
HAL Id: hal-03165250
https://hal.science/hal-03165250v1

Submitted on 10 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Polynomial Algorithm For Balancing a Sequence of
Operations in Reconfigurable Transfer Lines

Youssef Lahrichi, Laurent Deroussi, Nathalie Grangeon, Sylvie Norre

To cite this version:
Youssef Lahrichi, Laurent Deroussi, Nathalie Grangeon, Sylvie Norre. A Polynomial Algorithm For
Balancing a Sequence of Operations in Reconfigurable Transfer Lines. MIM 2019 (Manufacturing
Modeling, Management and Control), Aug 2019, Berlin, Germany. �hal-03165250�

https://hal.science/hal-03165250v1
https://hal.archives-ouvertes.fr

A Polynomial Algorithm For Balancing a

Sequence of Operations in Reconfigurable

Transfer Lines

Y. Lahrichi L. Deroussi N. Grangeon S. Norre

LIMOS CNRS UMR 6158, Aubière, France (e-mail:
{youssef.lahrichi,laurent.deroussi,nathalie.grangeon,sylvie.norre}@uca.fr)

Abstract: We consider the problem of balancing reconfigurable transfer lines. The problem is
quite recent and motivated by the growing need of reconfigurability in the industry. The problem
consists into allocating a set of operations (necessary to machine a single part) to different
workstations placed into a serial line. The workstations can contain multiple machines operating
in parallel. The machines considered are mono-spindle head CNC machines which imply setup
times between operations in order to perform tool changes. Therefore, the operations allocated
to a workstation should be sequenced. Besides, accessibility, inclusion, exclusion and precedence
constraints between operations are considered. In this article, we suggest a polynomial exact
algorithm that balances the transfer line provided the overall sequence of the operations (called
”giant sequence”) is given. This balancing subproblem was dealt with in the literature by means
of ILP and heuristics. We use this algorithm to solve the balancing problem independently
from the overall sequence of operations by embedding it in a simple local search within the
giant sequence space. Experimentation show significant improvement compared to literature.
Copyright © 2019 IFAC

Keywords: Transfer line balancing, Dynamic programming, Split algorithm, Local search.

1. INTRODUCTION

New consuming trends, global competition and growing
variety in demand in the actual economical context raises
an important issue in transfer line design. Shortening life
cycle times imposes the consideration of reconfigurability
(Koren and Shpitalni (2010), Mehrabi et al. (2002)). The
modern transfer lines should be easily and cost-effectively
reconfigurable to address two different issues: the variabil-
ity in production size and the variability in the product
specifications.

A Reconfigurable Transfer Line (RTL) could be seen as a
serial line of workstations. Each workstation is equipped by
multiple machines operating in parallel. The RTL is paced
and every part is delivered to a single machine in every
workstation. The machines from the same workstations
perform the same sequence of operations.

The RTL highly addresses the issue of production size
variability. Indeed the ability to add or remove a machine
in a workstation allows monitoring the cycle time with
high granularity which is refereed to as scalability Koren
et al. (2017).

The RTL we consider is equipped with mono-spindle head
CNC machines. Those machines can perform a large set
of operations, each machine being equipped with a tool
magazine. To perform an operation, a machine needs a
specific tool. Thus, setup times between operations must
? The authors acknowledge the support received from the Agence
Nationale de la Recherche of the French government through the
program ”Investissements d’Avenir”(16-IDEX-0001 CAP 20-25).

be considered in addition to processing times in order to
perform tool changing.

In section 2 we define the problem and introduce basic
notations. The related work is described in section 3. We
introduce a polynomial algorithm to balance a sequence
of operations (subproblem) in section 4 and incorporate
it in a simple local search to solve the general problem in
section 5. An experimental study was also conducted. It is
covered in section 6 of the paper.

2. RECONFIGURABLE TRANSFER LINE
BALANCING PROBLEM

The Reconfigurable Transfer Line Balancing problem, de-
noted: RTLB, is a combinatorial optimisation problem
whose instance could be described by the following data:

• The set of operations, the corresponding processing
times and setup times.

• A maximum number of workstations to be used.
• A maximum number of machines per workstation.
• A cycle time.
• A maximum number of operations to be allocated to

a workstation.
• Precedence, inclusion, exclusion and accessibility con-

straints.

The optimisation problem consists then in allocating the
operations to the workstations, sequencing the operations
in each workstation and determining a number of machines
per workstation while minimising the overall number of
machines used and respecting the following constraints:

• For each workstation, the workload (the sum of the
processing times and the setup times induced by the
sequence allocated to the workstation) divided by
the number of machines allocated to the workstation
must not exceed the cycle time.
• Precedence constraints must be respected: when an

operation i precedes an operation j, either the work-
station to which the operation i is allocated must
be before the workstation to which the operation
j is allocated or i and j are assigned to the same
workstation and i must be processed before j.
• The number of workstations must not exceed the

maximum number of workstations.
• The number of operations allocated to a workstation

must not exceed the maximum number of operations
per workstation.
• The number of machines in a workstation must not

exceed the maximum number of machines per work-
station.
• Inclusion constraints must be respected: they link

two operations that must be assigned to the same
workstation.
• Exclusion constraints must be respected: they link

operations that could not be assigned to the same
workstation.
• Accessibility constraints must be respected: every

operation i has a subset Pos(i) of possible part-
fixing positions. An accessibility constraint is related
to a workstation, it imposes that all the operations
assigned to the same workstation must have at least
a common position. For example, suppose we have 4
operations denoted o1, o2, o3, o4 and 6 possible part
positions A = {0, 1, 2, 3, 4, 5} such that

Pos(o1) = {0, 1, 2}
Pos(o2) = {1, 2, 3}
Pos(o3) = {2, 3, 4}
Pos(o4) = {3, 4, 5}

Operations {o1, o2, o3} could be assigned to the same
workstation because the position 2 is common be-
tween o1, o2 and o3. However operations {o1, o2, o4}
could not be assigned to the same workstation be-
cause there is no common position between o1, o2 and
o4.

For the rest of the paper, we use the notations presented
in table 1.

3. RELATED WORK

The problem studied in this paper could be seen as a
line balancing problem. This problem has been extensively
studied in the literature. A taxonomy of this problem could
be found in Battäıa and Dolgui (2013).

The particularity of the RTLB problem is to consider
simultaneously parallel machines, setup times and transfer
line environment constraints (inclusion, exclusion and ac-
cessibility). These three components are most often stud-
ied separately in literature:

• The consideration of parallel machines in the worksta-
tions in order to reduce the cycle time. The problem is
known as the simple assembly line balancing problem
with parallel workstations. It has been introduced in

Table 1. Table of notations

N Set of operations, indexed on {1, 2, . . . , n}
S Set of workstations, indexed on {1, 2, . . . , smax},

smax denotes the maximum number
of workstations

P Set of couples (i, j) ∈ N ×N such that
i precedes j (also denoted i << j)

Mmax Maximum number of machines in a workstation

Nmax Maximum number of operations in a workstation

C Cycle time.

di Processing time of operation i.

ti,j Set-up time to be considered when
operation i is performed just before

operation j in a workstation

I Set of couples (i, j) ∈ N ×N linked
with an inclusion constraint

E Set of couples (i, j) ∈ N ×N linked
with an exclusion constraint

Pos Set of all possible part positions.

Pos(i) Subset of part positions under what
the operation i could be processed.

Buxey (1974) and dealt with in Vilarinho and Simaria
(2006) and Rabbani et al. (2016) in the case of mixed-
model production lines.

• The consideration of setup times on machines be-
tween operations. The problem is known as the
sequence-dependent assembly line balancing problem
(SDALBP). It has been defined in Andrés et al.
(2008). The problem is studied in Martino and Pastor
(2010).

• The consideration of inclusion, exclusion and acces-
sibility constraints. The constraints come from the
machining industry. Balancing problems considering
those constraints are known as transfer line balancing
problems. Many authors deal with this problem as
shown in Battäıa and Dolgui (2013).

The RTLB problem consists of simultaneously solving two
problems:

• The balancing problem: Assign the operations to the
workstations.

• The sequencing problem: sequence the operations
assigned to each workstation.

Therefore, resolution approaches for the RTLB could be
classified within three categories:

• Integrated approaches: the balancing and sequencing
steps are performed simultaneously. Most literature
methods are of this type. Essafi et al. (2010c) suggest
a MIP approach while Borisovsky et al. (2012) use
a set partitioning model. We also cite Essafi et al.
(2010b) and Essafi et al. (2010a) as integrated ap-
proaches. We have suggested an ILP in Lahrichi et al.
(2018).

• Balance-First Sequence-Last (BFSL) methods: the
sequencing step is done after the balancing step. We
suggested an approximation algorithm of this type in
Lahrichi et al. (2018). To the best of our knowledge no
other approaches of type BFSL have been suggested.

• Sequence-First Balance-Last (SFBL) methods: the
balancing step is done after the sequencing step. The
problem of balancing a sequence of operations in a
reconfigurable transfer line refers to the problem of

solving the RTLB given an overall sequence of all
operations (giant sequence). It is a balancing sub-
problem consisting in determining optimal positions
(of the giant sequence) where to split the giant se-
quence. Each subsequence thus obtained is allocated
to a different workstation in the order. It was dealt
with in the literature by means of ILP (Borisovsky
et al. (2012), Delorme et al. (2016)) and heuristics
(Borisovsky et al. (2012)). In Borisovsky et al. (2012),
a chromosome is coded as a giant sequence of all
operations, either a heuristic decoder or a MIP is sug-
gested to build up a solution. In Delorme et al. (2016),
a multi-objective algorithm is suggested to simulta-
neously minimise cycle time and line cost (number
of workstations × cost of a workstation + number of
machines × cost of a machine). The algorithm uses
a giant sequence of operations then split it using the
MIP from Borisovsky et al. (2012) minimising the line
cost.

To the best of our knowledge, a polynomial algo-
rithm optimally splitting a giant sequence is not yet
known which justify our contribution: a shortest path
algorithm (called split) for solving this subproblem
(section 4). We tested the efficiency of the split by
incorporating it in a simple local search to solve the
RTLB problem (Section 5).

4. A POLYNOMIAL ALGORITHM TO SOLVE THE
BALANCING SUBPROBLEM

We first model the balancing subproblem as a constrained
shortest path and construct the underlying graph. Then,
we design a polynomial algorithm to compute this shortest
path.

4.1 Construction of the graph

Given a giant sequence of operations 1, . . . , n, we consider
the subproblem of balancing the line respecting the giant
sequence.

For example, if the giant sequence is: 1, 2, 3, 4, 5, 6. Two
balancing solutions respecting the giant sequence could be

• Assigning the subsequence 1, 2, 3 to the first worksta-
tion and 4, 5, 6 to the second workstation.
• Assigning the subsequence 1, 2 to the first worksta-

tion, 3, 4 to the second workstation and 5, 6 to the
third workstation.

We claim that solving the balancing subproblem min-
imising the number of machines is equivalent to find the
shortest weighted path of length inferior than (or equal to)
smax arcs between fictitious vertex 0 and the vertex n in
the directed weighted graph

G = (V,A), V = {0, 1, 2, .., n}, A = {(i, j), i < j}

Weights on arcs are given by:

ci,j =

⌈∑j
k=i+1 dk +

∑j−1
k=i+1 tk,k+1 + tj,i+1

C

⌉
which could be interpreted as the number of machines
necessary to perform the sequence i + 1,. . . ,j. The arc
(i, j) models the fact that the operations {i+ 1, ..., j} are

assigned to the same workstation in every path from 0 to
n taking path through (i, j).

Some arcs (i, j) violating the maximum number of ma-
chines per workstation, the maximum number of opera-
tions per workstations, the inclusion, exclusion and acces-
sibility constraints are deleted according to the following
rules.

The maximum number of operations per worksta-
tion: Nmax

An arc (i, j) violating the maximum number of operations
per workstation constraint can be detected by the follow-
ing condition:

j − i > Nmax

The maximum number of machines per worksta-
tion: Mmax

Likewise, an arc (i, j) violating the maximum number of
machines per workstation constraint can be detected by
the following condition:⌈∑j

k=i+1 dk +
∑j−1

k=i+1 tk,k+1 + tj,i+1

C

⌉
> Mmax

Inclusion constraints

An arc (i, j) violating the inclusion constraints can be
detected by the following condition:

∃(a, b) ∈ I, (a, b) 6∈ {i+ 1, ..., j}2

Exclusion constraints

An arc (i, j) violating the exclusion constraints can be
detected by the following condition:

∃(a, b) ∈ E, (a, b) ∈ {i+ 1, ..., j}2

Accessibility constraints

An arc (i, j) violating the accessibility constraints can be
detected by the following condition:

∃(a, b) ∈ N×N, (a, b) ∈ {i+1, ..., j}2, Pos(a)∩Pos(b) = ∅

4.2 A polynomial algorithm to solve the constrained shortest
path problem: split

We suggest the split algorithm (algorithm 1) in order to
compute the shortest path. It uses labels on nodes to
encompass information on the system state. We define a
set of labels Li for node i. The dominance rule that we
describe afterwards limits the number of labels per node
to smax. Every label represents a path (partial solution)
between 0 and i. A label is represented by a couple:

l = (a, b)

where a denotes the cost (number of machines) used by the
path represented by the label l and b denotes the number
of workstations used by this path.

Algorithm 1 starts with fictitious node 0 labelled L0 :=
{(0, 0)} and continues with the other nodes following the
giant sequence. For every node t and every label (a, b) ∈

Lt, the algorithm explores every outgoing arc (t, i) and
tries to propagate it (i.e add a label to the list of labels of
node i denoted Li) if:

(at + ct,i, bt + 1) is not dominated by Li

The shortest path cost is stored in Shortest Path Cost.

Algorithm 1 split

1: L0 := {(0, 0)}
2: for t=1 to n do
3: Lt := ∅
4: end for
5: for t=0 to n-1 do
6: for all (t, i) ∈ A (Propagate labels from Lt) do
7: for all (at, bt) ∈ Lt do
8: if (bt < smax − 1 or i = n) then
9: if (at + ct,i, bt + 1)

is not dominated by an element of Li then
10: Li := Li ∪ {(at + ct,i, bt + 1)}
11: if (at+ct,i, bt+1) dominates some element

(ai, bi) ∈ Li then
12: Li := Li\{(ai, bi)}
13: end if
14: end if
15: end if
16: end for
17: end for
18: end for
19: if Ln = ∅ then
20: Shortest Path Cost := +∞
21: else
22: Shortest Path Cost := Min(ai,bi)∈Ln

(ai)
23: end if

We describe the dominance rule as follows:

Definition 1. (Dominance rule) (a, b) is dominated by
(a′, b′) if:

a′ ≤ a and b′ ≤ b
Lemma 2. The dominance rule limits the number of labels
per node to smax.

Proof. Suppose by contradiction that we have more than
smax labels for some node i. Then, necessarily there must
exist two labels (a, b), (a′, b) ∈ Li (i.e with same number
of workstations), because for every label (x, y) we have:

y ∈ {1, 2, . . . , smax}
The coexistence of (a, b) and (a′, b) is impossible due to
the dominance rule.

Theorem 3. The algorithm runs in O(n4) where n is the
number of operations.

Proof. The algorithm performs dominance tests for each
3-uplet (label of origin node, arc, label of destination
node). Thus, it runs in O(m.s2max) where m is the number
of arcs in the graph. Since smax ≤ n and m = n + (n −
1) + ...+ 1 = n(n+1)

2 , split runs in O(n4).

5. A SIMPLE LOCAL SEARCH EMBEDDING THE
SPLIT ALGORITHM

We incorporate the split into a simple local search to test
its efficiency. The procedure uses the notion of compatible

giant sequence. This notion is described in the next subsec-
tion then the local search will be detailed in the following
subsections.

5.1 Computing a compatible giant sequence

Fig. 1. General scheme of the simple local search embedding
the split algorithm

A compatible giant sequence is a giant sequence for which
there exist a feasible balancing solution respecting the
giant sequence.

It is possible to test if a giant sequence is compatible
with respect to an instance by applying split, it returns
a positive (and optimal) shortest path cost only and only
if the giant sequence is compatible.

If no inclusion, exclusion, accessibility or the maximum
number of workstations constraints are taken into consid-
eration, it is easy to compute a compatible giant sequence.
Indeed, any giant sequence respecting the precedence con-
straints is compatible.

If we consider either inclusion, exclusion, accessibility or
the maximum number of workstations constraints, any
sequence respecting the precedence constraints is no longer
guarantied to be compatible.

We define a weakly compatible giant sequence as a giant
sequence for which there exists a balancing solution that
is feasible with respect to all the constraints except the
maximum number of workstations, that can be exceeded.

It is quite challenging to build up a compatible giant
sequence; however a weakly compatible giant sequence
could be built thanks to the following algorithm:

Algorithm to compute a weakly compatible giant
sequence

(1) Gather the operations according to inclusion con-
straints. This step partitions the operations set into
subsets:

S1, S2, . . . , Sk

(2) Optimally sequence the operations in the subsets Si

(ATSP problem, Held and Karp (1962)).
(3) A weakly compatible giant sequence σ is then com-

puted:
(a) Select randomly a set Si such that all predeces-

sors of operations in Si are already contained in
σ.

(b) Append Si to σ.
(c) Return to (a) while σ is incomplete.

The giant sequence given by the previous algorithm is
weakly compatible. Indeed, a feasible solution (eventually
violating the max. number of workstations constraint)
could be obtained by applying a modified version of
the split allowing solutions exceeding smax workstations
(delete line 8 in algorithm 1).

After obtaining a weakly feasible solution, a repair proce-
dure is designed to obtain a feasible solution. It consists in
merging the workstations in order to reduce the number
of workstations and therefore having a feasible solution.

The repair procedure works as follows:

• Choosing randomly two workstations WS1 and WS2.
• Merge WS1 and WS2 into one workstation WS if it

does not violate any constraint.
• Operations in WS are resequenced optimally (Asym-

metric travelling salesman problem) thanks to dy-
namic programming (Held and Karp (1962)).

If no compatible giant sequence is found a different ran-
dom seed is used. If the infeasibility persists, the com-
patible giant sequence is computed differently: going from
a weakly compatible giant sequence, a local search with
insertion neighbourhood is applied to get a compatible
giant sequence. A neighbour is accepted if its split uses
less workstations.

5.2 General scheme

The split algorithm could be used to solve the RTLB
problem. Once having computed a starting giant sequence,
we perform a local search in the space of the giant
sequences S, the split is used at each iteration to evaluate
this sequence.

The general scheme is depicted Fig. 1.

5.3 The neighbouring system

We use a simple insertion neighbourhood: insert an oper-
ation in a different position of the giant sequence. This
neighbourhood is applied in such way that the precedence
constraints are respected. Given the giant sequence s:

s = (o1, , on)

a random neighbour is selected by selecting a random
operation oi, 1 ≤ i ≤ n. Once this operation selected two
operations must be identified oi′ and oi′′ such that

i′ = max{j; j < i & (j, i) ∈ P}

and
i′′ = min{j; i < j & (i, j) ∈ P}

Then a random position is selected between i′ and i′′ to
(re)insert operation i.

5.4 Cost evaluation and neighbour acceptance

The cost of a giant sequence is computed thanks to the
split algorithm. Therefore, if s is a giant sequence, cost(s)
is the minimum number of machines necessary to respect
s if it is compatible and +∞ otherwise. To be accepted a
neighbour must have a cost smaller or equal to the current
cost (this defines Best[(H, s), (H ′, s′)] in Fig. 1).

6. EXPERIMENTAL RESULTS

We compare our resolution method with the latest reso-
lution method suggested in literature: a genetic algorithm
that uses either an heuristic or a MIP chromosome decoder
(Borisovsky et al. (2013)). The authors mention on the
paper the given objective value for each instance. The
comparison is consequently done by running our method
on the same sets of 15 instances.

Those are large-scale problem instances with:

• Number of operations: n = 200
• Maximum number of workstations: smax = 25
• Maximum number of operations per workstation:
Nmax = 10
• Maximum number of machines per workstation:
Mmax = 5
• Cycle time: C = 50
• Processing times: di ∈ [1, 10]
• Setup times: ti,j ∈ [0, 2]
• Number of precedence constraints: 50 ≤ |P | ≤ 70
• Number of inclusion and exclusion sets: 7 ≤ |I|, |E| ≤

15
• Accessibility constraints are taken into consideration

in these instances.

We can compute a starting compatible giant sequence for
all the instances. Starting from this initial giant sequence,
10 independent runs of the local search are performed. We
use the following notations in the table of experimentation:

• zlb: the lower bound obtained with the linear relax-
ation of the ILP from Lahrichi et al. (2018).
• cost: cost (number of machines) of the initial solution

obtained by applying split to the initial compatible
giant sequence.
• WS: number of workstations of the initial solution
• GA: Best solution obtained by the genetic algorithm:

Borisovsky et al. (2013). Results were obtained by
taking the best result out of 10 independent runs for
each instance. CPU time was bounded to 15 min for
each run.
• min: minimum objective function obtained by our

method over 10 independent runs.
• max: maximum objective function obtained by our

method over 10 independent runs.
• mean: average objective function obtained by our

method over 10 independent runs.
• σ: Standard deviation on objective function obtained

by our method over 10 independent runs.

Table 2. Table of experimentation

Inst. zlb GA Initial sol. our method (10 replications)
cost WS min max mean σ

A1 23 33 40 25 29 32 30.7 0.78

A2 22 33 38 24 28 31 28.7 0.9

A3 22 31 36 24 29 30 29.1 0.3

A4 22 29 39 24 28 30 29 0.63

A5 - 32 40 25 29 31 30.1 0.83

A6 22 32 39 25 29 32 30.1 0.83

A7 23 34 38 23 29 32 30.5 1.2

A8* - 31 - - - - - -

A9 22 30 40 25 29 30 29.7 0.45

A10 24 32 41 25 32 33 32.5 0.5

A11 22 30 36 24 28 30 29.3 0.64

A12 23 31 39 24 29 31 30.4 0.66

A13 23 33 39 23 30 31 30.5 0.5

A14 22 31 38 24 29 31 30 0.77

A15 22 33 36 25 29 30 29.5 0.5

The CPU time was bounded was bounded with the same
time than the GA (15 min), however the solutions were
obtained in much fewer times. The comparison should
be done between the GA column and the (our method)
min column. The min column gives objective values 9.16%
lower on average than GA. Besides, even the max values
are lower than the GA for all the instance but two. We no-
tice that the standard deviation is low which demonstrate
the robustness of the method.

No solution has been found for A8 instance. It is shown
to be infeasible. Inclusion and exclusion constraints are
contradictory: two operations are linked at the same time
with inclusion and exclusion constraints.

7. CONCLUSION

We show in this article that balancing a sequence of oper-
ations in reconfigurable transfer lines is a polynomial-time
(P) problem by modelling it as a constrained shortest path
problem and giving a polynomial algorithm (split) to solve
it. We tested the efficiency of the split by incorporating it
in a simple local search to solve the RTLB problem.

Experimentation on literature instances show very good
results. The use of the split algorithm is relevant even with
a basic metaheuristic. Several directions could be taken as
a future research: (by order of importance)

• Incorporating the split in more sophisticated meta-
heuristic frameworks or a branch and bound.
• Study of the rebalancing problem when the product

or the cycle time changes.
• Considering the bi-criteria optimisation by minimis-

ing the cycle time and the number of machines.
• Study the problem in the context of uncertainty.
• Considering mixed-model transfer line balancing prob-

lem.

REFERENCES

Andrés, C., Miralles, C., and Pastor, R. (2008). Balancing
and scheduling tasks in assembly lines with sequence-
dependent setup times. European Journal of Operational
Research, 187(3), 1212 – 1223.

Battäıa, O. and Dolgui, A. (2013). A taxonomy of
line balancing problems and their solution approaches.

International Journal of Production Economics, 142(2),
259 – 277.

Borisovsky, P.A., Delorme, X., and Dolgui, A. (2012).
Balancing reconfigurable machining lines by means of
set partitioning model. IFAC Proceedings Volumes,
45(6), 426 – 431.

Borisovsky, P.A., Delorme, X., and Dolgui, A. (2013). Ge-
netic algorithm for balancing reconfigurable machining
lines. Computers Industrial Engineering, 66(3), 541 –
547. Special Issue: The International Conferences on
Computers and Industrial Engineering (ICCIEs) - series
41.

Buxey, G.M. (1974). Assembly line balancing with multi-
ple stations. Manage. Sci., 20(6), 1010–1021.

Delorme, X., Malyutin, S., and Dolgui, A. (2016). A multi-
objective approach for design of reconfigurable transfer
lines. IFAC-PapersOnLine, 49(12), 509 – 514. 8th IFAC
Conference on Manufacturing Modelling, Management
and Control MIM 2016.

Essafi, M., Delorme, X., and Dolgui, A. (2010a). Balanc-
ing lines with cnc machines: A multi-start ant based
heuristic. CIRP Journal of Manufacturing Science and
Technology, 2(3), 176–182.

Essafi, M., Delorme, X., and Dolgui, A. (2010b). Balanc-
ing machining lines: a two-phase heuristic. Studies in
Informatics and Control, 19(3), 243–252.

Essafi, M., Delorme, X., Dolgui, A., and Guschinskaya, O.
(2010c). A mip approach for balancing transfer line with
complex industrial constraints. Computers Industrial
Engineering, 58(3), 393 – 400.

Held, M. and Karp, R.M. (1962). A dynamic programming
approach to sequencing problems. Journal of the Society
for Industrial and Applied Mathematics, 10(1), 196–210.

Koren, Y. and Shpitalni, M. (2010). Design of reconfig-
urable manufacturing systems. Journal of Manufactur-
ing Systems, 29(4), 130 – 141.

Koren, Y., Wang, W., and Gu, X. (2017). Value creation
through design for scalability of reconfigurable manu-
facturing systems. International Journal of Production
Research, 55(5), 1227–1242.

Lahrichi, Y., Deroussi, L., Grangeon, N., and Norre, S.
(2018). Reconfigurable transfer line balancing problem:
A new MIP approach and approximation hybrid algo-
rithm. In MOSIM 2018 (Modélisation et Simulation).
Toulouse, France.

Martino, L. and Pastor, R. (2010). Heuristic procedures
for solving the general assembly line balancing problem
with setups. International Journal of Production Re-
search, 48(6), 1787–1804.

Mehrabi, M.G., Ulsoy, A.G., Koren, Y., and Heytler, P.
(2002). Trends and perspectives in flexible and recon-
figurable manufacturing systems. Journal of Intelligent
Manufacturing, 13(2), 135–146.

Rabbani, M., Siadatian, R., Farrokhi-Asl, H., and Man-
avizadeh, N. (2016). Multi-objective optimization algo-
rithms for mixed model assembly line balancing problem
with parallel workstations. Cogent Engineering, 3(1),
115–203.

Vilarinho, P.M. and Simaria, A.S. (2006). Antbal: an
ant colony optimization algorithm for balancing mixed-
model assembly lines with parallel workstations. In-
ternational Journal of Production Research, 44(2), 291–
303.

