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Abstract 

An analytical model is presented that can successfully predict the strain hardening behaviour 

as well as the variations in twin volume fraction in polycrystalline Magnesium alloy Mg-3Al-

0.3Mn that twins profoundly during deformation. The model is composed of three basic 

elements: (i) Twin fraction prediction, based on crystal plasticity elements, (ii) a two-phase 

composite model composed of the matrix and the twins by adopting the “Iso-work” hypothesis, 

(iii) a strain hardening approach inspired from a crystal plasticity model. The experiments 

include uniaxial compression tests for two different cases at ambient temperature. The 

microstructures were characterized at various strains up to fracture using the Electron Back-

Scattered Diffraction technique in a FEG-SEM. The microstructural investigation revealed the 

formation of a lamellar structure of alternated layers of matrix and { }1012 1011 -extension 

twin domains. With progressive deformation, the twins broadened and consumed the entire 

microstructure prior to fracture. The model could accurately reproduce the experimental twin-

induced sigmoidal shaped flow curve together with the twin volume fraction evolution.   
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1. Introduction 

Hexagonal closed packed (hcp) Magnesium (Mg) alloys are considered as future materials 

for automobiles and aircraft applications (Biswas et al., 2013; Joost and Krajewski, 2017). 

However, their application potential is restricted mainly due to their limited strength and 

ductility at ambient temperature. To successfully implement Mg alloys in application, a 

comprehensive understanding of the deformation behaviour is required by means of 

consecutive experimental and modelling/simulation studies. In this aspect, the mechanisms 

underlying the plastic deformation of polycrystalline Mg alloys had been widely explored in 

recent years (Graff et al., 2007; Barnett et al., 2004; Biswas et al., 2010, 2013; Beausir et al., 

2009; Cáceres et al., 2008; Gu et al., 2013; Khan et al., 2011; Levinson et al., 2013; Lou et al., 

2007; Mu et al., 2014; Yoo, 1981). Studies on the deformation behaviour of polycrystalline Mg 

alloys frequently report deformation twins (Biswas et al., 2010, 2013; Beausir et al., 2009; Gu 

et al., 2013; Knezevic et al., 2010; Levinson et al., 2013), that include { }1012 1011 extension 

twins and { }10 11 10 12 contraction twins. As the names imply, the extension twinning mode 

accommodates tensile strain along the crystallographic c-axis, whereas the contraction 

twinning mode produces compressive strain along the same. These two twinning modes are 

associated in Mg with a shear strain of 0.1289 and 0.1377, reorienting the crystal lattice about 

the 1120  axis by ~86.3° and by ~56.2°, respectively (Ardeljan et al., 2016; Christian and 

Mahajan, 1995; Knezevic et al., 2010; Niewczas et al., 2010; Yoo, 1981). Therefore, depending 

upon the deformation conditions, the activation of twin systems plays a significant role in 

texture reorientation (Ando et al., 2014; Barnett et al., 2004; Cáceres et al., 2008; Gu et al., 

2013; Khan et al., 2011; Lou et al., 2007; Mu et al., 2014; Yoo, 1981), strain-hardening 

(Cáceres et al., 2008; Knezevic et al., 2010; Mu et al., 2014) and in most cases, it results in 

fracture (Ando et al., 2014; Fernández et al., 2011; Yoo, 1981).  

It is widely understood that the observed strain hardening behaviour helps in deciphering 

deformation mechanisms. The most conventional approach for studying the strain hardening 

effect is simple compression or tension testing. Studies on Mg alloys have illustrated the 

profuse activity of { }1012 twins during deformation at low homologous temperatures. Indeed, 

the occurrence of extension twins is often characterized by a sigmoidal shaped flow curve (Guo 
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et al., 2015; Khan et al., 2011; Mu et al., 2011, 2014; Lou et al., 2007; Barnett et al., 2004). 

The deformation twin-induced strain hardening characteristics can be attributed to:  

(i) Formation of twin-induced special boundaries within grains, known as coincidence site 

lattice (CSL) boundaries (Lay et al., 1992; Hu and Randle, 2007) that may lead to Hall-Petch 

like hardening (Proust et al., 2009; Salem et al., 2003). However, in Mg single phase alloys, 

minimal Hall-Petch hardening due to extension twins was identified (Dixit et al., 2015; Jain 

and Agnew, 2007; Knezevic et al., 2010). It was reported that the rapid growth of the twinned 

domain encompasses the entire parent grain without imposing appreciable barrier effect to slip 

(Knezevic et al., 2010). Lou et al. (2007) have witnessed that in AZ31B, transmission of 

dislocations through extension twin boundaries occurs easily, leading to negligible Hall-Petch 

type hardening effect. 

(ii) Basinski type hardening (Basinski et al., 1997) may occur as a result of transmutation of 

glissile to sessile dislocations from the parent matrix into twin domains (Clausen et al., 2008; 

Jahedi et al., 2017; Knezevic et al., 2012, 2015; Zhang and Joshi, 2012). Wang and Agnew 

(2016) presented a detailed TEM analysis of dislocation transmutation in AZ31 alloy. They 

showed that very high dislocation densities can develop near the twin phase boundaries. On 

the other hand, Zilahi (2018) measured dislocation densities by synchrotron x-ray line profile 

analysis in many grains of compressed AZ31 Mg and found higher dislocation densities in the 

extension twins. Allen et al. (2018) presented a successful hardening model based on 

dislocation transmutation between the matrix and twin phases, implemented into the VPSC 

model. 

(iii) Extension twinning in Mg and its alloys leads to abrupt crystal reorientation with respect 

to the parent grain. Stohr et al. (1972) and Obara et al. (1973) pointed out high strain-hardening 

rate associated with c-axis compression in Mg. Agnew et al. (2002) reported that significant 

stress concentration is required to activate extension twins. Concurrently, by using neutron 

diffraction experiments Agnew et al. (2003) showed that the apparent strain hardening is 

actually due to composite-like load sharing between the softer parent matrix and the harder 

extension twin oriented domains. Wang et al. (2012) demonstrated that texture strengthening 

is primarily due to the formation of extension twins leading to an increase in strain hardening 

rate in Stage-II of the flow curve. Thus, the phenomenon of textural hardening is primarily 
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attributed to extension twin-induced reorientation as suggested by several researchers (Dixit et 

al., 2015; Jain and Agnew, 2007; Jiang et al., 2007; Knezevic et al., 2010; Lou et al., 2007).  

The above aspects provide that the mechanical response of the matrix and the twin phase 

can be dissimilar due to their orientation difference. This could strongly influence the strain 

hardening response of the individual phases. Additionally, the combined strain hardening 

behaviour must be influenced by their respective volume fractions. 

It is important to provide analytical approaches that can readily predict the changes in 

strain hardening due to twinning. Five such models were presented so far (Barnett et al., 2005, 

2015; Bouaziz and Guelton, 2001; Fullman, 1953; Karaman et al., 2000). Fullman (1953) 

linked the twin lamella thickness to the twin volume fraction and then used a Taylor kind of 

equation to obtain the stress-strain relation. In their approach, the twin volume fraction cannot 

be predicted rather it had to be provided as a function of strain.  Further, Bouaziz and Guelton 

(2001) introduced an empirical relation for the twin volume fraction by considering the creation 

and annihilation of dislocations. A more complete model was proposed for TWIP steel in cyclic 

loading by Karaman et al. (2000), where both isotropic and kinematic hardening were 

considered to describe the high Bauschinger effect. Barnett et al. (2005) proposed a model in 

which a parameter (i.e. twin fraction) was introduced to describe the difference in the stress-

strain response for twinning and non-twinning-dominated deformation conditions. In their 

work, Mg single crystal was tested under tension where no twinning occurred and in 

compression where only twins dominated. A good agreement was obtained with the 

experiments. For polycrystalline Mg, they assumed a sigmoidal stress-strain response during 

the evolution of the twin volume fraction and achieved satisfactory agreements with 

experiments for both tension and compression. In another approach presented by Barnett et al. 

(2015), the appearance of avalanche-type interaction twins that nucleate from grain boundaries 

was considered. The effect of grain size on the twin volume fraction and on the yield strength 

could be modelled by their approach in deformed Mg alloys. Moreover, the general shape of 

the strain hardening curve up to ~0.15 compressive strain was reproduced. 

All the previous models were either developed for TWIP steel for larger strain by 

modelling only one feature (Bouaziz and Guelton, 2001; Karaman et al., 2000) or were 

restricted to very small strains (Barnett et al., 2005) for Mg. The most complete model is by 
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Barnett et al. (2015), however, it still needs the twin volume fraction as an input for the 

polycrystal case.   

It is well ascertained from the crystallographic point of view that there exist six extension 

twins, i.e. three paired extension twin variants, which may be activated during deformation of 

HCP polycrystals. The paired extension twins are at ~7.4° misorientation to each other (Nave 

and Barnett, 2004; Mu et al., 2014) and their occurrence within the same grain tends to consume 

the entire parent matrix (Mu et al., 2011). Molodov et al. (2014, 2016), Capolungo et al. (2009), 

and Beyerlein and Tomé (2010) showed the frequent existence of paired extension twin 

variants and also reported that extension twins with higher Schmid factor are most likely to be 

dominant by occupying a significant portion of the parent matrix or the whole matrix. At the 

same time, low Schmid factor extension twins represent only a negligible parent grain volume.  

In the present work, a new analytical approach is established to address several features 

relevant to the twin induced deformation behaviour of polycrystalline metallic materials. This 

includes: (i) strain hardening behaviour, (ii) evolution of twin volume fraction and (iii) stress 

and strain partitioning between the matrix and the twins up to strain to failure. The model uses 

a simplified crystal plasticity hardening function (Kalidindi et al., 1992; Zhou et al., 1993) in 

which strain partitioning between the twin and matrix domains was incorporated with the help 

of the uniform energy composite approach (Bouaziz and Buessler (2002, 2004)). The novelty 

of this work is to accurately predict for the first time both the sigmoidal type flow curve and 

the twin volume fraction. The approach was validated by reproducing the experimental flow 

curves and the variations in twin volume fraction during quasi-static compression of the Mg-

3Al-0.3Mn alloy measured in two sample orientations. Finally, the approach was also validated 

for the no twinning condition. 

2. Modelling principles 

2.1. Composite approach 

The mechanics of the twinning activity in the present approach is based on a simple two-

phase composite model in which one phase is the parent grain (also referred to as matrix) and 

the other is the twinned portion. The twinned part may contain multi-variant twins and is 

considered as a single phase. The present composite model uses the uniform plastic power 

approach, originally proposed by Bouaziz and Buessler (2002, 2004). Later, this approach was 
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successfully implemented in the works of Montheillet and Damamme (2005) and Toth et al. 

(2009). It is also called as the Iso-W model (Toth et al., 2009), and assumes that the plastic 

power is uniformly distributed within the composite, thus:   

m m t t
εσ ε σ ε σ= =& & & .        (1) 

The left-hand side of Eq. (1) is the macroscopic plastic power per unit volume, where σ  is the 

macroscopic flow stress in compression and ε& is the macroscopic compressive strain rate. The 

product is equal for both phases. The subscripts m and t stand for the matrix and the twin 

phases, respectively. 
m

ε&  and 
t

ε&  are the strain rates, 
m

σ  and 
t

σ  are the flow stresses. 

Concerning the strains in the individual phases, they produce the macroscopic strain according 

to the rule of mixture: 

m m t t
f fε ε ε= +  .        (2)  

The time derivative of this equation is expressed as follows: 

m m m m t t t tf f f fε ε ε ε ε= + + +& && & &  .                                                 (3) 

Here, 
m

f  and 
t

f  are the volume fractions, which satisfy the following equation:    

1
m t

f f+ = .       (4) 

2.2. Kinetics of the twinning activity 

In order to establish the kinetics of the twinning activity for this analytical approach, some 

elements were considered from crystal plasticity. In crystal plasticity, an increment of the twin 

volume fraction is calculated from the twinning shear increment, 
t

γ∆ , during a macroscopic 

strain increment, ε∆ . The twinning systems are considered as pseudo-slips in a crystal plasticity 

code. From the twinning shear, the rate of growth of the twin can be determined using the 

following expression: 

t
t m

o

V V
γ
γ

=
&

& ,        (5) 
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where 
t

V  and 
m

V  are the volumes of the twin and matrix phases, respectively, and γ
o

 is the 

twinning shear. The total slip rate ( )rγ&  within a grain is produced by slip ( )sγ&  and twinning 

pseudo-slip ( )tγ& : 

r s t
γ γ γ= +& & &  .        (6) 

During the early stage of compression, the matrix does not change its crystallographic 

orientation significantly. As a result, the relative activities of the slip systems remain nearly 

constant within the mother grains. Henceforth, the total shear strain rate within the matrix can 

be expressed as: 

r t
Aγ γ=& & .       (7) 

Here A is a parameter (A > 1) which expresses the ratio of the total slip rate to the pseudo twin-

slip within the mother grains. At the same time, the total slip rate in the matrix can be related 

to the macroscopic compression rate via the Taylor factor of the mother grain, 
mM : 

r m
Mγ ε=& & .       (8) 

Combining Eqs. (7) and (8), the twinning shear strain rate can be expressed as:    

     m
t

M

A
γ ε=& & .        (9) 

Substituting the above expression into Eq. (5), the following can be obtained: 

m
t m

o

M
V V

A
ε

γ
=& & .      (10) 

For simplification, all the constants; 
mM , A and γ

o
 can be collectively denoted as B, thus:  

  ,  where  m
t m

o

M
V V B B

A
ε

γ
= =& &  .    (11) 
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The growth of the twin fraction within the parent grain is schematically illustrated in Fig. 1. 

From this figure, the evolution of the volume fractions for the twin and the matrix can be written 

as: 

, 1t m t

x
f f f

a
= = −      .      (12a,b) 

Eq. (11) can be written in incremental form to show that during a strain increment dε , the twin 

volume increases by 
t

d V : 

t m
d V V B d ε= .        (13) 

By using the geometry displayed in Fig. 1, the above equation can be expressed as: 

( ) ( )bcdx a x bcBd dx a x Bdε ε= − ⇒ = −                (14) 

Further, by integrating the above equation, the thickness of the twin phase can be obtained as 

a function of the compressive strain: 

( )1ε

ε

−
=

B

B

a e
x

e
.          (15) 

Now using Eqs. (12a,b) and (15), the volume fractions of the matrix and twin phases can be 

expressed as a function of strain: 

, 1B B

m tf e f e
ε ε− −= = −     .             (16a,b) 

The time derivatives of the volume fractions are: 

  ,     B B

m tf B e f B eε εε ε− −= − =& && & .              (17a,b) 

Now using Eqs. (1-4), the following relations can be obtained for the strain rates in the two 

phases:  

,
/

m m t t t
t m t

m t m m t m m

f f f

f f f f

ε ε ε σε ε ε
σ σ σ

− −= =
+

   
& &&

& & & .   (18a,b) 
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These differential equations cannot be solved in a closed form because the strain rates depend 

on the flow stresses of the phases, which evolve with strain. Nevertheless, they can be readily 

incremented numerically with small increments starting from zero plastic strain to obtain the 

strain accumulation in the matrix and twin phases.   

2.3. Hardening law 

For the evolution of the flow stress during plastic strain, we propose the following 

approach. A frequently used crystal plasticity hardening law established by Kalidindi et al. 

(1992) and further developed by Zhou et al. (1993) is considered here to model the strain 

hardening behaviour. By simplifying the self and latent hardening matrix in the original crystal 

plasticity hardening law, the following two equations can be established for each phase, 

indexed by i: 

( )Hi ii
σ σ ε= &&  ,        (19) 

( ) 1

n

ii
sat

h
σσ

σ
 

Η = − 
 

 .          (20) 

Here, ( )
i

σΗ  is a hardening function, 
i

h  and n  are the hardening parameters, and 
s a t

σ  is the 

saturation stress. Now incorporating the hardening function from Eq. (20) into Eq. (19), the 

increment of the flow stress can be expressed as:  

1

n

i i i

sat

d h d
σσ ε

σ
 

= − 
 

  .                (21) 

 After separation of the variables and integrating Eq. (21), the following can be achieved: 

1

1 n
i sat Pσ σ −= −  ,         (22a)     

  where   

( ) ( )1

0 ,

,

1
      if    ,            (22b)

 

0                                               if    ,            (22c)

ni

i sat i i satn

sat

i i sat

h n

P
ε σ σ ε ε

σ
ε ε

− −
+ − ≤= 

 ≥
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with 
( )

( )

1

0

,
1

nn

sat sat

i sat

i
h n

σ σ σ
ε

−−
=

−
  .                                           (22d) 

In these equations ,i satε  is the strain value where the stress state reaches the saturation stress in 

the given phase, and 
0σ  is the initial flow stress.  Finally, the energy equation (Eq. 1) can be 

used to express the macroscopic flow stress of the composite: 

 t
t

εσ σ
ε

=
&

&
 .               (23) 

3. Experiments: materials, testing and characterization 

Hot extruded Mg-3Al-0.3Mn alloy bar was tested under quasi-static conditions for both 

uniaxial compression and tension tests at ambient temperature until failure. The bar was in as-

received state, without prior annealing. The specimens for compression had cuboidal geometry 

with square-shaped loading faces and height to width ratio of 3:2 as per ASTM E9-09 standard. 

Two types of compression tests were carried out: one with the compression direction (CD) 

parallel, and another where CD was perpendicular to the extrusion direction (ED) of the 

original bar. These specimens are designated here as CD∥ED and CD⊥ED, respectively. The 

geometry of the initial bar and the orientations of the two kind of samples are shown in Fig. 2 

together with the main components of the crystallographic texture with the help of the 

hexagonal unit cell. The tests were performed on a computer controlled Instron 8800 Servo-

Hydraulic machine at a constant nominal strain rate of 7.4x10-4 s-1. Five samples were 

deformed for each orientation to ensure data reliability. For the compression tests, Teflon strips 

were used to reduce the friction between the sample surface and the compression platens. The 

tension tests were carried out on flat specimens along the extrusion direction with dimensions: 

5 mm gage length, 20 mm total length and 0.5 mm thickness. The mechanical responses were 

acquired in terms of engineering stress-strain curves. Further, the obtained data were 

numerically computed to obtain the true stress-strain curve. The CD∥ED samples were 

deformed to true compression strains of 0.04, 0.08, 0.12 and 0.18, whereas the CD⊥ED samples 

were deformed to strains of 0.04, 0.08 and 0.12. The mentioned highest strain levels for both 

cases correspond to the point after which the samples fractured, while the tension tests were 

carried out until failure, up to a true tensile strain of 0.16. 
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The microstructures of the samples prior to and after deformation were characterized by 

the Electron Back Scattered Diffraction (EBSD) technique using a Field Emission Gun – 

Scanning Electron Microscope (FEG-SEM). In this regard, the specimens were sectioned at 

their centre on the plane with normal direction to the actual CD. Subsequently, the specimens 

were subjected to mechanical polishing with emery paper up to ~4 μm roughness, followed by 

chemical polishing using a solution of 75 mL ethane-diol, 24 mL distilled water and 1 mL 

HNO3 over a polishing cloth to obtain a mirror finish. Finally, the residual stress surface layer 

was removed by electrolytic polishing in a solution of ethanol and ortho-phosphoric acid 

(volume fraction - 3:5) at ~0ºC, using a stainless-steel cathode at 3 V for 30 s and 1.5 V for 2 

min (Biswas et al., 2010). The orientation mappings were performed using the HKL Channel 

5 software. To ensure significant statistics, large areas containing well over 2500 grains were 

scanned. The acquired data were post-processed using the TSL and ATEX software (Beausir 

and Fundenberger, 2017). 

4. Results 

4.1. Strain hardening response 

Fig. 3 displays the flow curves together with its true strain hardening rate ( )/d dσ ε  

obtained during quasi-static uniaxial compression for the two loading configurations (CD∥ED 

and CD⊥ED). It was found that the initial orientation had a pronounced effect on the flow 

curves. The offset yield strength was found to be ~72 MPa for CD∥ED and ~54 MPa for 

CD⊥ED. Correspondingly, the strain to failure was noted to be ~0.20 and ~0.13, respectively. 

The appearance of a sigmoidal shaped flow curve is the signature of twinning resulting in the 

concomitant increase in the strain hardening rate (Agnew et al., 2001; Dixit et al., 2015; 

Knezevic et al., 2010; Mu et al., 2011, 2014; Wang et al., 2012). Notably, this tendency was 

more pronounced in CD∥ED samples as compared to the CD⊥ED samples.  The associated 

sigmoidal strain hardening curve can be characterized by three distinct regimes categorized as 

Stages I-II-III. Stage I is a regime of decreasing strain hardening rate followed by Stage II, 

where the strain hardening rate is increasing and finally Stage III, during which the strain 

hardening rate is decreasing with strain (Jiang et al., 2007; Mu et al., 2011, 2014; Salem et al., 

2003).  

4.2. Evolution of microstructure and crystallographic texture 
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Figs. 4 and 5 display the inverse pole figure map (IPF-map) for the as-received material, 

as well as for the compression tested samples for CD∥ED and CD⊥ED, respectively. In these 

maps, the colour key code represents the direction normal to the map in the crystal reference 

system of the grains. The corresponding crystallographic textures are presented in Figs. 6 and 

7 in inverse pole figures of the actual compression axis (CD). For both testing conditions the 

as-received microstructures (Fig. 4a and Fig. 5a) are the same; only rotated by 90º with respect 

to the compression direction (CD). The microstructure of the as-received material exhibited an 

average grain size of ~108 μm. It mostly contained elongated grains along the extrusion 

direction with few small equiaxed grains. The microstructures initially were entirely devoid of 

twins. With increasing deformation, twins developed with lenticular shapes in green and blue 

colours in the IPF-maps representing nearly perpendicular orientations with respect to the 

actual CD direction. 

4.2.1. Compression parallel to the extrusion direction 

For the CD∥ED case (Fig. 4), the initial microstructure had only grains with c-axis aligned 

nearly perpendicular to CD. In order to show this explicitly, hcp unit cells were superimposed 

on the as-received IPF map in Fig. 4a. This was further substantiated with the aid of the IPF, 

displayed in Fig. 6a, that clearly characterizes the initial texture by a relatively strong intensity 

for 1120 ||CD (~8.6 MRD, multiples of random distribution) and a weak 1010 ||CD 

component (~2.4 MRD). 

Upon deformation to a true compression strain of ~ 0.04, it can be observed that thin 

lenticular-shape morphology dominated in each grain for the entire microstructure (Fig. 4b). 

These morphological structures are identified as { }10 12 1011  type extension twins with ~86° 

misorientation about 1120  with respect to the surrounding matrix. These twins appeared in 

the IPF of Fig. 6b around the 0002  direction with an intensity of ~5.2 MRD, while the 1120  

component was weakened to ~6.7 MRD. This manifests that extension twin orients the grains 

such that their c-axis became almost parallel to CD. The fraction of twins in the microstructure 

was actually calculated based on this orientation difference of the matrix and the twins with 

respect to the CD axis. At the strain of 0.04, the fraction of twins present in the microstructure 

was ~0.39 ± 0.05. As the strain was increased to ~0.08, the twin fraction augmented to 

~0.64 ± 0.04 (Fig. 3c). At � ≈ 0.12, the extension twins occupied the large portion of the 
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microstructure; ~0.79 ± 0.04 volume fraction (Fig. 4d). Finally, at � ≈ 0.18, almost 

~0.93 ± 0.03 fraction of the microstructure was dominated by twin domains (Fig. 4e). The 

increase in the volume fraction of the extension twins with strain could be also verified by the 

gradual intensification of the 0002  component (~9.2 MRD) and diminishing of the 1120  

component along CD in the IPFs of Figs. 6b-e. The large broadening of the extension twins by 

occupying the major portion of the microstructure is consistent with previous investigations 

(Molodov et al., 2014, 2016; Mu et al., 2011). The twin volume fractions as a function of the 

compression strain are plotted in Figs. 8b-c.  

4.2.2. Compression perpendicular to the extrusion direction 

For CD⊥ED, the initial microstructure is shown in Fig. 5a.  Figs. 5 (a-i) and (a-ii) show a 

decomposition of the microstructure according to its two texture components; the 1010  and

0002 , respectively, indicated by superimposed hcp cells. As can be seen in Fig. 5 (a-ii), a 

non-negligible fraction of matrix grains (~0.15) was already oriented near the CD direction, so 

they are not expected to twin. Figs. 5b-d show the evolution of the extension twins. The 

superimposed hcp cells indicate that the c-axes were almost parallel to CD before fracture (Fig. 

5d). This is well displayed in the corresponding IPF (Fig. 7), where the intensity of the 0002

||CD component increased from ~2.0 to ~9.71 MRD with strain. Fig. 5b shows that ~0.40 ± 

0.04 fraction of the microstructure underwent twinning after � ≈ 0.04. As the strain increased 

further, from 0.08 to 0.12, the twin volume fraction changed from ~0.67 ± 0.04 to 

~0.76 ± 0.03, see Fig. 8c.  

4.3. Simulation results  

The above presented experimental results were simulated with the help of the analytical 

approach described in Section 2, for both sample orientations. Several parameters were needed 

to be identified; see a detailed presentation of the parameter tuning process in Section 5 below. 

The approach can (i) describe the stress-strain curve, (ii) model the twin volume fraction 

evolution, and (iii) predict the partition between the twin and matrix phases for stress as well 

as strain. Fig. 3 shows the simulated stress-strain and strain hardening rate curves in 

comparison with the experimental ones. As can be seen, there is an excellent agreement 

between simulation and experiment, even for the derivatives of the stress-strain curves, for both 
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sample orientations. Only the very initial parts of the curves were not reproduced, for the reason 

that the elastic part of the deformation was not considered in the model. It is particularly 

compelling that even the maximum in the stress-strain curve is reproduced which is appearing 

in both experiments and in the simulation in Stage III, before fracture.  

The prediction of the twin volume evolution is compared with the experiments in Figs. 8b 

and 8c. Again, excellent agreement can be observed. Actually, the twin volume fraction curves 

for the CD∥ED and CD⊥ED cases are identical. This is a consequence of the analytical 

formulas for the twin volume fractions given by Eqs. (16a-b), which contain only one 

parameter; the B. B is necessarily the same for both loading cases, because the experimental 

twin volumes were the same for both. The value of the B parameter was identified to be 13.92, 

see the variations of the predicted curves in Fig. 8a for different values of the B parameter, 

ranging from 0.05 to 20. Hence, the first parameter determined for the analytical model was B. 

Thereafter, the tuning of the hardening parameters could be accomplished. 

The present analytical model predicts also the partition of stress and strain between the 

two phases; the matrix and the twins. The predicted results are displayed in Fig. 9 for both 

stress and strain. As expected, the twins harden more rapidly than the matrix, especially for the 

sample CD∥ED. Alternatively, the strain is less in the twins compared to the matrix strain, 

although not much less than the macroscopic imposed strain. The contrast is especially high 

for the CD∥ED case. The saturation stress could be reached in the twins for both sample 

orientations; at strains of 0.13 and 0.09, for the CD∥ED and CD⊥ED cases, respectively. The 

meaning of the obtained results will be discussed in Section 6, after presenting the procedure 

for obtaining the hardening parameters of the model.  

5. Identification of the model parameters  

As mentioned in the preceding section, the evolution of the twin volume fraction as a 

function of strain is only controlled by the B parameter. Fig. 8a was presented for showing the 

dependence of twinning activity on this parameter. So, it is straightforward to determine the 

appropriate B value, which was found to be 13.92 for both loading conditions. However, the 

analytical stress-strain relation (expressed by Eqs. 22-23) contains several other parameters 

which needs to be determined. (Note that Eqs. 22-23 depend also on the B value, through the 

strain partition relations of Eqs. 16-18.)  The remaining parameters are: initial flow stress, ��,  

hardening coefficients, 
i

h , saturation stress, �	
� , and the hardening exponent � appearing in 
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Eq. (23) for each domain. The subscript ,i m t=  corresponds to the matrix and the twin phases, 

respectively. The total number of hardening parameters are five, taking into account that the 

same values were allocated for �� , �	
� and n for both the matrix and twin phases. This is a 

reasonable hypothesis, as both phases begin with the same material properties and during 

deformation only their crystallographic orientations were different.  

The determination of the hardening parameter values was done using the following procedure: 

a. Two parameters can be readily identified from the measured stress-strain curve: the yield 

stress, ��, and the saturation stress, �	
�. The first is the flow stress at the onset of plastic 

deformation and the second is the maximum flow stress, which was also available, since 

the measured curve presented a maximum before fracture. The following values were 

found: 72 MPa and 54 MPa for ��, as well as 282 MPa and 222 MPa for �	
� for the 

CD∥ED and CD⊥ED cases, respectively (see Fig. 3).  

b. There remained three parameters to identify; the hardening coefficients 
m

h , 
t

h , and the n. 

They were identified by iteration, by looking for the best reproduction of the measured 

strain hardening curves. During the iteration process, the following characteristics were 

considered: higher hardening coefficient for the twin, so 
t m

h h> , and 0 1n< < .  

c. For a given set of assumed parameters, the stress-strain curves were constructed in the 

following way:  First the plastic strains for both the matrix and the twin phases were set to 

zero. Then a simple loop started by incrementing the macroscopic true strain, ε. Within 

the loop, first the volume fraction of twins and their derivatives were calculated using Eqs. 

16 and 17. Simultaneously, the strain increments were obtained from Eq. 18 and were 

accumulated in the phases (
m

ε and 
t

ε ). These strain values together with the hardening 

parameters were further used in Eq. 22a to obtain the flow stresses of the individual phases. 

Finally, Eq. 23 provided the macroscopic stress.  

The identified values of all parameters are presented in Table 1 (they are also listed in the inset 

of the hardening curves in Fig. 3).  

6. Discussion 

In the present study, we introduced a new analytical approach for modelling strain 

hardening and twinning activity in a highly twinning Mg alloy. The model was applied for two 
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cases on the same material, by changing the orientation of the loading direction with respect to 

the initial texture. Strain hardening generally takes place due to two reasons: intrinsic hardening 

by accumulation of dislocations, and by geometrical hardening due to radical texture evolution 

induced by twinning. The analytical model captures both these characteristics at the same time 

but does not separate the contribution of the intrinsic and geometrical hardening. The purpose 

of the first part of the following discussion is to try to estimate separately the magnitude of the 

two hardening mechanisms. Then we examine the possible effect of Hall-Petch hardening 

caused by grain size variations. After that, the alloy behaviour will be examined by its 

composite nature, with the help of the simulated results on the stress and strain partitioning 

between the matrix and twin phases.   

6.1. Textural hardening due to twin-induced reorientation of the crystallographic lattice 

It is well ascertained that strain-hardening can take place by crystallographic reorientation 

of the matrix due to extension twinning, which orients the c-axis of the twinned domain nearly 

parallel to CD (Figs. 6 and 7) (Agnew et al., 2002; Knezevic et al., 2010; Mayama et al., 2011; 

Obara et al., 1973; Stohr and Poirier, 1972). Besides, the continuous increase in the harder 

oriented extension twin domains would require higher macroscopic stress for increasing plastic 

strain (Wang et al., 2012). In polycrystalline Mg alloys, it is expected that the stress required 

for twinning is low (Barnett et al., 2004) and the strain-hardening mechanisms are rather related 

to the stress needed to initiate slip within the twinned domain (Agnew et al., 2003). The 

hardening coefficients, hm and ht depend on the crystallographic texture; ht is always higher, as 

it is dependent on the microstructure that contains mostly grains with c-axis ∥ to CD, i.e., harder 

orientations.  

The effect of texture on hardening, i.e. the so-called geometrical hardening effect, can be 

examined with the help of the Taylor factor of the polycrystal, M. Here, the Taylor factor has 

been used only for discussion purposes, that is, for understanding and interpreting the obtained 

analytical modelling results. Note that the calculated Taylor factors were not used in our 

analytical modelling.  

The general Taylor factor is defined for a grain as the sum of all crystallographic slip rates 

(
s

γ& ) divided by the macroscopic applied von-Mises equivalent strain rate ( ε& ): 
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s

s

M γ ε=∑ & &   . 

For a polycrystal, the individual M values are averaged over all orientations. This definition of 

the Taylor factor is valid also for several slip system families with different CRSS values when 

a proper definition for an average resolved shear stress is introduced; see Appendix. 

The Taylor factors were computed using the VPSC polycrystal model of Molinari et al. 

(1987) and Molinari and Toth (1994) in its tangent approach formulation for the interaction 

between a given grain and the homogeneous equivalent medium. In VPSC polycrystal 

modelling, hard oriented grains deform less and softer grains deform more than the imposed 

macroscopic strain. In this way, the VPSC Taylor factor calculation is consistent with the 

results of the analytical modelling. Grains were identified from the EBSD maps (several 

thousand for each deformation state) and used in the VPSC code. For the calculation, the 

boundary condition corresponding to compression was imposed on the polycrystal in the 

direction parallel as well as perpendicular to ED. Basal, prismatic, pyramidal 〈� + �〉/I, 

pyramidal 〈� + �〉/II slip systems were considered to be available for both the matrix and twin 

domains. The critical resolved shear stress (CRSS) ratio in the same order was found to be 

1:2:6:6, respectively. These CRSS values were obtained by matching the experimental flow 

curves as well as the texture evolution for the compression tests with the simulated ones 

(detailed results will be presented in a future publication). Similar CRSS values were also 

reported by Tang et al. (2014) and Lévesque et al. (2016). 

  By using the same CRSS ratios for the matrix and twin regions, only the effect of 

orientation is considered, that is, only geometrical hardening. The average M is displayed in 

Table 2 and the frequency distributions of the obtained M values are plotted in Fig. 10 as a 

function of strain. 

It can be seen from Fig. 10 that the Taylor factor distribution is forming two peaks and 

moving towards higher values as strain increases. It must be noted that the presence of some, 

very small Taylor factors (less than 1.0) are due to the self-consistent approach in which 

individual grains can deform much less than the macroscopic strain.  Initially, for the CD∥ED 

case, there is only one maximum, however, for CD⊥ED, there are two. This is a consequence 

of the difference in the initial textures between the two samples. For CD∥ED, all grains’ c-axes 

are in nearly perpendicular orientation with respect to the compression direction, while for the 
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CD⊥ED sample, there is a second population of grains with c-axis parallel to the compression 

direction (see Figs. 2, 6 and 7). The latter matrix grains are in ‘hard’ orientations. They are 

actually in the orientation where the other matrix grain population will twin during 

deformation. The first peak is identified as ‘Matrix’ and the second as ‘Twin’ in Fig. 10. As 

expected, the twins have Taylor factors nearly twice higher than the matrix. The average M 

values increased somewhat less than that (see Table 2); they were only about 1.58 and 1.41 

times, for the CD∥ED and CD⊥ED cases, respectively. At the same time, the experimental 

flow stress increased approximately by a factor of four for both samples (see Fig. 3). This 

indicates that the amount of strain hardening between the initial and final state cannot be 

explained solely by geometrical hardening. The difference must be caused by intrinsic 

hardening, due to dislocations, which is the subject of the next section.   

6.2. Intrinsic hardening by dislocations  

Dislocations are classified into two groups, according to the resultant burgers vector value 

that the dislocation group is producing. When a group has zero total burgers vector, the 

dislocations in the group are called statistically stored dislocations (SSDs). On the other hand, 

when a group of dislocations show a non-zero resultant burgers vector, the group contains the 

so-called geometrically necessary dislocations (GNDs). Naturally, statistical dislocations do 

not produce orientation differences, while GNDs do. Therefore, it can be expected, that by 

measuring the average grain orientation spread (GOS), one can relate it to the GND density. 

The GOS characterizes the average variance in the orientation of all scanned pixel within a 

grain with reference to the average orientation of the same grain (Wright et al., 2011). GOS 

can be readily obtained from EBSD measurements by first identifying the grains, then 

calculating GOS in each of them, finally, averaging over the whole population of grains. It is 

important to emphasize that GOS is due to lattice curvatures and geometrically necessary 

boundaries (GNBs), both are produced by GNDs. However, GOS is insensitive to the statistical 

dislocation density. Further, in order to use GOS for GND density considerations, it is 

necessary to consider the sizes of the grains. Therefore, the experimentally obtained GOS 

values were divided by the respective grain sizes (d) before the average GOS/d was calculated. 

The use of GOS/d for GND density considerations was introduced by Allain-Bonasso et al. 

(2012) and Wagner et al. (2011).  
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At lower strains, it was shown separately by Hughes (2001), Humphreys and Hatherly 

(2004), and Zhu et al. (2018) that both the GND and SSD density increases with strain. Hence, 

it is assumed that at lower strains, GOS/d is proportional to the total dislocation density. GOS/d 

was calculated separately for the matrix and twin domains with increasing strain and are plotted 

in Figs. 11a and 11b for the CD∥ED and CD⊥ED samples, respectively. As can be seen in Fig. 

11, the average GOS/d values increase steadily with strain for both the matrix and the twins, 

by a factor of ~7x for CD∥ED and about 5x for CD⊥ED. Therefore, if we consider the assumed 

proportionality between GNDs and SSDs; the total dislocation density should have been 

increased by the same factor. That would involve an increase in the flow stress by the square-

root of the dislocation densities, meaning an increase in the flow stress of 7 2.64  x= , and 

5 2.23 x= , respectively. This increase in flow stress is to be added to the geometrical 

hardening ratio, which was 1.58 x and 1.41 x, respectively (see Section 6.1). The two hardening 

effects together should produce increases in the flow stress by 2.64 1.58 4.22 x x x+ =  and 

2.23 1.41 3.64 x x x+ = , respectively. These values are actually not far from the increase in the 

experimental flow stress, which were 3.92 and 4.11. This analysis permits to conclude that the 

intrinsic hardening by dislocations contributed more to the strain hardening than the 

geometrical one (nearly twice more).       

It is also clear that the GOS/d values are systematically higher for the matrix than for the 

twins, see Fig. 11. Consequently, the GND density must have been higher in the matrix phase. 

Since the GND density is obviously increasing with strain, this result is also in concordance 

with the model prediction, as larger strains were obtained for the matrix (Fig. 9).   

6.3. Hall-Petch effect  

It was observed in the present experiments that the development of extension twins at the 

very early deformation (ε ≈ 0.04) led to an abrupt decrease in the average grain size: from 

~108 �� to 38.5 �� and 55.6 �� for the CD∥ED and CD⊥ED cases, respectively (see Figs. 3 

and 4). However, with further deformation, these extension twins broadened through migration 

of twin boundaries leading to an increase in the average grain size to ~73.5 �� for CD∥ED and 

~86.4 �� for CD⊥ED at higher strains, see Fig. 3c-e and Fig. 4c-d, respectively. Therefore, 

hardening due to the decrease in the mean free path of dislocations i.e., due to grain size 

reduction can be ruled out. The broadening of twins and the consumption of matrix was earlier 

reported by Dudamell et al. (2011) during deformation of Mg alloy AZ31 at very high strain 
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rates.  This is consistent with our findings and corroborates well with independent theoretical 

investigations performed by Knezevic et al. (2010) and Molodov et al. (2017). They showed 

that minimal Hall-Petch hardening occurs in Mg alloys because the extension twin domains 

broaden to consume the entire microstructure without introducing appreciable barrier effect to 

slip transmission across twin boundaries. Using molecular dynamic simulations, El Kadiri et 

al. (2015) have shown that extension twin boundaries absorb the basal dislocations as efficient 

sinks and thereby broaden the extension twin domain in Mg. Chichili et al. (1998) have shown 

no effect on flow stress in commercially pure Ti by the presence of deformation twins, 

substantiating our observation. On the contrary, Mahajan et al. (1973) and Gray et al. (1997) 

reported that the increase in strain hardening rate in Stage-II may occur due to the effective 

reduction in grain size in face-centred cubic (fcc) polycrystals and hcp (Ti) structures. 

6.4. The composite behaviour  

The stress and strain partition between the matrix and twin phases were presented in Fig. 

9. Our analytical model predicts that the twin phase hardens more, and by the virtue of duality, 

the strain is less in the twin phase with respect to the matrix. The behaviour of the composite 

can be better analysed if we also look at the strain rate partition between the two phases as a 

function of strain; it is presented in Fig. 12. Comparing the strain rate variations in the matrix 

and the twins, one can observe that they are different. While the strain rate remains always 

smaller than the macroscopic one in the twin, at strains of 0.123 (CD∥ED) and 0.082 (CD⊥ED), 

the twin strain rate becomes the same and then slightly overshoots the macroscopic strain rate. 

The above critical strain values are given by Eq. 22d. Above this critical strain, the flow stress 

in the twin phase remains constant and equal to the saturation stress. By differentiating Eq. 1, 

we obtain the following differential relation for ,t satε ε> : 

t
sat

εσ σ
ε

=
&&

&
&

,   ,t satε ε> .                    (24) 

This equation shows that after the critical strain, the macroscopic stress variation depends only 

on the second derivative of the twin-strain. As can be seen from Fig. 12, for ,t satε ε>  the 

derivative of the 
t

ε&  curve is first positive, then zero, then it becomes negative. Consequently, 

a maximum value of the flow stress is predicted for the composite when 0tε =&& . The predicted 
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strain values at the position of maximum flow stress are about 0.16 and 0.13, for the CD∥ED 

and CD⊥ED cases, respectively, in good agreement with the experiments (see in Fig. 3).  

It is fascinating that this analytical model is able to predict the existence of a maximum 

value in the stress-strain curve of the composite, and in agreement with the experiments. 

Therefore, the observed maximum in the measurement has a physical reason which could be 

modelled. This is an important result of the present modelling. After the maximum, the stress 

has to decrease according to our equations. It is well known in mechanics that, when strain 

hardening becomes negative, the stability of the deformation is lost, and the deformation 

localizes in a macroscopic band in the sample leading to fracture. Thus, our analytical approach 

captures the onset of deformation instability.       

6.5. Assessing for no-twinning condition 

Another aspect that requires focus is to demonstrate the capability of the analytical 

model for the no-twinning condition. Recently, Qiao et. al (2015, 2017) demonstrated that a 

EVPSC - Twinning-DeTwinning (TDT) model could accurately predict the mechanical 

response attributed to large, intermediate and insignificant twinning conditions. The latter 

aspect is considered to be important for a model to be complete. In order to verify the predictive 

capacity of the present model for that case, the tensile test carried out parallel to the extrusion 

direction was also modelled. The initial microstructure for the tension is the same as shown in 

Fig. 4a. In this case, the grains had their c-axis perpendicular to the tension direction, a 

condition where twinning activity is negligibly small.  

Under such circumstances, the B-parameter was identified to be 0.05 leading to only 0.01 

twinning volume fraction. Fig. 13b displays the evolution of the volume fraction of the parent 

matrix and the twins as a function of true tensile strain. After defining the B-parameter, the 

other model parameters (��, �	
�, hi and n) were identified following a similar procedure as 

discussed in Section 5. Figs. 13c,d show the simulated flow curve and the strain hardening rate 

plot using �� = 142 MPa, �	
� = 229 MPa, hm = 2400 MPa, and n = 0.56. The predicted plots 

were in good agreement with the experimental ones for any value of the hardening coefficient 

assigned to the twin phase (ht values ranging from 10 to 8000 MPa); the curves are practically 

coinciding. This is actually expected due to the very low volume fraction of the twins. Thus, 
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the new analytical model is capable to reproduce the mechanical response ranging from 

twinning dominance to non-twinning conditions appropriately. 

7. Summary and Conclusion      

A new analytical model is presented in this paper which can accurately predict the strain-

hardening behaviour, the evolution of the twin volume fraction, and the partition of stress and 

strain between the matrix and twin phases in polycrystalline hcp materials where twinning is a 

relevant deformation mechanism. The predictive capability of the model was assessed by 

compression tests, carried out parallel and perpendicular to the axis of an extruded rod 

magnesium alloy Mg-3Al-0.3Mn during ambient temperature deformation. The model is 

composed of three basic elements: (i) A composite model with two phases; matrix and twin, in 

which the stress and strain partitioning is governed by the “Iso-work” hypothesis, (ii) A 

twinning kinetic equation, based on crystal plasticity elements, containing only one parameter 

(B), (iii) A strain hardening approach, which is a simplified version of the Kalidindi-type 

hardening law, originally used in crystal plasticity. It contains three parameters for each phase. 

The parameters of the model were identified by matching the predictions with the experimental 

results. In this process, the B parameter was identified first, and was found to be independent 

of the loading direction and also of strain hardening; rather it depends only on the material. It 

is, however, a relevant parameter in reproducing the shape of the strain hardening curve which 

is typically S-shaped. The strain hardening parameters were identified by matching the 

predicted strain hardening curve with the experimental one. Among the three parameters for 

each phase, only one was different: the hardening coefficient parameter, which was found to 

be higher for the twin phase. 

The analysis of the obtained results permits us to conclude on the following main findings: 

1. The applicability of the proposed analytical approach is verified for the present Mg-3Al-

0.3Mn alloy. It is proved to be predictive with high precision for the stress-strain curve, 

and the twinning volume fraction. 

2. The model predicts a maxima on the stress-strain curve which appears also in the 

experiment just before fracture.  

3. Much higher strain hardening rate is predicted for the twins than for the matrix. With the 

help of a GOS/d analysis of the microstructures and using the Taylor factors, the higher 
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strength of the twin phase was due to both an orientation effect of the twins (textural 

hardening) and also due to intrinsic dislocation hardening.   

 

Appendix 

The Taylor factor for multiple CRSS values 

Here we consider a crystal in which several slip system families can be activated at the same 

time with different CRSS values. The number of families is N and in a given family there is nf 

number of slip systems. The Taylor factor is used to estimate the resistance of a grain with 

respect to a given loading. Its definition is based on the principle of work conjugacy:  

1 1

fnN
f f

s s kl kl

f s

τ γ σ ε
= =

=∑∑ & &   .     (A1) 

Here the left side is the ‘internal’ and the right side is the ‘external’ plastic power. The internal 

power is the sum of the powers made by the individual slip systems: 
f f

s sτ γ& . The external one 

is calculated by the multiplication of the applied stress tensor and the macroscopic strain rate 

tensor: 
k l kl

σ ε& .  The latter can be calculated also by their scalar equivalent quantities, so Eq. 

(A1) can be written as: 

1 1

fnN
f f

s s

f s

τ γ σ ε
= =

= ⋅∑∑ & &   .     (A2) 

Here ε&  can be chosen as the von-Mises equivalent strain rate, while σ  is not the von Mises 

equivalent stress (because a crystal is not a von Mises material), it is just called equivalent 

stress (σ  is actually defined by Eq. (A2)). 

 The 
f

sτ  quantity is the resolved shear stress, which is calculated by the projection of the stress 

state on the given slip system, the system being represented by the Schmid orientation matrix 

,
f

s ij
m : 

,
f f

s ij s ij
mτ σ=    .     (A3) 
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f

sτ  is the same as the CRSS in rate insensitive slip while it is related to the slip rate in 

viscoplastic slip. Here we consider both cases. 

For the case of multiple slip families, we first define an average resolved shear stress τ  using 

the slip rates: 

1 1 1 1

f fn nN N
f f f

s s s

f s f s

τ τ γ γ
= = = =

=∑∑ ∑∑& &    .    (A4) 

In this equation the denominator is simply the total slip rate. With the help of the average 

resolved shear stress, Eq. (A2) can be rewritten as: 

1 1

fnN
f

s

f s

τ γ σ ε
= =

= ⋅∑∑ & &    .    (A5) 

This equation defines the Taylor factor in two expressions; one with the slips, the other with 

the equivalent stresses: 

1 1

fnN
f

s

f s
M

γ
σ

ε τ
= == =
∑∑ &

&
   .    (A6) 

In a crystal plasticity simulation, the ratio of the total slip rate to the equivalent strain rate is 

available, and defines the general Taylor factor. Eq. (A6) shows it is also equal to the ratio of 

the external equivalent stress and the average resolved shear stress, which represents the 

‘resistance’ or ‘strength’ of the crystal with respect to the loading. While the CRSS values do 

not appear directly in the formula for the Taylor factor, they are the parameters to be used in 

the crystal plasticity solution. 
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Table captions: 

 

Table 1. The identified parameter values for the analytical model for the two sample 

orientations in compression. 

 

Table 2. The average Taylor factors obtained in axisymmetric compression for the IPF maps 

as a function of strain. 
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Fig. 1. Schematic representation of the matrix and twin phases in a grain showing the growth 

of a twin.  

Fig. 2. Sample geometry and testing directions showing the extruded bar from where the 

samples were machined for CD∥ED marked as I and CD⊥ED marked as II. The hexagonal unit 

cell shows the orientation of the main texture components. 

Fig. 3. Experimental and predicted flow curves and strain hardening rate plots of Mg-3Al-

0.3Mn alloy during uniaxial compression test carried out (a) parallel and (b) perpendicular to 

the extrusion direction of the original bar.   

Fig. 4. Measured inverse pole figure (IPF) maps of the Mg-3Al-0.3Mn alloy with compression 

direction parallel to the extrusion direction. (a) as-received extruded material, and deformed 

samples to strains of: (b) 0.04, (c) 0.08, (d) 0.12 and (e) 0.18. The hcp unit cells are 

superimposed on the initial and final states. The colour key code represents the direction normal 

to the map in the crystal reference system of the grains.       

Fig. 5. IPF maps of Mg-3Al-0.3Mn alloy measured after compression perpendicular to the 

original extrusion direction. (a)-(a-i)-(a-ii): as-received extruded material showing the full 

microstructure in (a) and its partitioned microstructures in (a-i)-(a-ii).  (a-i) shows grains with 

c-axis near perpendicular to CD while (a-ii) displays grains with c-axis parallel to CD. The 

deformed states are shown as a function of strain for (b) � = 0.04, (c) � = 0.08 and (d) 

� = 0.12. Some hcp unit cells are superimposed in (a-i), (a-ii) and (d) for showing the 

characteristic orientations of the grains. The colour key code represents the direction normal to 

the map in the crystal reference system of the grains.      

Fig. 6. Inverse pole figures of the CD axis in Mg-3Al-0.3Mn alloy for loading CD∥ED. (a) as-

received, and compression tested samples up to intermediate strains of (b) 0.04, (c) 0.08, (d) 

0.12 and (e) 0.18. The colour bar represents the multiples of random distribution (MRD). 

Fig. 7. Inverse pole figures of the CD axis in Mg-3Al-0.3Mn alloy for loading CD⊥ED. (a) as-

received, and compression tested samples up to intermediate strains of (b) 0.04, (c) 0.08 and 

(d) 0.12. The colour bar represents the multiples of random distribution (MRD). 
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Fig. 8. (a) Calibration of the B parameter for predicting the twin-volume fraction in Mg-3Al-

0.3Mn alloy as a function of compression strain. The open circle markers represent the 

experimental twin volume fractions for the CD∥ED case. B = 13.92 was identified for both the 

(b) CD∥ED and (c) CD⊥ED loadings. 

Fig. 9. Predicted variations of the stresses and strains for the matrix and the twin phases as a 

function of true compression strain for (a) CD∥ED and (b) CD⊥ED. The red dotted line 

represents the macroscopically imposed strain. 

Fig. 10. Taylor factor distribution plots for the initial as well as for the deformed samples for 

(a) CD∥ED and (b) CD⊥ED. 

Fig. 11. Average Grain Orientation Spread (GOS) divided by the grain diameters (d) obtained 

from the experimental microstructures for the initial and deformed samples of the Mg-3Al-

0.3Mn alloy for the (a) CD∥ED and (b) CD⊥ED cases. 

Fig. 12. Predicted strain rate partitions in the matrix and the twin phases as a function of strain 

for (a) CD∥ED and (b) CD⊥ED. Horizontal dashed line represents the macroscopic strain rate 

and the vertical dashed line represents the position where the twin strain rate is equal to the 

macroscopic strain rate. 

Fig. 13. (a) Schematic of the tensile testing specimen (all dimensions are in “mm”). (b) 

Predicted twin volume fraction in Mg-3Al-0.3Mn alloy as a function of true tensile strain for 

B = 0.05. (c) and (d): the experimental and predicted flow curves and strain hardening rate plots 

for Mg-3Al-0.3Mn alloy in tension parallel to the extrusion direction for B = 0.05, �� = 142 

MPa, �	
� = 229 MPa, hm = 2400 MPa, n = 0.56, while ht was varied from 10 MPa to 8000 

MPa. 

 

 



 

 

Fig. 1. Schematic representation of the matrix and twin phases in a grain showing the growth 
of a twin.  

 

 

 

 

 

 

 

 
 

Fig. 2. Sample geometry and testing directions showing the extruded bar from where the 
samples were machined for CD∥ED marked as I and CD⊥ED marked as II. The hexagonal unit 
cell shows the orientation of the main texture components.  

 
 



 

Fig. 3. Experimental and predicted flow curves and strain hardening rate plots of Mg-3Al-
0.3Mn alloy during uniaxial compression test carried out (a) parallel and (b) perpendicular to 
the extrusion direction of the original bar. 

 

 

 

 



 

 

Fig. 4. Measured inverse pole figure (IPF) maps of the Mg-3Al-0.3Mn alloy with compression 
direction parallel to the extrusion direction. (a) as-received extruded material, and deformed 
samples to strains of: (b) 0.04, (c) 0.08, (d) 0.12 and (e) 0.18. The hcp unit cells are superimposed 
on the initial and final states. The colour key code represents the direction normal to the map in the 
crystal reference system of the grains.    

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 5. IPF maps of Mg-3Al-0.3Mn alloy measured after compression perpendicular to the original 
extrusion direction. (a)-(a-i)-(a-ii): as-received extruded material showing the full microstructure in 
(a) and its partitioned microstructures in (a-i)-(a-ii). (a-i) shows grains with c-axis near 

perpendicular to CD while (a-ii) displays grains with c-axis parallel to CD. The deformed states 

are shown as a function of strain for (b) ε = 0.04, (c) ε = 0.08 and (d) ε = 0.12. Some hcp unit cells 

are superimposed in (a-i), (a-ii) and (d) for showing the characteristic orientations of the grains. The 
colour key code represents the direction normal to the map in the crystal reference system of the 
grains. 

  

 



 

 

Fig. 6. Inverse pole figures of the CD axis in Mg-3Al-0.3Mn alloy for loading CD∥ED. (a) as-
received, and compression tested samples up to intermediate strains of (b) 0.04, (c) 0.08, (d) 
0.12 and (e) 0.18. The colour bar represents the multiples of random distribution (MRD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 7. Inverse pole figures of the CD axis in Mg-3Al-0.3Mn alloy for loading CD⊥ED. (a) as-
received, and compression tested samples up to intermediate strains of (b) 0.04, (c) 0.08 and 
(d) 0.12. The colour bar represents the multiples of random distribution (MRD). 
 
 
 
 
 
 
 
 

 
 

Fig. 8. (a) Calibration of the B parameter for predicting the twin-volume fraction in Mg-3Al-
0.3Mn alloy as a function of compression strain. The open circle markers represent the 
experimental twin volume fractions for the CD||ED case. B = 13.92 was identified for both the 
(b) CD∥ED and (c) CD⊥ED loadings.  
 
 
 
 
 
 



 
 
 
Fig. 9. Predicted variations of the stresses and strains for the matrix and the twin phases as a 
function of true compression strain for (a) CD∥ED and (b) CD⊥ED. The red dotted line 
represents the macroscopically imposed strain. 

 

 

 

 

 

 

 

 

Fig. 10. Taylor factor distribution plots for the initial as well as for the deformed samples for 
(a) CD∥ED and (b) CD⊥ED. 

 

 
 



 

 

Fig. 11. Average Grain Orientation Spread (GOS) divided by the grain diameters (d) obtained 
from the experimental microstructures for the initial and deformed samples of the Mg-3Al-
0.3Mn alloy for the (a) CD∥ED and (b) CD⊥ED cases. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 12. Predicted strain rate partitions in the matrix and the twin phases as a function of strain 
for (a) CD∥ED and (b) CD⊥ED. Horizontal dashed line represents the macroscopic strain rate 
and the vertical dashed line represents the position where the twin strain rate is equal to the 
macroscopic strain rate. 

 
 



 
 
 

Fig. 13. (a) Schematic of the tensile testing specimen (all dimensions are in “mm”). (b) 

Predicted twin volume fraction in Mg-3Al-0.3Mn alloy as a function of true tensile strain for 
B = 0.05. (c) and (d): the experimental and predicted flow curves and strain hardening rate plots 

for Mg-3Al-0.3Mn alloy in tension parallel to the extrusion direction for B = 0.05, 	
 = 142 

MPa, 	��
 = 229 MPa, hm = 2400 MPa, n = 0.56, while ht was varied from 10 MPa to 8000 
MPa. 

 



Table 1. The identified parameter values for the analytical model 
for the two sample orientations in compression. 

 
Testing �� ���� hm ht n 

CD∥ED 72 MPa 282 MPa 100 MPa 3200 MPa 0.4 

CD⊥ED 54 MPa 222 MPa 900 MPa 3185 MPa 0.3 

 

 

 

Table 2. The average Taylor factors obtained in axisymmetric compression for the IPF 
maps as a function of strain. 

 
Testing 0ε =  0 .0 4ε =  0 .0 8ε =  0 .1 2ε =  0 .1 8ε =  

CD∥ED 2.46 2.83 3.28 3.51 3.88 

CD⊥ED 2.68 3.04 3.46 3.79 - 

 

 






