
HAL Id: hal-03165423
https://hal.science/hal-03165423

Submitted on 21 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

A European aerosol phenomenology - 7: high-time
resolution chemical characteristics of submicron

particulate matter across Europe
M. Bressi, F. Cavalli, J.P. Putaud, R. Fröhlich, J.-E. Petit, W. Aas, M. Aijala,

Andres Alastuey, J.D. Allan, M. Aurela, et al.

To cite this version:
M. Bressi, F. Cavalli, J.P. Putaud, R. Fröhlich, J.-E. Petit, et al.. A European aerosol phenomenology
- 7: high-time resolution chemical characteristics of submicron particulate matter across Europe.
Atmospheric environment: X, 2021, pp.100108. �10.1016/j.aeaoa.2021.100108�. �hal-03165423�

https://hal.science/hal-03165423
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr


ATMOSPHERIC ENVIRONMENT: X 10 (2021) 100108

Available online 9 March 2021
2590-1621/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A European aerosol phenomenology - 7: High-time resolution chemical 
characteristics of submicron particulate matter across Europe 

M. Bressi a, F. Cavalli a,*, J.P. Putaud a, R. Fröhlich b, J.-E. Petit c, W. Aas d, M. Äijälä e, 
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A B S T R A C T   

Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a 
unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located 
between 35 and 62◦N and 10◦ W – 26◦E, and represent various types of settings (remote, coastal, rural, industrial, 
urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based 
instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and 
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following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concen
trations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are 
discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the 
mid-latitude band than in southern and northern Europe. On average, organics account for the major part 
(36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition 
of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural 
and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in mid- 
latitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (μg/ 
m3) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of 
NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate 
can be observed at a majority of sites both in winter and summer. Early morning minima in organics in 
concomitance with maxima in nitrate are common features at regional and urban background sites. Daily var
iations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a 
function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 
at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration 
and predominates when NR-PM1 mass concentrations exceed 40 μg/m3 at half of the sites.   

1. Introduction 

In the European Union (EU), Particulate Matter (PM) is regarded by 
the European Environment Agency as the air pollutant most harmful to 
human health (EEA, 2019). For 2017, more than 370 000 premature 
deaths were attributed to long-term exposure to PM2.5 (PM with aero
dynamic diameter below 2.5 μm) in the EU-28 (EEA, 2019), corre
sponding to ca. 3.8 million years of life lost (3 days/inhabitant). 
Recently, the link between short-term exposure to PM and daily mor
tality has also been confirmed by the evaluation of data from over 600 
cities across the world, of which more than 100 in Europe (Liu et al., 
2019). PM has not only respiratory and cardiovascular adverse effects 
(WHO, 2006, 2013). It has also been classified as carcinogenic to 
humans by the International Agency for Research on Cancer since 2013 
(Loomis et al., 2013). As a step towards WHO guidelines, various EU 
directives have attempted to reduce PM impacts on human health - and 
the environment - during the last decades by setting daily limit values 
for PM10, annual limit values for PM10 and PM2.5, long term exposure 
reduction targets for PM2.5, as well as emission ceilings for aerosol 
precursors (e.g. EU, 1996, 1999, 2008, 2016). As a consequence, PM 
concentrations have generally decreased at most types of site in Europe 
over the last 20 years (Tørseth et al., 2012; EEA, 2019). However, the 
rate of decrease in total European population exposure to PM2.5 seems to 
be rather slow (− 0.5 μg m− 3 yr− 1) over the last decade (EEA, 2019). 
Thus, there is a need to further reduce PM levels and impacts in Europe, 
which requires a better knowledge of its physical and chemical prop
erties. PM is indeed a complex mixture of components including organic 
matter, inorganic salts, elemental carbon, trace metals, etc. A better 
understanding of PM chemical composition in Europe is necessary to 
identify its sources (e.g. Zhang et al., 2011), assess its toxicity (Kelly and 
Fussell, 2012), estimate its impacts on climate (Boucher et al., 2013), 
improve air quality models (Kukkonen et al., 2012) and support air 
quality related policies (Heal et al., 2012; EC, 2013). 

Very few peer-reviewed publications have described the overall 
chemical composition of particulate matter based on long-term in-situ 
measurements across Europe (Putaud et al., 2004, 2010; Tørseth et al., 
2012). These studies analyzed data from the EMEP (European Moni
toring and Evaluation Programme) data base (ebas.nilu.no) to show that 
European PM chemical composition strongly depends on the PM size 
fraction, the geographical location within Europe, the type of site, and 
the time period. These works highlighted the need to reduce the un
certainties associated with the difference in the techniques used to 
collect and analyze PM samples, mainly affecting the data regarding 
semi-volatile and carbonaceous particulate species, respectively. They 
did not specifically address the submicron fraction of the aerosol (PM1), 
which contains particles of anthropogenic origin that contribute 
importantly to PM toxic effects (Vu et al., 2018), can travel far away 
from sources, and play a major role in climate change (Raes et al., 2000). 

Previous works did not either deal with the short-term variations in PM 
concentration and composition. In contrast, Crippa et al. (2014) used 
high-time-reslolution data in their study focused on submicron organic 
aerosol characteristics at 17 sites across Europe, but these data had been 
obtained from 3 series of 15–50 day long measurements campaigns. 

Our study is based on long (>1 year) time series of half-hourly mean 
concentrations of major constituents of the non-refractory fraction of 
PM1 (NR-PM1). These data were produced under the European Aerosols, 
Clouds, and Trace gases Research InfraStructure (ACTRIS, www.actris. 
eu). To provide long-term, high-quality and comparable aerosol chem
istry data, Aerosol Chemical Speciation Monitors (ACSM, Aerodyne Inc.) 
have been implemented at more than 20 ACTRIS observatories across 
Europe, starting from 2011 (www.psi.ch/acsm-stations/overview-full- 
period). The ACSM is based on a similar technology as the Aerosol 
Mass Spectrometer (AMS, Aerodyne Inc.; Canagaratna et al., 2007), and 
provides high-time resolved (30 min) information on the chemical 
composition (organics, nitrate, sulfate, ammonium and chloride) of 
non-refractory submicron PM (Ng et al., 2011; Fröhlich et al., 2013) and 
more recently also NR-PM2.5 (Xu et al., 2017; Zhang et al., 2019). This 
technology is not prone to the sampling artefacts which affect the 
collection of semi-volatile PM components by filters (e.g. Viana et al., 
2006; Kim et al., 2015). It is suitable for long-term (months to years) 
stable operation at various types of site, from urban to remote obser
vatories (e.g. Canonaco et al., 2015; Fröhlich et al., 2015a; Minguillón 
et al., 2015; Parworth et al., 2015; Sun et al., 2018; Zhang et al., 2019). 
ACSM measurements are part of the revised EMEP monitoring program 
for 2020–2029 (UN-ECE, 2019). 

Based on the compilation and statistical analysis of long-term in-situ 
measurements performed with ACSM and AMS instruments, this work 
makes use of the specificities of on-line measurements to highlight 
similarities and differences in the chemical composition of the non- 
refractory submicron aerosol across Europe on various scales. Like 
previous “European aerosol phenomenology” articles (e.g. Putaud et al., 
2010), it merely describes general features observed in the sets of data 
available at the time of the study. Implications for further developments 
of PM abatement policies are discussed in light of these results. 

2. Material and methods 

2.1. Sampling sites 

The measurements performed at 21 selected sampling sites located in 
13 different countries across Europe (Fig. 1) were processed. A detailed 
description of each sampling site - including coordinates, altitude, data 
coverage, related networks, etc.- can be found in Table S1 (Supplement). 
Fifteen sites contribute to at least one of the existing international pro
grams for air pollution measurements, such as the World Meteorological 
Organization - Global Atmosphere Watch network (gaw.empa.ch/ 
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gawsis), the United Nations’ Convention on Long Range Transboundary 
Air pollution – European Monitoring and Evaluation Programme (www. 
emep.int) and the European Union’s ACTRIS research infrastructure 
(www.actris.eu), whereas six sites are operated in other contexts. 

These 21 sampling sites have been classified following the recom
mendations of the European Environment Agency (Larssen et al., 1999), 
as in the previous phenomenology studies (e.g. Putaud et al., 2010). 
According to their distance from large pollution sources, the 21 sites 
considered in this study (Table S1) are: one natural background (or 
remote) site (more than 50 km distant from large pollution sources), 
eleven rural or regional background sites (10–50 km distant from large 
pollution sources), five urban background sites representative of the 
“average air pollution levels in urban areas”, one industrial site defined 
as “typically hot-spot stations located in areas with sharp gradients”, and 
three coastal sites (an additional category introduced for rural back
ground sites located less than 2 km downwind from the sea shore). Site 
classification has always been questionable, and some of our 21 sites 
have been classified differently in previous works (e.g. Ripoll et al., 
2014; 2015; Petit et al., 2015). 

The 21 sites have also been classified in three geographical regions 
according to their latitude: northern Europe (NE) for the five sites north 
of 53◦N, mid-latitude Europe (ME) for the eleven sites located between 
45◦N and 52◦N, and southern Europe (SE) for the 5 sites located south of 
43◦N. These three geographical regions were chosen to highlight intra- 
regional similarities and inter-regional differences in the submicron 
aerosol properties. Other possible geographical sectorizations would 
have certainly led to other interesting results. 

2.2. Instrumentation 

The chemical composition of non-refractory submicron aerosols (NR- 
PM1) was determined by a Quadrupole Aerosol Chemical Speciation 
Monitor (Q-ACSM, Ng et al., 2011) at 18 sites, a Time-of-Flight ACSM 
(ToF-ACSM, Fröhlich et al., 2013) at 1 site, and a compact ToF Aerosol 
Mass Spectrometer (cToF-AMS, Drewnick et al., 2005) at 2 sites during 
the years 2011–2015. All these instruments (Table S1) were developed 
by Aerodyne Research Inc. For each of them, the operating principle is 
similar to the one described by e.g. Jayne et al. (2000), Drewnick et al. 
(2005), Canagaratna et al. (2007), Fröhlich et al. (2013), and Ng et al. 
(2011). Briefly, for all instruments, sampled aerosol particles are 
focused by an aerodynamic lens, travel through vacuum chambers, and 
are vaporized after impacting a resistively heated porous tungsten sur
face (~600 ◦C). Molecular fragments are ionized by Electron Ionization 
(70 eV), and subsequently detected by a mass spectrometer. The mass 
spectrometer is either a quadrupole analyzer (residual gas analyzer 
type) for the Q-ACSM (Ng et al., 2011), or a Tofwerk time-of-flight 
analyzer for the ToF-ACSM and the cTof-AMS (Drewnick et al., 2005). 
The mass spectra detected by the mass spectrometers are then converted 
to mass concentrations of NR-PM1 major chemical species - namely or
ganics, sulfate, nitrate, ammonium and chloride -, following the meth
odology described in e.g. Allan et al. (2004), Canagaratna et al. (2007) 
and references therein, and Jimenez et al. (2003). 

The ACSM particle collection efficiencies are better than 50% and 
90% for the aerodynamic diameter ranges 75–650 nm, and 120–320 nm 
respectively (Liu et al., 2007). For the AMS, these ranges enhance to 
60–1000 nm and 100–600 nm, respectively. Better mass resolutions and 

Fig. 1. Sampling site locations, distinguished by type and geographical regions (see Table S1 in Supplement for further details). Map designed with Google Earth 7. 
February 3, 5776 (Google Inc.). 
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detection limits are also achieved in the latter case (Fröhlich et al., 
2013). 

Q-ACSMs were operated following the recommendations given in 
ACTRIS-ACSM guidelines (2015), Aerodyne (2011a, 2011b) and Ng 
et al. (2011). In particular, all Q-ACSM users followed the recommen
dations for setup, calibration, operation, maintenance and data analysis 
described at that time in the “ACTRIS-ACSM best practice document” 
(www.psi.ch/acsm-stations/acsm-best-practice). This document has 
been edited by the European ACTRIS-ACSM community to help operate 
Q-ACSMs in a proper and consistent manner with the aim of ensuring the 
comparability of the various ACSM datasets produced across Europe. A 
more detailed description of the ACSM and AMS operating procedures 
followed at each site can be found in the Supplement (Section 1), where 
the determination of the collection efficiency (CE), the ionization effi
ciency for nitrate (IE), and the relative ionization efficiency (RIE) for 
ammonium and sulfate are described and tabulated (Table S3). Relevant 
publications providing further details are also listed. 

Sixteen instruments participated in inter-comparisons (Table S4) at 
the time of the measurements described here. Among them, eleven Q- 
ACSMs and the ToF-ACSM participated in the same 3-week inter- 
instrument comparison in 2013 at the Aerosol Chemical Monitor Cali
bration Center (ACMCC, acmcc.lsce.ipsl.fr/doku.php), which is part of 
the European Centre for Aerosol Calibration (www.actris-ecac.eu). The 
reproducibility expanded uncertainties of this set of Q-ACSMs were 
estimated to 9, 15, 19, 28 and 36% for NR-PM1, nitrate, organics, sulfate 
and ammonium, respectively (Crenn et al., 2015). Three Q-ACSMs 
delivered unsatisfactory data for chloride, probably partly due to po
tential issues related to the use of the default fragmentation table 
(Tobler et al., 2020), and to the very low chloride concentrations 
experienced during that workshop. Chloride data are therefore not 
considered for the remainder of this work. The ToF-ACSM generally 
showed good agreement with the median of the 11 Q-ACSMs for NR-PM1 
mass and major chemical species (R2≥0.8, 0.8<slope<0.9), ammonium 
excepted (Crenn et al., 2015). The Q-ACSM operated in Dunkirk was 
satisfactorily compared to a HR-ToF-AMS for 10 days in 2014 and with 
independent on-line measurements (Zhang et al., 2021). The cToF-AMS 
used in London (UK) was compared with a co-located High 
Resolution-ToF-AMS (DeCarlo et al., 2006), and also showed good 
agreement (R2 >0.9, 0.9<slope<1.3) for major NR-PM1 species (Young 
et al., 2015). Uncertainties and discrepancies across instruments should 
still be borne in mind when comparing the data obtained at the various 
sites of this study. 

At all sites, ACSM and AMS data were compared to data obtained 
independently by at least one other instrument (Supplement, Table S3). 
Particle Mobility Spectrometers, Optical Particle Counters or Tapered 
Element Oscillating Microbalances were used to evaluate NR-PM1 mass 
concentration ([NR-PM1]) data, while PM component concentrations 
obtained from off-line or on-line thermal-optical analysis and ion 
chromatography were used to check the measurements of organics and 
ionic species, respectively. Comparisons between the sum of NR-PM1 
chemical component determined by ACSM or AMS (corrected for 
elemental or equivalent black carbon when relevant and possible) and 
PM mass concentrations derived from independent measurements show 
a fair agreement (0.65<R2<0.98, 0.73<slopes<1.21) at the 19 sites 
where PM1 could be estimated. This indicates a good consistency despite 
fundamental differences amongst these various techniques, including 
their lower and upper cut-off diameters (see Supplement and Table S3). 
Fewer sites reported comparisons for organics (10), sulfate (14), nitrate 
(12) or ammonium (9). Fair agreements (0.76<R2<0.97) were found 
where sulfate and nitrate in PM1 were measured. The slopes of the re
gressions are better distributed around one for sulfate 
(0.63<slope<1.19) than for nitrate (1.23<slope<2.80), most certainly 
due to filter sampling negative artefacts affecting ammonium nitrate 
collection (Schaap et al., 2004). Fairly good correlations 
(0.69<R2<0.92) between organics measured by ACSM or AMS and 
organic carbon (OC) determined independently were also observed (see 

Supplement and Table S3). 
It should be noted that only nitrate IE and the ammonium RIE could 

be properly determined by the time these measurements were per
formed. Sulfate RIE were mostly assessed empirically (see Supplement 
Section 1), whereas a default RIE value of 1.4 was recommended for 
organics in ambient air. New calibration procedures allow for a more 
accurate determination of sulfate RIE as well as for investigating 
possible overestimation of the m/z 44 organic-related fragment 
(Fröhlich et al., 2015b; Pieber et al., 2016; Freney et al., 2019). Such 
calibration procedures were not available by the time of the measure
ments analyzed in this study, but no a posteriori correction of the datasets 
obtained several years earlier could be envisaged. 

2.3. Data processing 

Datasets from the 21 selected sites were gathered by the Joint 
Research Centre, after correction for CE, IE, and RIE performed by each 
data originator to produce as accurate as possible data from their in
strument (see Supplement Section1 for details). Fifteen of the ACSM 
datasets used in this study are currently available from the openly 
accessible EBAS database (ebas.nilu.no) operated by the Norwegian 
Institute for Air Research (NILU). The other datasets are available on 
request from the authors of the present work. 

The temporal coverage of the selected ACSM and AMS datasets was 
uneven, with the first measurement starting in February 2011 and the 
last one ending in May 2015 (Fig. S2). Three assumptions were made to 
permit comparisons among sites. First, a dataset was assumed to be 
representative of a given season (Spring: MAM, Summer: JJA, etc.) if 
data covered more than 45 days during this season (i.e. data coverage 
higher than ~50%). This criterion of 50% data coverage is low 
compared to the minimum data capture of 90% for particulate matter 
reported in the data quality objectives of the European directive 2008/ 
50/EC, but it is still high compared to the large majority of ACSM or 
AMS based studies, which are typically conducted during ca. 10–30 days 
in a given season (Jimenez et al., 2009; Ng et al., 2010; Crippa et al., 
2014). Second, a dataset was assumed to be representative of a full year 
of measurements if comprising at least three seasons, including summer 
and winter. All 21 datasets selected for this study are representative for 
the 4 seasons and a full year of measurements. Seasonal averages were 
calculated from all the data available for each season, and annual sta
tistics from entire years to avoid over representing one or several sea
sons with respect to others. Third, PM inter-annual variability was 
assumed to be negligible across the 4-year period of measurements 
(2011–2015). This assumption could possibly have two limitations due 
to inter-annual climate variability (Andersson et al., 2007; Barmpadi
mos et al., 2012), and long-term decreasing PM trend at some European 
sites (e.g. Tørseth et al., 2012; Querol et al., 2014; Zhang et al., 2019). 
Nevertheless, based on chemical transport model simulations of PM2.5 
concentrations from 1958 to 2001 over Europe, Andersson et al. (2007) 
estimate that the average European PM2.5 concentrations inter-annual 
variability due to meteorology is 7% only. In addition, the European 
Environment Agency reports a mean decrease in PM2.5 levels at all sites 
of − 0.48 ± 0.11 μg/m3 per year (EEA, 2019) over 2011–2015, while a 
previous report showed that trends were very small at urban and rural 
background sites over the 2006–2012 time period (EEA, 2014). Since 
our study is based on measurements made mainly at rural or regional 
and urban background sites, it can reasonably be assumed that the 
inter-annual variations in NR-PM1 were quite little over the 4-year 
period 2011–2015. However, we observed that component’s average 
contributions (%) are more robust (e.g. less sensitive to the period 
selected to calculate annual statistics) than mass concentrations 
(μg/m3). 

3. Results and discussion 

Standardized and quality controlled measurements of NR-PM1 
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components performed with the same analytical technique at 21 Euro
pean sites for periods long enough to be representative for a full year are 
reported here together for the first time. Several of these measurements 
have already been discussed in site specific publications (see Supple
ment Table S3). We focus here on similarities and differences across 
these 21 sites on the European scale rather than on site peculiarities. 

3.1. Annual averages 

3.1.1. Mass concentrations 
The lowest annual mean NR-PM1 concentration (0.8 μg/m3) was 

observed at Jungfraujoch (CH), our remote mountain site. Annual 
average NR-PM1 concentrations ranged from 2.8 to 14 μg/m3 across the 
other sites (Fig. 2), reflecting the diversity of the European environments 
we considered. Comparable NR-PM1 levels have been reported in 
Northern America (1.4–19 μg/m3 across 12 sites) by Jimenez et al. 
(2009), whereas the extreme concentrations measured in South Amer
ica, e.g. 41 μg/m3 in Mexico City, Mexico (Salcedo et al., 2006) or in 
Asia, e.g. 63 μg/m3 in Beijing, China (Huang et al., 2010), and 87 μg/m3 

in Delhi, India (Gani et al., 2019) were not observed at our set of sites in 
Europe (Fig. S3). This possibly results from efficient air quality policies 
implemented in Europe (Hey, 2005; Tørseth et al., 2012; Fuzzi et al., 
2015) and North America (US EPA, 2011, 2019) during the last decades. 
There are currently neither limit values nor target values for PM1 
pollution levels to compare these data with. Nonetheless, annual 
NR-PM1 mean concentrations measured at 4 sites of our study – Tartu 
(EE), Zurich (CH), Prague (CZ) and Ispra (IT) – were higher than the 
WHO guidelines of 10 μg/m3 for PM2.5 (WHO, 2006) and close to that 
value (9<[NR-PM1]<10 μg/m3) at 4 others– Dunkirk (FR), Magadino 
(CH), London (UK) and Melpitz (DE) –, including several regional 
background sites. Since the relationship between exposure to fine PM 
and health response is linear and without any threshold below which 
fine PM does not affect human health (WHO, 2013), reducing NR-PM1 
levels would anyway be beneficial everywhere. 

The type and geographical location of the 21 sites are indicated in 
Fig. 2 to help understand NR-PM1 inter-site variability. A gradient from 
remote to coastal to rural and regional background to urban background 
locations (annual grand averages = 0.8, 4.5, 7.7 and 10.6. μg/m3, 
respectively) is generally observed (as highlighted in Fig. 2b), underly
ing the influence of local sources on NR-PM1 concentrations. Several 
exceptions can be noticed, with specific rural or regional background 

sites like Ispra (IT) or Hyytiälä (FI) exhibiting NR-PM1 levels comparable 
to urban or coastal locations, respectively. The type of site is hence not 
sufficient to fully explain the submicron aerosol concentration vari
ability across Europe. Their geographical location within Europe must 
also be taken into account. Considering sites’ latitude in Fig. 2b reveals 
that NR-PM1 concentrations are generally higher in ME compared to SE 
and NE (see also Table 1). The assessment of NR-PM1 mass concentra
tion data quality indicates that such differences cannot be due to biases 
in aerosol mass spectrometers’ measurements. High NR-PM1 levels 
observed at rural or regional background locations in ME (grand 
average = 9.1 μg/m3) compared to SE and NE (6.2 and 4.3 μg/m3, 
respectively) suggest a homogeneous and elevated submicron aerosol 
background level in mid-latitude Europe. Larger emission rates of fine 
particles and precursors in ME is probably the main cause. Other 
possible reasons including variations in meteorological conditions that 
could have produced variations in pollution advection, aerosol wet 
removal rates, and/or photochemical production of secondary organic 
and inorganic aerosol, could also explain the higher NR-PM1 levels 
observed in SE compared to NE. Differences in the collection efficiency 
of the instruments operated in NE (possible slight low bias) and SE 
(possible slight low bias) also cannot be excluded. Eventually, a possible 
slight impact of interannual variations in NR-PM1 concentrations cannot 
be rigorously ruled out. 

3.1.2. Chemical composition 
Since air pollutant concentrations are largely affected by vertical and 

horizontal dispersion and therefore very variable, the variations in or
ganics, sulfate, nitrate and ammonium across our 21 sites are discussed 
in terms of contributions to the sum ([NR-PM1]) of all the components 
measured by the AMS or ACSM. These variables are of course different 
from the contributions of these species to PM1 since the refractory 
components of PM1 are not taken into account. They are however in
dependent from pollution dilution rates, but obviously not independent 
from each other. 

Large annual average contributions of organic aerosol (range 
36–64%, grand average 51%) are observed at all sites (Fig. 3a). Sulfate is 
on average the second most important component of NR-PM1 (grand 
average 21%, range 12–44%). Its contribution equals or exceeds that of 
organic aerosol only at Mace Head (IE) and Finokalia (GR), both coastal 
sites. Nitrate (grand average 15%, range 6–35%) becomes the second 
highest contributor to NR-PM1 after organics and on par with sulfate at 

Fig. 2. Annual NR-PM1 concentrations 
across Europe. Panel (a): Box plots con
structed from the 5th, 25th, 50th, 75th 
and 95th percentiles; averages indicated 
by the symbol in box (Δ = northern, =
mid-latitude, O = southern Europe). 
Colors indicate the type of site (see 
legend). Panel (b) shows again the 
annual averages classified according to 
the 3 latitude zones (see Section 2.1). 
(For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the Web version of this 
article.)   
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Magadino (CH), London (UK), Zurich (CH), Prague (CZ) and Ispra (IT), 
and significantly ahead of sulfate at Hohenpeissenberg (DE), Sirta (FR), 
Cabauw (NL), and Melpitz (DE), i.e. all the regional and urban back
ground sites located in ME. Interestingly, notable nitrate contributions 
(10–28%) are observed at five locations in summer (Prague, Melpitz, 
Hohenpeissenberg, Dunkirk (FR), Cabauw). Nitrate contributions would 

have most probably been largely underestimated by classical filter-based 
measurements that are prone to negative sampling artefacts for semi- 
volatile species at ambient temperatures >20 ◦C (see e.g. Schaap 
et al., 2004; Kulkarni et al., 2011). Nitrate is the only species for which 
the annual mean contribution to NR-PM1 significantly (99% confidence 
level) correlates with the annual mean NR-PM1 across our 21 sites (see 

Table 1 
Annual NR-PM1 mass concentrations (μg/m3) and chemical composition (%) statistics at the various types of site across Europe and at regional background sites in 
northern, southern and mid-latitude Europe.   

Type of site Regional background   

Remote Coastal Rural & 
Regional 
background 

Industrial Urban 
background 

Northern 
Europe 

Southern 
Europe 

Mid-latitude 
Europe  

Nr of sites 1 3 11 1 5 3 2 6 
[NR-PM1] (μg. 

m− 3) 
av 0.8 4.5 7.7 9.1 10.6 4.3 6.2 9.1 
std 1.0 4.2 8.3 9.2 10.1 4.0 5.5 9.3 
med 0.4 3.3 5.0 6.0 7.3 3.0 4.8 6.2 
25th- 
75th 

0.2–1.0 1.4–6.2 2.3–10.3 2.8–12.1 3.7–14.2 1.5–5.8 2.1–8.9 2.8–12.3 

Organics (%) av 49 44 54 38 50 60 55 53 
std 18 15 17 18 18 18 13 17 
med 49 44 55 37 50 60 55 54 
25th- 
75th 

37–62 34–54 42–68 24–51 37–63 47–74 46–64 40–67 

Sulfate (%) av 27 34 16 28 19 22 20 14 
std 16 13 10 20 11 13 10 9 
med 23 34 14 22 17 20 19 13 
25th- 
75th 

15–36 25–43 9–22 13–39 11–25 12–29 13–26 8–19 

Nitrate (%) av 8 8 18 21 18 8 12 22 
std 7 7 14 14 14 8 10 14 
med 7 6 13 18 14 5 9 18 
25th- 
75th 

4–12 4–9 6–27 9–30 7–26 3–9 5–18 9–32 

Ammonium (%) av 16 14 11 13 13 11 13 11 
std 12 7 7 5 6 9 5 6 
med 12 13 11 13 13 9 13 11 
25th- 
75th 

8–20 10–17 7–15 10–17 9–16 5–14 10–16 7–15 

av: average, std: standard deviation, med: median, 25th - 75th: 25th percentile and 75th percentile. 

Fig. 3. Annual average NR-PM1 relative chemical composition across Europe. Symbols in panel (a) indicate the type of site and the latitudinal location. 
In panels (b) and (c), percentages (%) are the ranges of the annual averages and figures in italics are the number of sites for each category. 
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Section 3.4). Ammonium concentrations are closely related to those of 
sulfate and nitrate, as a consequence of sulfuric and nitric acid 
neutralization by ammonia (see Table S2). However, we observed that 
sulfate and nitrate are not always fully balanced by ammonium at 
Jungfraujoch, Hyytiälä, Mace Head, Virolahti, Finokalia, Hohenpeis
senberg, Cabauw, Dunkirk, London, Zurich and Ispra. This may be due to 
NH3 shortages at e.g. remote or coastal sites, or to significant concen
trations of organic nitrates at NOx-rich locations. Indeed, recent high 
resolution measurements showed that a significant part of the nitrate 
consists of organic nitrates at various sites across Europe (Kiend
ler-Scharr et al., 2016). Ammonium contributes on average for 12% 
(range 8–17%) to [NR-PM1]. 

NR-PM1 grand average chemical composition at coastal sites is rather 
similar to the one at the remote site of Jungfraujoch (CH), and the grand 
average chemical compositions at regional and urban background sites 
look very similar to each other (Fig. 3b). However, the limited number of 
sites of each type, and the variability of the chemical composition among 
sites of the same type reduce the statistical significance of these obser
vations. Nevertheless, the predominance and similarity of organics’ 
contribution at all types of site are strongly suggested by our data set. 
This could be explained by i) the wide variety of primary and secondary 
organic aerosol sources, ranging from local - e.g. food cooking in urban 
areas (Mohr et al., 2012; Minguillón et al., 2016), and domestic wood 
burning (Crippa et al., 2014) - to natural sources - e.g. marine biogenic at 
coastal locations (Karl et al., 2015) and primary and secondary biogenic 
aerosol in forested areas (Yttri et al., 2011; Minguillon et al., 2016) - 
which could compensate each other, ii) the co-emission of organic and 
inorganic particulate compounds or precursors from major sources (e.g. 
combustion processes), iii) physico-chemical processes affecting simi
larly both organic and the inorganic species (e.g. condensation in winter 
and photochemical production in summer) and iv) the relatively long 
lifetime of submicron particles resulting in relatively small gradients in 
their chemical composition from source regions to regional background 
regions when averaged over a full year (Donahue et al., 2013). 

In contrast with organics, annual mean nitrate contributions vary 
largely across Europe (6–35%; Fig. 3a). Remarkable differences can be 
noticed between remote + coastal and urban + regional background 
sites (8 and 18%, respectively, Fig. 3b). Local anthropogenic emissions 
of nitrogen oxides (NOx) - mostly from road and non-road transport, 
energy transformation and industrial combustion in Europe (Pay et al., 
2012) - therefore play a key role in particulate nitrate formation. Urban 
and regional background sites exhibit very similar annual mean nitrate 
contributions (18%), which could be explained by compensation effects. 
Indeed, ammonium nitrate is essentially a secondary pollutant coming 
from the reaction between nitric acid (formed by the atmospheric 
oxidation of NOx) and ammonia. The formation of particulate ammo
nium nitrate can be ammonia or nitric acid sensitive in HNO3- and 
NH3-rich air, respectively, depending also on the aerosol pH and water 
content (Petetin et al., 2016; Nenes et al., 2020). 

As for nitrate, sulfate contributions to NR-PM1 largely differ across 
Europe (12–44%) depending on site type and location. On average, 
higher contributions are found at remote and coastal areas (~30%) 
compared to regional and urban locations (below 20%). Data quality 
assessments give confidence that this difference cannot be due to 
instrumental biases (see Table S3). At coastal sites, sulfate concentra
tions are not significantly less than at some of the regional and even 
urban background sites, although major sulfur dioxide (SO2) sources are 
located in the vicinity of the latter both. However, SO2 emissions have 
sharply decreased in Europe during the last 30 years (Smith et al., 2011; 
Chin et al., 2014) thanks to the implementation of specific measures, e.g. 
the European NEC Directive (EU, 2016) and the United Nation Goth
enburg (1999) protocol on sulfur emissions. The highest sulfate contri
butions reported in coastal areas can then be related to: i) shipping 
emissions of SO2 (Viana et al., 2014), ii) marine phytoplankton emis
sions of dimethylsulfide (Quinn and Bates, 2011) influencing coastal 
sites, iii) the slow conversion (3–4 days) of SO2 to sulfate in the gas phase 

and the liquid phase (cloud droplets) possibly hundreds of km away 
from SO2 sources (Stein and Lamb, 2002 and references therein) and iv) 
low conentrations of organics and nitrates due to low concentrations of 
gaseous precursors (volatile organic compounds and NOx) in the marine 
atmosphere. 

Comparing regional backgrounds in northern, mid-latitude, and 
southern Europe, statistically significant (99% confidence level) differ
ences in NR-PM1 grand mean chemical composition can be highlighted. 
The contribution of nitrate is greater at ME sites compared to NE and SE 
sites, due to generally much higher concentrations of nitrate in ME. In 
contrast, the contribution of sulfate is less in ME than in NE and SE, 
partly due to moderate sulfate concentrations in ME, but mainly because 
of higher nitrate and organics concentrations in the mid-latitude band 
(Fig. 4). Comparisons with independent measurements of nitrate and 
sulfate indicate that such differences cannot be attributed to inaccura
cies in aerosol mass spectrometer measurements (see Table S3). The fact 
that there is no significant difference in nitrate contribution between 
northern and southern Europe suggests that the different NR-PM1 
chemical composition observed in ME compared to other latitudes 
comes more from differences in the emission of particulate nitrate and 
sulfate precursors (including ammonia) than from differences in atmo
spheric processes (volatilization and/or condensation of ammonium 
nitrate and photochemical production of sulfate). There is no significant 
difference in contributions of organics across the 3 latitudinal zones (NE, 
ME and SE) although all NE sites (SMR, BIR, VIR) exhibit annual relative 
contributions of organics larger than 55%, likely due to the combination 
of the little anthropogenic influence (leading to low levels of ammo
nium, nitrate and sulfate), and also to substantial concentrations of 
organic aerosol from spring to summer (Fig. 4), coming from biogenic 
aerosol sources (Daellenbach et al., 2017). 

3.2. Seasonal variations 

Seasonal statistics in NR-PM1 mass concentrations are shown in 
Fig. 4. While low particulate pollution periods ([NR-PM1] < 5 μg/m3) 
can be observed at any site during any season, acute particulate pollu
tion events ([NR-PM1] > 30 μg/m3) are only exceptionally observed 
during summer. All sites where [NR-PM1] is least in summer (Sirta, FR; 
Barcelona, ES; Dunkirk, FR; Tartu, EE, Zurich, EE; Prague, CZ) are urban 
or industrial sites, except Sirta (FR), which is however located only 20 
km SW of Paris city center. These minima are mainly due to lower nitrate 
concentrations, even if organics’ concentrations are also lower in sum
mer compared to other seasons at most of these sites. In contrast, the NR- 
PM1 seasonal maxima observed in summer at Jungfraujoch (CH), 
Hyytiälä (FI), Corsica (FR), Montsec (ES), Finokalia (GR), and Montseny 
(ES) are all due to increased concentrations in organics and sulfate, 
except in Hyytiälä (organics only). All these sites are little polluted, and 
three out of five sit in southern Europe. Large increases of sulfate con
centrations in summer are also observed in Barcelona (ES), Hohen
peissenberg (DE), London (UK), and Ispra (IT). High summertime sulfate 
concentrations may be attributed to a faster photochemical production 
of sulfate. 

The seasonal variations in NR-PM1 chemical composition (Fig. 4) are 
much less than the seasonal variations in NR-PM1 concentrations. For 
instance, seasonal mean chemical compositions are almost identical at 
the two rural sites in Finland, while concentrations are about twice as 
high in Virolahti (FI) compared to Hyytiälä (FI). Similarly, the NR-PM1 
chemical compositions are almost constant across the 4 seasons at 
Corsica (FR) and Finokalia (GR) while concentrations vary by a factor of 
more than 2 at both Mediterranean coastal sites. Seasonal variation 
magnitudes (maximum/minimum ratio) in components’ contributions 
to NR-PM1 are greatest for nitrate (range 1.4–4.6), and smallest for or
ganics and ammonium (range 1.1–1.7 for both). Large seasonal varia
tions in nitrate contribution (with minima in summer everywhere but 
Jungfraujoch, CH) likely result from an increased volatilization of 
NH4NO3 during warmer periods, while the more constant contribution 
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of ammonium could come from the production of (NH4)2SO4 counter
balancing the volatilization of NH4NO3 during summer. The fairly 
constant contribution of organics across the year could be at least partly 
explained by the large variety of organic aerosol sources with opposite 
seasonal cycles like wood burning for domestic heating (higher during 
colder months) vs. formation of secondary biogenic aerosols (higher 
during warmer months). The seasonal variations in NR-PM1 chemical 
composition still greatly differ across the 21 sites of our study, sug
gesting that various factors influence NR-PM1 with different weights 
during the 4 seasons at most sites. The coastal sites in the Mediterranean 
emerge as exceptions with fairly constant NR-PM1 chemical composi
tions across the year. 

3.3. Diel cycles 

Hourly median contributions of organics, sulfate and nitrate (Fig. 5) 
were calculated for winter (DJF) and summer (JJA) months separately. 
The time used to plot these diel variations is the official local time in 
winter, and local time − 1 in summer. Diel cycles are highlighted by 
fitting 24-hr periodic sinusoidal functions to the hourly median values 
when reasonable (average residual < 20%). Diel cycle patterns can be 
roughly classified in three main categories: 1) fairly constant contribu
tions of organics, sulfate and nitrate over 24 h, 2) minimum contribution 
of organics (often corresponding with maximum contribution of nitrate) 
before sunrise and 3) other diel patterns, including minimum in or
ganics’ and maximum in nitrate contribution during daylight period. 
Diel variations in sulfate are generally not much marked, and too diverse 
to be used as a classification criterion. Possible explanations to these 
three patterns are discussed below. The daily cycles in concentrations 
(μg/m3) presented in the Supplement (Fig. S4) can also help understand 
the daily cycles in NR-PM1 chemical composition discussed below. 

3.3.1. “Flat” diel cycles 
The magnitude of the diel cycles (defined as daily maximum – daily 

minimum) in the contribution of organics, sulfate and nitrate is at most 
8% for both winter and summer in Birkenes (NO), Corsica (FR), 
Hohenpeissenberg (DE), Hyytiälä (FI), Mace Head (IE), and Virolahti 
(FI), and for winter only in Finokalia (GR) as shown in Fig. 5a and b (left 
hand column). These sites are all clean mountain, coastal or rural sites, 
which are mostly impacted by long range transported aged aerosol. The 
diel variations in organics and nitrate are clearly not affected by vola
tilization/condensation cycles in winter, and at most slightly only in 
summer. The greatest diel variations are observed for sulfate at Fino
kalia (GR) and Mace Head (IE) in winter (maximum sulfate contribution 
before sunrise), and at Hyytiälä and Virolahti (FI) in summer (maximum 
sulfate contribution after noon). The latter could be explained by an 
increased photo-chemical production of sulfate in the afternoon during 
summer. 

3.3.2. Minimum in organics contribution at night (before sunrise) 
Clear minima in the contribution of organics are observed at night 

(generally just before sunrise) for both winter and summer months in 
Cabauw (NL), London (UK), Montseny (ES), Sirta (FR), Prague (CZ), 
Tartu (EE), and Zurich (CH). Such minima in the contribution of or
ganics before sunrise are also observed in winter only in Barcelona (ES), 
Ispra (IT), and Melpitz (DE), and in summer only in Montsec (ES) and 
Jungfraujoch (CH) as shown in Fig. 5a and b (middle column). For 
Montsec and Jungfraujoch, the increase in the contribution of organics 
during daytime in summer could be explained by the strong growth of 
the mixed boundary layer during the warmest hours of the day (Ripoll 
et al., 2015; Fröhlich et al., 2015), bringing carbon enriched aerosol up 
to the sampling sites. A comparable increase is observed for nitrate 
contribution in Jungfraujoch, but not in Montsec where this effect is 
probably counter-balanced by NH4NO3 volatilization due to higher 
temperatures. All other sites with minimum contribution of organics at 
night (Cabauw, NL; London, UK; Montseny, ES; Sirta, FR; Prague, CZ; 
Tartu, EE; Zurich, CH; Barcelona, ES; Ispra, IT; and Melpitz, DE) are 
urban sites or regional background sites located in the vicinity of 

Fig. 4. Seasonal statistics in NR-PM1. Top panel: average concentrations of organics, sulfate, nitrate, and ammonium. Bottom panel: box plots constructed from the 
5th, 25th, 50th, 75th and 95th percentiles of NR-PM1 mass concentrations (left hand y-axis), and average chemical composition (right hand y-axis). Symbols between 
the 2 charts indicate sites type and location (see legend). 
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conurbations from where particulate air pollution can be transported 
within a few hours. However, nitrate contribution maxima before sun
rise and minima after noon (i.e. with a 12-hr phase shift compared to 

organics) can also be observed at all these sites (except Tartu in sum
mer). Possible explanations for these observations include increased 
emissions from wood burning in the evening in winter, and enhanced 

Fig. 5. a: Winter mean daily cycles in organics (top), sulfate (middle) and nitrate (bottom) contributions to NR-PM1. Sites are roughly classified according to the 
shape of the daily cycles in organics and nitrate. Sinusoidal functions (thick lines) were fit to the data points when appropriate 
Fig. 5b: Same as Fig. 5a for summer. 
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production of secondary organic aerosol in the afternoon in summer. 
The partial volatilization of particulate nitrate during daytime can also 
directly contribute to the afternoon minima in nitrate and indirectly 
participate in the afternoon maxima in organics’ contribution to 
NR-PM1. 

The hourly median contribution of sulfate is rather constant over 24 
h (variation magnitude at most 7%) in winter at all these sites. In 
contrast, it is quite variable (variation magnitude up to 13%) in summer 
at some sites including Cabauw (NL), London (UK), and Prague (CZ), 
where sulfate concentrations up to double during day time compared to 
night time. The most straightforward explanation for this would be the 
greater photochemical production of sulfate during day time in summer. 
However, the maximum contribution of sulfate also can be observed 
during night at other sites (e.g. Montsec, ES; Tartu, EE), mainly due to 
the fact that sulfate concentrations do not drop down at night as con
centrations of organics (the main NR-PM1 component) do. 

3.3.3. Other diel patterns 
Jungfraujoch (CH) is the only site with a maximum contribution of 

organics during daytime in winter (Fig. 5a, right hand column). This 
maximum coincides with a minimum contribution of sulfate, while the 
contribution of nitrate remains quite constant over the day. Significant 
diel variations are difficult to explain at such a mountain site, which 
mostly sits in the free troposphere in winter and can be affected by low 
altitude air masses only in particular meteorological situations (strong 
southerly Foehn winds or passing of cold fronts). 

In contrast, the contribution of organics is minimum during daytime 
in winter at a few other sites (Dunkirk, FR; Magadino, CH), concomitant 
with a maximum in nitrate contribution in Magadino (CH). Such diel 
cycles are consistent with evening increased emissions of organic aerosol 
from domestic wood burning in winter (Vlachou et al., 2018). 

In summer (Fig. 5b, right hand column), the minimum in organics 
contribution also occurs between noon and late afternoon in Barcelona 
(ES), Finokalia (GR), Ispra (IT), and Melpitz (DE). The minimum in 

nitrate contribution is also observed in the afternoon at 3 of these sites, 
Finokalia being the exception with a very flat diel cycle. Low contri
butions of organics and nitrate during the hottest hours of the day point 
to the volatilization of semi-volatile particulate nitrate and organics as a 
driver of the observed diel cycles. The afternoon peak in sulfate 
contribution observed at these 3 sites - and also at Dunkirk (FR), Mag
adino (CH) and Prague (CZ) - could also result from an increased 
photochemical production of sulfate from about noon in summer (See 
Supplement, Fig. S4). 

3.4. Chemical composition of NR-PM1 as a function of [NR-PM1] levels 

3.4.1. Observations 
Fig. 6 shows the variations in NR-PM1 chemical composition as a 

function of NR-PM1 mass concentrations with a 1 μg/m3 resolution in 
NR-PM1 for each site. Averages were calculated excluding measure
ments where the contribution of one or more component(s) was nega
tive. Results are shown for [NR-PM1] bins in which at least ten 30 min- 
long measurements were available to ensure a reasonable representa
tiveness of all data points. 

Relatively constant chemical compositions, irrespective of NR-PM1 
mass concentrations, are observed at only a couple of sites (Fig. 6) like 
Finokalia (GR) and Jungfraujoch (CH), which are mainly impacted by 
long-range transport of air pollution. 

At most sites, the composition of NR-PM1 indeed varies with [NR- 
PM1] (Fig. 6). Although organics remain the main component of NR- 
PM1 at any concentration level at 12 of the 21 sites of our study, organics 
contribution actually decreases while the contribution of nitrate in
creases with NR-PM1 mass concentration at most (13) of the sites. This 
pattern is primarily observed in ME (9 from 13 sites), and at all urban 
sites. This could be explained by conditions (low temperatures, shallow 
mixed boundary layer, long nights) favoring both the accumulation of 
particulate matter and the formation of particulate ammonium and 
organic nitrates. The percentage of wintertime measurements 

Fig. 5. (continued). 
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contributing to each NR-PM1 mass bin is also shown in Fig. 6. High [NR- 
PM1] levels (and corresponding nitrate-rich chemical compositions) 
mainly reflect winter conditions in e.g. Cabauw (NL), Melpitz (DE), 
Zurich (CH) as expected, but not in e.g. Sirta (FR), London (UK) and 
Ispra (IT). Low temperatures associated with large [NR-PM1] levels and 
large nitrate contributions may certainly also occur during seasons other 
than winter. However, other phenomena like peaks in NOx emissions or 
specific pollution advection pathways can as well lead to increases of 
both NR-PM1 mass concentrations and nitrate contributions. 

Eight sites show other patterns (Fig. 6). An increasing contribution of 
organics is for instance observed for NR-PM1 mass concentration 
increasing up to 15 μg/m3 (e.g. Hyytiälä, FI; Birkenes, NO) or from 20 
μg/m3 at a few sites (e.g. Dunkirk, FR). Quite specifically, the contri
bution of sulfate increases with NR-PM1 concentrations at Finokalia 
(GR) only. 

If high PM1 concentrations were resulting only from the accumula
tion of particulate matter due to unfavorable meteorological conditions 
(e.g. shallow mixed boundary layer, lack of precipitation, weak winds), 
its chemical composition would a priori remain independent from its 
concentration. Our data confirm that other factors also contribute to the 
occurrence of high NR-PM1 levels, possibly including variations in 
specific source intensities, changes in pollution advection pathways, and 
increases in condensation rates of semi-volatile species. The latter can 
arise from lower temperatures (e.g., at night or during winter) and/or 
greater numbers of adsorption sites resulting from particle accumulation 
primarily due to weather conditions. 

3.4.2. Implications for PM abatement policies 
At 12 out of 21 sites, annual or daily mean [NR-PM1] exceeding the 

WHO annual or daily guideline values for PM2.5 were observed. 
Different suggestions for PM abatement policies can be formulated 
depending on the objectives sought. On average (Sect. 3.1.2), organics 
dominate NR-PM1 chemical composition at most European locations, 
which suggests that measures focused on the mitigation of organic 

aerosol would be efficient to comply with the European annual limit and 
target values for PM concentrations or similar regulations. The appor
tionment of organic aerosol into oxygenated and hydrocarbon-like or
ganics was performed at 9 sites only (Table S4), which does not allow us 
to describe further the sources of organic aerosol across the various site 
types or latitudinal zones previously defined. However, specific studies 
performed at several sites of this study showed that most of the submi
cron organic aerosol is secondary (i.e. formed from gaseous organic 
compounds via atmospheric reactions), and that most of it is from non- 
fossil origin (Minguillón et al., 2011, 2015, 2016; Canonaco et al., 2013; 
Fröhlich et al., 2015a; Ripoll et al., 2015; Bressi et al., 2016; Vlachou 
et al., 2018; Zhang et al., 2019). Its non-fossil origin may indicate 
biogenic sources and biomass burning as important aerosol sources of 
organic carbon in summer and winter, respectively (Canonaco et al., 
2015). However, at five of the studied sites (all in ME), nitrate becomes 
the major component of NR-PM1 for mass concentrations greater than 
40 μg/m3. This suggests that focusing on nitrate abatement would be 
particularly efficient at tackling acute particulate pollution episodes and 
reducing the risk of exceeding PM daily limit values at that type of site. 
Potentially both NOx and ammonia emission reductions could smooth 
down sharp particulate pollution peaks dominated by ammonium 
nitrate. 

No single strategy will be sufficient to fulfil the requirements of air 
quality directives regarding both daily and annual limit values in PM 
concentrations. Coping with the air quality legislation should never
theless not be an end in itself. It is rather a mean “to achieve levels of air 
quality that do not give rise to significant negative impacts on, and risks 
to, human health and the environment” (EU, 2013). If we focus on the 
impacts of PM on human health, both short-term and long-term expo
sures should be considered, since they “contribute to different stages of 
disease development within an individual or population subgroups at 
certain points in time” (WHO, 2013). From this temporal perspective, 
both particulate organics and nitrate should be targeted in Europe. The 
adverse health impact of individual chemical components could possibly 

Fig. 6. Relative chemical composition (%) as a function of NR-PM1 mass (annual coverage). Black dots indicate the frequency of occurrence of NR-PM1 concen
trations greater than the value on the x-axis (cumulative frequency of occurrence). White dots indicate the percentage of wintertime data contributing to each mass 
bin. Map designed with Google Earth 7.February 1, 2041 (Google Inc.). 
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also be considered at some point. Particulate sulfate and nitrate com
pounds were reported not to cause excess health risks in past toxico
logical studies (Schlesinger and Cassee, 2003; Reiss et al., 2007; WHO, 
2013). In contrast, there is growing evidence on the associations of 
carbonaceous matter with health effects (Zanobetti et al., 2009; Delfino 
et al., 2010; WHO, 2013). However, the role of PM major components in 
PM adverse health effects has not been definitively elucidated yet (US 
EPA, 2019). It is therefore too early to envisage the development of 
legislative rules addressing separately organics, sulfate, nitrate and 
ammonium for the scope of protecting human health. In contrast, 
chemical speciation of PM shall systematically be performed in support 
to epidemiological studies in the future. This will provide the informa
tion needed to further develop the air quality related legislation, 
possibly addressing specific PM components or sources. 

4. Conclusions and perspectives 

Non-refractory submicron aerosol mass concentration and chemical 
composition measured on the long-term at high temporal resolution 
using the same standardized analytical technique at 21 sites across 
Europe (Fig. 1) are presented. These 21 sites were classified according to 
their type (remote, coastal, rural or regional background, urban and 
industrial) and geographical location (northern, southern and mid- 
latitude Europe). The following conclusions can be drawn:  

1 Annual average NR-PM1 mass concentrations ranged from 2.8 to 14 
μg/m3 across all sites except the remote mountain site (0.8 μg/m3). 
NR-PM1 mass generally presents an increasing gradient from coastal 
to regional background to urban background sites, and from north
ern to southern to mid-latitude Europe at regional background sites 
(Fig. 2). In particular, a quite homogeneous and elevated submicron 
aerosol background level is observed in mid-latitude Europe. 

2 The three major chemical constituents of NR-PM1 are in order or
ganics, sulfate and nitrate. (Fig. 3). Organics’ contribution is sub
stantial at all sites (annual averages = 36–65%). The variability in 
the contribution of organics is large within each class of type or 
latitude band, and no significant difference across these categories 
can be highlighted. Sulfate and nitrate present a wider range of 
annual mean contributions (12–44% and 5–35%, respectively). The 
grand average chemical compositions of NR-PM1 at regional and 
urban background sites do not significantly differ from each other. In 
contrast, nitrate contribution is on average greater and sulfate 
contribution is on average lower at mid-latitude compared to 
northern and southern Europe regional background sites (Table 1). 
This is due to higher concentrations of nitrate in mid-latitude Europe, 
but also to substantial concentrations of sulfate in northern and 
southern Europe (Fig. 4). Latitudinal gradients can be better 
explained by differences in nitrate and sulfate precursor emissions 
than by atmospheric processes.  

3 The seasonal variations in NR-PM1 chemical composition are much 
less than the variations in NR-PM1 components’ concentrations 
(Fig. 4). Nitrate shows the largest seasonal variations with minima in 
summer (except at the remote mountain site), which can be 
explained by a greater volatilization rate of NH4NO3 during warmer 
months.  

4 The main constituents of NR-PM1 show marked daily cycles at most 
sites both in winter and summer (Fig. 5). The most commonly 
observed diel variations are characterized by maxima in organic 
aerosol contribution in the afternoon or in the evening, generally 
concomitant with minima in nitrate contributions. Such diel varia
tions are observed at remote to urban sites, and from southern to 
northern Europe. The diel cycles in sulfate are generally less pro
nounced, but at the few sites where they are significant, maxima in 
sulfate contribution occur during the afternoon. The daily cycles in 
NR-PM1 chemical composition can be explained by diel changes in 
the emission of particulate matter and precursors, which can be 

amplified by atmospheric processes. No significant diel variations in 
NR-PM1 chemical composition could be detected at a few sites only. 
Those include only coastal and rural sites (mostly in southern and 
northern Europe), where long range transport of aged aerosol 
predominates.  

5 NR-PM1 chemical composition generally varies with NR-PM1 mass 
concentration (Fig. 6). Organics remain the major component of NR- 
PM1 at all concentration levels at most sites, but nitrate contribution 
commonly increases with NR-PM1 mass (13 sites), especially in mid- 
latitude Europe (10 sites). Large contributions of nitrate associated 
with high levels of NR-PM1 do not exclusively occur in winter and 
can probably not be related to low air temperatures only.  

6 Suggestions for smart PM abatement policies on the European scale 
depend on the objectives sought (e.g. legislative vs. human health 
impacts, annual vs. daily limit values, long-term vs. short-term 
exposure, …). Organic aerosol shall certainly be tackled as the 
main NR-PM1 component on the annual average at most of the Eu
ropean sites we studied, but nitrate shows up as a major species at 
high NR-PM1 mass concentration levels at most sites. 
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Forsberg, B., Åström, C., Ragettli, M.S., Guo, Y.-L., Chen, B.-Y., Bell, M.L., Wright, C. 
Y., Scovronick, N., Garland, R.M., Milojevic, A., Kyselý, J., Urban, A., Orru, H., 
Indermitte, E., Jaakkola, J.J.K., Ryti, N.R.I., Katsouyanni, K., Analitis, A., 
Zanobetti, A., Schwartz, J., Chen, J., Wu, T., Cohen, A., Gasparrini, A., Kan, H., 2019. 
Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 
381, 705–715. https://doi.org/10.1056/NEJMoa1817364, 2019.  

Loomis, D., Grosse, Y., Lauby Secretan, B., Ghissassi, F.E., Bouvard, V., Benbrahim 
Tallaa, L., Guha, N., Baan, R., Mattock, H., Straif, K., 2013. The carcinogenicity of 
outdoor air pollution. Lancet Oncol. 14 (13), 1262–1263. https://doi.org/10.1016/ 
S1470-2045(13)70487-X. 
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Löschau, G., Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., 
Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., 
Schneider, J., Spindler, G., ten Brink, H., Tursic, J., Viana, M., Wiedensohler, A., 
Raes, F., 2010. A European aerosol phenomenology – 3: physical and chemical 
characteristics of particulate matter from 60 rural, urban, and kerbside sites across 
Europe. Atmos. Environ. 44 (10), 1308–1320. https://doi.org/10.1016/j. 
atmosenv.2009.12.011. 

Querol, X., Alastuey, A., Pandolfi, M., Reche, C., Pérez, N., Minguillón, M.C., Moreno, T., 
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