenylphosphate in Tris-HCl buffer pH 8.8 and assayed for alkaline phosphatase activity. The 

reaction  as performed at 30°C, stopped by addition of 500 μl of 1 M NaOH and absorbance of liberated 

p-nitrophenol was measured at 420 nm using Helios Gamma spectrophotometer (Thermo Fisher). 

Enzyme activity was normalized to OD600 of the culture and the assay time in minutes and was expressed 
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in arbitrary units: A420*10000/[OD600*(t/min)*(Vsample/Vtotal)]. Intracellular activity of alkaline 

phosphatase was measured exactly as described in (Münsterkötter et al., 2000). 

Fluorescence microscopy 

Cells were stained with Calcofluor White stain (Sigma) and observed with Olympus BX51 fluorescent 

microscope. The fluorescence from Calcofluor White was filtered with a DAPI filter. 

RNA-seq data processing and computational analysis 

Raw data from (Wang et al., 2020) were downloaded via GEO (accession number GSE140504). 

Alignment and reads abundance estimation were conducted as described in the original publication. In 

short, Hisat2 was used to align reads against Saccharomyces cerevisiae reference genome (taken from 

SGD, release R64-1-1), read abundance for mRNAs were estimated with HTseq-count (with the option –s 

reverse). Differential analysis between wt and rrp6Δ strain was conducted under the R environment using 

the DESeq2 package. Resulting log2FC were used to construct heatmaps using ggplot2 and 

complexHeatmap packages. 

Analysis of the degree of glycosylation of periplasmic invertase 

The secretory invertase was analyzed as described in (Hashimoto et al., 1997). Briefly, invertase 

expression was induced by incubating mid-logarithmic phase cells in medium which contains sucrose 

instead of glucose for 2 h at 30°C or 37°C. Cells were treated with zymolyase and the periplasmic fraction 

containing invertase was separated from spheroplasts by centrifugation. The periplasmic fraction was 

subjected to 7.5% SDS-PAGE, gel was bathed in 0.1 M sodium acetate, pH 5.1, containing 0.1 M sucrose 

at 37°C for 1 h to carry out the enzymatic reaction of invertase and then washed with water, placed in 

0.1% 2,3,5- triphenyltetrazolium chloride, 0.5 M NaOH, and boiled to detect red bands. After staining, 

gel was washed with 7.5% acetic acid. 

RNA isolation and reverse-transcription quantitative PCR (RT-qPCR) analysis 

Total RNA was extracted by the hot phenol method (Schmitt et al., 1990) and column-purified with 

DNase treatment using NucleoSpin RNA kit (Macherey Nagel) according to manufacturer instructions. 

RNA  as quantified  ith a Nanodrop spectrophotometer and 1 μg  as used in a strand-specific reverse 

transcription reaction with ProtoScript First Strand cDNA Synthesis Kit (New England Biolabs) with 0.1 

μM gene-specific oligonucleotides and supplemented with Actinomycin D (Sigma) to final concentration 

5 μg/ml to ensure strand-specificity. 1 μl of 2-fold diluted cDNA was then amplified in Roche 

LightCycler 480 with the Maxima SYBR Green qPCR Master Mix detection kit from Thermo Scientific 

as recommended by the supplier. The qPCR data sets  ere analy ed using the ΔΔCt method, and the 

results were normalized to PMA1 mRNA RT-qPCR amplification, which was used as internal control. 

The level of a certain transcript for each sample was expressed relative to its abundance in wild type cells 

at 30°C, which was set as 1. Amplifications were done in duplicate for each sample, and three 

independent RNA extractions were analyzed. 

Western blot analysis 

Total proteins were obtained as described (Kushnirov, 2000), resolved on SDS 10%-polyacrylamide 

electrophoresis gels, and analyzed by Western blotting according to standard procedures. Myc-tagged 

Psa1 was probed with anti-c-Myc (9E10, Santa Cruz Biotechnology) at 1:1000 dilution and Pgk1 with 

anti-PGK1 (22C5D8, Abcam) at 1:5000 dilution. In both cases mouse IgG kappa binding protein HRP 

(Santa Cruz Biotechnology) at 1:50000 dilution was used to detect the primary antibody. Blots were 

developed using Biorad Clarity Western ECL substrates and visualized with C-DiGit Blot Scanner (LI-
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COR Biosciences). Band intensity was quantified with GelAnalyzer 19.1 software and the results were 

normalized to Pgk1. The level of protein was expressed relative to its abundance in wild type cells at 

30°C, which was set as 1. Three independent protein extractions were analyzed for each sample. 

Chromatin immunoprecipitation (ChIP) 

ChIP was performed similarly as described in (Stuparevic et al., 2013). Forty milliliters of cells were 

fixed with 1% formaldehyde for 20 min. After glycine addition to stop the reaction, the cells were washed 

and lysed with glass beads to isolate chromatin. The cross-linked chromatin was sheared by sonication 

with Vibra-Cell sonicator to reduce average fragment size to approximately 500 bp. Chromatin fractions 

of 400 μl  ere taken for each immunoprecipitation reaction and incubated  ith 4 μl of anti-RNA 

Polymerase II antibodies (8WG16, sc-56767, Santa Cruz Biotechnology) at 4°C overnight. After 

incubation, 40 μl of Protein G PLUS-Agarose beads (sc-2002, Santa Cruz Biotechnology) were added and 

incubated for 2 h at 4 °C. The beads were then washed extensively, and the chromatin was eluted. Eluted 

supernatants (output) and the input controls were hydrolyzed with Pronase (0.8 mg/ml final concentration, 

Sigma) for 2 h at 42°C, followed by 7 h incubation at 65°C to reverse cross-linked DNA complexes. 

DNA was extracted using the Macherey Nagel Nucleospin Gel & PCR Cleanup Kit. The 

immunoprecipitated DNAs (output) were quantified by qPCR in Roche LightCycler 480 with the Maxima 

SYBR Green qPCR Master Mix detection kit from Thermo Scientific as recommended by the supplier. 

Amplifications were done in triplicate for each sample. Immunoprecipitated samples (output) were 

normalized to input.
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Figure 1. Cells lacking Rrp6 display phenotypes indicative of cell wall instability. Strains are BMA41 

wild type (wt) and isogenic mutants, unless noted otherwise. 10-fold serial dilutions of cells were spotted 

on plates and were photographed after 3 days at indicated temperature. (A) Osmotically supporting 

medium with 1 M sorbitol rescues growth of rrp6Δ cells at high temperature. (B) Osmotic support rescues 

growth of rrp6Δ mutants of other genetic backgrounds (haploid BY4741 and diploid JHY222) at high 

temperature. (C) rrp6Δ cells burst at high temperature, unless osmotic support is provided. Strains were 

grown for 3 days at 37°C and activity of alkaline phosphatase was measured in growth medium. 

Measurements were performed in duplicate, and reported values represent the means and standard 

deviations of three independent experiments (n=3). Indicated differences show the significant differences 

using an unpaired student T-test. Three (***) and four (****) asterisks denote a p-value lower or equal to 

0.001 and 0.0001 respectively. (D) Aberrant cellular morphology and cell separation defect of rrp6Δ cells 

at high temperature, visualized by fluorescent microscopy after Calcofluor White staining.  
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Figure 2. Inactivation of Dis3 exonuclease activity and certain exosome cofactors leads to cell wall 

instability. Strains are W303-derived with genomic copy of DIS3 gene deleted but bearing a centromeric 

plasmid that carries the wild type copy of DIS3 gene (DIS3) or its alleles with abolished endonuclease 

(dis3 endo
-
, D171N) or exonuclease (dis3 exo

-
, D551N) activity. 10-fold serial dilutions of cells were 

spotted on plates and were photographed after 3 days at indicated temperature. (A) Osmotically 

supporting medium with 1 M sorbitol rescues growth of dis3 exo
-
 at high temperature. (B) dis3 exo

-
 cells 

burst at high temperature, unless osmotic support is provided. Strains were grown for 3 days at 37°C and 

activity of alkaline phosphatase was measured in growth medium. Measurements were performed in 

duplicate, and reported values represent the means and standard deviations of three independent 

experiments (n=3). Indicated differences show the significant differences using an unpaired student T-

test. Two (**) asterisks denote a p-value lower or equal to 0.01. (C) Aberrant cellular morphology and 

cell separation defect of dis3 exo
-
 cells at high temperature, visualized by fluorescent microscopy after 

Calcofluor White staining. (D) Strains are BMA41 wild type (wt) and isogenic mutants. Mutants in 

exosome cofactors rrp47Δ and air1Δair2Δ also show osmoremedial temperature sensitivity. (E) Strains 

were grown for 3 days at 37°C and activity of alkaline phosphatase was measured in growth medium. 

Measurements were performed in duplicate, and reported values represent the means and standard 

deviations of three independent experiments (n=3). Indicated differences show the significant differences 

using an unpaired student T-test. Four (****) asterisks denote a p-value lower or equal to 0.0001. 
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Figure 3. Cells lacking Rrp6 protein or Dis3 exoribonuclease activity are hypersensitive to cell wall 

stressors. Strains are described in Figures 1 and 2. 10-fold serial dilutions of cells were spotted on plates 

and  ere photographed after 3 days at 30°C. Concentrations of compounds used: Congo Red 10 μg/ml, 

Calcofluor White 20 μg/ml, Caffeine 6 mM, S S 0,0075%. 
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Figure 4. Protein glycosylation is dysregulated in cells lacking Rrp6. (A) RNA-seq heat map showing 

the expression difference of mRNAs encoding genes important for precursor synthesis of cell wall 

components, visualized as rrp6Δ/wt mRNA ratio on a log2 scale. Data is from (Wang et al., 2020) (B) 

Same as for (A), but for N- and O-glycosylation gene category. (C) Scheme of the genes involved in 

synthesis of sugar nucleotides, dolichol and dolichol phosphate sugars, that act as cell wall precursors 

(above), and in synthesis of the oligosaccharide precursor for N-glycosylation (below). Genes that are 

downregulated in rrp6Δ cells upon 45 min at 42°C are marked bold. (D) Activity staining of invertase 

from periplasmic extracts. Extracts of rrp6Δ cells contain an additional non-glycosylated form of 

periplasmic invertase, revealing that protein glycosylation is affected in this mutant. 
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Figure 5. Overexpression of PSA1 rescues temperature sensitivity of RNA exosome mutants. The 

strains are described in Figures 1 and 2. (A) Levels of PSA1, DPM1 and ALG7 mRNAs are lower in 

rrp6Δ, air1Δair2Δ and dis3 exo
-
 cells than in the corresponding wild type cells at high temperature. RT-

qPCR values are normalized to PMA1 mRNA and expressed relative to transcript abundance in wild type 

cells at 30°C, which is set as 1. Reported values represent the means and standard deviations of three 

independent experiments (n=3). Indicated differences show the significant differences using an unpaired 

student T-test. One (*), two (**), three (***) and four (****) asterisks denote a p-value lower or equal to 

0.05, 0.01, 0.001 and 0.0001, respectively. (B) Psa1 protein level is lower in rrp6Δ than in wild type cells 

at high temperature. Myc-tagged Psa1 was quantified by Western blotting. Values are normalized to Pgk1 

and expressed relative to protein abundance in wild type cells at 30°C, which is set as 1. Reported values 

represent the means and standard deviations of three independent experiments (n=3). Indicated 

differences show the significant differences using an unpaired student T-test. One (*) asterisk denotes a p-

value lower or equal to 0.05. (C) Overexpression of Psa1 from a multi-copy plasmid (YEp352-PSA1) 

fully rescues temperature sensitivity of rrp6Δ, rrp47Δ and air1Δair2Δ cells and partially of dis3 exo
-
 cells. 

10-fold serial dilutions of cells were spotted on plates and were photographed after 3 days at indicated 

temperature. Control cells were transformed with the empty vector (YEp352). (D) Overexpression of 

Psa1 from a multi-copy plasmid (YEp352-PSA1) rescues aberrant phenotype of rrp6Δ cells at high 

temperature. 
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Figure 6. Non-coding transcript CUT488 accumulates in cells lacking Rrp6 or Dis3 exoribonuclease 

activity at high temperature. Strains are described in Figures 1 and 2. (A) Scheme of PSA1 locus, 

showing sense transcription of a non-coding transcript CUT488 at its promoter region. Transcription start 

site (TSS) of PSA1 is located at position -149 relative to the start of the ORF. The region used for ChIP is 

marked as a dashed black line. (B) Level of CUT488 RNA is higher in rrp6Δ and dis3 exo
-
 cells than in 

corresponding wild type and Rrp6-Y361A or dis3 endo
-
 cells, and that difference is even greater at high 

temperature. RT-qPCR values are normalized to PMA1 mRNA and expressed relative to transcript 

abundance in wild type cells at 30°C, which is set as 1. Reported values represent the means and standard 

deviations of three independent experiments (n=3). Indicated differences show the significant differences 

using an unpaired student T-test. One (*), three (***) and four (****) asterisks denote a p-value lower or 

equal to 0.05, 0.001 and 0.0001, respectively. (C) Recruitment of RNA Polymerase II to PSA1 gene 

promoter is decreased in rrp6Δ and dis3 exo
-
 cells compared to wild type and Rrp6-Y361A cells at high 

temperature. Quantification was performed by ChIP of RNA polymerase II using specific antibodies 

8WG16. Immunoprecipitated samples (output) were normalized to input following quantification by 

qPCR. Reported values represent the means and range of two independent experiments (n=2). (D) The 

decrease of RNA polymerase II occupancy over the PSA1 promoter observed for rrp6Δ and dis3 exo
-
 

cells was not due to a general effect on transcription in these cells since this difference wasn't present for 

TAF10 gene promoter. Quantification was performed as in (C). 


