
HAL Id: hal-03165269
https://hal.science/hal-03165269v1

Submitted on 10 Mar 2021 (v1), last revised 22 Mar 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NON-AMBIGUOUS TREES: NEW RESULTS AND
GENERALISATION (Full version)

Bérénice Delcroix-Oger, Florent Hivert, Patxi Laborde-Zubieta,
Jean-Christophe Aval, Adrien Boussicault

To cite this version:
Bérénice Delcroix-Oger, Florent Hivert, Patxi Laborde-Zubieta, Jean-Christophe Aval, Adrien Bous-
sicault. NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION (Full version).
European Journal of Combinatorics, In press. �hal-03165269v1�

https://hal.science/hal-03165269v1
https://hal.archives-ouvertes.fr

NON-AMBIGUOUS TREES: NEW RESULTS AND
GENERALISATION

JEAN-CHRISTOPHE AVAL, ADRIEN BOUSSICAULT, BÉRÉNICE
DELCROIX-OGER, FLORENT HIVERT, AND PATXI LABORDE-ZUBIETA

Abstract. We present a new definition of non-ambiguous trees
(NATs) as labelled binary trees. We thus get a differential equation
whose solution can be described combinatorially. This yields a new
formula for the number of NATs. We also obtain q-versions of our
formula. We finally generalise NATs to higher dimension.

Introduction

Non-ambiguous trees (NATs for short) were introduced in a previous
paper [ABBS14]. We propose in the present article a sequel to this
work.

Tree-like tableaux [ABN13] are certain fillings of Ferrers diagram,
in simple bijection with permutations or alternative tableaux [Pos07,
Vie08]. They are the subject of an intense research activity in combina-
torics, mainly because they appear as the key tools in the combinatorial
interpretation of the well-studied model of statistical mechanics called
PASEP: they naturally encode the states of the PASEP, together with
the transition probabilities through simple statistics [CW07].

Among tree-like tableaux, NATs were defined as rectangular-shaped
objects in [ABBS14]. In this way, they are in bijection with permuta-
tions σ = σ1 σ2 . . . σn such that the exceedances (σi > i) are placed
at the beginning of the word σ. Such permutations were studied by
Ehrenborg and Steingrimsson [ES00], who obtained an explicit enu-
meration formula. Thanks to NATs, a bijective proof of this formula
was described in [ABBS14].

In the present work, we define NATs as labelled binary trees (see
Definition 1.1, which is equivalent to the original definition). This new
presentation allows us to obtain many new results about these objects.
The plan of the article is the following.
In Section 1, we (re-)define NATs as binary trees whose right and left

Date: March 10, 2021.
Key words and phrases. Non-ambiguous trees, binary trees, ordered trees, q-

analogues, permutations, hook-length formulas.
1

2 J.-C. AVAL AND AL.

children are respectively labelled with two sets of labels. We show
how the generating series for these objects satisfies differential equa-
tions (Prop. 1.10), whose solution is quite simple and explicit (Prop.
1.11). A combinatorial interpretation of this expression involves the
(new) notion of hooks in binary trees, linked to the notion of leaves
in ordered trees. Moreover this expression yields a new formula for
the number of NATs as a positive sum (see Proposition 1.12), where
Ehrenborg-Steingrimsson’s formula is alternating. It should be noted
that Prop. 1.11 and Proposition 1.12 (in the case α = β = 1) were
already proven by Clark and Ehrenborg [CE10]. To conclude with Sec-
tion 1, we obtain q-analogues of our formula, which are similar to those
obtained for binary trees in [BW89, HNT08] (see Theorem 1.28, the
relevant statistics are either the number of inversions or the inverse
major index).
Section 2 presents a generalisation of NATs in higher dimension. For
any k ≤ d, we consider NATs of dimension (d, k), embedded in Zd, and
with edges of dimension k 1. The original case corresponds to dimen-
sion (2, 1). Our main result on this question is a differential equation
satisfied by the generating series of these new objects.
Finally, we study the (new) notion of hooks on binary trees in Section
3. We prove (through the use of generating series, and bijectively) that
the number of hooks is distributed on binary trees as another statis-
tics: the childleaf statistic, defined as the number of vertices who has
at least one leaf as a child.

1. Non-ambiguous trees

1.1. Definitions. We recall that a binary tree is a rooted tree whose
vertices may have no child, one left child, one right child or both of
them. The size of a binary tree is its number of vertices. Usually, it
is considered that there is a unique binary tree with no vertex, it is
called the empty binary tree. In this article, we consider that there
are two binary trees of size 0: the left empty binary tree and the right
empty binary tree, they are respectively notes ∅L and ∅R. Having no
child in the left direction (resp. right direction) is the same as having
the left (resp. right) empty subtree in this direction. We denote by
BT the set of binary trees. Given a binary tree B, we denote by
VL(B) and VR(B) the set of left children (also called left vertices) and
the set of right children (also called right vertices). By convention,
VL(∅L) = VR(∅R) = −1 and VL(∅R) = VR(∅L) = 0. We shall extend
this notation to NATs. Let U and V be two vertices of a binary tree

1A definition in terms of labelled trees is given in Subsection 2.1.

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 3

B. If V is a vertex of the subtree of B whose root is U , then V is a
descendant of U and U an ancestor of V .

We now define the notion of non-ambiguous trees:

Definition 1.1. A non-ambiguous tree (NAT) T is a labelling of a
binary tree B such that:

• the left (resp. right) children are labelled from 1 to |VL(B)|
(resp. |VR(B)|), such that different left (resp. right) vertices
have different labels. In other words, each left (right) label ap-
pears exactly once.
• if U and V are two left (resp. right) children in the tree, such

that U is an ancestor of V , then the label of U in T is strictly
greater than the label of V .

The underlying binary tree of a non-ambiguous tree is called its shape.
By convention, there is a unique NAT whose shape is ∅L (resp. ∅R)
which is also denoted ∅L (resp. ∅R). We denote by NAT (B) the set of
NATs of shape B.

It is sometimes useful to label the root as well. In this case, it is
considered as both a left and right child so that it carries a pairs of
labels, namely (|VL(T)| + 1, |VR(T)| + 1). On pictures, to ease the
reading, we color the labels of left and right vertices in red and blue
respectively.

In [ABBS14], NATs were defined in a slightly different, more geo-
metrical way. We recall it here, and show that the two definitions are
equivalent. Formally, a (geometric) NAT of size n is a set A of n points
(x, y) ∈ N× N such that:

(1) (0, 0) ∈ A; we call this point the root of A;
(2) given a non-root point p = (x, y) ∈ A, there exists one point

q = (x′, y′) ∈ A such that y′ < y and x′ = x, or one point
r = (x′, y′) ∈ A such that x′ < x, y′ = y, but not both (which

means that the pattern is avoided);

(3) there is no empty line between two given points: if there exists
a point p = (x, y) ∈ A, then for every x′ < x (resp. y′ < y)
there exists q = (x′′, y′′) ∈ A such that x′′ = x′ (resp. y′′ = y′).

To see that this presentation is equivalent to Definition 1.1, we refer
to Figure 1 (top). Let us consider a NAT T presented as a labeled tree
(Definition 1.1). Each vertex of T may be given a pair of coordinates
(x, y) as follows. For a left (resp. right) child, its x (resp. y) coordinate
is its label in T . and its y (resp. x) coordinate is the one of its closest
ancestor which is a right child, or the root. We thus get a geometrical

4 J.-C. AVAL AND AL.

T =

(11,12)

11

10

9

8

7

6

5

4

3

2

1

10

9

8 7

6

5

4

3

2

1

12 11 10 9 8 7 6 5 4 3 2 1
11
10
9
8
7
6
5
4
3
2
1

• •
• •

•

•

•

•

• •

•

•
•

•
•

•
•

•
•

•
•

•

TL =

4

3

2

1

(6,5)

5

4

3

2

1
TR =

(5,7)

6

5

4

3

2

1

4

3 2

1

Figure 1. A non-ambiguous tree, its geometrical pre-
sentation, and its left and right subtrees

object, which can be drawn as shown in Figure 1 (top, right). With the
minor change of coordinates (x′, y′) = (|VL(T)|+1−x, |VR(T)|+1−y),
we get a set of points which satisfies the geometrical definition. The
only thing that needs to be checked is the avoidance of the pattern

. Let us suppose the faulty vertex p = (x, y) is a right child. Its

y coordinate is its label in T , and we suppose that there is a vertex
q = (x′, y) with x′ < x, thus q is not a descendant of p. The y coordinate
of q is either its own label (if it is a right child), or inherited from an
ancestor, a right child q′ = (x′′, y) with x′′ < x′ < x. It is absurd that
p and q′ have the same label in T .

Conversely, to go from the geometric version of a NAT to Definition
1.1, we just have to forget the redundant coordinate.

The top part of Figure 1 shows an example of a NAT, and illustrates
the correspondence between the geometrical presentation of [ABBS14]
and Definition 1.1. The dimension wL(T) × wR(T) of the rectangle
containing the geometrical presentation of T , is called the geometric
size of T and satisfies

(wL(T), wR(T)) = (|VL(T)|+ 1, |VR(T)|+ 1).

By convention, the non-ambiguous trees ∅L and ∅R satisfies respectively
(wL(∅L), wR(∅L)) = (0, 1) and (wL(∅R), wR(∅R)) = (1, 0).

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 5

(2,2)

1

2

1

2

(2,2)

2

1

1

2

(2,2)

1

2

2

1

(2,2)

2

1

2

1

Figure 2. An example of NAT (B)

Figure 2 gives an example of a class NAT (B), in the case where the
binary tree is B = •

•
•

•
•

.

1.2. Differential equations on non-ambiguous trees. The goal of
this section is to get (new) formulas for the number of NATs with
prescribed shape. The crucial argument is the following remark: let
T be a NAT whose shape is a non-empty binary tree B =

L R
.

Restricting the labellings of the left and right children of T to L and R
gives non-decreasing labelling of their respective left and right children.
Note that the root of L (resp. R) is a left (resp. right) child in T . By
renumbering the labels so that they are consecutive numbers starting
from 1, we get two non-ambiguous labellings for L and R, that is two
non-ambiguous trees TL and TR. See Figure 1 for an example.

Conversely, knowing the labelling of L and R, to recover the labelling
of T , one has to choose which labels among {1, . . . ,VL(T)} will be
used for L (including its root) and the same for right labels. As a
consequence:∣∣∣NAT (

L R

)∣∣∣ =

(
|VL(T)|
|VL(R)|

)(
|VR(T)|
|VR(L)|

)
|NAT (L) | |NAT (R) |. (1)

Our first step is to recover the hook-length formula for the number of
NATs of fixed shape ([ABBS14]). We use the method from [HNT08],
namely, applying recursively a bilinear integro-differential operator called
here a pumping function along a binary tree.

First of all, we consider the Q-vector space QNAT of formal sums
of non-ambiguous trees and identifies NAT (B) with the formal sum
of its elements. We consider also the Q-vector spaces QNAT L and
QNAT R generated respectively by NAT \{∅R} and NAT \{∅L}. Let
M be the linear map

M : QNAT L ×QNAT R 7→ QNAT

sending a pair of non-ambiguous trees (T1, T2) to the formal sum of
NATs T such that TL = T1 and TR = T2. The main remark is that
QNAT (B) can be computed by a simple recursion using M.

6 J.-C. AVAL AND AL.

Lemma 1.2. The formal sum QNAT (B) of non-ambiguous trees of
shape B satisfies the following recursion: if B = ∅L or B = ∅R then
QNAT (B) = B, else

QNAT
(
L R

)
= M (QNAT (L) ,QNAT (R)) .

To count non-ambiguous trees, and as suggested by the binomial
coefficients in (1), we shall use doubly exponential generating functions
in two variables x and y, where x and y count the geometric size:

the weight of a NAT T is Φ(T) := xwL(T)

wL(T)!
ywR(T)

wR(T)!
. We extend Φ(T) by

linearity to a map QNAT 7→ Q[[x, y]]. Consequently, Φ(NAT (B)) is
the generating series of the non-ambiguous trees of shape B. Thanks
to (1) the image in Q[[x, y]] of the bilinear map M under the map Φ is
a simple differential operator:

Definition 1.3. The pumping function B is the bilinear map Q[[x, y]]×
Q[[x, y]] 7→ Q[[x, y]] defined by

B(f, g) =

∫ x

0

∫ y

0

∂yf(u, v) · ∂xg(u, v) du dv. (2)

We further define recursively, for any binary tree B an element B(B) ∈
Q[[x, y]] by

B(∅L) = y, B(∅R) = x and B
(
L R

)
= B (B(L),B(R)) . (3)

A simple computation gives us that for f = xa1
a1!

yb1

b1!
and g = xa2

a2!
yb2

b2!

one has

B(f, g) =

(
a1 + a2 − 1

a2 − 1

)(
b1 + b2 − 1

b1 − 1

)
xa1+a2

(a1 + a2)!

yb1+b2

(b1 + b2)!
.

Whence for (T1, T2) a pair of NATs in QNAT L ×QNAT R, we get:

B(Φ(T1),Φ(T2)) =

(
wL(T1) + wL(T2)− 1

wL(T2)− 1

)(
wR(T1) + wR(T2)− 1

wR(T1)− 1

)
× xwL(T1)+wL(T2)

(wL(T1) + wL(T2))!

ywR(T1)+wR(T2)

(wR(T1) + wR(T2))!

Thus (1) may be rewritten as

Lemma 1.4. For (T1, T2) a pair of NATs in QNAT L×QNAT R, one
has

Φ(M(T1, T2)) = B(Φ(T1),Φ(T2)).

We derive from these two lemmas the following proposition.

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 7

Proposition 1.5. For any non-empty binary tree B,

Φ(NAT (B)) = B(B).

Proof. We apply Lemmas 1.2 and 1.4 to write (with L and R the left
and right sub-tree of B):

Φ(NAT (B)) = Φ(M(QNAT (L),QNAT (R)))

= Φ(M(
∑

T1∈NAT (L)

T1,
∑

T2∈NAT (R)

T2))

=
∑

T1∈NAT (L)

∑
T2∈NAT (R)

Φ(M(T1, T2))

=
∑

T1∈NAT (L)

∑
T2∈NAT (R)

B(Φ(T1),Φ(T2))

= B

 ∑
T1∈NAT (L)

Φ(T1),
∑

T2∈NAT (R)

Φ(T2)

 = B(B(L),B(R)).

�

We are now able to recover the hook-length formula of [ABBS14] for
non-ambiguous trees of a given shape.

Proposition 1.6. Let B be a binary tree. For each non-root left (resp.
right) vertex U , we denote EL(U) (resp. ER(U)) the number of left
(resp. right) vertices of the subtree with root U (itself included in the
count). Then

|NAT (B)| = |VL(B)|! · |VR(B)|!∏
U :left child

EL(U) ·
∏

U :right child

ER(U)
. (4)

Proof. Proposition 1.5 may be rewritten as:

B(B) = |NAT (B)| x
wL(B)ywR(B)

wL(B)!wR(B)!
. (5)

8 J.-C. AVAL AND AL.

So, we get by a simple computation :

B(B) = B
(
L R

)
= B (B(L),B(R))

= B
(
|NAT (L)| x

wL(L)ywR(L)

wL(L)!wR(L)!
, |NAT (R)| x

wL(R)ywR(R)

wL(R)!wR(R)!

)
=

|NAT (L)| · |NAT (R)|
wL(L)!wR(L)!wL(R)!wR(R)!

B
(
xwL(L)ywR(L), xwL(R)ywR(R)

)
=
|NAT (L)| · |NAT (R)|wR(L)wL(R)

wL(L)!wR(L)!wL(R)!wR(R)!

xwL(L)+wL(R)ywR(L)+wR(R)

(wL(L) + wL(R)) · (wR(L) + wR(R))

=
wR(L)wL(R)

(wL(L) + wL(R)) · (wR(L) + wR(R))
B(L) · B(R)

=
wR(L)wL(R)

wL(B)wR(B)
B(L) · B(R)

We thus have

B(B) = |NAT (B)| x
wL(B)ywR(B)

wL(B)!wR(B)!

And,

B(B) =
wR(L)wL(R)

wL(B)wR(B)
B(L) · B(R)

=
wR(L)wL(R)

wL(B)wR(B)
|NAT (L)| x

wL(L)ywR(L)

wL(L)!wR(L)!
· |NAT (R)| x

wL(R)ywR(R)

wL(R)!wR(R)!

which, together with (5) gives:

|NAT (B)| x
wL(B)ywR(B)

wL(B)!wR(B)!
=
wR(L)wL(R)

wL(B)wR(B)
· |NAT (L)| x

wL(L)ywR(L)

wL(L)!wR(L)!

· |NAT (R)| x
wL(R)ywR(R)

wL(R)!wR(R)!
.

We obtain

|NAT (B)|
(wL(B)− 1)!(wR(B)− 1)!

= wR(L)wL(R)
|NAT (L)| · |NAT (R)|

wL(L)!wR(L)!wL(R)!wR(R)!

=
1

wL(L)wR(R)

|NAT (L)|
(wL(L)− 1)!(wR(L)− 1)!

· |NAT (R)|
(wL(R)− 1)!(wR(R)− 1)!

.

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 9

We deduce that

|NAT (B)|
VL(B)!VR(B)!

=
1

wL(L)wR(R)
· |NAT (L)|
VL(L)!VR(L)!

· |NAT (R)|
VL(R)!VR(R)!

.

The coefficient 1
wL(L)wL(R)

recursively gives the denominator of the hook-

legth formula, and we get (4). �

Let G be the exponential generating function of non-ambiguous trees
with weight Φ:

G(x, y) :=
∑

T∈NAT

Φ(T) =
∑

T∈NAT

xwL(T)

wL(T)!

xwR(T)

wR(T)!
. (6)

and N its derivative N = ∂x∂yG. Naturally, they are linked by the
relation

G(x, y) = y + x+

∫ x

0

∫ y

0

N(u, v) du dv.

They both are solutions of a fixed point differential equation.

Proposition 1.7. The generating function N and G can be computed
by the following fixed point differential equations:

G = y+x+

∫
x

∫
y

∂xG·∂yG and N =

(
1 +

∫
x

N

)
·
(

1 +

∫
y

N

)
(7)

Proof. The first equation is a consequence of the definition of the bi-
linear map B:

G =
∑
B∈BT

B(B)

= y + x+
∑

(L,R)∈BT L×BT R

B
(
L R

)
= y + x+

∑
(L,R)∈BT L×BT R

B(B(L),B(R))

= y + x+ B(G− x,G− y)

= y + x+ B(G,G),

with BT L = BT \ {∅R} and BT R = BT \ {∅L}. To prove the second
equation, remark that the first equation implies the identity

∂x∂yG = ∂xG.∂yG

and moreover that we have

∂xG = 1 +

∫
y

N and ∂yG = 1 +

∫
x

N.

10 J.-C. AVAL AND AL.

�

From these identities, a closed formula can be computed for N and G.
The expression of N was already proven in [CE10] using permutations.

Proposition 1.8. The doubly exponential generating functions for non-
ambiguous trees are given by

G = x+y−log(1−(ex−1)(ey−1)) , and N =
ex+y

(1− (ex − 1)(ey − 1))2 .

Proof. We know that G is a solution of{
∂x∂yf = ∂xf × ∂yf,
f(x, y) = f(y, x)

(8)

This system of equation satisfies the two following properties:

• if s is a solution of Equation 8 then for each power series ϕ with
constant term equal to zero, f(ϕ(x), ϕ(y)) is also a solution;
• if we fix the initial condition f(x, 0), there exists a unique formal

power series solution to Equation 8.

Let f be a particular solution. Let us consider the notation fx := ∂xf
and fy := ∂yf , then

∂xfy · ∂yfx = f 2
xf

2
y .

We suppose that ∂xfy = f 2
y and ∂yfx = f 2

x , hence

fy =
−1

x+ c1(y)
and fx =

−1

y + c2(x)
.

Since f 2
x = ∂yfx = fxfy, we get fy = fx, which implies

x+ c1(y) = y + c2(x).

As a consequence, c1(z) = c2(z) = z + c with c a real number. Finally

f(x, y) = − ln(x+ y + c).

Conversely, − ln(x+ y + c) satisfies Equation (8). It remains to find a
real number c and formal power series ϕ such that G(x, 0) = − ln(ϕ(x)+
c). Since G(x, 0) = x, we get ϕ(x) = e−x − c. Moreover, the condition
ϕ(0) = 0 implies c = 1. As a consequence

G(x, y) = − ln(e−x + e−y − 1),

which can be rewritten as

G(x, y) = y + x− ln(1− (ex − 1)(ey − 1)).

Differentiating with respect to x and y, we find the expression of N. �

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 11

In the context of the PASEP, it is natural to consider the following
statistics.

Definition 1.9. The leftmost branch of a binary tree B is the set of
vertices {s0, . . . , sk} such that s0 is the root of B, sk is a leaf and si+1

is the left child of si, for each i < k. Similarly, we define the rightmost
branch of a binary tree. We denote by L0(B) and R0(B) the number
of non-root vertices respectively in the leftmost and rightmost branches.

We extend these definitions to non-ambiguous trees. For example,
in Figure 1, we have L0(T) = 2 and R0(T) = 5. These statistics
correspond to the parameters α and β in the PASEP. Let us define the
following (α, β)-generating function for non-ambiguous trees:

N(x, y;α, β) =
∑

T∈NAT

x|VL(T)| · y|VR(T)| · αL0(T) · βR0(T)

|VL(T)|! · |VR(T)|!
.

It satisfies an (α, β)-analogue of the identity of Proposition 1.7.

Proposition 1.10. A differential equation for N(x, y;α, β) is

N(x, y;α, β) =

(
1 + α

∫
x

N(u, y;α, 1) du

)
·
(

1 + β

∫
y

N(x, v; 1, β) dv

)
.

Proof. We just need to define a new pumping function:

B(α,β)(f, g) = αβ B(f |β=1 , g|α=1)

and deduce the expected differential equation. �

The solution of the new differential equation is given by Proposi-
tion 1.11, a bijective proof is given in Section 1.3

Proposition 1.11. The (α, β)-exponential generating function for non-
ambiguous trees is equal to

N(x, y;α, β) =
eαx+βy

(1− (ex − 1)(ey − 1))α+β
.

If we develop this expression we obtain an (α, β)-analogue of the
enumeration of non ambiguous-trees of fixed geometric size. In order
to express it, we need the following definitions. We denote q(n) :=
q(q+ 1) · · · (q+ n− 1) the rising factorial and S2,q(n, k) the q-analogue
of the Stirling numbers of the second kind such that, if we consider a
set partition, q counts the number of elements different from n in the
subset containing n.

12 J.-C. AVAL AND AL.

(11,12)

11

10

9

8

7

6

5

4

3

2

1

10

9

8 7

6

5

4

3

2

1

Figure 3. Hooks on a non-ambiguous tree

Proposition 1.12. Let i and j be two positive integers. The (α, β)-
analogue of the number of NATs of geometric size i× j is[

xi−1 yj−1

(i− 1)! (j − 1)!

]
N(x, y;α, β) =

∑
p>1

(p−1)! (α+β)p−1 S2,α(i, p) S2,β(j, p).

1.3. Combinatorial interpretation with the zigzag bijection of
Burstein. The purpose of this subsection is to explain combinatorially
the propositions 1.11 and 1.12. In order to do so, we use the “zigzag”
bijection of Burstein, denoted ϕ [Bur07, Theorem 4.2] between non-
ambiguous trees and permutations with all their exceedances at the
beginning.

First, let us introduce the statistic that corresponds to the integer p
in the enumeration formula of Proposition 1.12.

Definition 1.13. Let B be a binary tree and v one of its node. The
hook of a vertex v is the union of {v}, its leftmost branch and its
rightmost branch. We say that v is the root of its hook. There is a
unique way to partition the vertices in hooks. The number of hooks in
such a partition is the hook number of the tree and it is denoted by
hook(T). We extend this definition to non-ambiguous trees.

Remark 1.14. We can obtain recursively the unique partition of a bi-
nary tree in hooks by extracting the root’s hook and iterating the process
on each tree of the remaining forest.

Example 1.15. On the left part of Figure 3, we represented in red the
hook of 10. The partition of vertices in hooks is obtained by removing
the dotted edges. The hook number of the tree is 8.

The correspondence between p and this new statistic is proven there-
after.

From now on, we juggle between geometric representation and the
labelled binary tree representation of non-ambiguous trees. Let T be

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 13

a non-ambiguous tree. Let us remove the first column. We number,
starting with 1, the south-east border, starting from the westmost edge
(Figure 4). Let σ be the permutation ϕ(T) and i the positive integer
corresponding to a border edge. The image σ(i) is defined as follows.
Let e be the border edge numbered by i. Let us suppose that e is
vertical. If e has no point to its left in the same row, then σ(i) = i.
Else, starting from the leftmost point of the row, we go down to the
closest point in the same column, then right to the closest point in
the same row and so on, until we reach a border edge e′. The image
σ(i) corresponds to the integer associated to e′. If e is horizontal, we
start with the topmost point of the same column and then we “zigzag“,
starting from with right direction, to find σ(i). For example, if T if the
non-ambiguous tree of Figure 4, then σ(23) = 13 and σ(3) = 7, and
more generally

σ = (13 1 6 20 12 5 22 10 2 23) (21) (18 3 7 17 15 4 19) (14 9 8 16) (11).

1 2 3 4 5 6 7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Figure 4. Example of the bijection of Burstein.

Proposition 1.16. Let wL and wR be two positive integers. The map
ϕ is a bijection between non-ambiguous trees of geometric size wL×wR

14 J.-C. AVAL AND AL.

and permutations of size wL + wR − 1 such that all their exceedances
are at positions 1, · · · , wR − 1.

If we keep the first column and we number with 0 the corresponding
border edge, we obtain a cycle. We denote with ψ this new map. For
example, if T is the non-ambiguous tree of Figure 5 then

ψ(T) = (0 13 1 6 20 12 5 22 10 2 23 21 18 3 7 17 15 4 19 14 9 8 16 11) .

In particular, ψ(19) = 14 = ϕ(16).

0 1 2 3 4 5 6 7 8

9 8 7 6 5 4 3 2 1

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 5. Example of the bijection ψ.

The difference between ϕ and ψ is given by the following lemma.

Lemma 1.17. Let T be a non-ambiguous tree. Let c1 · · · ck be the
decomposition in cycles of ϕ(T) such that the biggest element of ci is
larger than the biggest element of ci+1. Then, a representative of ψ(T)
is the word 0m1 · · ·mk where mi is the representative of ci such that
the biggest element of ci is at the right.

Since, the map ϕ is a bijection this lemma proves that ψ is also a
bijection.

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 15

Corollary 1.18. Let wL and wR be two positive integers. The map ψ is
a bijection between non-ambiguous trees of geometric size wL×wR and
cycles of J0, wL + wRK such that all their exceedances are at positions
0, · · · , wR − 1.

In order to ease future explanations, we number independently rows
and columns. We replace the integers J0, wR−1K with J1, wRK by using
the map i 7→ (wR − i), and the integers JwR, wR +wL−1K with J1, wLK
by using the map i 7→ (i− wR + 1), as shown in Figure 5. If we denote
T the non-ambiguous tree of this figure, then, ψ(T) is equal to

(9 5 8 3 12 4 4 14 2 7 15 13 10 6 2 9 7 5 11 6 1 1 8 3) .

The cycles appearing with this renumbering are the followings.

Definition 1.19. Let i and j be two positive integers. We call 2-
coloured block decreasing cycles of size i × j, the cycles of the set
J1, iK∪ J1, jK such that, if the image of an element a is an element b of
the same colour then a > b.

Using this definition, the map ψ is a bijection between non-ambiguous
trees of geometric size i × j and 2-coloured block decreasing cycles of
size i× j. Moreover, the number of blue blocks of the 2-coloured block
decreasing cycles has a simple interpretation over non-ambiguous trees.

Lemma 1.20. Let T be a non-ambiguous tree, then the hook number
of T is equal to the number of blue block in ψ(T).

Proof. In order to prove this lemma, we show that the red integers at
the right of the right branches of the hooks are the ones with a blue
preimage. It is a consequence of the property that in the case of a
zigzag originating from a blue (resp. red) integer, the end point of an
horizontal step is a non-root point of the right branch (resp. the root)
of a hook or a vertical step of the south-east border, and the end point
of a vertical step is the root (resp. a non-root point of the left branch)
of a hook or an horizontal step of the south-east border. In particular,
the starting point of an horizontal step of a zigzag originating from a
bleu (resp. red) is a point (resp. non-root) of the right (resp. left)
branch of a hook, which proves the result. �

For example, if T is the non-ambiguous tree of the Figure 5, its hook
number is 7 which also the number of blue blocks in ψ(T). From this
lemma, we deduce the following proposition.

Proposition 1.21. Let i, j and p be positive integers. The number of
non-ambiguous trees of geometric size i× j and hook number p is

(p− 1)! p! S2(i, p) S2(j, p).

16 J.-C. AVAL AND AL.

Moreover, the doubly exponential generating series of non-empty non-
ambiguous trees T with weight

zhook(T) x
wL(T) ywR(T)

wL(T)!w(T)!
,

is
− ln (1− z(ex − 1)(ey − 1)) .

Proof. It is clear that the enumeration formula counts the number of 2-
coloured block decreasing cycles of size i×j with p blue blocks. Hence,
using the Corollary 1.18 and the Lemma 1.20 we get the desired result.

The formula of the generating series is obtained as the composition
of the generating series of pairs composed of a non-empty blue set and
a non-empty red set in which we added z to count the number of pairs,
z(ex − 1)(ey − 1), with the generating series of cycles − ln(1− u). �

We extend naturally this proposition with the parameters α and β.

Theorem 1.22. Let i, j and p be positive integers. The number of
non-ambiguous trees of geometric size i× j and hook number p is

(p− 1)! (α + β)p−1 S2,α(i, p) S2,β(j, p).

Moreover, the doubly exponential generating series of non-empty non-
ambiguous trees T with weight

αL0(T)βR0(T)zhook(T) xwL(T)−1 ywR(T)−1

(wL(T)− 1)! (wR(T)− 1)!
,

is
zeαx+βy

(1− z(ex − 1)(ey − 1))α+β
.

Proof. A non-ambiguous tree can be decomposed in three pieces:

• the hook h of the root of which we removed all the vertices
which have a child which is not part of h, we can represent it as
a pair of the set of non-root red labels and the set of non-root
blue labels,
• the set of non-ambiguous trees attached to the left branch of h
• and the set of non-ambiguous trees attached to the right branch

of h.

The exponent of α (resp. β) is equal to the number of non-root red
(resp. blue) labels in the hook of the root plus the number of sub-non-
ambiguous trees attached to the left (resp. right) branch of h. Hence,
the generating series of h is

zeαxeβy,

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 17

the generating series of the sub-non-ambiguous trees attached to the
left branch of h is

e−α ln(1−z(ex−1)(ey−1)),

the one of those attached to the right branch of h is

e−β ln(1−z(ex−1)(ey−1)).

Taking the product we obtain the desired formula.
For the enumeration formula, let us consider a non-ambiguous tree

T . We use the same idea of decomposition. We delete the topmost row
and the leftmost column, before using the zigzags paths. For example,
the non-ambiguous tree of Figure 5 gives us

(3) (13) (6 2 9 7 5 11 10) (1 8 6 1) (8 5) (7 3 12 4 4 14 2).

Red (resp. blue) parentheses means that the corresponding sub-non-
ambiguous tree is attached to the leftmost (resp. rightmost) branch.
We regroup the red (resp. blue) fixed point in a same set, adding also
the red (resp. blue) label of the root. This way, we obtain a partition
of red (resp. blue) labels in p = hook(T) non-empty sets. The number
of non-root points in the leftmost column (resp. topmost row), with
no right (resp. left) child, is equal to the number of elements minus
1 in the subset containing the biggest element. This explains the α-
analogue (resp. β-analogue) of S2. Let us order and number the p− 1
other blue subsets with respect to their biggest element and pair each
blue subset with the red block to its right (in the same cycle). Keeping
the same example, we obtain

6 5 4 3 2 1
{9} {8} {7 3} {6 2} {5} {4} {1}

{15 13 3} {5} {12 4} {9 7} {11 10} {14 2} {8 6 1}
.

In a general setting, there are (p− 1)! pairing possibilities. Let us now
replace each pair with its corresponding number. We get

(6) (5 2) (4 3) (1).

In the end, in addition to the two partitions, we have a permutation
of size p − 1 decomposed in cycles and whose cycles are coloured in
red or in blue. Each red (resp. blue) cycle counts for an α (resp. β),
hence, the generating polynomial of such permutations is (α + β)p−1.
We finally get the desired formula. �

As stated in the introduction, Proposition 1.11 and Theorem 1.12
(in the case α = β = 1) were already proven by Clark and Ehren-
borg [CE10]. In the proof they gave, the statistic p is interpreted on
permutations as follows.

18 J.-C. AVAL AND AL.

Definition 1.23. Let i, j and n be positive integers such that n =
i+ j − 1. Let p be a permutation of size n such that all its exceedances
are at position J1, j− 1K. The CE-statistic 2 of p is the positive integer

CE(p) = |{u ∈ J1, j − 1K, p(u) > i}|+ 1.

The Lemma 1.20 tells us that the hook statistic corresponds to the
number of blue blocks in 2-coloured block decreasing cycles. The bijec-
tion between 2-coloured block decreasing cycles and permutations will
all their exceedances at the beginning that we will study is Θ = ϕ◦ψ−1.
The following lemma describes the difference between the number of
blue blocks and the CE-statistic.

Lemma 1.24. Let i and j be positive integers and c a 2-coloured block
decreasing cycle of size i × j. Then, the number of blue blocks of c is
equal to the CE-statistic of Θ(c)

• minus 1, if j has a blue element to its right and
• plus 1, if 1 has a blue integer, different from j to its left.

Proof. Let p be a permutation of size n = i + j − 1 such that all its
exceedances are at position J1, j − 1K. If we keep the interpretation
with red and blue integer, then the CE-statistic becomes

|{u ∈ J1, j − 1K, p(u) ∈ J2, iK}|+ 1.

Hence, the CE-statistic is the number of blue blocks of p without 1
to their right plus 1. Hence, we should study how the number of blue
blocks behave with respect to Θ. Using Lemma 1.17 we obtain the
conditions of Lemma 1.24. �

The previous lemma tells us that Θ is not sufficient to prove the
equidistribution between the hook statistic and the CE-statistic. We
need one last involution. Let m be the representative of a 2-coloured
block decreasing sequence c of size i× j such that j is to the left of m.
The word m can be factorised as m = jb1 · · · bk1m′ where the bi are
maximal blocks of same colours. Let ω be the involution such that if
k is even then a representative of ω(c) is m = jb2b1 · · · bkbk−11m′, and
if k is odd then ω(c) = c.

Proposition 1.25. Let c be a 2-coloured block decreasing sequence.
The number of blue blocks of c is equal to the CE-statistic of Θ(ω(c)).

Corollary 1.26. The hook statistic on non-ambiguous trees and the
CE-statistic on permutations with all their exceedances at the beginning
are equidistributed.

2The ”+1” doesn’t appear in the definition of Clark and Ehrenborg. We intro-
duced it because there is a shift between the hook statistic and the CE-statistic.

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 19

1.4. q-analogues of the hook formula. As for binary trees, there
exists q-analogues of the hook formula for NATs of a given shape as-
sociated to either the number of inversions or the major index. There
are two ingredients: first we need to associate two permutations to a
non-ambiguous tree, and second we need to give a q-analogue of the
bilinear map B. It turns out that it is possible to use two different q
namely qR and qL for the derivative and integral in x and y.

The first step to formulate a q-hook formula is to associate to any
non-empty non-ambiguous tree T a pair of permutations

σ(T) = (σL(T), σR(T)) ∈ SVL(T) ×SVR(T).

Definition 1.27. Let T be a non-ambiguous tree. Then σL(T) is ob-
tained by performing a left postfix reading of the left labels: precisely we
recursively read trees

L R
by reading the left labels of L, then the left

labels of R and finally the label of the root if it is a left child. The per-
mutation σR(T) is defined similarly reading right labels, starting from
the right subtree, then the left subtree and finally the root.

If we take back the example of Figure 1 we get the two permutations
σL(T) = (2, 1, 4, 3, 6, 10, 8, 9, 5, 7) and σR(T) = (1, 2, 3, 4, 5, 7, 11, 9, 6, 8, 10).

Recall that the number of inversions of a permutation σ ∈ Sn is the
number of i < j 6 n such that σ(i) > σ(j). A descent of σ is a i < n
such that σ(i) > σ(i+ 1) and the inverse major index of σ is the sum
of the descents of σ−1. Finally for a repetition free word w of length l
we write Std(w) the permutations in Sl obtained by renumbering w
keeping the order of the letters. For example Std(36482) = 24351. We
define as usual the q-integer [n]q := 1−qn

1−q , and the q-factorial [n]q! :=∏n
i=1[i]q.

Theorem 1.28. For a non-ambiguous tree T and a statistic S ∈
{Inv, iMaj}, define

wS(T) := q
S(σL(T))
L q

S(σR(T))
R . (9)

Then, for any non-empty binary tree B∑
T∈NAT (B)

wS(T) =
|VL(B)|qL ! · |VR(B)|qR !∏

U :left child

[EL(U)]qL ·
∏

U :right child

[ER(U)]qR
. (10)

Going back to the non-ambiguous tree of Figure 1, the inversions
numbers are Inv(σL(T)) = 11 and, Inv(σR(T)) = 7 so that wInv(T) =
q11
L q

7
R. For the inverse major index, we get the permutations σL(T)−1 =

(2, 1, 4, 3, 9, 5, 10, 7, 8, 6) and σR(T)−1 = (1, 2, 3, 4, 5, 9, 6, 10, 8, 11, 7).
Consequently, iMaj(σL(T)) = 1+3+5+7+9 = 25 and iMaj(σR(T)) =

20 J.-C. AVAL AND AL.

6 + 8 + 10 = 24 so that wiMaj(T) = q25
L q

24
R . Note that it is possible to

read directly wS(T) on T .
The argument of the proof follows the same path as for the hook

formula, using pumping functions. Recall that the q-derivative and q-
integral are defined as ∂x,qx

n := [n]qx
n−1 and

∫
x,q
undu := xn+1

[n+1]q
. Then

the (qL, qR)-analogue of the pumping function is given by

Bq(f, g) =

∫
x,qL

∫
y,qR

∂x,qLg(u, v) · ∂y,qRf(u, v) du dv. (11)

We also define recursively Bq(B) by Bq(∅) := x + y and Bq
(
L R

)
=

Bq (Bq(L),Bq(R)) . Then the main idea is to go through a pumping
function on pairs of permutations. We write QS the vector space of
formal sums of permutations. For any permutation σ ∈ Sn we write∫
σ = σ[n + 1] the permutation in Sn+1 obtained by adding n + 1 at

the end. Again we extend
∫

by linearity.

Definition 1.29. The pumping function on permutation is the bilinear
map BS : QS×QS 7→ QS defined for σ ∈ Sm and µ ∈ Sn by

BS(σ, µ) =
∑

uv∈Sm+n+1

Std(u)=
∫
σ

Std(v)=µ

uv .

We define also a pumping function on pairs of permutations

BS2 ((σL, σR), (µL, µR)) := (BS(σL, µL),BS(µR, σR))

For example BS(21, 12) = 21345 + 21435 + 21534 + 31425 + 31524 +
41523 + 32415 + 32514 + 42513 + 43512. Note that for two non-empty
non-ambiguous tree C,D∑

T∈M(C,D)

σL(T) = BS(σL(C), σL(D))

and
∑

T∈M(C,D)

σR(T) = BS(σR(D), σR(C)).

The central argument is the following commutation property:

Proposition 1.30. For a statistic S ∈ {Inv, iMaj}, and (σL, σR) ∈
Sm ×Sn, define

ΨS((σL, σR)) := q
S(σL)
L

xm+1

[m+ 1]qL !
q
S(σR)
R

yn+1

[n+ 1]qL !
. (12)

Then for any pairs σ = (σL, σR) and µ = (µL, µR), one has

ΨS(BS2(σ, µ)) = Bq(ΨS(σ),ΨS(µ)).

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 21

Proof. We need to prove that for τ ∈ Sm and π ∈ Sn,∑
θ=uv∈Sn+m+1

Std(u)=
∫
τ

Std(v)=π

qS(θ) = qS(τ)+S(π)

(
m+ n+ 1

m+ 1

)
q

.

The case S = Inv is easier to prove. The q-binomial consists in
choosing a permutation θ such that θ(1) < · · · < θ(m + 1) and θ(m +
2) < · · · < θ(m+n+1). The term qS(τ)+S(π) comes from the reordering
of the θ(i) in order to have Std(θ(1) · · · θ(m+ 1)) =

∫
τ and Std(θ(m+

2) · · · θ(m+ n+ 1)) = π.
In order to prove the case S = iMaj, we consider the two following

equations ∑
θ=uv∈Sn+m+1
n+m+1∈u
Std(u)=

∫
τ

Std(v)=π

qiMaj(θ) = qiMaj(τ)+iMaj(π)+n

(
m+ n

n

)
q

, (13)

and ∑
θ=uv∈Sn+m+1
n+m+1∈v
Std(u)=

∫
τ

Std(v)=π

qiMaj(θ) = qiMaj(τ)+iMaj(π)

(
m+ n

n− 1

)
q

. (14)

Equation 13 is a consequence of Equation 36 in [HNT08]. We prove
Equation 14 by induction on n + m and distinguishing the two cases
n + m ∈ u and n + m ∈ v. Finally, making the sum of Equations 13
and 14 finishes the proof.

�

As a consequence, noting that wS(T) = ΦS(σ(T)), one finds that for
any non-empty non-ambiguous trees C and D,∑

T∈M(C,D)

wS(T) = ΦS

(
BS2(σ(C), σ(D)

)
= Bq(wS(C), wS(D)) .

Applying this recursively on the structure of a binary tree B, we have
that

∑
T∈NAT (B) wS(T) = Bq(B) . Unfolding the recursion for Bq(B),

gives finally Theorem 1.28.
We conclude this section by an example. Let B = . Then

one finds that the q- hook formula gives (q3
R + q2

R + qR + 1)(q2
L + qL +

1)(qR + 1). Expanding this expression, one finds that the coefficient of
q2
RqL is 2. For the iMaj statistic it corresponds to the two following

22 J.-C. AVAL AND AL.

non-ambiguous trees which are shown with their associated left and
right permutations:

(4,5)

3 4

2 2 1 1

3

((2, 3, 1), (1, 3, 4, 2)) ,

(4,5)

3 4

2 2 1 3

1

((2, 3, 1), (3, 1, 4, 2)) .

2. Non-ambiguous trees in higher dimension

In this section we give a generalisation of NATs to higher dimensions.
NATs are defined as binary trees whose vertices are embedded in Z2,
and edges are objects of dimension 1 (segments). Let d ≥ k ≥ 1 be
two integers. In higher dimension, binary trees are replaced by

(
d
k

)
-ary

trees embedded in Zd and edges are objects of dimension k. As in
Section 1.2 we obtain differential equations for these objects.

2.1. Definitions. We call (d, k)-direction a subset of cardinality k of
{1, . . . , d}. The set of (d, k)-directions is denoted by Πd,k. A (d, k)-
tuple is a d-tuple of (N ∪ {•})d, in which k entries are integers and
d− k are •. For instance, (•, 1, •, 5, 2, •, •, 3, •) is a (9, 4)-tuple.
The direction of a (d, k)-tuple U is the set of indices of U corresponding
to entries different from •. For instance, the direction of our preceding
example is {2, 4, 5, 8}.

Definition 2.1. A
(
d
k

)
-ary tree M is a tree whose children of a given

vertex are indexed by a (d, k)-direction.

A
(
d
k

)
-ary tree will be represented as an ordered tree where the chil-

dren of a vertex S are drawn from left to right with respect to the
lexicographic order of their indices. If a vertex S has no child asso-
ciated to an index π, we draw an half edge in this direction. Two
examples are drawn in Figure 6. As for binary trees, for each (d, k)-
direction π we consider that there is a

(
d
k

)
-ary tree of size 0: the empty(

d
k

)
-ary tree of direction π noted ∅π.

Definition 2.2. A non-ambiguous tree of dimension (d, k) is a labelled(
d
k

)
-ary tree such that:

(1) a child of index π is labelled with a (d, k)-tuple of direction π
and the root is labelled with a (d, d)-tuple;

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 23

(2) for any descendant U of V , if the i-th component of U and V
are different from •, then the i-th component of V is strictly
greater than the i-th component of U ;

(3) for each i ∈ J1, dK, all the ith components, different from •, are
pairwise distinct;

(4) the set of ith components different from • of every vertices in
the tree is an interval whose minimum is 1.

The set of non-ambiguous trees of dimensions (d, k) is denoted by
NAT d,k.

We write NATd,k for a non-ambiguous tree (of dimensions (d, k)).
Figure 6 gives an example of a NAT3,1 and a NAT3,2.

(5,7,6)

(4,•,•)

(1,•,•) (•,•,5)

(•,5,•)

(•,3,•) (•,•,4)

(•,•,2)

(•,4,•)

(•,•,1)

(•,•,3)

(2,•,•) (•,6,•)

(3,•,•)

(•,2,•)

(•,1,•)

(6,5,4)

(5,3,•)

(3,1,•)(2,•,2)

(1,•,1) (•,4,3)

(4,2,•)

Figure 6. A NAT of dimension (3, 1) (above) and a
NAT of dimension (3, 2) (below).

Definition 2.3. The geometric size of a NATd,k is the d-tuple of inte-
gers (w1, . . . , wd) which labels the root of the NATd,k, it is denoted by
w1 × · · · ×wd. The π-size of a NATd,k is the number of vertices in the
tree of direction π, the set of such vertices is denoted by Vπ.

Proposition 2.4 gives the relation between the geometric size and the
π-size of a non-ambiguous trees.

Proposition 2.4. Let M be a
(
d
k

)
-ary tree, the root label is constant

on elements of NAT d,k of shape M (NAT d,k(M)):

wi(M) := wi =
∑

π∈Πd,k | i∈π

|Vπ(M)|+ 1.

24 J.-C. AVAL AND AL.

2.2. Associated differential equations. In this section, we denote
respectively by x{i1,...,ik} the product xi1 × . . . × xik , by ∂{i1,...,ik} the
operator ∂xi1∂xi2 . . . ∂xik and by

∫
{i1,...,ik}

the operator
∫
xi1

∫
xi2
. . .
∫
xik

.

As for non-ambiguous trees (Proposition 1.6), there is a hook formula
for the number of non-ambiguous trees with fixed underlying tree. Let
M be a

(
d
k

)
-ary tree, for each vertex U we denote by Ei(U) the number

of vertices, of the subtree whose root is U (itself included in the count),
whose direction contains i. Then,

|NAT d,k(M)| =

d∏
i=1

(wi(M)− 1)!∏
U : child of direction

containing i

Ei(U)
.

Let Nd,k(x1, . . . , xd) be the exponential generating function of gen-
eralised non-ambiguous trees

Nd,k(x1, . . . , xd) :=
∑

T∈NAT ∗d,k

d∏
i=1

x
wi(T)−1
i

(wi(T)− 1)!

There is a (d, k)-dimensional analogue of the fixed point differential
Equation 7:

Proposition 2.5. The exponential generating function Nd,k of gener-
alised non-ambiguous trees satisfies the following differential equation

Nd,k(x1, . . . , xd) =
∏

π∈Πd,k

(
1 +

∫
π

Nd,k

)
. (15)

Proof. The method is analogue to the method of Section 1.2, and goes
through the use of a

(
d
k

)
-linear map and a pumping function for

(
d
k

)
-ary

trees. �

The family of differential equations defined by Equation 15 can be
rewritten using differential operators instead of primitives. We need to
introduce the function Gd,k =

∫
{1,...,d}Nd,k +

∑
π∈Πd,d−k

xπ. Then, we

show that Gd,k satisfies the following differential equations:

Proposition 2.6. The differential equation satisfied by Gd,k is

∂1 . . . ∂dGd,k =
∏

π∈Πd,d−k

∂πGd,k.

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 25

In the generic case, we are not able to solve those differential equa-
tions. We know that setting a variable xd to 0 gives the generating
function of NATs of lower dimension.

Proposition 2.7. Let d > k ≥ 1, then Nd,k|xd=0 = Nd−1,k.

For some specific values of d and k we have (at least partial) results.

Proposition 2.8. Let k = d − 1, if we know a particular solution
s(x1, . . . , xd) for

∂1 . . . ∂dGd,d−1 = ∂1Gd,d−1 × . . .× ∂dGd,d−1

then, for any function s1(x1), . . . , sd(xd), the function s(s1(x1), . . . , sd(xd))
is also a solution.

Proposition 2.9. Some non trivial rational functions are solutions of

∂1 . . . ∂dGd,1 =
∏

π∈Πd,d−1

∂πGd,1.

Proof (sketch). We generalise the first part of the proof of Proposi-
tion 1.8. We define G(i) = ∂πGd,1 where i ∈ J1, dK and π = J1, dK \
{i}. We get the relation ∂iG(i) =

∏d
j=1 G(j) and then

∏d
i=1 ∂iG(i) =∏d

i=1 G
d
(i). To obtain a particular solution, we just need to identify,

in the previous equation, the term ∂iG(i) to the term Gd
(i). We thus

obtain some non trivial solutions for our equation, which are rational
functions. �

Since dimension (2, 1) is the unique case where Proposition 2.8 and
Proposition 2.9 can be applied at the same time, and the computation
of Nd,d is straightforward, we have the following proposition.

Proposition 2.10. We have the closed formulas:

N2,1 = N and Nd,d =
∑
n≥0

(x1 · . . . · xd)n

(n!)d
.

We see Nd,d as is a kind of generalised Bessel function because

N2,2(x/2,−x/2) = J0(x)

where Jα is the classical Bessel function. This supports our feeling that
the general case leads to serious difficulties.

26 J.-C. AVAL AND AL.

2.3. Geometric interpretation. As for non-ambiguous trees, we can
give a geometric definition of non-ambiguous trees of dimensions (d, k)
as follows. We denote by (e1, . . . , ed) the canonical basis of Rd and
(X1, . . . , Xd) its dual basis, i.e. Xi is R-linear Xi(ei) = δi,j. Let
P ∈ Rd and π = {i1, . . . , ik} a (d, k)-direction, we call cone of ori-
gin P and direction π the set of points C(P, π) := {P + a1ei1 + · · · +
akeik | (a1, . . . , ak) ∈ Nk}.

Definition 2.11. A geometric non-ambiguous tree of dimension (d, k)
and box w1 × · · · × wd is a non-empty set V of points of Nd such that:

(1) V is contained in J1, w1K× · · · × J1, wdK.
(2) V contains the point (w1, . . . , wd), which is called the root,
(3) For P ∈ V different from the root, there exists a unique (d, k)-

direction π = {i1, . . . , ik} such that the cone c(P, π) contains at
least one point different from P . We say that P is of type π.

(4) For each i ∈ J1, dK, for all l ∈ J1, wi − 1K, the affine hyperplane
{xi = l} contains exactly one point of type π. If we denote by
π its type, then i ∈ π.

(5) For P and P ′ two points of V belonging to a same affine space of
direction Vect(ei1 , . . . , eik), then, either ∀j ∈ J1, kK, Xij(P) >
Xij(P

′), or ∀j ∈ J1, kK, Xij(P
′) > Xij(P).

Proposition 2.12. There is a simple bijection between the set of geo-
metric non-ambiguous tree of box w1 × · · · × wd and the set of non-
ambiguous tree of geometric size w1 × · · · × wd.

Proof. If k = d, V is of the form

{(w, . . . , w), (w − 1, . . . , w − 1), . . . , (1, . . . , 1)},

which corresponds exactly to non-ambiguous trees of dimension (d, d)
defined in 2.2.

Let us now suppose that k < d.
2.2 implies 2.11:
Let T be a non-ambiguous tree of dimension (d, k)-defined with Def-

inition 2.2 and let w1 × · · · × wd be its geometric size. The first step
is to define the completed label of a vertex U by replacing the • by
integers in the vertices labels, we do it as follows. Let U be a vertex
of T such that its ith component is a • and let V be its parent. If the
ith component of V is not a •, then replace the ith component of U by
the ith component of V . Else replace recursively the ith component of
V and then do the replacement. It is equivalent to say that we replace
the ith component of U with the ith component of the first ancestor of
U with a ith component different from •. Such an ancestor exists since

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 27

the root has no • component. As a consequence, using 2.2.2 we deduce
that for a vertex V of completed label (v1, . . . , vd), if V has a child
U indexed by a (d, k)-direction π and of completed label (u1, . . . , ud),
then for i ∈ π, vi > ui and for i 6∈ π, vi = ui. Moreover, 2.2.3 and the
definition of completed labels implies that, for U and V two vertices, if
there exists i such that ui = vi, then they have a common ancestor W
such that wi 6= • and wi = ui = vi. We denote ai(U), or equivalently
ai(V), the vertex W .

Let V be a vertex of T of completed label (u1, . . . , ud). We de-
note by PV ∈ Nd the point (u1, . . . , ud). Let V be the set of points
{PV | V vertex of T}. We can prove that each vertex has a different
completed label. Let us prove that V satisfies the conditions of 2.11.

(1) It is a consequence of 2.2.4, and Definition 2.3.
(2) V contains (w1, . . . , wd), since (w1, . . . , wd) is the label of the

root of T .
(3) Let PU be a point of V different from (w1, . . . , wd). Since U

is not the root, it is a child indexed by a (d, k)-direction π,
of a vertex V . Hence for i 6∈ π, Xi(PV) = Xi(PU) and for
i ∈ π, Xi(PV) > Xi(PU). So PV is in the cone of origin PU
and direction π, in particular, PU is of type π. Let us prove the
uniqueness by contradiction. Suppose there is another (d, k)-
direction π′ such that the cone of origin PU and direction π′

contains a point PV ′ different from PU . Let i ∈ π \ π′. Then,
by definition of the cone we have Xi(PU) = Xi(P

′
V). Since

ai(U) = V , then ai(V
′) = V . Let i′ ∈ π′ \ π then X ′i(PV ′) >

Xi(PU) = Xi(PV), which is not possible since V is an ancestor
of V ′. In particular the type of PU corresponds to the type of
U .

(4) Let i ∈ J1, dK and l ∈ J1, w − 1K, by 2.2.4, there exists U such
that ui 6= • and ui = l. Let π be the index of u then i ∈ π,
hence, PU satisfies 2.11.4. Suppose there exists another point
PV satisfying 2.11.4, let π′ be its type. Then V is indexed by
π′ and i ∈ π′. Thus, V is another vertex such that vi 6= • and
vi = l which is in contradiction with 2.2.3.

(5) Let F be an affine space of direction Vect(ei1 , . . . , eik) contain-
ing a point PU . We denote by π the set {ei1 , . . . , eik}. If U is
the root, then 2.11.5 is satisfied. Else, let (V0, V1, . . . , Vm) be
the sequence of ancestors of U , i.e V0 = U for all j, Vj is a child
of Vj+1 and Vm is the root of T . Let l be the index such that Vl
is a child of Vl+1 not indexed by π and ∀j ∈ J0, l− 1K, Vj is the
child indexed by π of Vj+1, Vl will be denoted V . Let π′ be the

28 J.-C. AVAL AND AL.

Figure 7. Geometric representation of the NATs of Fig-
ure 6.

(d, k)-direction indexing V and let i ∈ π′ \ π. If V is the root
then π′ = J1, dK. Let PU ′ be another point of F , since i 6∈ π,
then u′i = ui. Hence, we have ai(U

′) = ai(U) = V . Since for
all j 6∈ π, u′j = vj, the path from U ′ to V contains only vertices
indexed by π. Hence, by definition of V , U is an ancestor of U ′

or the converse, which proves 2.11.5.

2.11 implies 2.2:
Let V be a non-ambiguous tree defined with Definition 2.11. We

start by constructing the underlying
(
d
k

)
-ary tree M of V . The vertices

of M correspond to the points of V , in particular, the root of M cor-
responds to the root of V . Let P be a point of V , we denote by VP

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 29

the corresponding vertex of M . Let P be a point of V different from
the root, let π = {ei1 , . . . , eik} be the (d, k)-direction defined by 2.11.3
and let F be the affine space P + Vect(ei1 , . . . , eik). Using 2.11.5, we
can definewithout ambiguity the parent of VP as the vertex VP ′ such
that P ′ is the closest point to P belonging to c(P, π). VP is the child of
VP ′ indexed by π, moreover, for all i ∈ π, Xi(P) < Xi(P

′) and for all
i 6∈ π, Xi(P) = Xi(P

′). The labelling is done as follows. We start by
labelling the vertices VP by the coordinates of P . Then for each vertex
V , let π be its index, for all i 6∈ π, we replace the ith component of its
label by •. Thus, if the ith component of a vertex VP ′ is equal to l then
for a descendant VP of VP ′ , Xi(P) 6 l, and if Xi(P) = l then the ith
component of VP ′ is •. Let us prove that the condition of Definition
2.2 are satisfied.

(1) By construction of the labels.
(2) Let P and P ′′ be two points such that VP is a descendant of

VP ′′ indexed by π such that i belongs to π. Let P ′ be the father
of P , then Xi(P) < Xi(P

′) 6 Xi(P
′′).

(3) Let VP be a vertex of M such that its ith component is different
from •. If VP is the root, then all the vertices of M are its
descendants, hence its ith label appears only once. Else, VP is
a child indexed by π of a vertex VP ′ . In particular, π contains
i since the ith component of VP is not •. Hence, by 2.11.4, the
ith component of VP is unique.

(4) 2.11.4 implies that for each i ∈ J1, dK, for all l ∈ J1, wi − 1K
there is a point P of type π such that Xi(P) = l and i ∈
π, so that the ith component of VP is equal to l. Moreover,
the coordinates of the root are (w1, . . . , wd) and V is contained
in the box J1, w1K × · · · × J1, wdK. Therefore, the set of ith
components, different from •, is the interval J1, wiK.

�

3. A new statistic on binary trees: the hook statistic

We present in this section a bijection between binary trees and or-
dered trees, sending the vertices to edges and the hook statistic defined
in Definition 1.13 to the number of vertices having at least a child which
is a leaf, what we will call the child-leaf statistic. The corresponding
integer series appears as [Slo, A127157] in OEIS.

We denote by Bp and Op respectively the exponential generating
series of these trees, with these statistics, the variable x indexing the
number of vertices in Bp and the number of edges in Op, and t the
statistic.

30 J.-C. AVAL AND AL.

Then, these generating series satisfy:

Proposition 3.1. The generating series of binary trees with hook statis-
tic and ordered trees with the child-leaf statistic are given by the follow-
ing functional equations:

Bp = 1 + xt×
(

1

1− xBp

)2

Op =
1

1− x(Op − 1))
×
(

1 + xt× 1

1− xOp

)
These generating series are equal.

Proof. The first functional equation is obtained by considering the ver-
tices in the hook of the root: there can be none or there is a root, a
list of left descendant (whose right child is a binary tree) and a list of
right descendant (whose left child is a binary tree).

The second functional equation is obtained by considering, if the
ordered tree is not reduced to a vertex, the first leaf of the root from
left to right, if it exists. Then, on the left side of this leaf, there is a
list of ordered trees not reduced to a vertex and on the right side a list
of ordered trees, if there is a leaf.

Then, by multiplying the preceding equations by 1 − xBp and 1 −
x(Op − 1)) respectively, they are equivalent to:

Bp − xB2
p = 1− xBp + xt

1

1− xBp

Op − xO2
p + xOp = 1 + xt

1

1− xOp
.

�

Let us now exhibit a bijection between these two objects. This bi-
jection comes from the following equation:

(Bp − 1)− x(Bp − 1)− x(Bp − 1)2 = xt
1

1− xBp
.

This equation can be viewed as considering only binary trees whose
root has no left descendants or ordered trees such that the leftmost
child of the root is a leaf.

We obtain the following bijection:

Proposition 3.2. The map ζ sends a binary tree B to an ordered tree
O by mapping:

• the leftmost descendant of the root, if it is a leaf, to an edge
between the root and its only child

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 31

⇔

1

2

⇔ 2

1

1

2

3

⇔

1 2 3

Figure 8. Bijection ζ

binary trees •

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

ordered trees

•

•

•

•

•

•

• •

•

•

• •

•

•

•

•

•

• ••

•

• •

•

•

•

•

•

Table 1. First terms of the bijection ζ

• the leftmost descendant of the root v to an edge between the root
of the tree associated with the descendants of v and the root of
the tree obtained from what is left
• the set of right descendants of the root to the set of children of

the root.

It is a bijection between binary trees and ordered trees, sending the
vertices to edges and the hook statistic to the child-leaf statistic.

We sum up this bijection on Figure 8.
We present in Table 1 the first terms in the bijection.
Another way of describing recursively the bijection ζ is given in Fig-

ure 9, the empty binary tree is still send to the ordered tree reduced
to one vertex.

Perspectives

In this work we gave new results about NATs, and we generalised the
definition of NATs to higher dimensions with a choice on the dimension
of the edges. It gives rise to several questions.

32 J.-C. AVAL AND AL.

a

b

c 1

2

3

⇐⇒

ζ(a)

ζ(b)

ζ(c)

ζ(1) ζ(2) ζ(3)

Figure 9. Bijection ζ, alternative description.

We found nice formulas for the generating function and the gener-
ating polynomial of non-ambiguous trees that takes into account the
number of points in the first column and in the first row. Those two
parameters correspond to the parameters α and β of the PASEP. We
obtained those formulas with two different technics: by solving a differ-
ential equation and by decomposing non-ambiguous trees in hooks. In
the context of the PASEP, it raises natural questions. Is it possible to
introduce the parameter q of the PASEP in either one of them ? What
can we deduce from the hook decomposition of tree-like tableaux ?

We found a polynomial analogue of the hook formula enumerat-
ing the NATs with a fixed binary tree, by adapting the methods of
[HNT08]. Since we gave a hook formula also for NATs of higher dimen-
sion, we could extend the work to higher dimensions to get polynomial
analogue.

The generating functions of generalised NATs satisfy differential
equations similar to the case of NATs. While we were able to solve
the case of NATs and get a nice closed form, we have not been able to
tackle the general case. It would be interesting to find a generic way
of solving these type of differential equations.

By generalising the NATs to higher dimension, we answered a ques-
tion raised in the perspectives of [ABBS14]. In this paper, in addition
to studying NATs, they also study NATs with a complete underlying
binary tree, and they obtain nice combinatorial identities. It would be
interesting to see if the same happens in higher dimension.

Finally, as mentioned in the introduction, NATs correspond to the
tree-like tableaux of rectangular shape, so, we could generalise tree-like
tableaux to higher dimension and hope to obtain again an insertion
algorithm, a key property of tree-like tableaux.

Acknowledgement. The authors thank Samanta Socci for fruitful

NON-AMBIGUOUS TREES: NEW RESULTS AND GENERALISATION 33

discussions which were the starting point of the generalisation of non-
ambiguous trees. This research was driven by computer exploration
using the open-source software Sage [S+15] and its algebraic combina-
torics features developed by the Sage-Combinat community [SCc08].

References

[ABBS14] J.C. Aval, A. Boussicault, M. Bouvel, and M. Silimbani. Combinatorics
of non-ambiguous trees. Advances in Applied Mathematics, 56:78–108,
May 2014.

[ABN13] J.-C. Aval, A. Boussicault, and P. Nadeau. Tree-like tableaux. Electron.
J. Combin., 20(4):Paper 34, 24, 2013.

[Bur07] A. Burstein. On some properties of permutation tableaux. Ann. Comb.,
11(3-4):355–368, 2007.

[BW89] A. Björner and M. L. Wachs. q-hook length formulas for forests. J. Comb.
Theory Ser. A, 52(2):165–187, November 1989.

[CE10] E. Clark and R. Ehrenborg. Explicit expressions for the extremal ex-
cedance set statistics. European J. Combin., 31(1):270–279, 2010.

[CW07] S. Corteel and L. K. Williams. Tableaux combinatorics for the asym-
metric exclusion process. Adv. in Appl. Math., 39(3):293–310, 2007.

[ES00] R. Ehrenborg and E. Steingrimsson. The excedance set of a permutation.
Advances in Applied Mathematics, 24(3):284 – 299, 2000.

[HNT08] F. Hivert, J.C. Novelli, and J.Y. Thibon. Trees, functional equations,
and combinatorial Hopf algebras. European Journal of Combinatorics,
29(7):1682–1695, 2008.

[Pos07] A. Postnikov. Total positivity, grassmannians, and networks, 2007.
[S+15] W. A. Stein et al. Sage Mathematics Software (Version 6.10.beta1). The

Sage Development Team, 2015. http://www.sagemath.org.
[SCc08] The Sage-Combinat community. Sage-Combinat: enhancing Sage as

a toolbox for computer exploration in algebraic combinatorics, 2008.
http://combinat.sagemath.org.

[Slo] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.
http://oeis.org.

[SW07] E. Steingrimsson and L. K. Williams. Permutation tableaux and permu-
tation patterns. J. Combin. Theory Ser. A, 114(2):211–234, 2007.

[Vie08] X. Viennot. Alternative tableaux, permutations and partially asymmet-
ric exclusion process. Slides of a talk at the Isaac Newton Institute in
Cambridge, 2008.

34 J.-C. AVAL AND AL.

Laboratoire Bordelais de Recherche en Informatique (UMR CNRS
5800), Université de Bordeaux, 33405 TALENCE

Laboratoire Bordelais de Recherche en Informatique (UMR CNRS
5800), Université de Bordeaux, 33405 TALENCE

Institut de Mathématiques de Toulouse (UMR CNRS 5219), Univer-
sité Paul Sabatier, 31062 TOULOUSE

Laboratoire de Recherche en Informatique (UMR CNRS 8623), Bâtiment
650, Université Paris Sud 11, 91405 ORSAY CEDEX

Laboratoire Bordelais de Recherche en Informatique (UMR CNRS
5800), Université de Bordeaux, 33405 TALENCE

