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NON-AMBIGUOUS TREES: NEW RESULTS AND
GENERALISATION

JEAN-CHRISTOPHE AVAL, ADRIEN BOUSSICAULT, BÉRÉNICE
DELCROIX-OGER, FLORENT HIVERT, AND PATXI LABORDE-ZUBIETA

Abstract. We present a new definition of non-ambiguous trees
(NATs) as labelled binary trees. We thus get a differential equation
whose solution can be described combinatorially. This yields a new
formula for the number of NATs. We also obtain q-versions of our
formula. We finally generalise NATs to higher dimension.

Introduction

Non-ambiguous trees (NATs for short) were introduced in a previous
paper [ABBS14]. We propose in the present article a sequel to this
work.

Tree-like tableaux [ABN13] are certain fillings of Ferrers diagram,
in simple bijection with permutations or alternative tableaux [Pos07,
Vie08]. They are the subject of an intense research activity in combina-
torics, mainly because they appear as the key tools in the combinatorial
interpretation of the well-studied model of statistical mechanics called
PASEP: they naturally encode the states of the PASEP, together with
the transition probabilities through simple statistics [CW07].

Among tree-like tableaux, NATs were defined as rectangular-shaped
objects in [ABBS14]. In this way, they are in bijection with permuta-
tions σ = σ1 σ2 . . . σn such that the excedances (σi > i) are placed at
the beginning of the word σ.

Such permutations were studied by Ehrenborg and Steingrimsson
[ES00], who obtained an explicit enumeration formula. Thanks to
NATs, a bijective proof of this formula was described in [ABBS14].

In the present work, we define NATs as labelled binary trees (see
Definition 1.1, which is equivalent to the original definition). This new
presentation allows us to obtain many new results about these objects.
The plan of the article is the following.
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In Section 1, we (re-)define NATs as binary trees whose right and
left children are respectively labelled with two sets of labels. We show
how the generating series for these objects satisfies differential equa-
tions (Prop. 1.13), whose solution is quite simple and explicit (Prop.
1.14). A combinatorial interpretation of this expression involves the
(new) notion of hooks in binary trees, linked to the notion of leaves
in ordered trees. Moreover this expression yields a new formula for
the number of NATs as a positive sum (see Proposition 1.15), where
Ehrenborg-Steingrimsson’s formula is alternating. It should be noted
that Prop. 1.14 and Proposition 1.15 (in the case α = β = 1) were
already proven by Clark and Ehrenborg [CE10]. To conclude with Sec-
tion 1, we obtain q-analogues of our formula, which are similar to those
obtained for binary trees in [BW89, HNT08] (see Theorem 1.32, the
relevant statistics are either the number of inversions or the inverse
major index).
Section 2 presents a generalisation of NATs in higher dimension. For
any k ≤ d, we consider NATs of dimension (d, k), embedded in Zd, and
with edges of dimension k 1. The original case corresponds to dimen-
sion (2, 1). Our main result on this question is a differential equation
satisfied by the generating series of these new objects.

Finally, we study the (new) notion of hooks on binary trees in Section
3. We prove (through the use of generating series, and bijectively) that
the number of hooks is distributed on binary trees as another statistics:
the childleaf statistic, defined as the number of vertices who have at
least one leaf as a child.

1. Non-ambiguous trees

1.1. Definitions. We recall that a binary tree is a rooted tree whose
vertices may have no child, one left child, one right child or both of
them. The size of a binary tree is its number of vertices. Usually, it is
considered that there is a unique binary tree with no vertex, it is called
the empty binary tree. In this article, we consider that there are two
binary trees of size 0: the left empty binary tree and the right empty
binary tree, they are respectively denoted by ∅L and ∅R. Having no
child in the left direction (resp. right direction) is the same as having
the left (resp. right) empty subtree in this direction. We denote by
BT the set of binary trees. Given a binary tree B, we denote by
VL(B) and VR(B) the set of left children (also called left vertices) and
the set of right children (also called right vertices). By convention,
VL(∅L) = VR(∅R) = −1 and VL(∅R) = VR(∅L) = 0. We shall extend

1A definition in terms of labelled trees is given in Subsection 2.1.
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this notation to NATs. Let U and V be two vertices of a binary tree
B. If V is a vertex of the subtree of B whose root is U , then V is a
descendant of U and U an ancestor of V .

We now define the notion of non-ambiguous trees:

Definition 1.1. A non-ambiguous tree (NAT) T is a labelling of a
binary tree B such that:

• the left (resp. right) children are labelled from 1 to |VL(B)|
(resp. |VR(B)|), such that different left (resp. right) vertices
have different labels. In other words, each left (right) label ap-
pears exactly once.
• if U and V are two left (resp. right) children in the tree, such

that U is an ancestor of V , then the label of U in T is strictly
greater than the label of V .

The underlying binary tree of a non-ambiguous tree is called its
shape. By convention, there is a unique NAT whose shape is ∅L (resp.
∅R) which is also denoted ∅L (resp. ∅R). We denote by NAT (B) the
set of NATs of shape B.

It is sometimes useful to label the root as well. In this case, it is
considered as both a left and right child so that it carries a pairs of
labels, namely (|VL(T )| + 1, |VR(T )| + 1). On pictures, to ease the
reading, we color the labels of left and right vertices in red and blue
respectively.

In [ABBS14], NATs were defined in a slightly different, more geo-
metrical way. We recall it here, and show that the two definitions are
equivalent. Formally, a (geometric) NAT of size n is a set A of n points
(x, y) ∈ N× N such that:

(1) (0, 0) ∈ A; we call this point the root of A;
(2) given a non-root point p = (x, y) ∈ A, there exists one point

q = (x′, y′) ∈ A such that y′ < y and x′ = x, or one point
r = (x′, y′) ∈ A such that x′ < x, y′ = y, but not both (which

means that the pattern is avoided);

(3) there is no empty line between two given points: if there exists
a point p = (x, y) ∈ A, then for every x′ < x (resp. y′ < y)
there exists q = (x′′, y′′) ∈ A such that x′′ = x′ (resp. y′′ = y′).

Lemma 1.2. This geometric definition is equivalent to Definition 1.1.

Proof. Let us consider a NAT T presented as a labelled tree (Definition
1.1). Each vertex of T may be given a pair of coordinates (x, y) as
follows. For a left (resp. right) child, its x (resp. y) coordinate is
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its label in T . and its y (resp. x) coordinate is the one of its closest
ancestor which is a right child, or the root. We thus get a geometrical
object, which can be drawn as shown in Figure 1 (top, right). With the
minor change of coordinates (x̃, ỹ) = (|VL(T )|+ 1−x, |VR(T )|+ 1− y),
we get a set of points which satisfies the geometrical definition. The
only thing that needs to be checked is the avoidance of the pattern.
Let us proceed by reductio ad absurdum. We suppose that there are
three vertices p = (x̃, ỹ), q = (x̃′, ỹ) and r = (x̃, ỹ′), with x̃′ < x̃ and
ỹ′ < ỹ. We can suppose moreover that p is a right child and that its
parent is then r. Thus, q is not an ancestor of p. Let us consider the
closest ancestor c of q which is a right vertex. Then the label of c in T
is the same as the one of p, but it is not p as x̃′ < x̃. It is then absurd
that p and c have the same label in T .

Conversely, to go from the geometric version of a NAT to Definition
1.1, we just have to forget the redundant coordinate. �

The top part of Figure 1 shows an example of a NAT, and illustrates
the correspondence between the geometrical presentation of [ABBS14]
and Definition 1.1.

The dimension wL(T ) × wR(T ) of the rectangle containing the geo-
metrical presentation of T , is called the geometric size of T and satisfies

(wL(T ), wR(T )) = (|VL(T )|+ 1, |VR(T )|+ 1).

By convention, the non-ambiguous trees ∅L and ∅R satisfy respec-
tively (wL(∅L), wR(∅L)) = (0, 1) and (wL(∅R), wR(∅R)) = (1, 0).

Figure 2 gives an example of a class NAT (B), in the case where the
binary tree is B = •

•
•

•
•

.

1.2. Differential equations on non-ambiguous trees. The goal of
this section is to get (new) formulas for the number of NATs with
prescribed shape.

The crucial argument is the following remark: let T be a NAT whose
shape is a non-empty binary tree B =

L R
. Restricting the labellings

of the left and right children of T to L and R gives non-decreasing
labelling of their respective left and right children. Note that the root
of L (resp. R) is a left (resp. right) child in T . By renumbering the
labels so that they are consecutive numbers starting from 1, we get
two non-ambiguous labellings for L and R, that is two non-ambiguous
trees TL and TR. See Figure 1 for an example.
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Figure 1. A non-ambiguous tree, its geometrical pre-
sentation, and its left and right subtrees
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Figure 2. An example of NAT (B)

Remark 1.3. The geometric size of T satisfies:

wL(T ) = wL(TL) + wL(TR) (1)

wR(T ) = wR(TL) + wR(TR) (2)

Conversely, knowing the labelling of L and R, to recover the labelling
of T , one has to choose which labels among {1, . . . ,VL(T )} will be
used for L (including its root) and the same for right labels. As a
consequence, the number of NAT with shape B is given by:

∣∣∣NAT (
L R

)∣∣∣ =

(|VL(T )|
|VL(R)|

)(|VR(T )|
|VR(L)|

)
|NAT (L) | |NAT (R) |. (3)

Our first step is to recover the hook-length formula for the number of
NATs of fixed shape ([ABBS14]). We use the method from [HNT08],



6 J.-C. AVAL AND AL.

namely, applying recursively a bilinear integro-differential operator called
here a pumping function along a binary tree.

First of all, we consider the Q-vector space QNAT of formal sums
of non-ambiguous trees and identifies NAT (B) with the formal sum
of its elements. We consider also the Q-vector spaces QNAT L and
QNAT R generated respectively by NAT \{∅R} and NAT \{∅L}. Let
M be the linear map

M : QNAT L ×QNAT R 7→ QNAT
sending a pair of non-ambiguous trees (T1, T2) to the formal sum of
NATs T such that TL = T1 and TR = T2. The main remark is that
NAT (B) can be computed by a simple recursion using M.

Lemma 1.4. The formal sum NAT (B) of non-ambiguous trees of
shape B satisfies the following recursion: if B = ∅L or B = ∅R then
NAT (B) = B, else

NAT
(
L R

)
= M (NAT (L) ,NAT (R)) .

To count non-ambiguous trees, and as suggested by the binomial
coefficients in (3), we shall use doubly exponential generating functions
in two variables x and y, where x and y count the geometric size:

the weight of a NAT T is Φ(T ) := xwL(T )

wL(T )!
ywR(T )

wR(T )!
. We extend Φ(T ) by

linearity to a map QNAT 7→ Q[[x, y]]. Consequently, Φ(NAT (B)) is
the generating series of the non-ambiguous trees of shape B. Thanks
to (3) the image in Q[[x, y]] of the bilinear map M under the map Φ is
a simple differential operator:

Definition 1.5. The pumping function B is the bilinear map Q[[x, y]]×
Q[[x, y]] 7→ Q[[x, y]] defined by

B(f, g) =

∫ x

0

∫ y

0

∂yf(u, v) · ∂xg(u, v) du dv. (4)

We further define recursively, for any binary tree B an element L(B) ∈
Q[[x, y]] by

L(∅L) = y, L(∅R) = x and L
(
L R

)
= B (L(L),L(R)) . (5)

A simple computation gives us that for f = xa1
a1!

yb1

b1!
and g = xa2

a2!
yb2

b2!

one has

B(f, g) =

(
a1 + a2 − 1

a2 − 1

)(
b1 + b2 − 1

b1 − 1

)
xa1+a2

(a1 + a2)!

yb1+b2

(b1 + b2)!
.
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Whence for (T1, T2) a pair of NATs in QNAT L ×QNAT R, we get:

B(Φ(T1),Φ(T2)) =

(
wL(T1) + wL(T2)− 1

wL(T2)− 1

)(
wR(T1) + wR(T2)− 1

wR(T1)− 1

)
× xwL(T1)+wL(T2)

(wL(T1) + wL(T2))!

ywR(T1)+wR(T2)

(wR(T1) + wR(T2))!

Thus (3) implies the following lemma.

Lemma 1.6. For (T1, T2) a pair of NATs in QNAT L×QNAT R, one
has

Φ(M(T1, T2)) = B(Φ(T1),Φ(T2)).

We derive from these two lemmas the following proposition.

Proposition 1.7. For any non-empty binary tree B,

Φ(NAT (B)) = L(B).

Proof. We apply Lemmas 1.4 and 1.6 to write (with L and R the left
and right sub-tree of B):

Φ(NAT (B)) = Φ(M(NAT (L),NAT (R)))

= Φ(M(
∑

T1∈NAT (L)

T1,
∑

T2∈NAT (R)

T2))

=
∑

T1∈NAT (L)

∑
T2∈NAT (R)

Φ(M(T1, T2))

=
∑

T1∈NAT (L)

∑
T2∈NAT (R)

B(Φ(T1),Φ(T2))

= B

 ∑
T1∈NAT (L)

Φ(T1),
∑

T2∈NAT (R)

Φ(T2)

 = B(L(L),L(R)).

�

We are now able to recover the hook-length formula of [ABBS14] for
non-ambiguous trees of a given shape.

Proposition 1.8. Let B be a binary tree. For each non-root left (resp.
right) vertex U , we denote by EL(U) (resp. ER(U)) the number of left
(resp. right) vertices of the subtree with root U (itself included in the
count). Then

|NAT (B)| = |VL(B)|! · |VR(B)|!∏
U :left child

EL(U) ·
∏

U :right child

ER(U)
. (6)
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Before proving this Proposition, let us illustrate it on an example.

Example 1.9. Let B = . The hook formula is given by:

|NAT (B)| = 3!4!

(1 · 2 · 1) · (1 · 1 · 3 · 1)
= 24 . (7)

Proof. Proposition 1.7 may be rewritten as:

L(B) = |NAT (B)| x
wL(B)ywR(B)

wL(B)!wR(B)!
. (8)

So, we get by a simple computation :

L(B) = L
(
L R

)
= B (L(L),L(R))

= B
(
|NAT (L)| x

wL(L)ywR(L)

wL(L)!wR(L)!
, |NAT (R)| x

wL(R)ywR(R)

wL(R)!wR(R)!

)
=

|NAT (L)| · |NAT (R)|
wL(L)!wR(L)!wL(R)!wR(R)!

B
(
xwL(L)ywR(L), xwL(R)ywR(R)

)
=
|NAT (L)| · |NAT (R)|wR(L)wL(R)

wL(L)!wR(L)!wL(R)!wR(R)!

xwL(L)+wL(R)ywR(L)+wR(R)

(wL(L) + wL(R)) · (wR(L) + wR(R))

=
wR(L)wL(R)

wL(B)wR(B)
|NAT (L)| x

wL(L)ywR(L)

wL(L)!wR(L)!
· |NAT (R)| x

wL(R)ywR(R)

wL(R)!wR(R)!

which, together with (8) gives:

|NAT (B)| x
wL(B)ywR(B)

wL(B)!wR(B)!
=
wR(L)wL(R)

wL(B)wR(B)
· |NAT (L)| x

wL(L)ywR(L)

wL(L)!wR(L)!

· |NAT (R)| x
wL(R)ywR(R)

wL(R)!wR(R)!
.

We obtain

|NAT (B)|
(wL(B)− 1)!(wR(B)− 1)!

= wR(L)wL(R)
|NAT (L)| · |NAT (R)|

wL(L)!wR(L)!wL(R)!wR(R)!

=
1

wL(L)wR(R)

|NAT (L)|
(wL(L)− 1)!(wR(L)− 1)!

· |NAT (R)|
(wL(R)− 1)!(wR(R)− 1)!

.

We deduce that

|NAT (B)|
VL(B)!VR(B)!

=
1

wL(L)wR(R)
· |NAT (L)|
VL(L)!VR(L)!

· |NAT (R)|
VL(R)!VR(R)!

.
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The coefficient 1
wL(L)wR(R)

recursively gives the denominator of the

hook-legth formula, and we get (6). �

Let G be the exponential generating function of non-ambiguous trees
with weight Φ:

G(x, y) :=
∑

T∈NAT

Φ(T ) =
∑

T∈NAT

xwL(T )

wL(T )!

ywR(T )

wR(T )!
. (9)

and N its derivative N = ∂x∂yG. Naturally, they are linked by the
relation

G(x, y) = y + x+

∫ x

0

∫ y

0

N(u, v) du dv.

They are both solutions of a fixed point differential equation.

Proposition 1.10. The generating function N and G can be computed
by the following fixed point differential equations:

G = y + x+

∫
x

∫
y

∂xG · ∂yG and N =

(
1 +

∫
x

N

)
·
(

1 +

∫
y

N

)
(10)

Proof. The first equation is a consequence of the definition of the bi-
linear map B:

G =
∑
B∈BT

L(B)

= y + x+
∑

(L,R)∈BT L×BT R

L
(
L R

)
= y + x+

∑
(L,R)∈BT L×BT R

B(L(L),L(R))

= y + x+ B(G− x,G− y)

= y + x+ B(G,G),

with BT L = BT \ {∅R} and BT R = BT \ {∅L}. To prove the second
equation, remark that the first equation implies the identity

∂x∂yG = ∂xG.∂yG

and moreover that we have

∂xG = 1 +

∫
y

N and ∂yG = 1 +

∫
x

N.

�
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From these identities, a closed formula can be computed for N and G.
The expression of N was already proven in [CE10] using permutations.

Proposition 1.11. The doubly exponential generating functions for
non-ambiguous trees are given by

G = x+y−log(1−(ex−1)(ey−1)) , and N =
ex+y

(1− (ex − 1)(ey − 1))2 .

Proof. We know that G is a solution of{
∂x∂yf = ∂xf × ∂yf,
f(x, y) = f(y, x)

(11)

This system of equations satisfies the two following properties:

• if s is a solution of Equation 11 then for each power series ϕ with
constant term equal to zero, f(ϕ(x), ϕ(y)) is also a solution;
• if we fix the initial condition f(x, 0), there exists a unique formal

power series solution to Equation 11.

Let f be a particular solution. Let us consider the notation fx := ∂xf
and fy := ∂yf , then

∂xfy · ∂yfx = f 2
xf

2
y .

We suppose that ∂xfy = f 2
y and ∂yfx = f 2

x , hence

fy =
−1

x+ c1(y)
and fx =

−1

y + c2(x)
.

Since f 2
x = ∂yfx = fxfy, we get fy = fx, which implies

x+ c1(y) = y + c2(x).

As a consequence, c1(z) = c2(z) = z + c with c a real number. Finally

f(x, y) = − ln(x+ y + c).

Conversely, − ln(x + y + c) satisfies Equation (11). It remains to
find a real number c and formal power series ϕ such that G(x, 0) =
− ln(ϕ(x) + c). Since G(x, 0) = x, we get ϕ(x) = e−x − c. Moreover,
the condition ϕ(0) = 0 implies c = 1. As a consequence

G(x, y) = − ln(e−x + e−y − 1),

which can be rewritten as

G(x, y) = y + x− ln(1− (ex − 1)(ey − 1)).

Differentiating with respect to x and y, we find the expression of N. �
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In the context of the PASEP [CW07], it is natural to consider statis-
tics L0(B) and R0(B). Let us briefly recall that the partially asymmet-
ric exclusion process (PASEP) is a model for a system of interacting
particles hopping left and right on a one-dimensional lattice of n sites.
In the general case, the probability of a given state of the model de-
pends on five parameters (q, α, β, γ, δ) which give the probability of
transitions (a particle moving to the right or the left, or going in or
out the model, when possible). Tree-like tableaux [ABN13] have been
proven to give a combinatorial interpretation for the steady state of
the PASEP when γ = δ = 0, the weight in α (resp. β) corresponding
to the statistic L0(B) (resp. R0(B)) defined as follows.

Definition 1.12. The leftmost branch of a binary tree B is the set of
vertices {s0, . . . , sk} such that s0 is the root of B, sk is a leaf and si+1

is the left child of si, for each i < k. Similarly, we define the rightmost
branch of a binary tree. We denote by L0(B) and R0(B) the number
of non-root vertices respectively in the leftmost and rightmost branches.

We extend these definitions to non-ambiguous trees. For example,
in Figure 1, we have L0(T ) = 2 and R0(T ) = 5. Let us define the
following (α, β)-generating function for non-ambiguous trees:

N(x, y;α, β) =
∑

T∈NAT

x|VL(T )| · y|VR(T )| · αL0(T ) · βR0(T )

|VL(T )|! · |VR(T )|! .

It satisfies an (α, β)-analogue for the identity of Proposition 1.10.

Proposition 1.13. A differential equation for N(x, y;α, β) is

N(x, y;α, β) =

(
1 + α

∫
x

N(u, y;α, 1) du

)
·
(

1 + β

∫
y

N(x, v; 1, β) dv

)
.

Proof. We just need to define a new pumping function:

B(α,β)(f, g) = αβ B(f |β=1 , g|α=1)

and deduce the expected differential equation. �

The solution of the new differential equation is given by Proposi-
tion 1.14, a bijective proof is given in Section 1.3.

Proposition 1.14. The (α, β)-exponential generating function for non-
ambiguous trees is equal to

N(x, y;α, β) =
eαx+βy

(1− (ex − 1)(ey − 1))α+β
.
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If we develop this expression we obtain an (α, β)-analogue of the
enumeration of non-ambiguous trees of fixed geometric size.

Let us recall that the q-analogue of the Stirling numbers of the second
kind S2,q(n, k) is the number of ways to partition a set of size n in k
parts, where the power of q counts the number of elements different
from n in the subset containing n. For instance, S2,q(3, 2) = 1 + 2q,
S2,q(4, 2) = 1 + 3q + 3q2 and S2,q(4, 3) = 3 + 3q.

Proposition 1.15. Let i and j be two positive integers. The (α, β)-
analogue of the number of NATs of geometric size i× j is[

xi−1 yj−1

(i− 1)! (j − 1)!

]
N(x, y;α, β) =

∑
p>1

(p−1)! (α+β)p−1 S2,α(i, p) S2,β(j, p).

with q(n) := q(q+1) · · · (q+n−1) the rising factorial and S2,q(n, k) the
q-analogue of the Stirling numbers of the second kind.

1.3. Combinatorial interpretation with the zigzag bijection of
Burstein. The purpose of this subsection is to explain combinatorially
Propositions 1.14 and 1.15. To do so, we use the “zigzag” bijection
introduced and studied in [SW07]. This bijection, that we will denote
by ϕ, was further studied by Burstein [Bur07].

First, let us introduce the statistic that corresponds to the integer p
in the enumeration formula of Proposition 1.15.

Definition 1.16. Let B be a binary tree and v one of its node. The
hook of a vertex v is the union of {v}, its leftmost branch and its
rightmost branch. We say that v is the root of its hook. There is a
unique way to partition the vertices into hooks. The number of hooks
in such a partition is the hook number of the tree and it is denoted by
hook(T ). We extend this definition to non-ambiguous trees.

Remark 1.17. We can obtain recursively the unique partition of a
binary tree into hooks by extracting the root’s hook and iterating the
process on each tree of the remaining forest.

Example 1.18. In Figure 3, the hook whose root is 10 is highlighted in
purple. The partition of all the vertices into hooks can be seen by keep-
ing only bold edges. The roots of the hooks are {(11, 12), 10, 9, 8, 8, 7, 3, 2},
and so the hook number of the tree is 8.

The correspondence between p and this new statistic is proven here-
after.

Let us now define the bijection ϕ between non-ambiguous trees and
permutations. From now on, we juggle between the geometric repre-
sentation and the labelled binary tree representation of non-ambiguous
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Figure 3. Hooks (bold edges) on a non-ambiguous tree

trees. Let T be a non-ambiguous tree. We remove the first column of T ,
and denote by T ′ the result of this deletion. We number, starting with
1, the south-east border, starting from the westmost edge (Figure 4).
Let σ be the permutation ϕ(T ) and i the positive integer corresponding
to a border edge. The image σ(i) is defined as follows. Let e be the
border edge numbered by i and suppose that e is vertical. If e has no
point to its left in the same row in T ′, then σ(i) = i. Else, starting from
the leftmost point of the row in T ′, we go down to the closest point in
the same column, then right to the closest point in the same row and so
on by doing a ”zigzag” which alternates going down and right, until we
reach a border edge e′. The image σ(i) corresponds to the integer as-
sociated to e′. If e is horizontal, we start with the topmost point of the
same column and then we ”zigzag”, starting from with right direction
and going alternatively down and right, to find σ(i). For example, if T
if the non-ambiguous tree of Figure 4, then σ(23) = 13 and σ(3) = 7,
and more generally

σ = (13 1 6 20 12 5 22 10 2 23) (21) (18 3 7 17 15 4 19) (14 9 8 16) (11)

where we use the cyclic notation for permutations.

Remark 1.19. [Bur07, Section 2] It is a simple consequence of the
construction that every cycle of ϕ(T ) corresponds either to an empty
line or to a binary tree in T ′.

Let us recall that an excedance in a permutation σ is an entry i such
that σ(i) > i. In the cyclic notation, it corresponds to an ascent (an
integer followed -cyclically- by a greater one).

Proposition 1.20. [SW07, Theorem 14] Let wL and wR be two positive
integers. The map ϕ is a bijection between non-ambiguous trees of
geometric size wL×wR and permutations of size wL+wR−1 such that
all their excedances are at positions 1, · · · , wR − 1.
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Figure 4. Example of the bijection of Burstein.

If we do the same construction without deleting the first column of
T (in this case the corresponding horizontal border edge is numbered
with 0), we get another map, which we denote ψ. As observed in
Remark 1.19, ψ(T ) is a cyclic permutation.

The link between ϕ and ψ is given by the following lemma.

Lemma 1.21. Let T be a non-ambiguous tree. Let c1 · · · ck be the de-
composition in cycles of ϕ(T ) such that the biggest element of ci is
larger than the biggest element of ci+1. We denote by mi the repre-
sentative of ci ending by its biggest element. Then, a representative of
ψ(T ) is the word 0m1 · · ·mk.

This is illustrated on the running example of Figure 5. On this non-
ambiguous tree, denoted by T , ψ(T ) is the cycle

ψ(T ) = (0 13 1 6 20 12 5 22 10 2 23 21 18 3 7 17 15 4 19 14 9 8 16 11) .

Recall that ϕ(T ) is given by

ϕ(T ) = (13 1 6 20 12 5 22 10 2 23) (21) (18 3 7 17 15 4 19) (14 9 8 16) (11)

In particular, ψ(19) = 14 = ϕ(16).
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Figure 5. Example of the bijection ψ.

Proof. Let us denote σ = ϕ(T ) and c = ψ(T ). It is clear that only the
images of entries that have a point in the leftmost column of T (the
one deleted in T ′) are modified. Let us denote by i1 < · · · < ik these
entries. The construction implies that c(ij) = σ(ij−1) for 1 < j ≤ k,
c(i1) = 0 and c(0) = σ(ik). Whence the result. �

This lemma has two consequences. The first one is that, as ϕ is a
bijection, ψ is also one.

The second consequence is that the excedances of ψ(T ) are precisely
those of ϕ(T ), together with 0.

Corollary 1.22. Let wL and wR be two positive integers. The map ψ
is a bijection between non-ambiguous trees of geometric size wL × wR
and cycles of J0, wL+wRK such that all their excedances are at positions
0, · · · , wR − 1.

In order to ease future explanations, we number independently rows
and columns. We replace the integers J0, wR−1K with J1, wRK by using
the map i 7→ (wR − i), and the integers JwR, wR +wL−1K with J1, wLK
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by using the map i 7→ (i− wR + 1), as shown in Figure 5. If we denote
T the non-ambiguous tree of this figure, then ψ(T ) is equal to the cycle

(9 5 8 3 12 4 4 14 2 7 15 13 10 6 2 9 7 5 11 6 1 1 8 3) .

Definition 1.23. Let i and j be two positive integers. We define a
2-coloured block decreasing cycle of size i × j as a cycle of the set
J1, iK∪ J1, jK such that, if the image of an element a is an element b of
the same colour then a > b.

Using this definition, the map ψ is a bijection between non-ambiguous
trees of geometric size i × j and 2-coloured block decreasing cycles of
size i× j. Moreover, the number of blue blocks of the 2-coloured block
decreasing cycles has a simple interpretation over non-ambiguous trees.

Lemma 1.24. Let T be a non-ambiguous tree, then the hook number
of T is equal to the number of blue block in ψ(T ).

For example, if T is the non-ambiguous tree of Figure 5, its hook
number is 7, which is also the number of blue blocks in ψ(T ).

Proof. To prove this lemma, we show that, on the geometrical inter-
pretation of a non-ambiguous tree, the vertical border edges on which
ends a zigzag path starting from an horizontal border edge are exactly
the vertical border edges of a line containing the right branch of a
hook. For instance, on Figure 5, these vertical border edges are these
numbered by 15, 14, 12, 11, 9, 8 and 5.

A zigzag starting from an horizontal border edge first reach a node
on the right branch of a hook (as it has no vertices above). Then every
vertical step reaches either the root of a hook or an horizontal border
edge, while every horizontal step reaches either a non-root node on the
right branch of a hook or a vertical border edge. The only reached
nodes are then on the right branch of a hook or its root. If such a
zigzag path ends on a vertical border edge, the last step is horizontal
from the root of a hook or a node on its right branch: the corresponding
line contains the right branch of a node.

Similarly, a zigzag starting from a vertical border edge first reach
a node on the left branch of a hook (as it has no vertices on its left).
Then every horizontal step reaches either the root of a hook or a vertical
border edge, while every vertical step reaches either a non-root point
on the left branch of a hook or an horizontal border edge. The only
reached nodes are then on the left branch of a hook or its root. The
root of a hook in this case can only be reached after an horizontal step.
If such a zigzag path ends on a vertical border edge, the last step is
then horizontal from a non-root node on the left branch of a hook: the
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corresponding line does not contain the right branch of a node, which
proves the result. �

From this lemma, we deduce the following proposition.

Proposition 1.25. Let i, j and p be positive integers. The number of
non-ambiguous trees of geometric size i× j and hook number p is

(p− 1)! p! S2(i, p) S2(j, p).

Moreover, the doubly exponential generating series of non-empty non-
ambiguous trees, with weight on a NAT T given by

zhook(T ) x
wL(T ) ywR(T )

wL(T )!wR(T )!
,

is

− ln (1− z(ex − 1)(ey − 1)) .

Proof. According to Corollary 1.22 and Lemma 1.24, non-ambiguous
trees with geometric size i× j with hook number p is in bijection with
2-coloured blocks decreasing cycles of size i × j with p blue blocks,
which are counted by the enumeration formula.

The generating series is the one corresponding to a cycle whose el-
ements are pairs formed by a non-empty blue set and a non-empty
red set. Recalling that the generating series of cycles is − ln(1 − u)
and the one of pairs of sets is z(ex − 1)(ey − 1), we get the result by
composition. �

We extend naturally this proposition with the parameters α and β.

Theorem 1.26. Let i, j and p be positive integers. The number of
non-ambiguous trees of geometric size i× j and hook number p is

(p− 1)! (α + β)p−1 S2,α(i, p) S2,β(j, p).

Moreover, the doubly exponential generating series of non-empty non-
ambiguous trees, with weight on a NAT T given by

αL0(T )βR0(T )zhook(T ) xwL(T )−1 ywR(T )−1

(wL(T )− 1)! (wR(T )− 1)!
,

is
zeαx+βy

(1− z(ex − 1)(ey − 1))α+β
.

Proof. We first prove the expression zeαx+βy

(1−z(ex−1)(ey−1))α+β
. Let us first re-

mark that this can be rewritten as z × eαx+βy × e−α ln(1−z(ex−1)(ey−1)) ×
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Figure 6. Illustration of the proof of Theorem 1.26 with
both tree and geometrical representation of the same
NAT

e−β ln(1−z(ex−1)(ey−1)). This expression is the translation in terms of gen-
erating function of the following decomposition. A non-ambiguous tree
can be decomposed into three pieces:

• the set of child-free (i.e. with no child outside of the hook)
vertices in the hook h of the root (in yellow on figure 6)
• the set of non-ambiguous trees attached to the left branch of h

(in green on figure 6)
• and the set of non-ambiguous trees attached to the right branch

of h (in orange on figure 6).

There is one more hook in the initial tree than in the 3-tuple of
sets described above as the hook of the root does not appear in this
decomposition: this first remark justifies the first term z in the product.

The yellow set is constituted by a set of red labels and a set of
blue labels, all red (resp. blue) elements contributing to L0(T ) (resp.
R0(T )). The generating series associated to this set is then eαxeβy.
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The green set is the set of sub-non-ambiguous trees attached to a
vertex of the hook of the root. Each subtree gives a contribution α as its
root belongs to the hook of the root of the initial tree. Following Lemma
1.24, the associated generating series is then e−α ln(1−z(ex−1)(ey−1)).

In the same way, the generating series associated with the orange set
is e−β ln(1−z(ex−1)(ey−1)).

For the enumeration formula, let us consider a non-ambiguous tree
T . We use the same idea of decomposition. We delete the topmost
row and the leftmost column, before using the zigzags paths. Then,
for example, one of the zigzag on the tree of Figure 5 is illustrated on
Figure 6. For this tree, we get

(3) (13) (6 2 9 7 5 11 10) (1 8 6 1) (8 5) (7 3 12 4 4 14 2).

Red (resp. blue) parentheses means that the corresponding sub-non-
ambiguous tree is attached to the leftmost (resp. rightmost) branch.
We illustrate on the right of Figure 6 the cycle (6 2 9 7 5 11 10). This
way, we obtain a partition of red (resp. blue) labels in p = hook(T )
non-empty sets. The number of non-root points in the leftmost col-
umn (resp. topmost row), with no right (resp. left) child, is equal to
the number of elements minus 1 in the subset containing the biggest
element. This explains the α-analogue (resp. β-analogue) of S2. Let
us order and number the p− 1 other blue subsets with respect to their
biggest element and pair each blue subset with the red block to its right
(in the same cycle). Keeping the same example, we obtain

6 5 4 3 2 1
{9} {8} {7 3} {6 2} {5} {4} {1}

{15 13 3} {5} {12 4} {9 7} {11 10} {14 2} {8 6 1}
.

In a general setting, there are (p − 1)! pairing possibilities. Let us
now replace each pair with its corresponding number. We get

(6) (5 2) (4 3) (1).

In the end, in addition to the two partitions, we have a permutation
of size p − 1 decomposed in cycles and whose cycles are coloured in
red or in blue. Each red (resp. blue) cycle counts for an α (resp. β),
hence, the generating polynomial of such permutations is (α + β)p−1.
We finally get the desired formula. �

As stated in the introduction, Proposition 1.14 and Theorem 1.15
(in the case α = β = 1) were already proven by Clark and Ehren-
borg [CE10]. In the proof they gave, the statistic p is interpreted on
permutations as follows.
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Definition 1.27. Let i, j and n be positive integers such that n =
i+ j − 1. Let p be a permutation of size n such that all its excedances
are at position J1, j− 1K. The CE-statistic 2 of p is the positive integer

CE(p) = |{u ∈ J1, j − 1K, p(u) > i}|+ 1.

According to Lemma 1.24, the hook statistic corresponds to the num-
ber of blue blocks in 2-coloured block decreasing cycles. The bijection
between 2-coloured block decreasing cycles and permutations with all
their excedances at the beginning that we will study is Θ = ϕ ◦ ψ−1.
The following lemma describes the difference between the number of
blue blocks and the CE-statistic.

Lemma 1.28. Let i and j be positive integers and c a 2-coloured block
decreasing cycle of size i × j. Then, the number of blue blocks of c is
equal to the CE-statistic of Θ(c)

• minus 1, if j has a blue element to its right and
• plus 1, if 1 has a blue integer, different from j to its left.

Proof. Let p be a permutation of size n = i + j − 1 such that all its
excedances are at position J1, j−1K. If we keep the interpretation with
red and blue integers, the CE-statistic can be interpreted as

|{u ∈ J1, j − 1K, p(u) ∈ J2, iK}|+ 1.

Hence, the CE-statistic is the number of blue blocks of p without 1
to their right plus 1. Hence, we should study how the number of blue
blocks behave with respect to Θ. Using Lemma 1.21 we obtain the
conditions of Lemma 1.28. �

Following the previous lemma, Θ is not sufficient to prove the equidis-
tribution between the hook statistic and the CE-statistic. We need one
last involution. Let m be the representative of a 2-coloured block de-
creasing sequence c of size i × j such that j is on the left of m. The
word m can be factorised as m = jb1 · · · bk1m′ where the bi are maxi-
mal blocks of same colours. Let ω be the involution such that if k is
even then a representative of ω(c) is m = jb2b1 · · · bkbk−11m′, and if k
is odd then ω(c) = c.

Proposition 1.29. Let c be a 2-coloured block decreasing sequence.
The number of blue blocks of c is equal to the CE-statistic of Θ(ω(c)).

Corollary 1.30. The hook statistic on non-ambiguous trees and the
CE-statistic on permutations with all their excedances at the beginning
are equidistributed.

2The ”+1” does not appear in the definition of Clark and Ehrenborg. We intro-
duced it because there is a shift between the hook statistic and the CE-statistic.
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1.4. q-analogues of the hook formula. As for binary trees, there
exist q-analogues of the hook formula for NATs of a given shape, as-
sociated to either the number of inversions or the major index. There
are two ingredients: first we need to associate a pair of permutations
to a non-ambiguous tree, and second we need to give a q-analogue of
the bilinear map B. It turns out that it is possible to use two different
q’s namely qR and qL for the derivative and integral in x and y.

The first step, in order to formulate a q-hook formula, is to associate
to any non-empty non-ambiguous tree T a pair of permutations

σ(T ) = (σL(T ), σR(T )) ∈ SVL(T ) ×SVR(T ).

Definition 1.31. Let T be a non-ambiguous tree. Then σL(T ) is ob-
tained by performing a left postfix reading of the left labels: precisely
we recursively read trees

L R
by reading the left labels of L, then the

left labels of R and finally the label of the root if it is a left child. The
permutation σR(T ) is defined similarly by reading the right labels in the
right subtree, then in the left subtree and finally reading the root.

If we consider the example of Figure 1 the two associated permuta-
tions are σL(T ) = (2, 1, 4, 3, 6, 10, 8, 9, 5, 7) and σR(T ) = (1, 2, 3,
4, 5, 7, 11, 9, 6, 8, 10).

Recall that the number of inversions of a permutation σ ∈ Sn is the
number of i < j 6 n such that σ(i) > σ(j) (denoted by Inv from now
on). A descent of σ is a i < n such that σ(i) > σ(i+1) and the inverse
major index of σ is the sum of the descents of σ−1 (denoted by iMaj
from now on). Finally for a repetition free word w of length l we denote
by Std(w) the permutations in Sl obtained by renumbering w keeping
the order of the letters. For example Std(36482) = 24351. We define
as usual the q-integer [n]q := 1−qn

1−q , and the q-factorial [n]q! :=
∏n

i=1[i]q.

For a non-ambiguous tree T and a statistic S ∈ {Inv, iMaj}, we define
the weight of a NAT T as

ωS(T ) := q
S(σL(T ))
L q

S(σR(T ))
R . (12)

The following theorem is a q-analogue of Proposition 1.8.

Theorem 1.32. For any non-empty binary tree B,∑
T∈NAT (B)

ωS(T ) =
|VL(B)|qL ! · |VR(B)|qR !∏

U :left child

[EL(U)]qL ·
∏

U :right child

[ER(U)]qR
. (13)

Going back to the non-ambiguous tree of Figure 1, the inversions
numbers are Inv(σL(T )) = 11 and Inv(σR(T )) = 7, so that wInv(T ) =
q11
L q

7
R. For the inverse major index, we get the permutations σL(T )−1 =
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(2, 1, 4, 3, 9, 5, 10, 7, 8, 6) and σR(T )−1 = (1, 2, 3, 4, 5, 9, 6, 10, 8, 11, 7).
Consequently, iMaj(σL(T )) = 1+3+5+7+9 = 25 and iMaj(σR(T )) =
6 + 8 + 10 = 24 so that wiMaj(T ) = q25

L q
24
R .

The argument of the proof follows the same path as for the hook
formula, using pumping functions. Recall that the q-derivative and q-
integral are defined as ∂x,qx

n := [n]qx
n−1 and

∫
x,q
undu := xn+1

[n+1]q
. Then

the (qL, qR)-analogue of the pumping function is given by

Bq(f, g) =

∫
x,qL

∫
y,qR

∂x,qLg(u, v) · ∂y,qRf(u, v) du dv. (14)

We also define recursively Lq(B) by Lq
(
L R

)
= Bq (Lq(L),Lq(R)) ,

with initial conditions Lq(∅R) := x and Lq(∅L) := y. Then the main
idea is to go through a bilinear function on permutations. We write QS
the vector space of formal sums of permutations. For any permutation
σ ∈ Sn we write

∫
σ = σ[n+ 1] the permutation in Sn+1 obtained by

adding n+ 1 at the end. Again we extend
∫

by linearity.

Definition 1.33. The bilinear map MS : QS×QS 7→ QS is defined
for σ ∈ Sm and µ ∈ Sn by

MS(σ, µ) =
∑

uv∈Sm+n+1

Std(u)=
∫
σ

Std(v)=µ

uv .

For example MS(21, 12) = 21345+21435+21534+31425+31524+
41523 + 32415 + 32514 + 42513 + 43512.

Lemma 1.34. For two non-empty non-ambiguous trees C and D, we
have ∑

T∈M(C,D)

σL(T ) = MS(σL(C), σL(D))

and
∑

T∈M(C,D)

σR(T ) = MS(σR(D), σR(C)).

Proof. Let T be a NAT appearing in M(C,D), and let its shape be the
binary tree B. We may write σL(T ) = uv where u is the word given by
the left postfix reading of the left labels of the left subtree of T , and v
the one of its right subtree. By definition, we have Std(u) =

∫
σL(C)

and Std(v) = σL(D). The symbol
∫

in the first equality comes from
the fact that the root of C becomes a left label in T . Moreover, the
choice of a v such that Std(v) = σL(D) is equivalent to the choice of
a labelling of the left vertices of the right subtree BR of B, such that
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the order of the labels in D is respected. The same holds for u, and
the corresponding root C. This proves the first equality.

The second one is obtained in the same way. We have to take care of
two things: that the right postfix reading reads first the right subtree,
and that the root of D here becomes a right label in T . The order of
C and D is thus reversed in MS. �

Let us define a bilinear map ΦS. For two permutations τ ∈ Sm and
π ∈ Sn

ΦS((τ, π)) := q
S(τ)
L

xm+1

[m+ 1]qL !
q
S(π)
R

yn+1

[n+ 1]qR !
(15)

We shall use the same notation for NATs: ΦS(T ) = ΦS(σL(T ), σR(T )).
The main result, analogous to Proposition 1.7 is the following.

Proposition 1.35. For any non-empty binary tree B, we have the
relation

ΦS(NAT (B)) = Lq(B).

As for Proposition 1.7, Proposition 1.35 is derived recursively. The
analogue of Lemma 1.6 is the following.

Lemma 1.36. For (T1, T2) a pair of NATs in QNAT L × QNAT R,
one has

ΦS(M(T1, T2)) = Bq(ΦS(T1),ΦS(T2)).

To prove it, we first need a technical result.

Lemma 1.37. For a statistic S ∈ {Inv, iMaj}, and for τ ∈ Sm and
π ∈ Sn, we have:∑

θ=uv∈Sn+m+1

Std(u)=
∫
τ

Std(v)=π

qS(θ) = qS(τ)+S(π)

(
m+ n+ 1

m+ 1

)
q

.

Proof. The case S = Inv is easier to prove. The q-binomial consists
in choosing a permutation θ such that θ(1) < · · · < θ(m + 1) and
θ(m + 2) < · · · < θ(m + n + 1). The term qS(τ)+S(π) comes from the
reordering of the θ(i) in order to have Std(θ(1) · · · θ(m+ 1)) =

∫
τ and

Std(θ(m+ 2) · · · θ(m+ n+ 1)) = π.
In order to prove the case S = iMaj, we first obtain the following

two equations ∑
θ=uv∈Sn+m+1
n+m+1∈u
Std(u)=

∫
τ

Std(v)=π

qiMaj(θ) = qiMaj(τ)+iMaj(π)+n

(
m+ n

n

)
q

, (16)
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and ∑
θ=uv∈Sn+m+1
n+m+1∈v
Std(u)=

∫
τ

Std(v)=π

qiMaj(θ) = qiMaj(τ)+iMaj(π)

(
m+ n

n− 1

)
q

. (17)

Equation (16) is a consequence of Equation 36 in [HNT08]. We prove
Equation (17) by induction on n + m and by distinguishing the two
cases n+m ∈ u and n+m ∈ v. In the first case, by using (16) we have∑
θ=uv∈Sn+m+1
n+m+1∈v
n+m∈u

Std(u)=
∫
τ

Std(v)=π

qiMaj(θ) =
∑

uv′∈Sn+m+1
n+m∈u

Std(u)=
∫
τ

Std(v′)=π′

qiMaj(uv′) = qiMaj(τ)+iMaj(π′)+n−1

(
m+ n− 1

n− 1

)
q

,

where π′ is obtained from π by deleting the entry n. Let us set ε equal
to 1 if n is to the left of n − 1 in π and 0 otherwise. Then we may
write: iMaj(π) = iMaj(π′) + ε(n− 1), whence∑

θ=uv∈Sn+m+1
n+m+1∈v
n+m∈u

Std(u)=
∫
τ

Std(v)=π

qiMaj(θ) = qiMaj(τ)+iMaj(π′)+(1−ε)(n−1)

(
m+ n− 1

n− 1

)
q

.

In the second case, by using (16) by induction, we get:∑
θ=uv∈Sn+m+1
n+m+1∈v
n+m∈v

Std(u)=
∫
τ

Std(v)=π

qiMaj(θ) = qε(m+n)
∑

uv′∈Sn+m+1

n+m∈v′
Std(u)=

∫
τ

Std(v′)=π′

qiMaj(uv′)

= qiMaj(τ)+iMaj(π′)+ε(m+n)

(
m+ n− 1

n− 2

)
q

= qiMaj(τ)+iMaj(π)+ε(m+1)

(
m+ n− 1

n− 2

)
q

.

Then for any of ε, we have

qε(m+1)

(
m+ n− 1

n− 2

)
q

+ q(1−ε)(m+1)

(
n− 1

n− 1

)
q

=

(
m+ n

n− 1

)
q

.

Since (16) is trivially true when π is the unique permutation of size
1, the proof by induction is complete.
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To conclude the proof of the lemma, we add Equations (16) and (17)
and use the identity(

a+ b+ 1

a

)
q

=

(
a+ b

a

)
q

+

(
a+ b

a− 1

)
q

.

�

Proof of Lemma 1.36. Let us set

u = ΦS(T1) = q
S(σL(T1))
L

xwL(T1)

[wL(T1)]qL !
q
S(σR(T1))
R

ywR(T1)

[wR(T1)]qR !

and

v = ΦS(T2) = q
S(σL(T2))
L

xwL(T2)

[wL(T2)]qL !
q
S(σR(T1))
R

ywR(T1)

[wR(T1)]qR !
.

Thanks to Lemma 1.37, we have to prove that

Bq(u, v) = q
S(σL(T1))+S(σL(T2))
L

(
wL(T1) + wL(T2)− 1

wL(T1)

)
qL

× qS(σR(T1))+S(σR(T2))
R

(
wR(T1) + wR(T2)− 1

wR(T2)

)
qR

× xwL(T1)+wL(T2) ywR(T1)+wR(T2)

[wL(T1) + wL(T2)]qL ! [wR(T1) + wR(T2)]qR !
.

This is done by a simple computation, as in the proof of Lemma
1.6. �

Proof of Proposition 1.35. The proof is exactly the same as for Propo-
sition 1.7. We just have to replace Φ by ΦS and L by Lq. �

We are now in a position to prove Theorem 1.32.

Proof of Theorem 1.32. By definition, we have for any NAT T : ΦS(T ) =

ωS(T ) × xwL(T )

[wL(T )]qL !
ywR(T )

[wR(T )]qL !
. Proposition 1.35 implies that for a binary

tree B, ΦS([B]) = Lq(B), and we may compute Lq(B) recursively. Let
us suppose that neither BL nor BR is empty. We then have:

Lq(B) = Bq(Lq(BL),Lq(BR))

=

∫
x,qL

∫
y,qR

∂x,qL Lq(BL)(u, v) · ∂y,qR Lq(BR)(u, v) du dv

=
[wR(BL)]qL [wL(BR)]qR
[wL(B)]qL [wR(B)]qR

Lq(BL)Lq(BR).
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The same recursive computation as in the proof of Proposition 1.8
leads to∑

T∈NAT (B) ωS(T )

[wL(B)]qL ![wR(B)]qR !
=

1∏
U :left child

[EL(U)]qL ·
∏

U :right child

[ER(U)]qR

which gives Theorem 1.32. �

We conclude this section by an example, using the same tree as in
Example 1.9.

Example 1.38. Let B = . The q- hook formula is given

by: ∑
T∈NAT (B)

ωS(T ) =
[3]qL ![4]qR !

([1]qL [2]qL [1]qL) · ([1]qR [1]qR [3]qR [1]qR)

= (q3
R + q2

R + qR + 1)(q2
L + qL + 1)(qR + 1) .

Expanding this expression, one finds that the coefficient of q2
RqL is 2.

For the iMaj statistic it corresponds to the two following non-ambiguous
trees which are shown with their associated left and right permutations:

(4,5)

3 4

2 2 1 1

3

((2, 3, 1), (1, 3, 4, 2)) ,

(4,5)

3 4

2 2 1 3

1

((2, 3, 1), (3, 1, 4, 2)) .

For the Inv statistic it corresponds to the two following non-ambiguous
trees which are shown with their associated left and right permutations:

(4,5)

3 4

1 3 2 2

1

((1, 3, 2), (2, 1, 4, 3)) ,

(4,5)

3 4

1 2 2 1

3

((1, 3, 2), (1, 3, 4, 2)) .
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2. Non-ambiguous trees in higher dimension

In this section we give a generalisation of NATs to higher dimensions.
NATs are defined as binary trees whose vertices are embedded in Z2,
and edges are objects of dimension 1 (segments). Let d ≥ k ≥ 1 be
two integers. In higher dimension, binary trees are replaced by

(
d
k

)
-ary

trees embedded in Zd and edges are objects of dimension k. As in
Section 1.2 we obtain differential equations for these objects.

2.1. Definitions. We call (d, k)-direction a subset of cardinality k of
{1, . . . , d}. The set of (d, k)-directions is denoted by Πd,k. A (d, k)-
tuple is a d-tuple of (N ∪ {•})d, in which k entries are integers and
d− k are •. For instance, (•, 1, •, 5, 2, •, •, 3, •) is a (9, 4)-tuple.
The direction of a (d, k)-tuple U is the set of indices of U corresponding
to entries different from •. For instance, the direction of our preceding
example is {2, 4, 5, 8}.
Definition 2.1. A

(
d
k

)
-ary tree M is a tree in which the children of a

given vertex are indexed by a (d, k)-direction.

A
(
d
k

)
-ary tree will be represented as an ordered tree where the chil-

dren of a vertex S are drawn from left to right with respect to the
lexicographic order of their indices. If a vertex S has no child asso-
ciated to an index π, we draw an half edge in this direction. Two
examples are drawn in Figure 7. As for binary trees, for each (d, k)-
direction π we consider that there is a

(
d
k

)
-ary tree of size 0: the empty(

d
k

)
-ary tree of direction π noted ∅π.

Definition 2.2. A non-ambiguous tree of dimension (d, k) is a labelled(
d
k

)
-ary tree such that:

(1) a child of index π is labelled with a (d, k)-tuple of direction π
and the root is labelled with a (d, d)-tuple;

(2) for any descendant U of V , if the i-th component of U and V
are different from •, then the i-th component of V is strictly
greater than the i-th component of U ;

(3) for each i ∈ J1, dK, all the ith components, different from •, are
pairwise distinct;

(4) the set of ith components different from • of every vertices in
the tree is an interval whose minimum is 1.

The set of non-ambiguous trees of dimensions (d, k) is denoted by
NAT d,k.
Remark 2.3. The usual NATs are non-ambiguous trees of dimension
(2, 1).
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We write NATd,k for a non-ambiguous tree (of dimensions (d, k)).
Figure 7 gives an example of a NAT3,1 and a NAT3,2.

(5,7,6)

(4,•,•)
(1,•,•) (•,•,5)

(•,5,•)
(•,3,•) (•,•,4)

(•,•,2)

(•,4,•)
(•,•,1)

(•,•,3)
(2,•,•) (•,6,•)
(3,•,•)
(•,2,•)

(•,1,•)
x

y

z

(5, 7, 6)
(4, 7, 6)

(1, 7, 6)

(4, 7, 5)
(4, 5, 5)

(4, 7, 2)

(4, 3, 5)

(4, 5, 4)

(5, 4, 6)

(5, 4, 1)

(5, 7, 3)

(2, 7, 3)

(5, 6, 3)

(3, 6, 3)

(5, 1, 3)

(3, 2, 3)

(6,5,4)

(5,3,•)

(3,1,•)(2,•,2)

(1,•,1) (•,4,3)

(4,2,•)
x

y

z

(6, 5, 4) (5, 3, 4)
(3, 1, 4)

(2, 3, 2)

(1, 5, 1)

(6, 4, 3)
(4, 2, 3)

• •

•

•

•

•

•

Figure 7. A NAT of dimension (3, 1) and its geometric
representation (above) and a NAT of dimension (3, 2)
and its geometric representation (below).

Definition 2.4. The geometric size of a NATd,k is the d-tuple of inte-
gers (w1, . . . , wd) which labels the root of the NATd,k, it is denoted by
w1 × · · · ×wd. The π-size of a NATd,k is the number of vertices in the
tree of direction π, the set of such vertices is denoted by Vπ.

Proposition 2.5 gives the relation between the geometric size and the
π-size of a non-ambiguous trees.

Proposition 2.5. Let M be a
(
d
k

)
-ary tree, the root label is constant

on elements of NAT d,k of shape M (NAT d,k(M)):

wi(M) := wi =
∑

π∈Πd,k | i∈π

|Vπ(M)|+ 1.

2.2. Associated differential equations. As in section 1.2, we define
a weight Φ, a

(
d
k

)
-linear map M on generalised non-ambiguous trees of



NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 29

dimension (d, k) and
(
d
k

)
-linear map B on multivariate power series such

that “Φ◦M = B ◦Φ”. From this identity, we obtain a hook formula for
the number of generalised non-ambiguous trees with a fixed underlying
tree and a differential equation satisfied by the generating function of
generalised non-ambiguous trees of dimension (d, k).

Let ∅π be the empty
(
d
k

)
-ary tree of direction π, by convention

wi(∅π) =

{
0 if i ∈ π,
1 else.

The weight of a generalised non-ambiguous tree T is given by

Φ(T ) :=
d∏
i=1

x
wi(T )
i

wi(T )!
.

Let QNAT d,k be the Q-vector space generated by generalised non-
ambiguous trees of dimension (d, k), and QNAT d,k,π its subspace gen-
erated by non-empty generalised non-ambiguous trees and ∅π. Let M
be the multilinear map

M :
∏

π∈Πd,k

QNAT d,k,π → QNAT d,k

such that M((NATπ)π∈Πd,k) is equal to the formal sum of all the gen-
eralised non-ambiguous trees such that the root’s child of direction π
is NATπ. To define B, we need the following notations

∂π := ∂i1 · · · ∂ik ,
∫
π

:=

∫ xi1

0

· · ·
∫ xik

0

and dxπ := dxi1 · · · dxik .

with π = {i1, . . . , ik}. We denote by B the
(
d
k

)
-linear map

QJx1, . . . , xdKΠd,k → QJx1, . . . , xdK

such that

B((fπ)π∈Πd,k) :=

∫
J1,dK

 ∏
π∈Πd,k

∂J1,dK\π(fπ)

 dxJ1,dK.

Similarly to the dimension (2, 1), by recursion on
(
d
k

)
-ary trees, we

prove that

B(Φ(NATπ)π∈Πd,k) = Φ(M((NATπ)π∈Πd,k)). (18)

As for non-ambiguous trees (Proposition 1.8), there is a hook formula
for the number of non-ambiguous trees of dimension (d, k) with fixed
underlying tree. Let M be a

(
d
k

)
-ary tree, for each vertex U we denote

by Ei(U) the number of vertices, of the subtree whose root is U (itself
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included in the count), whose direction contains i. Then, by recursively
using the previous equation we obtain that

|NAT d,k(M)| =

d∏
i=1

(wi(M)− 1)!∏
U : child of direction

containing i

Ei(U)
.

Let Gd,k(x1, . . . , xd) be the exponential generating function of non-
empty generalised non-ambiguous trees

Gd,k(x1, . . . , xd) :=
∑

T∈NAT ∗d,k

Φ(T ).

and Nd,k(x1, . . . , xd) its derivative

Nd,k(x1, . . . , xd) := ∂{1,...,d}Gd,k(x1, . . . , xd).

There is a (d, k)-dimensional analogue of the fixed point differential
Equation 10. Similarly to the notations at the beginning of the section,
we define x{i1,...,ik} as the product xi1 · · ·xik , in particular, Φ(∅π) =
xJ1,dK\π.

Proposition 2.6. The exponential generating function Gd,k of gener-
alised non-ambiguous trees satisfies the following differential equation

Gd,k =
∑
π∈Πd,k

xJ1,dK\π +

∫
J1,dK

∏
π∈Πd,k

∂J1,dK\π(Gd,k) dxJ1,dK, (19)

and its derivative Nd,k satisfies

Nd,k =
∏

π∈Πd,k

(
1 +

∫
π

Nd,k

)
. (20)

Proof. The summation of Equation 18 over
∏

π∈Πd,k

QNAT d,k,π gives us

Gd,k =
∑
π∈Πd,k

xJ1,dK\π +

∫
J1,dK

∏
π∈Πd,k

∂J1,dK\π(Gd,k−
∑

π′∈(Πd,k\π)

xJ1,dK\π′) dxπ.

Since ∂J1,dK\π(xJ1,dK\π′) = 0 for π 6= π′, the Equation 19 is proven.
Equation 20 is obtained by using the identity

Nd,k(x1, . . . , xd) = ∂{1,...,d}Gd,k(x1, . . . , xd).

�
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In the generic case, we are not able to solve those differential equa-
tions. We know that setting a variable xd to 0 gives the generating
function of NATs of lower dimension.

Proposition 2.7. Let d > k ≥ 1, then Nd,k|xd=0 = Nd−1,k.

For some specific values of d and k we have (at least partial) results.

Proposition 2.8. Let k = d − 1, if we know a particular solution
s(x1, . . . , xd) for

∂1 . . . ∂dGd,d−1 = ∂1Gd,d−1 × . . .× ∂dGd,d−1

then, for any function s1(x1), . . . , sd(xd), the function s(s1(x1), . . . , sd(xd))
is also a solution.

Proposition 2.9. Some non trivial rational functions are solutions of

∂1 . . . ∂dGd,1 =
∏

π∈Πd,d−1

∂πGd,1.

Proof (sketch). We generalise the first part of the proof of Proposi-
tion 1.11. We define G(i) = ∂πGd,1 where i ∈ J1, dK and π = J1, dK \
{i}. We get the relation ∂iG(i) =

∏d
j=1 G(j) and then

∏d
i=1 ∂iG(i) =∏d

i=1 G
d
(i). To obtain a particular solution, we just need to identify,

in the previous equation, the term ∂iG(i) to the term Gd
(i). We thus

obtain some non trivial solutions for our equation, which are rational
functions. �

Since dimension (2, 1) is the unique case where Proposition 2.8 and
Proposition 2.9 can be applied at the same time, and the computation
of Nd,d is straightforward, we have the following proposition.

Proposition 2.10. We have the closed formulas:

N2,1 = N and Nd,d =
∑
n≥0

(x1 · . . . · xd)n
(n!)d

.

We see Nd,d as is a kind of generalised Bessel function because

N2,2(x/2,−x/2) = J0(x)

where Jα is the classical Bessel function. This supports our feeling that
the general case leads to serious difficulties.



32 J.-C. AVAL AND AL.

2.3. Geometric interpretation. As for non-ambiguous trees, we can
give a geometric definition of non-ambiguous trees of dimensions (d, k)
as follows. We denote by (e1, . . . , ed) the canonical basis of Rd and
(X1, . . . , Xd) its dual basis, i.e. Xi is R-linear and Xi(ei) = δi,j. Let
P ∈ Rd and π = {i1, . . . , ik} a (d, k)-direction, we call cone of origin
P and direction π the set of points C(P, π) := {P + a1ei1 + · · · +
akeik | (a1, . . . , ak) ∈ Nk}.
Definition 2.11. A geometric non-ambiguous tree of dimension (d, k)
and box w1 × · · · × wd is a non-empty set V of points of Nd such that:

(1) V is contained in J1, w1K× · · · × J1, wdK.
(2) V contains the point (w1, . . . , wd), which is called the root,
(3) For P ∈ V different from the root, there exists a unique (d, k)-

direction π = {i1, . . . , ik} such that the cone c(P, π) contains at
least one point different from P . We say that P is of type π.

(4) For each i ∈ J1, dK and for each l ∈ J1, wi − 1K, the affine
hyperplane {xi = l} contains exactly one point of type π that
contains i.

(5) For P and P ′ two points of V belonging to a same affine space of
direction Vect(ei1 , . . . , eik), then, either ∀j ∈ J1, kK, Xij(P ) >
Xij(P

′), or ∀j ∈ J1, kK, Xij(P
′) > Xij(P ).

Let us compare the original definition ([ABBS14]) of non-ambiguous
trees recalled in Section 1.1 with Definition 2.11. Both have a condition
for the existence of a root 1 and 2.11.2. The existence and uniqueness
of a parent for a non-root point are given by conditions 2 and 2.11.3,
moreover when k ≥ 2 we also need the condition 2.11.5. Finally, the
compactness is given by conditions 3, 2.11.1 and 2.11.4.

Proposition 2.12. There is a simple bijection between the set of geo-
metric non-ambiguous trees of box w1 × · · · × wd and the set of non-
ambiguous trees of geometric size w1 × · · · × wd.

An example of the correspondence is given in Figure 7.

Proof. If k = d, V is of the form

{(w, . . . , w), (w − 1, . . . , w − 1), . . . , (1, . . . , 1)},
which corresponds exactly to non-ambiguous trees of dimension (d, d)
defined in 2.2.

Let us now suppose that k < d.
Definition 2.2 implies Definition 2.11:
Let T be a non-ambiguous tree of dimension (d, k) as defined in

Definition 2.2 and let w1×· · ·×wd be its geometric size. The first step
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is to define the coordinates, also called completed label, of a vertex U
by replacing the • by integers in all the labels of vertices. Let U be
a vertex of T such that its ith component is a •. We replace the ith
component of U with the ith component of the first ancestor of U with
a ith component different from •. Such an ancestor exists since the root
has no • component. As a consequence, using Point 2.2.2 of Definition
2.2, we have for a vertex V of completed label (v1, . . . , vd) that if V
has a child U indexed by a (d, k)-direction π and of completed label
(u1, . . . , ud), then for i ∈ π, vi > ui and for i 6∈ π, vi = ui. Moreover,
2.2.3 and the definition of completed labels implies that, for U and
V two vertices, if there exists i such that ui = vi, then they have a
common ancestor W such that wi 6= • and wi = ui = vi. We denote by
ai(U), or equivalently ai(V ), the vertex W .

Let V be a vertex of T of completed label (u1, . . . , ud). We de-
note by PV ∈ Nd the point (u1, . . . , ud). Let V be the set of points
{PV | V vertex of T}. By definition, each vertex has a different com-
pleted label. Let us prove that V satisfies the conditions of 2.11.

(1) It is a consequence of 2.2.4, and Definition 2.4.
(2) V contains (w1, . . . , wd), since (w1, . . . , wd) is the label of the

root of T .
(3) Let PU be a point of V different from (w1, . . . , wd). Since U

is not the root, it is a child indexed by a (d, k)-direction π,
of a vertex V . Hence for i 6∈ π, Xi(PV ) = Xi(PU) and for
i ∈ π, Xi(PV ) > Xi(PU). So PV is in the cone of origin PU
and direction π, in particular, PU is of type π. Let us prove the
uniqueness by contradiction. Suppose there is another (d, k)-
direction π′ such that the cone of origin PU and direction π′

contains a point PV ′ different from PU . Let i ∈ π \ π′. Then,
by definition of the cone we have Xi(PU) = Xi(P

′
V ). Since

ai(U) = V , then ai(V
′) = V . Let i′ ∈ π′ \ π then X ′i(PV ′) >

Xi(PU) = Xi(PV ), which is not possible since V is an ancestor
of V ′. In particular the type of PU corresponds to the type of
U .

(4) Let i ∈ J1, dK and l ∈ J1, w − 1K, by 2.2.4, there exists U such
that ui 6= • and ui = l. Let π be the index of u then i ∈ π,
hence, PU satisfies 2.11.4. Suppose there exists another point
PV satisfying 2.11.4, let π′ be its type. Then V is indexed by
π′ and i ∈ π′. Thus, V is another vertex such that vi 6= • and
vi = l which is in contradiction with 2.2.3.

(5) Let F be an affine space of direction Vect(ei1 , . . . , eik) contain-
ing a point PU . We denote by π the set {ei1 , . . . , eik}. If U is
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the root, then 2.11.5 is satisfied. Else, let (V0, V1, . . . , Vm) be
the sequence of ancestors of U , i.e V0 = U for all j, Vj is a child
of Vj+1 and Vm is the root of T . Let l be the index such that Vl
is a child of Vl+1 not indexed by π and ∀j ∈ J0, l− 1K, Vj is the
child indexed by π of Vj+1, Vl will be denoted V . Let π′ be the
(d, k)-direction indexing V and let i ∈ π′ \ π. If V is the root
then π′ = J1, dK. Let PU ′ be another point of F , since i 6∈ π,
then u′i = ui. Hence, we have ai(U

′) = ai(U) = V . Since for
all j 6∈ π, u′j = vj, the path from U ′ to V contains only vertices
indexed by π. Hence, by definition of V , U is an ancestor of U ′

or the converse, which proves 2.11.5.

Definition 2.11 implies Definition 2.2: Let V be a non-ambiguous
tree defined with Definition 2.11. We start by constructing the under-
lying

(
d
k

)
-ary tree M of V . The vertices of M correspond to the points

of V . In particular, the root of M corresponds to the root of V . Let
P be a point of V , we denote by VP the corresponding vertex of M .
Let P be a point of V different from the root, let π = {ei1 , . . . , eik}
be the (d, k)-direction defined by 2.11.3. Using 2.11.5, we can define
without ambiguity the parent of VP as the vertex VP ′ such that P ′ is
the closest point to P belonging to c(P, π). VP is the child of VP ′ in-
dexed by π, moreover, for all i ∈ π, Xi(P ) < Xi(P

′) and for all i 6∈ π,
Xi(P ) = Xi(P

′). The labelling is done as follows. For each point P
of V we label the vertex VP with the coordinates of P . Then, given a
vertex V of type π, for all i 6∈ π, we replace the ith component of its
label with •. Thus, if the ith component of a vertex VP ′ is equal to l,
then for each descendant VP of VP ′ we have Xi(P ) 6 l and if Xi(P ) = l
then the ith component of VP ′ is •. Let us prove that the conditions
of Definition 2.2 are satisfied.

(1) By construction of the labels.
(2) Let P and P ′′ be two points such that VP is a descendant of

VP ′′ indexed by π such that i belongs to π. Let P ′ be the father
of P , then Xi(P ) < Xi(P

′) 6 Xi(P
′′).

(3) Let VP be a vertex of M such that its ith component is different
from •. If VP is the root, then all the vertices of M are its
descendants, hence its ith label appears only once. Else, VP is
a child indexed by π of a vertex VP ′ . In particular, π contains
i since the ith component of VP is not •. Hence, by 2.11.4, the
ith component of VP is unique.

(4) 2.11.4 implies that for each i ∈ J1, dK, for all l ∈ J1, wi − 1K
there is a point P of type π such that Xi(P ) = l and i ∈
π, so that the ith component of VP is equal to l. Moreover,



NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 35

the coordinates of the root are (w1, . . . , wd) and V is contained
in the box J1, w1K × · · · × J1, wdK. Therefore, the set of ith
components, different from •, is the interval J1, wiK.

�

3. A new statistic on binary trees: the hook statistic

We present in this section a bijection between binary trees and or-
dered trees, sending the vertices to edges and the hook statistic defined
in Definition 1.16 to the number of vertices having at least a child which
is a leaf, what we will call the child-leaf statistic. The corresponding
integer series appears as [Slo, A127157] in OEIS.

We denote by Bp and Op respectively the exponential generating
series of these trees, with these statistics, the variable x indexing the
number of vertices in Bp and the number of edges in Op, and t the
statistic. Then, these generating series satisfy:

Proposition 3.1. The generating series of binary trees with hook statis-
tic and ordered trees with the child-leaf statistic are given by the follow-
ing functional equations:

Bp = 1 + xt×
(

1

1− xBp

)2

Op =
1

1− x(Op − 1))
×
(

1 + xt× 1

1− xOp

)
These generating series are equal.

Proof. The first functional equation is obtained by considering the ver-
tices in the hook of the root: there can be none or there is a root, a
list of left descendant (whose right child is a binary tree) and a list of
right descendant (whose left child is a binary tree).

The second functional equation is obtained by considering, if the
ordered tree is not reduced to a vertex, the first leaf of the root from
left to right, if it exists. Then, on the left side of this leaf, there is a
list of ordered trees not reduced to a vertex and on the right side a list
of ordered trees, if there is a leaf. Then, by multiplying the preceding
equations by 1−xBp and 1−x(Op−1)) respectively, they are equivalent
to:

Bp − xB2
p = 1− xBp + xt

1

1− xBp
Op − xO2

p + xOp = 1 + xt
1

1− xOp
.

�
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⇔

1

2

⇔ 2

1

1

2

3

⇔

1 2 3

Figure 8. Bijection ζ

Let us now exhibit a bijection between these two objects. This bi-
jection comes from the following equation:

(Bp − 1)− x(Bp − 1)− x(Bp − 1)2 = xt
1

1− xBp
.

This equation can be viewed as considering only binary trees whose
root has no left descendants or ordered trees such that the leftmost
child of the root is a leaf. We obtain the following bijection:

Proposition 3.2. The map ζ sends a binary tree B to an ordered tree
O by mapping:

• the leftmost descendant of the root, if it is a leaf, to an edge
between the root and its only child
• the leftmost descendant of the root v to an edge between the root

of the tree associated with the descendants of v and the root of
the tree obtained from what is left
• the set of right descendants of the root to the set of children of

the root.

It is a bijection between binary trees and ordered trees, sending the
vertices to edges and the hook statistic to the child-leaf statistic.

The bijection is described in Figure 8 and the explicit correspondance
for the sizes one, two and three is given in Table 1 the first terms in
the bijection. Another way of describing recursively the bijection ζ is
given in Figure 9, the empty binary tree is still send to the ordered tree
reduced to one vertex.

Perspectives

In this work, we give new results about NATs, and we generalise the
definition of NATs to higher dimensions with a choice on the dimension
of the edges. It gives rise to several questions that we now detail.
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binary trees •

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

ordered trees

•

•

•

•

•

•

• •

•

•

• •

•

•

•

•

•

• ••

•

• •

•

•

•

•

•

Table 1. First terms of the bijection ζ

a

b

c 1

2

3

⇐⇒

ζ(a)

ζ(b)

ζ(c)

ζ(1) ζ(2) ζ(3)

Figure 9. Bijection ζ, alternative description.

We exhibit nice formulas for the generating function and the gen-
erating polynomial of non-ambiguous trees that take into account the
number of points in the first column and in the first row. Those two pa-
rameters correspond to the parameters α and β of the PASEP. These
formulas have been obtained with two different technics: by solving
a differential equation and by decomposing non-ambiguous trees into
hooks. In the context of the PASEP, it raises natural questions. Is it
possible to introduce the parameter q of the PASEP in either one of
them ? What can we deduce from the hook decomposition of tree-like
tableaux ?

We give a polynomial analogue for the hook formula enumerating the
NATs with a fixed binary tree, by adapting the methods of [HNT08].
Since there is a hook formula also for NATs of higher dimension, we
could extend the work to higher dimensions to get polynomial analogue.

The generating functions of generalised NATs satisfy differential
equations similar to the case of NATs. While we give a solution for
the case of NATs and get a nice closed form, we have not been able to
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tackle the general case. It would be interesting to find a generic way
for solving this type of differential equations.

By generalising the NATs to higher dimension, we answer a question
raised in the perspectives of [ABBS14]. In this last paper, the authors
also study NATs with a complete underlying binary tree, and obtain
nice combinatorial identities. It would be interesting to see if the same
happens in higher dimension.

Finally, as mentioned in the introduction, NATs correspond to tree-
like tableaux of rectangular shape. The question of the generalisation
of tree-like tableaux to higher dimension is raised by our work and
we hope we will obtain again an insertion algorithm, which is a key
property of tree-like tableaux.
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650, Université Paris Sud 11, 91405 ORSAY CEDEX

Laboratoire Bordelais de Recherche en Informatique (UMR CNRS
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