
HAL Id: hal-03165254
https://hal.science/hal-03165254

Submitted on 10 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new split-based hybrid metaheuristic for the
Reconfigurable Transfer Line Balancing Problem

Y Lahrichi, Laurent Deroussi, Nathalie Grangeon, Sylvie Norre

To cite this version:
Y Lahrichi, Laurent Deroussi, Nathalie Grangeon, Sylvie Norre. A new split-based hybrid metaheuris-
tic for the Reconfigurable Transfer Line Balancing Problem. International Journal of Production
Research, 2021. �hal-03165254�

https://hal.science/hal-03165254
https://hal.archives-ouvertes.fr

A new split-based hybrid metaheuristic for the Reconfigurable
Transfer Line Balancing Problem

Y. Lahrichi, L. Deroussi, N. Grangeon, S. Norre

LIMOS CNRS UMR 6158 - 1 Rue de la Chebarde, 63178 Aubière, France

ARTICLE HISTORY
Compiled December 11, 2019

ABSTRACT
We consider the Reconfigurable Transfer Line Balancing Problem. This problem
consists into allocating a set of operations (necessary to machine a single part)
to different workstations placed into a serial line. Each workstation can contain
multiple machines operating in parallel. The machines considered are mono-spindle
head CNC machines which may imply sequence-dependent setup times between
operations in order to perform tool changes. Therefore, the operations allocated to
a workstation should be sequenced. Besides, accessibility, inclusion, exclusion and
precedence constraints between operations are considered. In this article, we propose
a polynomial exact algorithm that balances the transfer line provided the overall
sequence of the operations (called "giant sequence") is given. We use this algorithm
to solve the balancing problem when the overall sequence of operations is not fixed
by embedding it in a metaheuristic framework. We perform experimentation on
literature instances. The results obtained show the effectiveness of the proposed
approach compared to literature.

KEYWORDS
Split algorithm; metaheuristic; balancing; transfer line; setup time; polynomial
algorithm; sequencing.

1. Introduction

New consuming trends, global competition and growing variety in demand in the actual
economical context raise an important issue in transfer line design. Shortening life
cycle times imposes the consideration of reconfigurability ([Koren and Shpitalni(2010)],
[Mehrabi et al.(2002)]). The modern transfer lines should be easily and cost-effectively
reconfigurable to address two different issues: the variability in production size and the
variability in the product specifications.

A Reconfigurable Transfer Line (RTL) could be seen as a serial line of workstations.
Each workstation is equipped by multiple machines operating in parallel. The RTL
is paced and every part is delivered to a single machine in every workstation. The
machines from the same workstation perform the same sequence of operations.

The RTL highly addresses the issue of production size variability. Indeed the ability
to add or remove a machine in a workstation allows monitoring the cycle time with
high granularity which is referred to as scalability [Koren, Wang, and Gu(2017)].

The RTL we consider is equipped with mono-spindle head CNC machines. Those
machines can perform a large set of operations, each machine being equipped with

a tool magazine. To perform an operation, a machine needs a specific tool. Thus,
sequence-dependent setup times between operations must be considered in addition
to processing times in order to perform tool changing.

Our objective is to study the balancing of such lines in the presence of several types
of products and in particular the changes of production campaigns between two types
of products. Before considering this global problem, we focused on the problem of
balancing such lines in the presence of a single product. This is the problem we are
dealing with in this article.

We define the problem and introduce the notations used in the remainder of the
paper in section 2. The related work is described in section 3. We propose a polynomial
algorithm to balance a sequence of operations (subproblem) in section 4 and incorporate
it in a metaheuristic to solve the general problem in section 5. An experimental study
is covered in section 6 of the paper.

2. The Reconfigurable Transfer Line Balancing Problem

2.1. Description of the problem and notations

The Reconfigurable Transfer Line Balancing problem (RTLB) is a combinatorial opti-
misation problem whose instance is described by the following data:

• A set of operations, the corresponding processing times and setup times.
• A maximum number of workstations to be used.
• A maximum number of machines per workstation.
• A cycle time.
• A maximum number of operations to be allocated to a workstation.
• Precedence, inclusion, exclusion and accessibility data.

The optimisation problem consists then in allocating the operations to the work-
stations, sequencing the operations in each workstation and determining a number of
machines per workstation while minimising the overall number of machines used and
respecting the following constraints:

• For each workstation, the workload (the sum of the processing times and the
setup times induced by the sequence allocated to the workstation) divided by
the number of machines allocated to the workstation must not exceed the cycle
time.
• Precedence constraints must be respected: when an operation i precedes an op-

eration j, either the workstation to which the operation i is allocated must be
before the workstation to which the operation j is allocated or i and j are assigned
to the same workstation and i must be processed before j.
• The number of workstations must not exceed the maximum number of worksta-

tions.
• The number of operations allocated to a workstation must not exceed the maxi-

mum number of operations per workstation.
• The number of machines in a workstation must not exceed the maximum number

of machines per workstation.
• Inclusion constraints must be respected: each constraint links two operations that

must be assigned to the same workstation.
• Exclusion constraints must be respected: they consist in subsets of opera-

2

tions (called exclusion sets) such that all the operations belonging to
the same subset cannot be assigned to the same workstation. But the
operations of any proper subset of an exclusion set are allowed to be
assigned to the same workstation. We denote by E the set of all ex-
clusion subsets. For example, suppose we have 4 operations denoted
o1, o2, o3, o4 and an exclusion set {o1, o2, o3}. In this case, it is not ac-
ceptable to have o1, o2 and o3 all assigned to the same workstation.
However, it is possible to have o1 and o2 assigned to the same work-
station provided o3 is assigned to a different workstation.
• Accessibility constraints must be respected: each operation i has a subset Posi

of possible part-fixing positions. An accessibility constraint is related to a work-
station. It imposes that all the operations assigned to the same workstation must
have at least one common part-fixing position. For example, suppose we have
4 operations denoted o1, o2, o3, o4 and 3 possible part positions Pos = {1, 2, 3}
such that:

Poso1 = {1, 2}, Poso2 = {1, 2, 3}, Poso3 = {2, 3}, Poso4 = {3}

Operations {o1, o2, o3} could be assigned to the same workstation because the
position 2 is shared by o1, o2 and o3. However operations {o1, o2, o4} could not
be assigned to the same workstation because they share no position.

For the rest of the paper, we use the notations presented in table 1.

Table 1. The notations.

n Number of operations
N Set of operations, indexed on {1, 2, . . . , n}

smax Maximum number of workstations
S Set of workstations, indexed on {1, 2, . . . , smax}
P Set of couples (i, j) ∈ N2 such that i precedes j

Mmax Maximum number of machines in a workstation
Nmax Maximum number of operations assigned to a workstation
C Cycle time
di Processing time of operation i
ti,j Setup time to be considered when operation i is performed just

before operation j in a workstation
I Set of couples (i, j) ∈ N2 linked with an inclusion constraint
E Set of subsets that cannot be assigned to the same workstation
Pos Set of all possible part-fixing positions
Posi Subset of possible part-fixing positions for operation i

2.2. Mathematical formulation

In order to clarify the definition of the problem, we describe the ILP proposed in
[Lahrichi et al.(2018)]. The approach is based on modelling the sequences of opera-
tions assigned to each workstation. It uses the following binary variables:

xi,s,j =

 1 If operation i is assigned to workstation s at the jth position of its
sequence.

0 Otherwise.

ys =

{
1 If at least one operation is assigned to workstation s
0 Otherwise.

3

vs,k =

{
1 If k machines are assigned to workstation s.
0 Otherwise.

zi,i′,s =

{
1 If operation i is processed just before operation i′ at workstation s.
0 Otherwise.

wi,s =

 1 If operation i is assigned to the last position of the sequence at
workstation s.

0 Otherwise.

us,a =

{
1 If position a is chosen for workstation s.
0 Otherwise.

We consider the objective of minimising the number of machines used:

Min

smax∑
s=1

Mmax∑
k=1

k.vs,k

under the constraints: (1-15). The set of constraints (1) ensures that each operation is
assigned to exactly one workstation at a unique position of its sequence. (2) ensures
that at each workstation at most one operation is assigned in each position of the se-
quence. (3) ensures that at each workstation no operation is assigned at a position
j+1 unless some operation is assigned at the position j. (4) ensures that only one
number of machines is chosen for every used workstation. (5) ensures that no worksta-
tion is used unless its precedent workstation is also used. (6) ensures that precedence
constraints are satisfied. (7) ensures that the cycle time is not exceeded at any work-
station. (8) ensures that if operation i is followed by operation i′ at workstation s then
zi,i′,s is set to 1. Constraints (9) and (10) ensure that wi,s is set to 1 whenever opera-
tion i is positioned at the last occupied position in the sequence of workstation s. (11)
ensures that if operation i is positioned at the last occupied position in the sequence
of workstation s and operation i′ is positioned at the first position in the sequence of
workstation s then zi,i′,s = 1 and consequently the setup time ti,i′ is considered in (7).
(12) ensures that inclusion constraints are satisfied while (13) insures that exclusion
constraints are satisfied. (14) and (15) ensure that accessibility constraints are satisfied.

smax∑
s=1

Nmax∑
j=1

xi,s,j = 1,∀i ∈ N (1)

n∑
i=1

xi,s,j ≤ 1,∀s ∈ S,∀j ∈ {1, . . . , Nmax} (2)

n∑
i=1

xi,s,j+1 ≤
n∑
i=1

xi,s,j , ∀s ∈ S, ∀j ∈ {1, . . . , Nmax − 1} (3)

Mmax∑
k=1

vs,k = ys, ∀s ∈ S (4)

ys+1 ≤ ys,∀s ∈ {1, . . . , smax − 1} (5)
smax∑
s=1

Nmax∑
j=1

(Nmax.(s− 1) + j)xi,s,j ≤
smax∑
s=1

Nmax∑
j=1

(Nmax.(s− 1) + j)xi′,s,j , ∀(i, i′) ∈ P (6)

4

n∑
i=1

Nmax∑
j=1

di.xi,s,j +

n∑
i=1

n∑
i′=1

ti,i′ .zi,i′,s ≤ C.
Mmax∑
k=1

k.vs,k,∀s ∈ S (7)

xi,s,j + xi′,s,j+1 ≤ 1 + zi,i′,s, ∀(i, i′) ∈ N2, i 6= i′,∀j ∈ {1, . . . , Nmax − 1},∀s ∈ S (8)

xi,s,j −
∑

i′∈N ;i′ 6=i
xi′,s,j+1 ≤ wi,s,∀i ∈ N, ∀s ∈ S, ∀j ∈ {1, . . . , Nmax − 1} (9)

xi,s,Nmax
≤ wi,s, ∀i ∈ N, ∀s ∈ S (10)

wi,s + xi′,s,1 ≤ 1 + zi,i′,s, ∀(i, i′) ∈ N2, i 6= i′, ∀s ∈ S (11)
smax∑
s=1

Nmax∑
j=1

s.xi,s,j =

smax∑
s=1

Nmax∑
j=1

s.xi′,s,j , ∀(i, i′) ∈ I (12)

∑
i∈ES

Nmax∑
j=1

xi,s,j ≤ |ES| − 1,∀ES ∈ E,∀s ∈ S (13)

∑
a∈Pos

us,a ≤ 1, ∀s ∈ S (14)

Nmax∑
j=1

xi,s,j −
∑

a∈Posi

us,a ≤ 0,∀i ∈ N, ∀s ∈ S (15)

2.3. Example

Let us illustrate the studied problem with a small instance described by the following
data:

• The part requires the execution of 7 operations numbered from 1 to 7 (n = 7).
• At most 5 workstations can be used (smax = 5).
• Precedence constraints are given by:

P = {(1, 3), (2, 3), (3, 4), (4, 5), (5, 6), (5, 7)}

represented by figure 1.

Figure 1. Precedence graph.

• Nmax = 3, Maximum number of operations that could be assigned to a worksta-
tion.
• Mmax = 3, Maximum number of machines that could be hosted by a workstation.
• Processing times are represented in Table 2.
• Setup times are represented in Table 3.

5

Table 2. Processing times.

i 1 2 3 4 5 6 7
di 1.5 1 3.5 1.5 2.5 3 1

Table 3. Setup times.

ti,j j = 1 2 3 4 5 6 7
i = 1 0 0.5 1 1 1 1 1
2 1 0 0.5 1 1 1 1
3 0.5 1 0 1 1 1 1
4 1 1 1 0 0.5 1 1
5 1 1 1 0.5 0 1 1
6 1 1 1 1 1 0 0.5
7 1 1 1 1 1 0.5 0

• C = 2.5, cycle time.
• Inclusion and exclusion constraints are given by:

I = {(1, 2)}, E = {{5, 6}}

• Accessibility constraints are given as follows: Pos = {1, 2, 3, 4}, Pos4 = {1, 2},
Pos5 = {3, 4}, Posi = {1, 2, 3, 4}, ∀i ∈ {1, 2, 3, 6, 7}

A feasible solution is represented in figure 2. dd1+d2+t1,2+t2,1C e = d 4
2.5e = 2, so 2

machines are required for workstation 1. The machines that must be hosted by the
other workstations are indicated in figure 2.

3. State of the art

The problem studied in this paper could be seen as a line balancing problem. This
problem has been extensively studied in the literature. A taxonomy of this problem
could be found in [Battaïa and Dolgui(2013)].

The particularity of the RTLB problem is to consider simultaneously parallel ma-
chines, setup times and transfer line environment constraints (inclusion, exclusion and
accessibility). These three components are most often studied separately in literature:

• Parallel machines in the workstations in order to reduce the cycle time: The
problem is known as the simple assembly line balancing problem with par-
allel workstations. It has been introduced in [Buxey(1974)] and dealt with
in [Vilarinho and Simaria(2006)] and [Rabbani et al.(2016)] in the case of
mixed-model production lines.
• Setup times on machines between operations: The problem is known as the

sequence-dependent assembly line balancing problem (SDALBP). It has been
defined in [Andrés, Miralles, and Pastor(2008)]. The problem is studied in
[Martino and Pastor(2010)].
• Inclusion, exclusion and accessibility constraints: The constraints come from

the machining industry. Balancing problems considering those constraints
are known as transfer line balancing problems. Firstly introduced in
[Dolgui, Guschinsky, and Levin(2000)], some other authors consider
those constraints [Battaïa et al.(2012)]. More references could be found
in [Battaïa and Dolgui(2013)].

6

Figure 2. Example of feasible solution.

The RTLB problem consists of simultaneously solving two subproblems:

• A balancing subproblem: assign the operations to the workstations.
• A sequencing subproblem: sequence the operations assigned to each workstation.

Therefore, resolution approaches for the RTLB problem could be classified within
three categories:

• Integrated approaches: the balancing and sequencing steps are performed
simultaneously. Most literature methods are of this type. [Essafi et al.(2010)]
suggest a MIP approach while [Borisovsky, Delorme, and Dolgui(2012)] use a
set partitioning model. We also cite [Essafi, Delorme, and Dolgui(2010b)] (a two
phase heuristic) and [Essafi, Delorme, and Dolgui(2010a)] (Ant colony optimisa-
tion metaheuristic) as integrated approaches.
• Balance-First Sequence-Last (BFSL) approaches: the sequencing step is

done after the balancing step. We proposed an approximation algorithm of this
type in [Lahrichi et al.(2018)]. To the best of our knowledge no other approach
of type BFSL has been suggested.
• Sequence-First Balance-Last (SFBL) approaches: the balancing step

is done after the sequencing step. The problem of balancing a sequence of
operations in a reconfigurable transfer line refers to solving the RTLB problem
given an overall sequence of all operations (giant sequence). This balancing
subproblem consists in determining optimal positions (of the giant sequence)
where to split the giant sequence. Each subsequence thus obtained is allocated
to a different workstation in the order. The subproblem was dealt with in
the literature by means of ILP ([Borisovsky, Delorme, and Dolgui(2012)],
[Delorme, Malyutin, and Dolgui(2016)]) and heuristics
([Borisovsky, Delorme, and Dolgui(2012)]).

In [Borisovsky, Delorme, and Dolgui(2012)], a solution is represented as a gi-
ant sequence of all operations, either a heuristic decoder or a MIP is suggested

7

to evaluate it. In [Delorme, Malyutin, and Dolgui(2016)], a multi-objective algo-
rithm is proposed to simultaneously minimise cycle time and line cost (number
of workstations × cost of a workstation + number of machines × cost of a ma-
chine). The algorithm uses a giant sequence of operations then splits it using the
MIP from [Borisovsky, Delorme, and Dolgui(2012)] minimising the line cost.

The literature study allowed us to note, that to the best of our knowledge,
there is no exact polynomial algorithm that allows to compute a "balancing" for
a given giant sequence. Indeed, this subproblem was only solved by means
of an heuristic and a MIP ([Borisovsky, Delorme, and Dolgui(2012)],
[Delorme, Malyutin, and Dolgui(2016)]). Our contribution is therefore at
this level: a polynomial exact algorithm (called "split") to compute the opti-
mal balancing given a giant sequence. We further embed this exact polynomial
algorithm in a metaheuristic (ILS) to solve the general problem (RTLB).

4. A polynomial algorithm to solve the balancing subproblem

Given a giant sequence of operations, we consider the subproblem of balancing the line
respecting the giant sequence: it consists in splitting the giant sequence into
different subsequences. Each subsequence thus obtained is allocated to a
workstation so that the ith subsequence is allocated to the ith workstation.
The split is done while minimising the total number of machines required
to respect all the constraints.

Given a single giant sequence, more than one balancing solution could exist. For
example, we suppose the giant sequence is: 1, 2, 3, 4, 5, 6, 7 for the example given in
(subsection 2.3). Two balancing solutions respecting the giant sequence (as well as all
the problem constraints) could be:

• Assigning the subsequence 1, 2 to the first workstation, 3 to the second work-
station, 4 to the third workstation, 5 to the fourth workstation and 6, 7 to the
fifth workstation: this solution could be denoted [1,2|3|4|5|6,7] (A pipe
(|) indicates a workstation change). This solution requires 8 machines and
is depicted in Figure 2.
• Assigning the subsequence 1, 2, 3 to the first workstation, 4 to the second work-

station, 5 to the third workstation and 6, 7 to the fourth workstation. We can
denote it : [1,2,3|4|5|6,7]. This solution requires 7 machines (we will see
later that it is optimal for this sequence as represented in Figure 4).

This section is devoted to the description of the split algorithm, in order to optimally
solve the balancing subproblem (minimising the number of machines used). We
first model the balancing subproblem as a constrained shortest path and construct the
underlying graph (subsection 4.1). We introduce afterwards a polynomial algorithm
(split) to solve this subproblem (subsection 4.2).

4.1. Construction of the graph

Given an instance I of the RTLB, we suppose for sake of simplicity and without
loss of generality that the giant sequence is "1,2,...,n".

Solving the balancing subproblem minimising the number of machines is equivalent
to find the shortest weighted path of length lower than or equal to smax arcs between

8

fictitious vertex 0 and the vertex n in the directed weighted graph:

G = (V,A), V = {0, 1, 2, .., n}, A = {(i, j), i < j}

Vertex 0 is a fictitious vertex. Other vertices ({1,2,..,n}) model the operations. The
arc (i, j) models the fact that the operations {i + 1, ..., j} are assigned to the same
workstation in every path from 0 to n taking path through (i, j).

Weights on arcs are given by:

ci,j =

⌈∑j
k=i+1 dk + (

∑j−1
k=i+1 tk,k+1) + tj,i+1

C

⌉

which could be interpreted as the number of machines necessary to perform the
sequence i+ 1,. . . ,j.
By way of illustration, using the data of the example described in section

2.3., we obtain:

c0,3 =

⌈
d1 + d2 + d3 + t1,2 + t2,3 + t3,1

C

⌉
=

⌈
7.5

2.5

⌉
= 3

i.e 3 machines are needed to assign the subsequence "1,2,3" to a workstation.
Some of the arcs must be deleted because some constraints are violated. All the

cases are listed below:

• The maximum number of operations per workstation is exceeded: An
arc (i, j) violating the maximum number of operations per workstation constraint
can be detected by the following condition:

j − i > Nmax

For example: (0, 4) 6∈ A because 4− 0 = 4 > Nmax = 3.
• The maximum number of machines per workstation is exceeded: Like-

wise, an arc (i, j) violating the maximum number of machines per workstation
constraint can be detected by the following condition:

ci,j =

⌈∑j
k=i+1 dk + (

∑j−1
k=i+1 tk,k+1) + tj,i+1

C

⌉
> Mmax

For example: (2, 5) 6∈ A because c2,5 = 4 > Mmax.
• Inclusion constraints are not satisfied: An arc (i, j) violating the inclusion

constraints can be detected by the following condition:

∃(a, b) ∈ I / 1{i+1,...,j}(a)
1 + 1{i+1,...,j}(b) = 1

For example: (0, 1) 6∈ A because {1, 2} ∈ I.

11X(a) is the indicator function, equals 1 if a ∈ X and 0 otherwise.

9

• Exclusion constraints are not satisfied: An arc (i, j) violating the exclusion
constraints can be detected by the following condition:

∃ES ∈ E /
∑
a∈ES

1{i+1,...,j}(a) = |ES|

For example: (4, 6) 6∈ A because {5, 6} ⊂ E.
• Accessibility constraints are not satisfied: An arc (i, j) violating the acces-

sibility constraints can be detected by the following condition:

∩k∈{i+1,...,j}Posk = ∅

For example: (3, 6) 6∈ A because Pos4 ∩ Pos5 ∩ Pos6 = ∅.

Example 4.1. An illustration of the graph is given in figure 3 for the instance given in
section 2 and giant sequence: "1,2,3,4,5,6,7". Arcs violating constraints were deleted.
For example, arcs (0,1), (1,2) and (1,3) are deleted due to the violation of the inclusion
constraint "(1,2)". The arc (3,5) is deleted due to the violation of the accessibility
constraint. Arc (4,6) is deleted due to the violation of the exclusion constraint "{5,6}".
Arcs (0,4), (0,5), (0,6) and (0,7) are deleted due to exceeding the maximum number of
machines (Mmax) and operations (Nmax) per workstation.

Figure 3. Final graph for the example instance

The graph could be disconnected despite the existence of a balancing solution: in
the example of figure 3, the disconnectivity comes from the fact that operations 1 and
2 must be assigned to the same workstation due to the inclusion constraint.

4.2. A polynomial algorithm to solve the constrained shortest path
problem: split

Given an instance I of RTLB problem and a giant sequence σ= (σ1, σ2, . . . , σn), we
denote the above-mentioned graph HI(σ). Finding an optimal balancing respect-
ing the giant sequence σ is equivalent to finding the shortest path between
the two extremities of the graph HI(σ), i.e. 0 and σn (0 and 7 in Figure 3), of
length lower than (or equal to) smax arcs (i.e. the shortest path constrained
not to exceed smax arcs). This is because an arc stands for a workstation and
the solution cannot use more than smax workstations. The existence of such

10

a path between the starting node and the ending node implies the feasibil-
ity of the giant sequence. If there is no path having smax arcs or less between
0 and σn in HI(σ), then there exists no feasible balancing solution respecting the
giant sequence σ.
Moreover, we must note that the more the problem is constrained, the

less arcs are contained in the graph and the more the problem is easy to
solve.
The shortest path approach to split a giant sequence is well known in

solving Vehicle Routing problems (VRP). Indeed, [Beasley(1983)] was the
first to prove that the problem of finding a VRP solution respecting some
giant tour is polynomial and equivalent to a shortest path problem in some
appropriate graph. Afterwards, some researches were conducted where the
split is embedded in metaheuristics [Prins, Lacomme, and Prodhon(2014)].
We propose here an original way to adapt ideas from VRP to balancing
problems.

We propose the split algorithm (algorithm 1) in order to compute a constrained
shortest path. It cannot be solved with classic shortest path algorithms
because those algorithms do not take into account the maximum number
of arcs in the path. The split algorithm could be seen as an adaptation
of Bellman-Ford algorithm to solve the problem of finding a shortest path
constrained not to exceed smax arcs in the graph HI(σ). It uses labels on
nodes to encompass information on the system state. The labels keep track of the
number of machines and the number of arcs.

A label l is represented by a couple:

l = (a, b)

where a denotes the cost (number of machines) used by the path represented by the
label l and b denotes the number of workstations used by this path (i.e. the number
of arcs in the path). The algorithm uses a dominance rule in order to avoid
a combinatorial explosion. We define a set of labels Li for node i. The dominance
rule limits the number of labels per node to smax. Every label in Li corresponds to
a path (partial solution) between 0 and i.

Definition 4.2. (Dominance rule) (a, b) is dominated by (a′, b′) if:

a′ ≤ a and b′ ≤ b

Algorithm 1 starts with fictitious node 0 labelled L0 := {(0, 0)} and continues with
the other nodes following the giant sequence. For every node t and every label (at, bt) ∈
Lt, the algorithm explores every outgoing arc (t, i) and tries to propagate it (i.e add a
label to the list of labels of node i denoted Li) if:

(at + ct,i, bt + 1) is not dominated by a label of Li (Propagation rule)

If so, the label (at+ct,i, bt+1) is added to Li and all labels dominated by (at+ct,i, bt+1)
are deleted from Li. The shortest path cost is stored in C∗.

Lemma 4.3. The dominance rule limits the number of labels per node to smax.

Proof. Suppose by contradiction that we have more than smax labels for some node i.

11

Algorithm 1 split
INPUT (I,σ) where I is an instance of the RTLB problem and σ is a giant
sequence respecting precedence constraints. We suppose without loss of generality
that σ = {1, 2, ..., n}
OUTPUT S: An optimal solution (with the minimal number of machines C∗)
respecting σ if there exists a feasible solution

1: Build the graph HI(σ)
2: L0 := {(0, 0)}
3: for t=1 to n do
4: Lt := ∅
5: end for
6: for t=0 to n-1 do
7: for all i/(t, i) ∈ A (Propagate labels from Lt) do
8: for all (at, bt) ∈ Lt do
9: if (bt < smax − 1 or i = n) then

10: if (at + ct,i, bt + 1) is not dominated by an element of Li then
11: Li := Li ∪ {(at + ct,i, bt + 1)}
12: if (at + ct,i, bt + 1) dominates some element (ai, bi) ∈ Li then
13: Li := Li\{(ai, bi)}
14: end if
15: end if
16: end if
17: end for
18: end for
19: end for
20: if Ln 6= ∅ then
21: C∗ :=Min(ai,bi)∈Ln

(ai)
22: Decode the path of cost C∗ to build S
23: end if

12

Then, necessarily there must exist two labels (a, b), (a′, b) ∈ Li (i.e with same number
of workstations), because for every label (x, y) we have:

y ∈ {1, 2, . . . , smax}

The coexistence of (a, b) and (a′, b) is impossible due to the dominance rule.

Theorem 4.4. The algorithm runs in O(n4) where n is the number of operations.

Proof. The algorithm performs dominance tests for each 3-uplet (label of origin node,
arc, label of destination node). Thus, it runs in O(m.s2max) where m is the number of
arcs in the graph. Since smax ≤ n and m ≤ n+ (n− 1) + ...+1 = n(n+1)

2 , split runs in
O(n4).

Example 4.5. In Figure 4, we show how the labels are propagated on our
example. The labels of each node are written below it in the order they are computed
by the algorithm. A crossed label represents a dominated label. The optimal solution
is highlighted: it uses 7 machines and 4 workstations.

Figure 4. Trace of the split algorithm and scheme of the optimal solution.

13

5. Iterated Local Search

The split can be used to solve the RTLB problem to optimality for a given
giant sequence. Using the split procedure like a black box for evaluating
a giant sequence allows us to transform the RTLB problem to the search
of the best giant sequence. This is the aim of the method proposed in this
section.

Once having computed a starting giant sequence, we perform an iterated local search
in the space of the giant sequences, the split is used to evaluate each giant sequence.
The general scheme is depicted in Algorithm 2. In this algorithm, c(S) denotes
the cost of solution S, i.e., the number of machines used by S.

Algorithm 2 ILS algorithm hybridised with split
INPUT: An instance of RTLB.
OUTPUT: S∗, best found solution.

1: Compute a compatible giant sequence: σ
2: Perform split: S = split(σ)
3: Record best known sequence: (S∗, σ∗) = (S, σ)
4: while Stopping criterion ILS is not met do
5: while Stopping criterion LS is not met do
6: Choose a random neighbour of σ: σ′
7: Perform split: S′ = split(σ′)
8: if c(S′) ≤ c(S) then
9: (S, σ) = (S′, σ′)

10: end if
11: end while
12: if c(S) ≤ c(S∗) then
13: (S∗, σ∗) = (S, σ)
14: end if
15: (S, σ) = Perturbation[(S∗, σ∗)]
16: end while

Unlike local search that is trapped in a local optimum, iterated local search
(ILS) introduces more diversification by applying a perturbation to the local opti-
mum and iterating the local search. It exploits the idea that performing local search
from a pretty good solution (perturbed local optimum) is more effective than start-
ing from a random solution. ILS has proven to be efficient for various combina-
torial optimisation problems: [Lourenço, Martin, and Stützle(2010)], [Stützle(2006)],
[Dong, Huang, and Chen(2009)].

We start with computing a compatible giant sequence σ (giant sequence correspond-
ing to a feasible solution). Then a local search is performed from σ (lines 5-11): a ran-
dom neighbour σ′ is selected and evaluated thanks to split. σ is updated if c(S′) ≤ c(S)
where S and S′ denote the solutions corresponding respectively to σ and σ′ (lines 8-
10). The local search terminates when the stopping criterion of the local search is met.
We consider a maximum number of iterations as stopping criterion of the
local search. The best known solution S∗ is updated after each local search
(lines 12-14). A perturbation is applied from the giant sequence yielding the
best known solution σ∗ (line 15). The procedure (local search + perturbation) is
iterated while the stopping criterion of the ILS is not met. We consider a maximum

14

number of iterations as stopping criterion of the iterated local search. The
giant sequence yielding the overall best solution across the ILS is returned by the al-
gorithm. We detail every step of the ILS in the next subsections: the method to build
a compatible giant sequence is described in Subsection 5.1, the neighbourhood system
is described in Subsection 5.2 and the perturbation operator is described in Subsection
5.3.

5.1. Computing a compatible giant sequence

We should notice that given an instance of the RTLB problem, there could exist no
feasible solution respecting some given giant sequence (for example if there is no
path between the two extremities of the graph associated with the giant
sequence). This leads us to consider the notion of compatible giant sequence.

Definition 5.1. (Compatible giant sequence) A compatible giant sequence is a gi-
ant sequence for which there exists a feasible balancing solution respecting the giant
sequence.

Given an instance I of the RTLB problem and a giant sequence σ, σ is compatible
with respect to I if and only if the two conditions are satisfied:

(1) σ respects precedence constraints.
(2) split(I, σ) returns a solution.

If no inclusion, exclusion, accessibility, Mmax, Nmax or smax constraints are taken
into consideration, then it is easy to compute a compatible giant sequence. Indeed, any
giant sequence respecting the precedence constraints is compatible in this case. Yet,
if we consider some combination of those constraints, any sequence respecting the
precedence constraints is no longer guarantied to be compatible.

Theorem 5.2. Given an instance I of the RTLB problem, the problem of
finding a compatible giant sequence is NP-Hard.

Proof. We show that the TSP (Travelling Salesman Decision Problem) is
reduced to the considered problem. Indeed, the TSP is the task of deciding
whether there exists a "tour" visiting a given set of nc cities and returning
to the initial city such that the total distance travelled is less or equal
to a constant B. Then, an instance of the TSP could be mapped with an
instance of the RTLB problem where operations represent cities, the setup
times between operations represent distances between cities and such that
I = N,E = ∅, Pos = {0}, Posi = {0} (∀i ∈ N), smax = 1,Mmax = 1, Nmax = nc, di =
0 (∀i ∈ N) and C = B. This is a polynomial time reduction which justifies
the NP-Hardness of our problem.

Corollary 5.3. The problem of finding a feasible solution for the RTLB prob-
lem is NP-Hard.

Definition 5.4. (Weakly compatible giant sequence) We define a weakly compatible
giant sequence as a giant sequence for which there exists a balancing solution that is
feasible with relaxing the maximum number of workstations constraint (smax).

In order to compute a compatible giant sequence, we proceed in two
steps:

15

• Computing a weakly compatible giant sequence.
• Repairing the giant sequence to make it compatible.

The two steps are described below.

5.1.1. Computing a weakly compatible giant sequence

Theorem 5.5. Given an instance I of the RTLB problem, the problem of
finding a weakly compatible giant sequence is NP-Hard.

Proof. The same reduction as Theorem 5.2. is performed without consid-
eration of smax.

Even the problem of determining a weakly compatible giant sequence
being NP-Hard, we are content to propose an exponential algorithm (but
quite fast in practice) to obtain such a sequence (Algorithm 3). Then, a
repair procedure is suggested to obtain a compatible giant sequence from
a weakly compatible giant sequence (Algorithm 4). Algorithm 3 works in
three steps:

Step 1 Gather the operations according to inclusion constraints: we check easily that
the inclusion constraints define an equivalence relation (denoted Inc). Thus, we
can compute the quotient set:

N/Inc = {S1, S2, . . . , Sk}

In other words, Si are groups of operations, built such that if there
exists an inclusion relation between two tasks, then they are in the
same Si.

Step 2 Sequence operations on each set: optimally sequence the operations in the
subsets Si, 1 ≤ i ≤ k while respecting precedence constraints: we solve an
Asymmetric Travelling Salesman problem (ATSP) where operations repre-
sent cities and setup times represent distances between cities.This is performed
thanks to a dynamic program adapted from [Held and Karp(1962)]. In
this way, the subsets Si become subsequences denoted S̃i.

Step 3 Build the weakly compatible giant sequence respecting the precedence con-
straints.

Algorithm 3 Pseudo-algorithm to compute a weakly compatible giant sequence
INPUT: An instance of RTLB problem.
OUTPUT: σ giant sequence that is hopefully weakly compatible.

Step 1 Gather the operations according to inclusion constraints
Step 2 Sequence operations on each set [Held and Karp(1962)]
Step 3 Build the weakly compatible giant sequence σ respecting the precedence con-

straints:
(a) σ = ∅.
(b) Select randomly a subsequence S̃i such that all predecessors of operations

in S̃i are already contained in σ.
(c) Append S̃i to σ.
(d) Return to (b) while the number of operations in σ is inferior to n.

16

Remark 1. Since Algorithm 3 uses the dynamic programming algorithm
from [Held and Karp(1962)] in step (2), it is exponential in the size of the
subsets Si, 1 ≤ i ≤ k. However, the size of every subset is bounded by Nmax

which is usually much smaller than the number of operations. In practice,
Algorithm 3 is very efficient both in computation time and memory usage.

Definition 5.6. (Triangular inequality) We say that the setup times respect
the triangular inequality if:

ti,j + tj,k ≤ ti,k, ∀(i, j, k) ∈ N ×N ×N

In the following, Workload(S̃) where S̃ is a subsequence of operations defines the
sum of the processing times and the setup times induced by the subsequence. For
example, Workload(”1, 2, 3”) = d1 + t1,2 + d2 + t2,3 + d3 + t3,1.

Theorem 5.7. Given a feasible instance I of the RTLB problem where the setup
times respect the triangular inequality, algorithm 3 returns a weakly compatible giant
sequence.

Proof. Let us consider the solution where each subsequence S̃i, 1 ≤ i ≤ k is allocated
to a different workstation. This solution respects the giant sequence outputted by
Algorithm 3.Besides, it is easy to see that this solution is feasible with respect
to inclusion, exclusion, accessibility, precedence and Nmax constraints. It
remains to verify that the Mmax constraint is satisfied. To do this, we must
check that for each S̃i, Workload(S̃i) ≤ C.Mmax . Since all the operations of
each subsequence S̃i are linked with inclusion constraints, they should all be
included in the same workstation in any feasible solution. In other words,
for each subsequence S̃i, there must exist a subsequence S̃′i such that:

(1) S̃i ⊂ S̃′i.
(2) Workload(S̃′i) ≤ C.Mmax.

Since the triangular inequality is satisfied, (1) implies that Workload(S̃i) ≤
Workload(S̃′i). Therefore, (2) implies that Workload(S̃i) ≤ C.Mmax.

If the setup times do not respect the triangular inequality, Algorithm 3
remains a good heuristic for computing a weakly compatible giant sequence.

Remark 2. The solution described in the proof of Theorem 5.7. could be
obtained by a modified version of split, we denote it s̃plit. In s̃plit, line 9 is
deleted and line 21 is replaced by:

C∗ :=

{
Min(ai,bi)∈Ln;bi≤smax

(ai) If Min(ai,bi)∈Ln
(bi) ≤ smax

Min(ai,bi)∈Ln
(bi) Otherwise.

s̃plit allows solutions exceeding smax workstations. If feasible solutions with
at most smax workstations exist, s̃plit has the same behaviour as split. Oth-
erwise, it minimises the number of workstations.

17

5.1.2. Computing a compatible giant sequence from a weakly compatible giant
sequence

After obtaining a weakly compatible giant sequence, Algorithm 4 is designed to
obtain compatible giant sequence. Applied after Algorithm 3, the procedure
gives a method for computing a compatible giant sequence. The procedure
works as follows: starting from a weakly compatible giant sequence, a local search
with insertion neighbourhood (subsection 5.2) is applied to obtain a compatible giant
sequence. A neighbour is accepted if its split uses less workstations.

Algorithm 4 Algorithm to compute a compatible giant sequence from a weakly com-
patible giant sequence

INPUT: σ, a weakly compatible giant sequence and I an instance of the RTLB
problem.
OUTPUT: σ, a (hopefully) compatible giant sequence.

1: while (Stopping condition is not met) And (σ is not compatible) do
2: Choose a random neighbour of σ: σ′

3: if s̃plit(I, σ′) returns a solution then
4: S′ = s̃plit(I, σ′)
5: if Number of workstations in S′ ≤ Number of workstations in S then
6: (S, σ) = (S′, σ′)
7: end if
8: end if
9: end while

5.2. The neighbourhood system

The neighbourhood system described in this subsection is used in Algorithm
2 and Algorithm 4. We use a simple insertion neighbourhood: insert an operation in
a different position of the giant sequence. This neighbourhood is applied in such way
that the precedence constraints are respected. Given the giant sequence σ:

σ = (σ1, . . . , σn),where σi is the operation at the ith position of σ

a random neighbour is obtained by selecting a random operation σi, 1 ≤ i ≤ n. Once
this operation selected, two operations must be identified σf(i) and σl(i) such that

l(i) = max{j; j < i and (σj , σi) ∈ P}, the position of the last predecessor of σi in σ

and

f(i) = min{j; i < j and (σi, σj) ∈ P}, the position of the first successor of σi in σ

Then a random position is selected between positions l(i) and f(i) (uniform se-
lection in {l(i) + 1, . . . , f(i)− 1}) to (re)insert operation σi.

18

5.3. Perturbation operator

The perturbation operator in the iterated local search stands for applying the neigh-
bourhood operator 3 times. Each of the three neighbourhood moves is repeated until
a compatible giant sequence is found. In other words, after the application of
each operator, we test the compatibility of the resulting giant sequence by
applying split: if it is not compatible, we reject it and apply the operator
again.

6. Experimentation

We describe in this section the experimentation held on a computer
equipped with 16 Go in RAM and i7-4790 CPU (3.60 GHz). Algorithms
were implemented in JAVA 8.

We compare our resolution method with the latest resolution method suggested in
literature: a genetic algorithm that uses either an heuristic or a MIP chromosome de-
coder to solve the balancing subproblem [Borisovsky, Delorme, and Dolgui(2013)].
The authors mention on the paper the given cost (number of machines) obtained
for each instance. The comparison is done by running our method on the same sets of
15 instances.

Those are large-scale problem instances with:

• Number of operations: n = 200
• Maximum number of workstations: smax = 25
• Maximum number of operations per workstation: Nmax = 10
• Maximum number of machines per workstation: Mmax = 5
• Cycle time: C = 50
• Processing times: di ∈ [1; 10]
• Setup times: ti,j ∈ [0; 2]
• Number of precedence constraints: 50 ≤ |P | ≤ 70
• Number of inclusion and exclusion sets: 7 ≤ |I|, |E| ≤ 15
• Number of possible part-fixing positions: |Pos| = 7.

6.1. Building a compatible giant sequence

We have described a method to compute a starting compatible giant se-
quence: it refers to apply Algorithm 3 then Algorithm 4.
Table 4 shows the performance of the method. "Cost of the solution"

refers to the number of machines of the solution corresponding to the giant
sequence obtained with the initial random seed. The latter is used to initiate
the remainder of experiments. The two remaining columns show the mean
and standard deviation of the cost over 10 independent runs of the method.
The method can compute a starting compatible giant sequence for all the

instances. Besides it converges in less than 1 min for most instances and
random seeds.

19

Table 4. Performance of the method to build an initial solution.

Method to build an initial compatible giant sequence

Instance Cost of the solution Mean Standard deviation

A1 37 39.3 1.41
A2 39 38.5 1.68
A3 38 39.1 1.29
A4 38 37.8 1.24
A5 41 39.4 1.74
A6 41 38.9 1.3
A7 41 39.9 1.13
A8 38 38.6 1.2
A9 40 38.5 1.36
A10 41 40.5 0.92
A11 40 38.6 0.79
A12 40 39 0.77
A13 38 40.4 1.56
A14 39 38.8 1.24
A15 39 39.2 0.74

6.2. Split-based ILS

Tables 5 and 6 show the results of the split-based ILS with different con-
figurations. ILS(x,y) means x iterated local searches of y iterations each
(i.e. y neighbours visited in each local search). So the stopping criterion
of the local search is the number of neighbours visited and the stopping
criterion of the ILS is the number of local searches. Starting from an initial
giant sequence, 10 independent runs of the iterated local search are performed. We use
the following notations in the tables:

• min: minimum number of machines obtained by the split-based ILS over 10 in-
dependent runs. This columns allows to compare with the genetic algo-
rithm from the literature, because in this last only the min is reported.
• max: maximum number of machines obtained by the split-based ILS over 10

independent runs.
• mean: average number of machines obtained by the split-based ILS over 10 inde-

pendent runs.
• σ: Standard deviation of the cost obtained by the split-based ILS over 10 inde-

pendent runs.

Table 5 shows 3 configurations of the ILS with 100 iterated local searches.
The number of iterations in the local searches varies from 500 to 2000.
Clearly, with a fixed number of local searches, increasing the number of
iterations in the local search leads to improving the results (min, max,
mean and standard deviation decreased).
The idea of table 6 is to investigate the behaviour of the ILS when

running for a long time by running ILS(100,10’000) and ILS(1’000,1’000).
ILS(100,10’000) is giving the best results when compared with all the con-
figurations, but it requires also a large CPU time: 5000". ILS(100,10’000)
outperforms ILS(1’000,1’000) despite ILS(1’000,1’000) taking more time to
run: 6000". The table also contains a configuration with small x and y
(ILS(50,100)) to investigate the quality of the solution when the number of
iterations is low. This configuration runs in 250" and already outperforms
the algorithm of the literature.
From Tables 5 and 6, we notice that the standard deviation is very low

20

Table 5. Split-based ILS with different configurations: ILS(100,500) means 100 iterated local searches of 500
iterations each

ILS(100,500) ILS(100,1’000) ILS(100,2’000)

Instance min max mean σ min max mean σ min max mean σ

A1 30.0 31.0 30.1 0.3 29.0 30.0 29.5 0.5 28.0 29.0 28.9 0.3
A2 27.0 29.0 28.1 0.539 27.0 28.0 27.7 0.458 27.0 28.0 27.2 0.4
A3 28.0 29.0 28.5 0.5 27.0 28.0 27.5 0.5 27.0 28.0 27.4 0.49
A4 27.0 29.0 28.3 0.64 27.0 28.0 27.6 0.49 27.0 28.0 27.3 0.458
A5 28.0 30.0 29.2 0.748 28.0 30.0 28.9 0.539 28.0 29.0 28.1 0.3
A6 28.0 30.0 29.0 0.632 27.0 29.0 28.1 0.539 27.0 28.0 27.9 0.3
A7 29.0 31.0 29.9 0.7 29.0 30.0 29.6 0.49 28.0 30.0 29.0 0.447
A8 29.0 31.0 29.6 0.663 29.0 30.0 29.6 0.49 28.0 30.0 29.0 0.447
A9 28.0 30.0 28.4 0.663 27.0 29.0 28.0 0.447 27.0 28.0 27.4 0.49
A10 31.0 32.0 31.5 0.5 30.0 32.0 31.2 0.6 31.0 32.0 31.1 0.3
A11 28.0 29.0 28.5 0.5 27.0 29.0 28.0 0.447 27.0 28.0 27.3 0.458
A12 29.0 31.0 29.9 0.7 29.0 30.0 29.5 0.5 28.0 30.0 28.8 0.6
A13 30.0 32.0 30.3 0.64 29.0 30.0 29.4 0.49 29.0 30.0 29.1 0.3
A14 28.0 30.0 29.0 0.447 28.0 29.0 28.5 0.5 27.0 28.0 27.9 0.3
A15 28.0 29.0 28.7 0.458 28.0 30.0 28.8 0.6 28.0 29.0 28.1 0.3

Table 6. Split-based ILS with different configurations: ILS(50,500) means 100 iterated local searches of 1’000
iterations each

ILS(50,500) ILS(100,10’000) ILS(1’000,1’000)

Instance min max mean σ min max mean σ min max mean σ

A1 30.0 31.0 30.3 0.458 28.0 29.0 28.2 0.4 28.0 30.0 29.0 0.447
A2 27.0 29.0 28.5 0.671 26.0 27.0 26.6 0.49 26.0 28.0 27.0 0.447
A3 29.0 29.0 29.0 0.0 26.0 27.0 26.9 0.3 27.0 28.0 27.3 0.458
A4 28.0 29.0 28.7 0.458 26.0 27.0 26.6 0.49 27.0 28.0 27.2 0.4
A5 29.0 31.0 29.8 0.6 27.0 28.0 27.4 0.49 27.0 29.0 28.1 0.539
A6 29.0 30.0 29.5 0.5 26.0 28.0 27.0 0.447 27.0 28.0 27.3 0.458
A7 30.0 32.0 30.8 0.872 28.0 29.0 28.3 0.458 28.0 30.0 29.0 0.447
A8 29.0 31.0 30.0 0.632 28.0 29.0 28.3 0.458 28.0 30.0 29.0 0.447
A9 28.0 30.0 28.6 0.663 27.0 27.0 27.0 0.0 27.0 28.0 27.2 0.4
A10 31.0 33.0 32.1 0.539 29.0 30.0 29.9 0.3 30.0 31.0 30.5 0.5
A11 28.0 29.0 28.7 0.458 26.0 27.0 26.9 0.3 27.0 28.0 27.1 0.3
A12 30.0 31.0 30.3 0.458 28.0 29.0 28.3 0.458 28.0 30.0 28.8 0.6
A13 30.0 32.0 30.8 0.748 28.0 29.0 28.2 0.4 28.0 29.0 28.9 0.3
A14 29.0 30.0 29.4 0.49 27.0 28.0 27.3 0.458 27.0 28.0 27.5 0.5
A15 28.0 30.0 29.0 0.632 27.0 28.0 27.3 0.458 27.0 29.0 28.1 0.539

(almost always below 0.5) which demonstrates the robustness of the pro-
posed method.
The results from [Borisovsky, Delorme, and Dolgui(2013)] are obtained

by taking the best (minimum) result out of 10 independent runs, each run
being limited to 15 minutes. Table 7 compares the results obtained by the
split-based ILS (denoted by "our method" in the table) with the results
of [Borisovsky, Delorme, and Dolgui(2013)]. In the column denoted "our
method", the best result out of 10 independent runs is reported. Three
configurations are reported: ILS(50,500) (running in 250”), ILS(100,1’000)
(running in 1000") and ILS(100,10’000) (running in 5000"). Despite the
genetic algorithms runs in 900", a clear improvement is already observed
from 250" of execution time of the split-based ILS.
Table 8 report the CPU time of the different algorithms. We notice that

the perturbation takes about 9% of the total computation time of the ILS.

21

Table 7. Performance of split-based metaheuristic vs literature.

Genetic algo. of the literature Our method

Instance after 900" of execution time after 250" after 1000" after 5000"

A1 33 30 29 28
A2 33 27 27 26
A3 31 29 27 26
A4 29 28 27 26
A5 32 29 28 27
A6 32 29 27 26
A7 34 30 29 28
A8 31 29 29 28
A9 30 28 27 27
A10 32 31 30 29
A11 30 28 27 26
A12 31 30 29 28
A13 33 30 29 28
A14 31 29 28 27
A15 33 28 28 27

Table 8. Approximate CPU times of the algo-
rithms with different configurations.

Configuration Average time

ILS(50,500) 250"
ILS(100,500) 450"
ILS(100,1’000) 1000"
ILS(100,2’000) 1300"
ILS(100,10’000) 5000"
ILS(1’000,1’000) 6000"
Genetic algo. of the literature 900"

7. Conclusion and perspectives

We show in this article that balancing a sequence of operations in reconfigurable trans-
fer lines is a polynomial-time problem by modelling it as a constrained shortest path
problem in some auxiliary graph. A polynomial algorithm (split) to solve this problem
is suggested. We tested the efficiency of split by incorporating it in an iterated local
search to solve the RTLB problem.
Computational experiments show that the proposed method drastically

improves the results of literature and prove the relevance of split.
Several directions could be taken as a future research:

• The consideration of other metaheuristics embedding split.
• The design of exact methods embedding split.
• Studying multiple products by investigating the re-balancing problem
taking place when the line should be re-balanced for a new product.

Acknowledgement

The authors acknowledge the support received from the Agence Nationale de
la Recherche of the French government through the program "Investissements d
Avenir"(16-IDEX-0001 CAP 20-25).

22

References

[Andrés, Miralles, and Pastor(2008)] Andrés, Carlos, Cristóbal Miralles, and Rafael
Pastor. 2008. “Balancing and scheduling tasks in assembly lines with sequence-
dependent setup times.” European Journal of Operational Research 187 (3): 1212
– 1223.

[Battaïa et al.(2012)] Battaïa, Olga, Alexandre Dolgui, Nikolay Guschinsky, and Gen-
rikh Levin. 2012. “A decision support system for design of mass production ma-
chining lines composed of stations with rotary or mobile table.” Robotics and
Computer-Integrated Manufacturing 28 (6): 672–680.

[Battaïa and Dolgui(2013)] Battaïa, Olga, and Alexandre Dolgui. 2013. “A taxonomy
of line balancing problems and their solution approaches.” International Journal
of Production Economics 142 (2): 259 – 277.

[Beasley(1983)] Beasley, John E. 1983. “Route first—cluster second methods for vehicle
routing.” Omega 11 (4): 403–408.

[Borisovsky, Delorme, and Dolgui(2012)] Borisovsky, Pavel A., Xavier Delorme, and
Alexandre Dolgui. 2012. “Balancing reconfigurable machining lines by means of
set partitioning model.” IFAC Proceedings Volumes 45 (6): 426 – 431.

[Borisovsky, Delorme, and Dolgui(2013)] Borisovsky, Pavel A., Xavier Delorme, and
Alexandre Dolgui. 2013. “Genetic algorithm for balancing reconfigurable machin-
ing lines.” Computers Industrial Engineering 66 (3): 541 – 547. Special Issue: The
International Conferences on Computers and Industrial Engineering (ICCIEs) -
series 41.

[Buxey(1974)] Buxey, G. M. 1974. “Assembly Line Balancing with Multiple Stations.”
Manage. Sci. 20 (6): 1010–1021.

[Delorme, Malyutin, and Dolgui(2016)] Delorme, Xavier, Sergey Malyutin, and
Alexandre Dolgui. 2016. “A multi-objective approach for design of reconfigurable
transfer lines.” IFAC-PapersOnLine 49 (12): 509 – 514. 8th IFAC Conference on
Manufacturing Modelling, Management and Control MIM 2016.

[Dolgui, Guschinsky, and Levin(2000)] Dolgui, A, N Guschinsky, and G Levin. 2000.
“Approaches to balancing of transfer lines ith blocks of parallel operations.”
Prepr./Inst. of eng. cybernetics of the Nat. acad. of sciences of Belarus (8): 42.

[Dong, Huang, and Chen(2009)] Dong, Xingye, Houkuan Huang, and Ping Chen. 2009.
“An iterated local search algorithm for the permutation flowshop problem with
total flowtime criterion.” Computers & Operations Research 36 (5): 1664–1669.

[Essafi, Delorme, and Dolgui(2010a)] Essafi, Mohamed, Xavier Delorme, and Alexan-
dre Dolgui. 2010a. “Balancing lines with CNC machines: A multi-start ant based
heuristic.” CIRP Journal of Manufacturing Science and Technology 2 (3): 176–182.

[Essafi, Delorme, and Dolgui(2010b)] Essafi, Mohamed, Xavier Delorme, and Alexan-
dre Dolgui. 2010b. “Balancing machining lines: a two-phase heuristic.” Studies in
Informatics and Control 19 (3): 243–252.

[Essafi et al.(2010)] Essafi, Mohamed, Xavier Delorme, Alexandre Dolgui, and Olga
Guschinskaya. 2010. “A MIP approach for balancing transfer line with complex
industrial constraints.” Computers Industrial Engineering 58 (3): 393 – 400.

[Held and Karp(1962)] Held, Michael, and Richard M Karp. 1962. “A dynamic pro-
gramming approach to sequencing problems.” Journal of the Society for Industrial
and Applied Mathematics 10 (1): 196–210.

[Koren and Shpitalni(2010)] Koren, Yoram, and Moshe Shpitalni. 2010. “Design of re-
configurable manufacturing systems.” Journal of Manufacturing Systems 29 (4):
130 – 141.

23

[Koren, Wang, and Gu(2017)] Koren, Yoram, Wencai Wang, and Xi Gu. 2017. “Value
creation through design for scalability of reconfigurable manufacturing systems.”
International Journal of Production Research 55 (5): 1227–1242.

[Lahrichi et al.(2018)] Lahrichi, Y, L. Deroussi, N. Grangeon, and S. Norre. 2018. “Re-
configurable transfer line balancing problem: A newMIP approach and approxima-
tion hybrid algorithm.” In MOSIM 2018 (Modélisation et Simulation), Toulouse,
France.

[Lourenço, Martin, and Stützle(2010)] Lourenço, Helena R, Olivier C Martin, and
Thomas Stützle. 2010. “Iterated local search: Framework and applications.” In
Handbook of metaheuristics, 363–397. Springer.

[Martino and Pastor(2010)] Martino, Luigi, and Rafael Pastor. 2010. “Heuristic pro-
cedures for solving the general assembly line balancing problem with setups.”
International Journal of Production Research 48 (6): 1787–1804.

[Mehrabi et al.(2002)] Mehrabi, M. G., A. G. Ulsoy, Y. Koren, and P. Heytler. 2002.
“Trends and perspectives in flexible and reconfigurable manufacturing systems.”
Journal of Intelligent Manufacturing 13 (2): 135–146.

[Prins, Lacomme, and Prodhon(2014)] Prins, Christian, Philippe Lacomme, and Caro-
line Prodhon. 2014. “Order-first split-second methods for vehicle routing problems:
A review.” Transportation Research Part C: Emerging Technologies 40: 179–200.

[Rabbani et al.(2016)] Rabbani, Masoud, Reyhaneh Siadatian, Hamed Farrokhi-Asl,
and Neda Manavizadeh. 2016. “Multi-objective optimization algorithms for mixed
model assembly line balancing problem with parallel workstations.” Cogent Engi-
neering 3 (1): 115–203.

[Stützle(2006)] Stützle, Thomas. 2006. “Iterated local search for the quadratic assign-
ment problem.” European Journal of Operational Research 174 (3): 1519–1539.

[Vilarinho and Simaria(2006)] Vilarinho, P. M., and A. S. Simaria. 2006. “ANTBAL:
an ant colony optimization algorithm for balancing mixed-model assembly lines
with parallel workstations.” International Journal of Production Research 44 (2):
291–303.

24

