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Abstract: LaFe13−xSix compounds exhibit a giant magnetocaloric effect and they are considered
as a good magnetocaloric working substance for an environmentally friendly cooling technique.
Nevertheless as the Curie temperature TC is around 200 K, it is necessary to tune TC near room
temperature for magnetic refrigeration. In this work we present a review of the various methods
of synthesis and shaping of the LaFe13−xSix type compounds as well as the influence of chemical
substitution, light element insertion or combination of both on TC, magnetic entropy and adiabatic
temperature variation (∆SM and ∆Tad), and stability upon cycling. The advantages and drawbacks
of each method of preparation and type of element substitution/insertion are discussed. The
implementation of these NaZn13 type materials in active magnetic refrigerator is presented and their
performances are compared to that of Gd in prototypes.

Keywords: intermetallics; NaZn13 compounds; magnetocaloric effect; magnetic refrigeration

1. Introduction

Classical refrigeration technologies are using refrigerants that deplete the ozone layer
and contribute to global warming, and will be therefore forbidden by different climate
protocols. Alternative refrigerants present also various drawbacks (flammable, toxic).
Therefore, it is worth developing new refrigeration technologies without environmental
problems [1,2], such as magnetic refrigeration that is based on the magnetocaloric effect.
The development of efficient magnetocaloric materials has become challenging since the
discovery of a giant magnetocaloric effect (MCE) near room temperature (RT) in Gd(Ge,Si)5,
MnAs1−xSbx and FeRh based alloys [3–11].

Since that time, intensive studies have yielded the discovery of several families of
materials, among which the La(Fe,Si)13 system, which displays a giant magnetocaloric
effect, and is considered as a good magnetocaloric material for magnetic refrigeration. This
system is particularly interesting, because it has relatively cheap, abundant, and non-toxic
constituents. However several questions should be solved to use this material for magnetic
refrigeration: (i) the synthesis and shaping of the material should be fast, not too expensive,
and appropriate for an industrial scaling, (ii) the chemical composition should be adjusted
to reach room temperature, as La(Fe,Si)13 Curie temperature is close to 200 K, while keeping
a giant MCE effect, and (iii) the compounds should remain stable upon a large number of
thermomagnetic cycles. In this paper, we first propose a review of the main works that have
been undertaken to solve these different challenges. The different methods of synthesis and
shaping will be presented and then compared. The influence of both chemical substitution
of La, Fe, and Si by other elements as well as the insertion of light elements (H, C) will be
presented to show the advantages and drawbacks of each solutions.

We have developed a synthesis method combining high energy ball milling with a
subsequent short annealing treatment in order to obtain a single-phase compound. Besides,
a reactive Spark Plasma Sintering (SPS) method has been used in order to produce and
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sinter a powdered sample in one single step. The carbon atoms were inserted by solid/solid
reaction, while the hydrogenation of the parent intermetallic La(Fe,Si,Co)13 alloys was
carried out using a Sievert method. A study of our own experimental results will then be
presented, which combines Fe for Co substitution with the hydrogen insertion in order to
give an example of a strategy developed to obtain performant magnetocaloric materials.
The insertion of light elements (H, C) or/and cobalt for iron substitution are used in
order to improve the Curie temperature near room temperature for magnetic refrigeration
applications. The tuning of the Curie temperature is explained by a combination of the
structural and electronic properties. The advantages and disadvantages of each type of
element insertion are discussed and the misunderstanding on interstitial site is clarified.

2. Sample Synthesis
Condition of Synthesis of La(Fe1−XSix)13 Type Alloys

Contrary to LaCo13, the binary LaFe13 compound does not form, but the 1:13 phase
can be stabilized by a partial Si for Fe substitution. The study of the ternary La-Fe-Si
ternary phase diagram at 1173, 1373, and 1573 K [12,13] showed that the LaFe13−xSix
compounds only exist in a very narrow range of composition (with La/(Fe+Si) =1/14) and
crystallize either in the cubic NaZn13 type structure (phase τ1) or the tetragonal Ce2Ni17Si9-
type structure (phase τ2). At 1200 K, τ1 is single phase for 0.08 ≤ x ≤ 0.21 and τ2 for
0.25 ≤ x ≤ 0.40. Both of the phases coexist between 0.21 and 0.25. The Si concentration at
the boundaries varies with the equilibrium temperature. The NaZn13 phase forms via a
peritectic reaction at T = 1665 K:

LFeSi + LLa + LaFe2Si2 → τ1 or α−Fe + LLa + LaFe2Si2 → τ1

The as-cast alloys are constituted by a mixture of α−Fe(Si) and LaFeSi (formed from
the liquid LLa phase upon cooling) and an appropriate thermal treatment is necessary for
obtaining the NaZn13 τ1-phase via a diffusion process [14–16]. The single phase NaZn13
samples can be synthesized by arc or induction melting with a further annealing treatment
at temperatures between 1273 and 1423 K and during several days or weeks [11,12]. It is
necessary to take the risk of La oxidation into account and an excess of La is generally
added in order to avoid the formation of secondary phases [17]. The chemical purity of each
element, their preparation into a glove box, and the quality of the atmosphere upon melting
and annealing (secondary vacuum or Argon pressure) are crucial to obtain single phase
compounds. The annealing time can be shortened by increasing the annealing temperature.
In ref [18] the NaZn13 was obtained for an arc-melted sample annealed 1 h at 1573 K, but
some α-Fe was still present. However, in order to prepare a large quantity of sample
for magnetic refrigeration application, the too long duration or too high temperature
of the annealing treatment remains an economical drawback. Therefore, to reduce the
annealing time several alternative synthesis methods have been developed. They are
mainly based to a reduction of the grain size and an intimate contact between the various
phases obtained as cast to shorten the diffusion path. Among these methods, one can
find melt-spinning [19–23], melt extraction [24], drop-tube solidification [25], and solid
state sintering [26]. Gas atomization, followed by an annealing treatment of 1 hour at
1323 K, has been developed by Erasteel Company, in order to produce batches of 500 kg of
alloys for industrial applications [27]. Another industrial alternative was developed by the
Vacuumschmelze Company [28,29], based on powder metallurgy using reactive sintering.

Our group has developed a high energy ball milling method starting with a mixture of
LaSi alloys, α−Fe and Si. A ball milling of only 1 hour, followed by an annealing treatment
of 30 min at 1423 K, were sufficient for obtaining 95 % of the NaZn13 phase with very small
quantities of α−(Fe,Si), La2O3 and La(OH)3 [30]. A comparison of the results that were
obtained by these different techniques can be found in [31].

Furthermore, it is also necessary to shape the magnetocaloric material in appropriate
form as a function of the design of the magnetic refrigeration device. Several methods
have been investigated, like extrusion after mixing with an epoxy polymer [27], thermal
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decomposition and recombination (TDR) process [29], and selective laser melting [32].
Erasteel has been chosen to mix the powder that was obtained from gas atomization with
epoxy, whereas Vacuumschmelze has developed the TDR process in order to shape their
materials in specific form. They prepare an alloy containing a mixture of α−Fe and LaFeSi,
which can be easily cut without breaking and then process to the annealing treatment in
order to obtain the NaZn13 phase.

Our group also succeeded in obtaining a NaZn13 sample with a density that is very
close to that of bulk sample by combining high energy ball milling with reactive spark
plasma sintering (SPS). It was possible to directly obtain the NaZn13 phase by sintering the
non-annealed BM sample at 1273 K with a heating rate of 100 K/min [31]. The best results
were obtained under Ar atmosphere with a final step of 15 min at 1273 K [33].

3. Properties of the La(Fe1−XSix)13 Compounds

Table 1 reports the crystallographic data of both τ1 (NaZn13) and τ2 (Ce2Ni17Si9)
phases. The crystal structure of the NaZn13 phase is shown in Figure 1. The evolution
of the cell parameters versus the Si content have been detailed in [34]. The cubic cell
parameter slightly decreases versus Si content (a ≈ 11.46 Å). The tetragonal distortion
corresponds to an expansion along the c axis and an intermediate tetragonal τ′2 phase is
found as the distortion progressively increases. The cell volume decrease becomes steeper
upon the tetragonal distortion for a Si concentration larger than 20 at.%.

Table 1. Crystallographic data of the La(Fe,Si)13 phases [34].

Phase Pearson Space Group Atm. Wyck. Sym. Position

NaZn13 cF112 Fm3̄c La 8a 432 1/4, 1/4, 1/4
Fe 8b m3̄ 0, 0, 0

Fe, Si 96i m.. 0, 0.1806, 0.1192

Ce2Ni17Si9 tI56 I4/mcm La 4a 422 0, 0, 1/4
Fe1 4d m.mm 0, 1/2, 0
Fe2 16k m.. 0.2024, 0.0691, 0
Fe3 16l ..m 0.1294, 0.6294, 0.1832
Si 16l∗ ..m 0.33, 0.83, 0.118

Figure 1. The crystal structure of the cubic NaZn13 phase. The La atom occupy the 8a sites (Na),
whereas the Fe atoms are located on the 8b and 96i sites (Zn). In the right figure: one Fe (8b) atom is
surrounded by 10 Fe (96i) and 8 La (8a). The Si atoms are substituted in the 96i position.

All of the La(Fe1−xSix)13 compounds are ferromagnetic. The Curie temperature
TC monotonously increases from 200 to 260 K for 0.1 < x < 0.21, and then decreases
abruptly reaching 60 K for x = 0.34 [34]. The spontaneous magnetization decreases linearly
versus Si content with a discontinuity at the τ′2 − τ2 transition. The evolution of the
magnetic entropy variation ∆SM at the transition of the τ1 phase was studied in [30]. It
showed that the ∆SM peak was larger and higher for x = 0.108 (∆Smax

M = 32.6 J/kgK) and
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broadens progressively as the Si content increases. This indicates a diminution of the
first order character of the transition. As the magnetic properties of the τ2 phase are not
suitable for magnetocaloric application and they will not be discussed in the following.
Thermal expansion measurements for the τ1 phase showed that the cell volume decreases
sharply at TC, thus confirming the first order character of the ferromagnetic-paramagnetic
transition [35]. Above TC, an itinerant electron metamagnetic (IEM) behavior is observed.
The linear decrease of TC under applied pressure confirms its strong dependence versus
cell volume variation, characteristic of the magnetovolume behavior of IEM compounds.

The NaZn13 compounds show hysteresis that yields energy loss upon magnetic cycles
due to the first order character of the metamagnetic FM-PM transition. Therefore, several
studies have been undertaken in order to reduce the hysteresis [36–39]. It was found that
the hysteresis increases with the field sweep rates, but it can be reduced by playing on the
sample shape to lower the demagnetization coefficient. Indeed, the hysteresis is smaller for
thin or porous samples and fragments when compared to bulk samples. The hysteresis can
be also significantly reduced when the applied field is parallel to the smaller dimension of
the sample. The presence of local chemical inhomogeneity’s also play a role in the local
magnetic properties [40].

Therefore, La(Fe1−xSix)13 compounds with the NaZn13 structure are very interesting
for their giant magnetocaloric effect and other advantages (moderate cost, environmental
friendly), but their Curie temperature remains too low for room temperature magnetic
refrigeration. Therefore, many works have been undertaken to reach an operating room
temperature range while keeping a giant MCE: the substitution of La or Fe, insertion of
light elements (H, C), or combination of both. The main and most interesting results will
be described in the following part of this paper.

4. Effect of Iron Substitution in La(FeSiM)13 Compounds

The Curie temperature of La(Fe,Si)13 alloys was found to be much lower than the
LaCo13 alloy (1318 K) [41]. The main reason is that Fe-Fe interactions are much weaker
than the Co-Co interactions in NaZn13-based systems. This fact can explain the increase
of TC in the Co-substituted La-Fe-Si alloys, which was attributed to the strong Co-Fe and
Co-Co exchange interactions.

Hu et al. [42], Liu et al. [21], Katter et al. [28], Bjork et al. [43], and Hansen et al. [44]
have substituted cobalt for iron atoms, while preserving the first-order magnetic phase
transition from paramagnetic to ferromagnetic state at TC in order to increase the Curie
temperature of LaFe13−xSix. The obtained compound, LaFe11.2Co0.7Si1.1 presents a very
large magnetic entropy change ∆SM = 20.3 J/kgK under a magnetic field change ∆H = 5 T
at TC = 274 K. The main reason of this large ∆SM is the huge negative lattice expansion at
TC. In addition, the LaFe11.2Co0.7Si1.1 compound exhibits a small temperature hysteresis.
At the Curie temperature, the unit cell parameter decreases sharply as the structure stay
cubic with Fm3̄c space group. The unit cell parameter in the paramagnetic state was smaller
than in the ferromagnetic one, with a change of 0.43% for this magnetic state transition.

For LaFe11.2Si1.8 compound Hu et al. [45] substituted Fe by Co and studied
La(Fe1−xCox)11.2Si1.8 (x = 0− 0.08) compounds, that they prepared by arc melting and
subsequent annealing at 1323 K. They found that the Curie temperature derived from the
ZFC-FC magnetization increases from 222 K for x = 0 to 307 K for x = 0.08, while the
magnetic entropy change decreases from 13 J/kg K for x = 0 to 8 J/kg K for x = 0.08 under
magnetic field variation of 0− 5 T. The later value of ∆SM is just smaller than Gd at the same
magnetic field changes 0− 5 T. Another interesting result observed is the disappearance of
the field induced itinerant electron metamagnetic transition with cobalt content; indeed,
Hu et al. [45] underlined that the substitution of iron by cobalt induced a disappearance of
the asymmetrical broadening of ∆SM peak.

Figure 2 highlights the fact that Si content has much less influence on TC when
considering a Co substituted compound. It shows that the increase of TC is linear with
the substitution rate and it reaches about 310 K for x = 1. The increase of TC is due to
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the addition of new 3d electrons by the cobalt, which modifies the density of states of
the material.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0
2 6 0
2 8 0
3 0 0
3 2 0

T c  =  1 9 3  +  1 1 0  .  x C o

 S i : 1 . 1  ( a )
 S i : 1 . 1  ( b )
 S i : 1 . 2  ( c )
 S i : 1 . 2  ( f )
 y = 1 . 4  ( g )
 S i : 1 . 5  +  C e  ( d )
 S i : 1 . 6  ( d )
 S i : 1 . 1  ( e )
 T e n d a n c e

T C (
K)

x C o

Figure 2. Curie temperature evolution of compounds for which Fe has been partially substituted by
Co (a) [46], (b) [47], (c) [48], (d) [49], (e) [18], (f) [50], (g) [21], and (h) [51].

Figure 3 shows a passage from first-order toward second-order magnetic phase transi-
tion visible through the quick decrease of ∆Smax

M with TC. An increase in TC of 100 K due
to the Co substitution results in a decrease of ∆Smax

M of 13 J/kg.K. The decrease of ∆Smax
M

is much less than in the case of the silicon content change. Therefore, it is preferable to
use Co substitution to increase TC. The decrease of ∆Smax

M due to a second-order transition
is compensated by the widening of ∆SM. In this case, the Relative Cooling Power (RCP)
appears to be unchanged. On the other hand, a more spread out transition in working
temperature can be efficient for applications.

- 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

∆S m a x =  2 5  -  0 . 1 1  ( T c - T c 0 )

 S i : 1 . 1  ( a )      S i : 1 . 1  ( b )
 S i : 1 . 2  ( c )    S i : 1 . 5  +  C e  ( d )
 S i : 1 . 6  ( d )      S i : 1 . 1  ( e )
 S i : 1 . 2  ( f )    T e n d a n c e

 

 

∆S
ma

x /∆S
ma

x
0

 (J
/kg

K)

T C - T  0  
C ( K )

Figure 3. Relative magnetic entropy evolution as a function of TC for materials in which Fe iron has
been substituted by Co, compared to the compound without Co. (a) [46], (b) [47], (c) [48], (d) [49],
(e) [18], and (f) [50].

Paul-Boncour et al. [52] studied the influence of cobalt substitution for LaFe11.5−xCoxSi1.5
compounds (x ≤ 2.2), prepared by ball milling and one of either short annealing treatment
or reactive Spark Plasma Sintering (SPS). Their magnetic properties have been investigated
while using magnetic measurements, differential scanning calorimetry, and Mössbauer
spectroscopy. Figure 4a shows the cell volume at 293 K plotted versus Co content. The
annealed and sintered powder display close cell volumes for a given x Co content. We
observe a critical range with a cell volume jump, which can be related to the change of



Magnetochemistry 2021, 7, 13 6 of 18

magnetic order, depending on whether samples are above or below TC, in the ferromagnetic
state as the cell volume decreases versus Co content.

The Curie temperature was estimated either from the maxima of dM/dT or dV/dT
derivative curves or by the maxima of the DSC peaks. Figure 4b shows the good agree-
ment obtained between these different methods. TC increases linearly versus xCo content
according to the following relation: TC = 226 + 97× xCo.

∆Smax
M curves versus temperature for LaFe11.5−xCoxSi1.5 compounds with µ0∆H of

1 T are presented in Figure 5. TC shift to larger temperature and a decrease of ∆Smax
M are

clearly observed as the Co content increases.
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Figure 4. (a) Unit cell volume vs. Co content, (b) TC vs. Co content, for LaFe11.5−xCoxSi1.5 [52].
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Figure 5. Magnetic ∆SM variations for different x Co content for LaFe11.5−xCoxSi1.5 [52].

The 57Fe Mössbauer spectra that were collected at room temperature, for x = 0.8, 1, 1.2,
and 2.2, have been refined with several ferromagnetic sextets for both inequivalent 8b and
96i iron sites. The obtained weighted average hyperfine field < BHF >, together with TC,
versus x Co content, are shown in Figure 6. As the Co content becomes larger, an increase
of the mean Fe local moment is observed. It is worth noticing that the Co substitution
increases both TC and the iron local moment.

Gebara et al. [53] have studied LaFe11.8−xCoxSi1.2 alloys (x = 0.52, 0.66, 0.8, 0.94, 1.08)
composites that were prepared by high energy ball milling showing the evolution of lattice
constant, the Curie temperature, magnetic entropy change, and the evolution of the Fe
Mössbauer spectra. Surprisingly, the magnetic entropy changes are not very sensitive to
the Co content in their composites.

The substitution of Fe by the Z elements (Z = V, Cr, Ni, Cu) in the La(Fe1−xZx)11.4Si1.6
system can lead to a strong influence on the electron concentration on the magnetic and
magnetocaloric properties [54]. This is due to the properties of itinerant metamagnets
that are very sensitive to the 3d electron density at the Fermi level. For this motivation,
Pathak et al. [54] have studied the possibility of substituting Fe by other 3d metals (V, Cr,
Ni, Cu).
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Figure 6. Evolution of the Curie temperature TC and the weighted average hyperfine field < BHF >

versus x Co content [52].

For Z = V and at low Z substitution rates, in La(Fe1−xZx)11.4Si1.6, a loss of the magne-
tocaloric effect and an increase in TC are observed, TC = 211 K for x = 0 increases up to
223 K for x = 0.01, and ∆Smax

M decreases from 15 to 8 J/kg.K. On the contrary, a substitution
of Fe by Mn in La(Fe1−xMnx)11.7Si1.3 [55] shows a decrease in TC, as well as a decrease of
∆Smax

M .

5. Effect of La Substitution in La1−ZRz(Fe,Si)13

The substitution of La by another rare earth atom influences the structural and mag-
netic properties of the material. Anh et al. [56] performed a systematic study on the effect
of Nd substitution on magnetocaloric effect in La1−zNdzFe11.44Si1.56 (z = 0− 0.4). They
found a decrease of the unit cell parameter and ∆Smax

M with an increasing Nd content.
Fujita et al. [57,58] and Fujieda et al. [59,60] studied the effect of partial substitution

of La in La(Fe0.88Si0.12)13 compound. Figure 7 (Left) shows that the unit cell parameter
and TC linearly decrease with Ce/Pr content; these results were mainly attributed to the
magnetovolume effect [59,60].
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Figure 7. (Left) Evolution of TC vs. unit cell parameter, (Right) ∆Smax
M vs. TC, for La1−zRz(Fe0.88Si0.12)13

(R = Ce, Pr, Nd) [57–62].

In addition, ∆Smax
M increases with the substitution rate (Figure 8). We can see that the

effect is more contrasted with Ce atoms, which can be tetravalent. In an alloy, its average
valence is therefore greater than three and its average ionic radius is smaller than for other
rare earths.
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Figure 8. ∆Smax

M vs. R content z, for La1−zRzFe11.5Si1.5 (R = Nd, Pr) [61,62].

The effect of substituting La by another rare earth atom on the unit cell parameter, TC,
and MCE was also studied by Shen et al. [61,62] for (R = Ce, Pr, Nd) and by P. Gebara and
J. Kovac [63,64] for (R = Dy, Ho).

The maximum value of ∆Smax
M was found to increase from 23.7 J/(kg.K) for z = 0

to 32.0 J/(kg.K) for z = 0.3 in La1−zNdzFe11.5Si1.5, for a field change µ0∆H of 0-5 T, but
this comes with a change of the hysteresis loss from 21.2 J/kg to 77.5 J/kg. Moreover, the
relative cooling power (RCP) is enhanced by the partial substitution of Nd [61,62]. On
the other hand, the substitution of La by Ho or Dy causes a decrease of magnetic entropy
change [63,64].

6. Effect of Light Element Insertion in La(FeSi)13X
6.1. Hydrogen Insertion

Fujieda et al. [65] and Fujita et al. [35] have shown that the insertion of hydrogen
atoms (H) into La(Fe0.88Si0.12)13 significantly increases the Curie temperature, which in-
creases linearly with the hydrogen content while maintaining the first order character of
the transition. They have controlled the hydrogen concentration by changing both the
annealing temperature and the hydrogen gas pressure. Fujieda et al. [65] adjusted TC
to around room temperature (278 K) by hydrogen absorption. Fujita et al. [35] showed
that, due to the increase of T0, temperature at which the IEM transition disappears, this
phenomenon appears above the Curie temperature, Figure 9 (Right). The disappearance
of the IEM transition reflects the suppression of the renormalization effect due to the cell
volume expansion of the La(Fe0.88Si0.12)13Hy compounds through magnetovolume effects.
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Figure 9. (Left) Unit cell parameter a vs. hydrogen content [66,67]. (Right) Magnetic phase diagram
of LaFe11.44Si1.56Hy. The IEM transition occurs between T0 (the temperature at which the IEM
transition disappears) and TC [35].
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Phejar et al. [68] found that the unit cell parameter a increases linearly with hydro-
gen content, independent of the composition of the parent compound; this result is in
agreement with previous results [66,67] (Figure 9-Left). In order to follow the evolution
of the crystallographic and magnetic parameters as a function of the temperature, they
have performed NPD experiments between 1.5 and 300 K. In order to have a smaller in-
coherent background and, therefore, a better signal/noise ratio, the hydrogen is replaced
by deuterium (D). The La(Fe0.88Si0.12)13D0.7 compound exhibited a magnetostrictive effect
around TC, resulting in a contraction of the cell parameter at the transition, which is the
result of the IEM transition, as shown in Figure 10 (left). The cell parameter of the α-(Fe,Si)
inclusions increases, as expected, from a thermal expansion behavior without anomaly
at TC. A different behavior has been found by Gebara et al. [69], where an anomalous
behavior of α-Fe impurity cell parameter was observed at TC in La(Fe,Si)13 compounds
with La substituted by Ce, Pr, Ho, or Fe by Mn. This means that micro-strains are negligible
in the deuteride. Figure 10 (right) shows the magnetic moments of Fe{96i} and Fe{8b}
atoms in the LaFe11.5Si1.5D0.7 compound.
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Figure 10. (Left) Evolution of the deuteride LaFe11.5Si1.5D0.7 cell parameter versus temperature derived from neutron
diffraction. (Right) Magnetic moments of Fe atoms versus temperature, in the 96i and 8b crystallographic sites [68].

Neutron powder diffraction (NDP) experiments have been performed to solve the
structure and localize the interstitial site In order to remove ambiguity concerning the
interstitial occupied by hydrogen (deuterium) or carbon (24d or 48 f site) [68]. Paul-
Boncour et al. [68,70] have refined the NDP patterns while using the Rietveld method
and have found that the interstitial D(H) was located on the 48 f site (Figure 11); this result
is in perfect agreement with previous work [67].

Mandal et al. [71] showed that they have succeeded in tuning the Curie temperature
from 199 to 346 K, with the hydrogen content without changing significantly ∆Smax

M value.
Figure 12 (Left) shows the evolution of the Curie temperature for materials in which

hydrogen has been inserted as a function of the insertion rate yH taken from different
works [35,68,71,72]. Figure 12 (Right) shows the evolution of ∆Smax

M versus the insertion
rate yH for LaFe13−xSixHy [35,68,71]. According to this figure, it can be noticed that, for
the Si content 1.3 ≤ x ≤ 1.6, we obtain a first-order magnetic transition, which results in a
larger ∆Smax

M than for the compositions x ≥ 1.8, which represent a second-order magnetic
transition. Moreover, for x = 1.4 and 1.6, ∆Smax

M is almost constant for the different hydrogen
insertion rates yH.
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Figure 11. The unit cell of LaFe11.5Si1.5D0.7 projected along the (a, c) plane.
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Figure 12. (Left) Evolution of the Curie temperature for materials in which hydrogen has been inserted vs. the insertion
rate yH (a) [72], (b) [35], (c) [71], (d) [68], and (e) [70]. (Right) ∆Smax

M vs. the insertion rate yH for LaFe13−xSixHy (a) [35],
(b) [71], and (c) [68].

6.2. Carbon Insertion

Another possibility for increasing unit cell parameters and, thus, the Curie temper-
ature of the material by magneto-volumic effect is the insertion of carbon atoms into the
interstitial sites of the structure. This carbon insertion induces a decrease in ∆SM. The
insertion of carbon in the material changes the electronic state and, thus, the magnetic
properties of the material. The decrease of ∆SM as a function of TC is of the same order as
that obtained by the substitution of iron by cobalt: a decrease in entropy of 19 J/kg.K for
an increase in TC of 100 K. Thus, it seems that, in this case, the transition also goes from
first order to second order.

Li et al. [73] studied the insertion of carbon influences the phase formation, TC, and
magnetic entropy change of LaFe11.7Si1.3. The unit cell parameter a increases with C content,
TC increases from 194 to 225 K, and ∆SM was equal to 27.5 J.kg−1K−1.

Phejar et al. [68] studied the effect of the carbonation of LaFe13−xSix compounds.
LaFe11.5Si1.5C0.7 compound displays a magnetostrictive effect around TC and a classi-
cal thermal expansion for the α-(Fe,Si) impurities as for the deuteride, as shown in
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Figure 13 (left). Figure 13 (right) shows the evolution of the magnetic moments versus
the temperature. The magnetic moment decrease is not as abrupt when compared to the
hydrides, which is due to a weakening of the first order transition.
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Figure 13. Unit cell parameter a vs. temperature for LaFe11.5Si1.5C0.7 (left). Magnetic moments of Fe atoms vs. temperature, in the 96i
and 8b crystallographic sites (right). The results are obtained from neutron diffraction [68].

7. Combination of Substitution and Light Element Insertion

Hydrogen insertion in La(Fe1−xSix)13 compounds allow for maintaining a large mag-
netic entropy variation with TC at room temperature (RT). However, several studies have
shown that, for H composition lower than 1.5 H/f.u. and with TC close to room temper-
ature, there is a splitting into two hydride phases with low and high H concentrations
after few hours or weeks at RT [55,74,75]. The sample is no more homogeneous and the
magnetic entropy variation is split in two peaks. In order to avoid this segregation, it
is safer to prepare saturated hydrides, but their Curie temperature is around 330–340 K.
This temperature can be reduced to RT by partial Mn for Fe substitution for a fully hydro-
genated hydride. In this case, the hydride remains stable without desorption or segregation
versus time or upon magnetic cycles, despite TC being near RT. A systematic study on
the influence of Mn for Fe substitution [76] has revealed that it is possible to vary TC
between 260 and 350 K (0.1 ≤ xMn ≤ 0.4 Mn/f.u; Si concentrations: 1.2 and 1.4 Si/f.u. and
1.77 ≤ yH ≤ 1.97 H/f.u.). The drawback is a significant reduction of the ∆SM and ∆Tad
values as the Mn content increases significantly [77], but this Mn substitution remains
interesting to vary TC in a narrow temperature range, as, in this case, the reduction of ∆SM
is limited [78].

Another alternative is to partially substitute La by Ce [79], as, beside the reduction of
TC, there is an increase of the MCE effect versus the rate of Ce for La substitution. However,
it was found that, in this case, the hydrogenation significantly reduces the MCE effect as
compared to that of the parent alloys, which is less beneficial than expected. The influence
of Ce substitution for carbides was also investigated, but, despite the larger magneto-
volume effect of C versus H insertion, the reduction of ∆SM was more pronounced [50].
Hai et al. [80,81] studied the influence of both C and H insertion on Ce substituted alloys
on the hydrogenation kinetic by in-situ neutron diffraction. The preferential insertion of C
in 24 d sites introduces a cell distortion and modifies some specific Fe-Fe distances. The
presence of C is found to influence the H insertion and to slow down the hydrogenation
kinetic. The presence of Ce substituted to La also modifies the kinetic of reaction due to its
smaller atomic radius.

Further studies have been undertaken to combine both Ce for La and Mn for Fe
substitution with hydrogen insertion [27,82,83]. An adjustment of the rate of both Ce
and Mn in La0.9Ce0.1Fe11.7−xMnxSi1.3 hydrides allows for maintaining a significant MCE
effect near RT. The influence of the bonding with epoxy [27,82] was found to improve the
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mechanical properties and slightly reduce the MCE effect. High hydrogen pressure sinter-
ing on La0.9Ce0.1Fe11.7−xMnxSi1.3 hydrides [83] showed a beneficial effect for a pressure
of 40 MPa. However, an applied pressure of 50 MPa induced the precipitation of α-Fe
reducing the MCE effect.

Beside these works, the influence of Co insertion on the magnetocaloric properties of
hydrides has been investigated [70]. The aim was not to maintain TC near RT, but rather to
increase it for heat pump applications above room temperature. TC is found to increase
linearly versus Co content and H concentration for LaFe10.5−xCoxSi1.5Hy compounds
(Figure 14 (Left)), but the dTC/dy slope changes versus Co concentration. TC can be
expressed as a function of x and y while taking a negative mixing term into account:

TC(x, y) = 210 + 100 · x + 83 · y− 18 · x · y

For x = 1 and y = 1.5, TC = 400 K, whereas it would have been 450 K without the
negative exchange term.

The Co substitution induces a reduction of the magnetic entropy variation, whereas
it remain almost constant before and after hydrogenation, as shown for xCo = 0.8 and
y = 1.4 (Figure 14 (Right)).

0 . 0 0 . 5 1 . 0 1 . 5
2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

 x =  0
 x =  0 . 3 2
 x =  0 . 8 1
 x  = 1

T C (K)

y H

2 6 0 2 8 0 3 0 0 3 2 0 3 4 0 3 6 0 3 8 0 4 0 0 4 2 00 . 0

- 0 . 5

- 1 . 0

- 1 . 5

- 2 . 0

y =  1 . 4

 

 

∆S
M (J

/kg
.K)

T  ( K )

x C o = 0 . 8

y =  0

µ 0 H =  0 - 1  T

Figure 14. (Left) Evolution of TC versus H concentration for different Co rates, (Right) Comparison of ∆SM for
LaFe9.7Co0.8Si1.5Hy (y = 0 and 1.4) and a field variation 0-1 T.

8. Implementation in Active Magnetic Regenerators

The optimization of the chemical composition by the substitution or/and light element
insertion in La(Fe,Si)13 compounds has been reviewed in previous part. But magnetic
refrigeration requires also the use of an active magnetic regenerator (AMR) to increase
the temperature span (∆Tspan) by generating a temperature gradient between the hot
and cold sources [84]. Many prototypes have been tested while using Gd or its alloys as
reference refrigerants in AMR [85]. Although Gd offer many advantages (stability, easy
to machine, large ∆Tad, the absence of thermal hysteresis, large thermal conductivity), its
elevated cost and limited global reserve constitutes a serious drawback for a broad public
application. Therefore, it is necessary to test and optimize other promising magnetocaloric
material, such as La(Fe,Si)13 in AMR. The performances of different regenerators using Gd
and La(Fe,Co,Si)13 material have been compared and discussed in [86–89]. In all of these
prototypes, the AMR were fixed and the magnetic field mobile (rotation of permanent
magnets arranged in Halbach cylinder or reciprocating movement). One of the best
geometries to favor heat exchange is thin parallel plates (0.25–1 mm) that are separated
by a small gap [87,90]. Compared to Gd, which presents broad ∆SM and ∆Tad peaks,
La(Fe,Co,Si)13 compounds display higher but narrower peaks due to their first order
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transition. In addition, due to its smaller specific heat, Gd has a two time larger ∆Tad
than La(Fe,Co,Si)13 for a field variation around 1 T. To expand the ∆Tspan, the use of a
composite or several plates of La(Fe,Co,Si)13 compounds with different TC, obtained by
varying the Co content, have been therefore tested. Thin plates prepared by TDR method
and purchased by Vacuumschmelze GmbH and Co were used in several prototypes [86–
88]. Other tests were performed with an epoxy-bonded plates [89]. Better performances
were obtained while using regenerators with at least four different compositions that were
arranged to optimize the thermal gradient, as compared to plates with only one or two
different compositions.

Balli et al. [86] built a prototype with two AMRs that are alternatively magnetized and
demagnetized in order to reduce the magnetic forces acting on the magnetic refrigerant.
The applied magnetic field is parallel to the plates to limit the demagnetization field which
is corrected. Working with two AMR, one with Gd and the other with a La(Fe,Co,Si)13 com-
posite, they obtained a comparable maximum ∆Tspan of 14 and 16 K for LaFeSi-based and
Gd AMR respectively. They have tested the corrosion behavior of La-Fe-Co-Si compounds
in different solutions of water with an additional corrosion inhibitor and a silicon oil. The
best resistance to corrosion was obtained with 3% of noxal anti-oxidant. Because water
has a larger specific heat (Cp = 4.2 J/g K) than Si oil (Cp = 1.6 J/g K), it is more favorable
as fluid heat transfer. The study of the corrosion of Gd and La(Fe,Co,Si)13 in various heat
conducting fluids is detailed in Forchelet et al. [91].

Legait et al. [88] compared the performance of Gd, a manganite oxide (Pr0.65Sr0.35MnO3)
and La(Fe,Co)13−xSix compounds under a wide range of fluidic and magnetic operating
conditions. Their devices do not use a thermal exchanger, therefore it only provides non-
load temperature spans. They have followed the influence of non-dimensional numbers
(utilization ratio U and volume ratio V∗) and physical properties, such as thermal con-
ductivity. They observed that each regenerator is most efficient over a specific domain
of utilization. A material with low thermal conductivity (manganite) is more efficient
at low frequency, whereas the materials with large thermal conductivity are better at a
high frequency.

Tusek et al. [87] have tested their AMR with a device that is equipped with a recipro-
cating magnet and a heat exchanger to investigate the cooling load under different ∆Tspan.
They have observed that the maximum ∆Tspan varies versus the utilization factor U and
the operating frequency P. It is larger for LaFeSi-based AMR when compared to Gd at
low U values (moderate ∆Tspan), whereas that of Gd increases for larger U values. The
maximum ∆Tspan also depends on the hot side temperature and it is maximum at 35 ◦C for
Gd, 27 ◦C for a two-layered, and 43 ◦C for a seven-layered La(Fe,Co,Si)13 AMR

AMR was also prepared with epoxy-bonded plates that were constituted of a compos-
ite of La(Fe,Co)13−xSix powder in a polymer matrix pressed into thin plates [89]. This AMR
yields smaller ∆Tspan than with sintered plates, but it has very good mechanical properties,
as it remains stable without significant changes over 90,000 cycles. Because the AMR
was constituted with two-layered plates (two different TC), further improvements can be
expected by preparing a AMR with four-layered plates. Beside these experimental results,
numerical investigations have been performed through a two-dimensional (2D) model of
an AMR refrigerator for various magnetocaloric materials [92,93]. The best performance in
terms of temperature spans and coefficient of performance (COP) were obtained for Gd,
Gd5Si2Ge2, La(Fe,Mn,Si)13Hy, and La(Fe,Co,Si)13 compounds as compared to MnFe(P,As)
and manganite oxide.

The thickness of the plates as well as the spacing between the plates, the TC distri-
bution, the intensity of the magnetic field, and the operating frequencies are among the
important parameters for optimizing in order to obtain the best cooling performances.
Therefore, the properties of AMR with La(Fe,Co,Si)13 material should be optimized to reach
as good AMR performances as Gd. These materials remain very promising for magnetic
refrigeration near room temperature application due to their many advantages in term of
cost and global reserve.
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9. Conclusions

In this review, we have presented the main works dealing with the magnetocaloric
effect of LaFe13−xSix. The different methods of synthesis and shaping were presented and
compared. The influence of both chemical substitution of La, Fe, and Si by other elements,
as well as the insertion of light elements (H, C), were presented to show the advantages
and disadvantages of each solutions. Fe for Co substitution or H insertion are considered
to be the most efficient way to use these materials as refrigerant near room temperature.
A combination of metal substitution and light element insertion is another alternative to
adjust their working conditions. La(Fe,Si)13 type compounds have been implemented in
active magnetic regenerators and their performance in magnetic refrigerator prototype
when compared with that of Gd.
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