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Abstract  

We investigated the presence of carbapenemases in carbapenem-resistant Pseudomonas 

aeruginosa isolates, which were collected over a 14-month period in a Turkish hospital, with 

in-depth molecular characterization of carbapenemase-producing isolates.  Among 45 study 

isolates; two isolates were identified as carbapenemase producers by both Carba NP and 

Carbapenem Inactivation Method (CIM) tests, and only one of them gave a positive result in 

PCR tests for a carbapenemase gene (blaVIM). Whole genome sequencing (WGS) of the two 

isolates revealed the presence of blaVIM-5 gene in an ST308 isolate while the other one expressed 

IMP-7 in an ST357 isolate, both STs are considered high-risk clones. The two carbapenemase-

producing isolates were multidrug resistant, as they harbored other resistance determinants, 

including a variant of the recently described plasmid-encoded fluoroquinolone resistance 

determinant crpP gene, crpP-2. We report for the first time P. aeruginosa high-risk clones 

carrying VIM-5- and IMP-7- type carbapenemases with multiple resistance determinants in 

Turkey. 
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Introduction  

Multidrug resistant (MDR) gram-negative pathogens, and especially 

Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii, are emerging 

worldwide. The MDR pattern is relatively common with resistance appearing to all major 

classes of anti-gram-negative agents (e.g. β- lactams, fluoroquinolones, and aminoglycosides), 

and in some cases, resistance to all available drugs [1,2]. This is particularly worrisome in view 

of the current dearth of new compounds active against MDR gram-negatives in the pipeline. β-

Lactams, due to their safety, reliable killing properties and clinical efficacy, are among the most 

frequently prescribed antibiotics used to treat bacterial infections. However, their utility is being 

threatened by the worldwide proliferation of β-lactamases (BL) with broad hydrolytic 

capabilities, especially in MDR gram-negative bacteria. Currently, BL-mediated resistance 

does not spare even the newest and most powerful ß-lactams (i.e. 3rd generation cephalosporins 

and carbapenems), whose activity is challenged by extended spectrum β-lactamases (ESBLs), 

plasmid encoded cephalosporinases and carbapenemases [2]. 

In P. aeruginosa, carbapenem resistance may arise via hyperproduction of a 

chromosomal AmpC β-lactamase, acquisition of carbapenemases, and/or upregulated efflux or 

impermeability [3]. Most carbapenem resistance is due to impermeability, which arises via the 

loss of the OprD (D2) porin, but acquired transferrable carbapenemases are increasingly 

reported, with some of them coming from strains that have caused large outbreaks [3-5]. The 

carbapenemases currently found in P. aeruginosa belong to Ambler classes A (GES and KPC), 

B (IMP, VIM, NDM, SPM, AIM and GIM) and rarely D (OXA-198) [6]. Among acquired 

carbapenemases in P. aeruginosa, VIM-type and IMP-type enzymes are the most common 

types with worldwide distribution, and the VIM and GES types have been the most reported 

enzymes in Turkey in a few studies [6-15].  
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The aim of the present study is to investigate the presence of carbapenemases both by 

phenotypic and genotypic methods in a collection of carbapenem-resistant P. aeruginosa 

isolates from a tertiary care hospital in Istanbul. Antimicrobial susceptibilities including 

ceftolozane/tazobactam, which is known to be highly effective against multidrug resistant P. 

aeruginosa but poorly studied in Turkey, and the presence of high-risk clones were also 

investigated among study isolates.   

 

Materials and Methods 

Bacterial isolates, identification, and susceptibility testing 

A collection of 45 non-duplicates clinical P. aeruginosa isolates (1 isolate per patient), 

resistant to at least imipenem or meropenem, from the Şişli Hamidiye Etfal Training and 

Research Hospital Clinical Microbiology Laboratory between August 2015-October 2016 were 

included in the study.  

P. aeruginosa was identified using standard biochemical tests (API NE, bioMérieux, 

Marcy l’Etoile, France) in conjunction with matrix-assisted laser desorption/ionization time of 

flight mass spectrometry (MALDI-TOF MS) (Bruker Daltonics, Germany). Susceptibility 

testing for amikacin, aztreonam, ceftazidime, cefepime, ciprofloxacin, levofloxacin, 

gentamicin, piperacillin-tazobactam, imipenem, meropenem, netilmicin, tobramycin, ticarcillin 

and piperacillin was performed by disk diffusion method. A selection of 12 isolates, which were 

multidrug resistant including imipenem and ceftazidime has also been tested for 

ceftolozane/tazobactam susceptibility using E-test (Liofilchem, Italy). Colistin minimal 

inhibitory concentrations (MICs) were determined by BMD (Sensititre, Thermo Fisher 

Scientific, Basingstoke, UK) according to the guidelines of the CLSI and EUCAST joint 

subcommittee [16].  Imipenem and/or meropenem resistance revealed by disk diffusion, was 

confirmed using Etest (Oxoid M.I.C. Evaluator, Thermo Fisher Scientific). For isolates found 
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as ceftazidime resistant, the presence of an ESBL was investigated by a synergy image detection 

using the double-disc synergy test (DDST) performed with ceftazidime and 

ticarcillin/clavulanic acid discs on cloxacillin (200 mg/L)-containing Mueller-Hinton (MH) 

agar plates, which partially inhibits the cephalosporinase activity [17,18]. European Committee 

on Antimicrobial Susceptibility Testing (EUCAST) methods and interpretation criteria were 

used for all antimicrobial agents [19]. The isolates were stored at -80 °C in trypticase soy broth 

until molecular tests were performed. 

 

Phenotypic detection of carbapenemase activity 

Two phenotypic tests, the Carba NP and Carbapenem Inactivation Method (CIM) were 

applied to all isolates for detection of carbapenem-hydrolyzing activity [20,21]. Both tests were 

performed as previously described [20,21], and the results were interpreted blindly by two 

independent microbiologist that ignored all other results of this study.  

 

Molecular detection of carbapenemase-encoding genes  

BlaKPC, blaNDM, blaVIM, blaIMP, blaSIM, blaGIM, blaGES, blaOXA-23, blaOXA-48, and blaOXA-

198 genes responsible for carbapenemase production were investigated by conventional PCR as 

previously described [22]. The primers used are shown in Table 1. Dream-Taq Green PCR 

Master Mix (Thermo Fisher Scientific) was used for PCR tests. Amplification of bacterial DNA 

was performed by using Gene Amp PCR System 9700 (Applied Biosystems, Les Ullis, France) 

thermal cycler. To confirm the enzyme gene types and determine subtypes, nucleotide 

sequencing was performed by using the Bigdye Terminator V3.1 cycle sequencing kit with an 

automated DNA sequencing on ABI Prism 3130 Genetic Analyzer (Applied Biosystems). The 

nucleotide and deduced amino acid sequences were analysed with software available through 

the internet (http://www.ncbi.nlm.nih.gov/). 
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Table 1. Nucleotide sequences of the primers used in the amplification were from Dortet 

et al. [22].) 

 

Gene  Primer 

Adı 

Nucleotide sequence (5'-3') 

blaKPC  KPC-A CTG-TCT-TGT-CTC-TCA-TGG-CC 

KPC-B CCT-CGC-TGT-GCT-TGT-CAT-CC 

blaNDM  NDM-F GGT-TTG-GCG-ATC-TGG-TTT-TC 

NDM-R CGG-AAT-GGC-TCA-TCA-CGA-TC 

blaVIM  VIM-2004A GTT-TGG-TCG-CAT-ATC-GCA-AC 

VIM-2004B AAT-GCG-CAG-CAC-CAG-GAT-AG 

blaIMP  IMP-2004A ACA-YGG-YTT-GGT-DGT-TCT-TG 

IMP-2004B GGT-TTA-AYA-AAA-CAA-CCA-CC 

blaSIM SIM-1F TAC-AAG-GGA-TTC-GGC-ATC-G 

SIM-1R TAA-TGG-CCT-GTT-CCC-ATG-TG 

blaGIM GIM-1A GGA-GTA-TAT-CTT-CAT-ACC-TCC 

GIM-1B TTC-CAA-CTT-TGC-CAT-GCC-CC 

blaGES  GES-1A ATG-CGC-TTC-ATT-CAC-GCA-C 

GES-1B CTA-TTT-GTC-CGT-GCT-CAG-G 

blaOXA-48 like OXA-48A TTG-GTG-GCA-TCG-ATT-ATC-GG 

OXA48B GAG-CAC-TTC-TTT-TGT-GAT-GGC 

blaOXA-23 OXA-23A GAT-GTG-TCA-TAG-TAT-TCG-TCG 

OXA-23B TCA-CAA-CAA-CTA-AAA-GCA-CTG 

blaOXA-198 OXA-198-F CTC-GAA-TTC-ATG-CAT-AAA-CAC-ATG-AGT-AAG 

OXA-198-R CTC-AAG-CTT-TTA-TTC-GAT-GAT-CCC-CTT-T 

 

 

Whole genome sequencing (WGS) and bioinformatic analysis   

Total DNA was extracted from colonies using the Ultraclean Microbial DNA Isolation Kit (MO 

BIO Laboratories, Carlsbad, CA, US) following the manufacturer’s instructions. The DNA 

concentration and purity were controlled by a Qubit® 2.0 Fluorometer using the dsDNA HS 
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and/or BR assay kit (Life technologies, Carlsbad, CA, US). The DNA library was prepared 

using the Nextera XT-v3 kit (Illumina, San Diego, CA, US) according to the manufacturer’s 

instructions and then run on Miseq (Illumina) for generating paired-end 150-bp reads. De novo 

assembly with a minimum contig length of 300 bp was performed by CLC Genomics 

Workbench v9.5 (Qiagen, Hilden, Germany) after quality trimming (Qs ≥ 20) with word size 

34. The acquired antimicrobial resistance genes were identified by uploading assembled 

genomes to the Resfinder server v2.1 (http://cge.cbs.dtu.dk/services/ResFinder-2.1) [23]. The 

multi locus sequence typing (MLST) was also obtained, by uploading assembled genomes to 

MLST 1.8 [24] respectively from https://cge.cbs.dtu.dk/services/. The identification of the 

plasmids was performed by uploading assembled genomes to PlasmidFinder 1.3 [25], 

respectively from https://cge.cbs.dtu.dk/services/. 

Nucleotide sequence accession number 

The Whole Genome Shotguns of Pyo24 and Pyo5 isolates have been deposited at 

DDBJ/ENA/GenBank under the accession number SUNF00000000 and SUNG00000000, 

respectively. 

 

Detection of high-risk clones by MALDI-TOF MS 

The presence of 5 main P. aeruginosa high-risk clones (ST111, ST175, ST235, ST253, and 

ST395) was investigated for all 45 isolates using MALDI-TOF MS (Bruker Daltonics) as 

described by Cabrolier et al. [26]. Analysis of the mass spectra was performed using the 

spectrum view of flexAnalysis 3.4 software (Bruker Daltonics). The presence or absence of the 

peak biomarkers specific to the high risk clones was analysed by visual comparison of the 

specific spectra. 

 

Results 
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Bacterial isolates 

During the study period, a total of 585 clinical P. aeruginosa isolates responsible for 

infections have been documented in the laboratory information system, and 115 (20%) of them 

were reported as carbapenem resistant. Among these cases, 45 non-duplicate isolates that were 

still available in the laboratory’s stocks could be included in the study. Of these isolates, 17 

(38%) were from female patients, while 28 (62%) were from males. Of these patients, 13, 3, 2, 

15, and 12 were aged between 0-5, 6-15, 16-29, 30-59, and >60, respectively. Most of the 

isolates were obtained from respiratory specimens (42%), followed by urine (20%), wound and 

soft tissue specimens (27%), blood (9%), and cerebrospinal fluid (2%).  Most of the specimens 

were from ICU (45%), followed by surgical wards (22%), internal medicine wards (22%), and 

from outpatients (11%) of the hospital. 

 

Antimicrobial susceptibility profile  

Using E-tests, the range of MIC values for imipenem and meropenem were 4 - ≥32 µg 

/ml and 2 - ≥32 µg /ml, respectively. MIC50 and MIC90 values were determined as ≥32 and 

≥32 µg/ml for imipenem and 16 and ≥32 µg/ml for meropenem. Among the carbapenem-

resistant P. aeruginosa isolates, susceptibility to piperacillin-tazobactam was the highest, while 

susceptibility to aztreonam was the lowest. Antimicrobial susceptibility profiles of the isolates 

are displayed in Table 2. 

Eighteen isolates were found ceftazidime-resistant. Among them, no synergy was 

evidenced for any isolate in the DDST with cloxacillin-containing agar, suggesting the absence 

of any ESBL. 

 

Table 2. Antimicrobial Susceptibility Profiles of the Isolates determined using disk diffusion 

antibiograms 
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Overall (n = 45) 

Antibiotics S (%) I (%) R (%) 

Imipenema 2 0 98 

Meropenema 16 20 64 

Amikacin 76 4 20 

Aztreonam 9 42 49 

Ciprofloxacin 62 0 38 

Levofloxacin 51 0 49 

Piperacillin-

tazobactam 

78 0 22 

Ceftazidime 60 0 40 

Cefepime 71 0 29 

Gentamicin 67 0 33 

Ticarcillin 40 0 60 

Piperacillin 73 0 27 

Netilmicin 53 0 47 

Tobramycin 76 0 24 

S, susceptible; I, intermediate; R, resistant. 

a Determined using E-tests 

 

Twelve highly drug-resistant bacteria were further studied for susceptibility to 

ceftolozane/tazobactam combination. Three of these isolates were susceptible as revealed by 

MIC values interpreted according EUCAST criteria [19]. Nine P. aeruginosa isolates were 

resistant to ceftolozane/tazobactam as shown in Table 3.  
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Table 3. MIC values of 12 selected P. aeruginosa isolates for ceftolozane/tazobactam  

 Susceptible Resistant 

MIC (µg/ml) ≤ 0.125 0.25 0.5 1 2 4 8 16 32 64 128 ≥ 256 

No. of isolates 0 0 0 1 0 2 0 1 1 1 0 6 

Total 3 9 

 

Carba NP and CIM Results 

Carba NP and CIM tests were used to detect a carbapenem-hydrolyzing activity among 

the 45 carbapenem-resistant P. aeruginosa isolates. Two isolates (Pyo5 and Pyo24) revealed a 

positive carbapenemase-activity by both Carba NP and CIM tests, while the remaining 43 

isolates gave negative test results with both tests. The isolate Pyo24 was obtained from a urine 

sample of a 14-year-old boy with neurogenic bladder dysfunction who had been hospitalized 

several times for recurrent urinary tract infection. The isolate was susceptible to ciprofloxacin, 

levoflaxacin, and colistin, but resistant to all other antimicrobials tested, including 

ceftolozane/tazobactam with an MIC of >256 μg/ml. The isolate Pyo5 was isolated from a 

wound specimen of an 81-year-old woman with urinary incontinence and was resistant to all 

antimicrobials (including ceftolozane/tazobactam) except colistin, piperacillin, and 

piperacillin-tazobactam. 

 

Molecular detection of carbapenemase genes  

As phenotypic tests may sometimes miss weakly expressed carbapenemases, the 45 

isolates were screened by PCR for the most common carbapanemases encountered in Gram-

negative Bacilli (GNB) (blaKPC, blaNDM, blaIMP, blaVIM, blaSIM, blaGIM blaGES, blaOXA-23, blaOXA-
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198 and blaOXA-48) [22]. PCR detection of carbapenemase encoding genes gave a positive result 

only for blaVIM gene in isolate Pyo24, which was identified as carbapenemase-producers using 

the phenotypic tests. Sequencing of the PCR product of isolate Pyo24 revealed the presence of 

blaVIM-5 gene. For the second isolate (Pyo5) that demonstrated carbapenemase activity using 

phenotypic tests, despite repeated PCR attemps, the molecular results remained negative.  

 

Genetic characterization 

 WGS data of the Pyo24 and Pyo5 P. aeruginosa isolates were analyzed using CLC 

genomic workbench and revealed genomes of 6932577 bp and 6824239 bp respectively, with 

a 70X coverage for both genomes.  

The Pyo24 P. aeruginosa isolate belonged to ST-308 and the Pyo5 P. aeruginosa to the 

ST-357. Resistome was analyzed by searching acquired resistance genes and point mutations 

involved in resistance. According to https://cge.cbs.dtu.dk/services/, Pyo24 P. aeruginosa 

harbored three β-lactamase genes: a novel variant of the chromosomal and natural blaPAO-like 

gene coding for a broad-spectrum cephalosporinase, blaOXA-488 coding for OXA-50 family 

oxacillin-hydrolyzing class D β-lactamase and blaVIM-5 coding for a carbapenemase. The isolate 

also expressed three aminoglycoside  resistance determinants (aph(3’)-IIb, aadA1, aac(6’)-II 

genes), a phenicol resistance determinant (catB7), a sulfonamide resistant gene (sul1) and a 

chromosomal fosfomycin resistance gene (fosA) coding for  a Mn(II)-dependent metalloenzyme 

(FosA) that catalyzes the addition of glutathione (GSH) to the broad-spectrum antibiotic 

fosfomycin [27]. 

The Pyo5 isolate presented four β-lactamase genes: chromosomal blaPAO-like gene,  

blaOXA-50-like  coding for a variant of OXA-50 family oxacillin-hydrolyzing class D β-lactamase, 

blaOXA-2 coding for a broad-spectrum oxacillinase and an integron-located blaIMP-7 metallo-beta-

lactamase gene [28].The isolate also presented the quinolone resistance determinant aac(6’)-
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Ib-cr gene and four aminoglycoside resistance determinants (aph(3’)-IIb , aac(6’)-Ib3, 

aph(3’’)-Ib and aph(6)-Id genes).  

Moreover, the Pyo5 isolate contained the recently described plasmid-encoded 

fluoroquinolone resistance determinant crpP gene [29], while Pyo24 isolate carried a novel 

variant of the crpP gene, that we named crpP-2. This novel variant coding for the CrpP-2, 

differed from the CrpP by two amino-acid subtitutions, K4R and G7D. The crpP-2 gene was 

present in a similar environment to the one described for crpP [29] except for the deletion of a 

phage regulatory rha-like gene and other regions upstream the crpP-2 gene (Figure 1). The 

genetic environment of crpP gene present in the Pyo5 P. aeruginosa, also showed differences 

in respect to that already described by Chavez-Jacobo et al [29] (Figure 1). 

 

Fig. 1. Genetic environment of crpP genes and CrpP-2 amino acid sequence comparison with the CrpP 

protein. Sequence similarities are indicated by grey boxes.  

 

MALDI-TOF MS analysis for high risk clones 
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According to MALDI-TOF MS analysis of the 45 isolates, there were no characteristic 

peaks of high risk clones (ST111, ST175, ST235, ST253, and ST395) in the VIM-5 and IMP-

7–type carbapenemase producing isolates. One non-carbapenemase producing isolate yielded 

peaks characteristic for ST253.  It was recovered from a biopsy specimen of a 84 year-old 

female patient hospitalized in intensive care unit. The isolate was resistant to all antimicrobials 

except colistin. The peak biomarkers for ST253 are shown in Figure 2. 

 

 

Fig. 2. MALDI-TOF MS peak profile of the ST253 P. aeruginosa isolate. The relative intensities 

of the ions (in a. u. arbitrary units) are shown on the y axis, and the masses of the ions (in Da) are 

shown on the x axis. The m/z value represents mass to charge ratio. The arrow shows peak at m/z 

5,813 which is specific to ST253. 

 

Discussion  
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The fight against infectious diseases is probably one of the greatest public health 

challenges faced by our society, especially with the emergence of carbapenemase-producing 

gram-negatives being in some cases pan-drug resistant. The pandemic carbapenemase 

disseminating worldwide in gram-negative organisms threatens to take medicine back into the 

preantibiotic era since the mortality associated with infections caused by these “superbugs” is 

very high due to limited treatment options. Resistance to carbapenems in P. aeruginosa is 

mostly due to loss of OprD porins; however, the carbapenemase production is an important 

mechanism of carbapenem resistance in P. aeruginosa that is increasingly identified wordwide. 

That resistance trait is more worrisome since the majority of carbapenemase encoding genes 

are in high-mobility genetic elements that may disseminate horizontally and impacts almost all 

carbapenem molecules that are all hydrolyzed by those enzymes [30,31]. In the present study, 

of the 45 carbapenem-resistant isolates, two isolates were found as positive for carbapenemase 

production by phenotypic Carba NP and CIM tests. PCR tests for detection of the most common 

carbapenemase genes remained negative for one of those two isolates (Pyo5). Carbapenemase 

activity for this isolate was also detected by a commercial phenotypic test [RAPIDEC® 

CARBA NP (bioMérieux, France)], suggesting the presence of a new carbapenemase encoding 

gene or a carbapenemase currently undetectable by our PCR methods. Although molecular 

detection by PCR is considered the gold standard for carbapenemase gene identification, false 

negativity can be observed due to the presence of a carbapenemase gene not tested in the PCR 

reaction, or mutations affecting annealing of primers [32]. At this point, fast and accurate 

phenotypic methods for detection of carbapenemase activity are important for early 

implemetation of infection-control measures. Furthermore, these phenotypic methods don’t 

require expensive specialized equipment and can be easily performed in all medical 

microbiological laboratories, making them more suited for screening purposes.  Our results 
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showed that phenotypic Carba NP and CIM tests could represent an important contribution to 

carbapenemase detection that was missed by PCR tests.  

Different classes of carbapenemases have been identified in P. aeruginosa mainly of the 

VIM and IMP type metallo-β-lactamases [6]. So far, IMP-1–[10,11], IMP-9–[12], VIM-1–[9], 

VIM-2–[9,10,12,13], VIM-5–[7], VIM-38–type metallo-β-lactamases [8,33], GES-1–[10], 

GES-5–type class A carbapenemases [8,9] and OXA-10–, OXA-14– [10], OXA-23–, OXA-

40–, OXA-58–type [14] class D carbapenemases have been identified in P. aeruginosa from 

Turkey. The VIM-5 that differs from VIM-1 by five amino acid substitutions was firstly 

identified in a P. aeruginosa isolate in Turkey in 2004 [7].  After this report, there have been a 

few reports of VIM-5-producing P. aeruginosa in India [34], Denmark (from a patient 

previously hospitalised in India) [35], Myanmar [36] and Bangladesh [37]. To our knowledge, 

this is the second report of a clinical isolate of P. aeruginosa carrying the blaVIM-5 gene in 

Turkey.  

The IMP-7 identified in P. aeruginosa strain Pyo5 could not be detected by PCR tests 

since the genes are very different from IMP-1. The blaIMP-7 gene was originally identified in P. 

aeruginosa isolates in a nosocomial outbreak in Canada and was not detected with standard 

blaIMP-specific primers, due to mismatches in the forward primer [28]. Kouda et al. [38], who 

reported first isolation of the blaIMP-7 gene in P. aeruginosa in Japan, also found the presence 

of metallo-ß-lactamase by a phenotypic test but could not detect blaIMP gene using the PCR 

with the blaIMP-specific primers and needed further molecular methods such as pulsed-field gel 

electrophoresis, southern hybridization, and DNA sequencing to identify the blaIMP-7 gene.  

Some automated real-time PCR systems such as Xpert Carba-R Assay (Cepheid, Toulouse, 

France) are unable to detect blaIMP-7 gene expressing bacterial strains [39], suggesting silent 

spread of IMP-7 producers due to undertection. Importantly, this type of IMP in P. aeruginosa 

has never been previously reported from Turkey. Unlike most of the IMP types, which mostly 
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have a defined geographical distribution, IMP-7 shows a global dissemination. So far, IMP-7 

has been identified in patients in Canada [28], the Czech Republic [40], Japan [38], Malaysia 

[41], Slovakia [42], Denmark [43], Saudi Arabia [44] and Australia [45]. Moreover, regional 

spread of P. aeruginosa ST357 producing IMP-7 has been reported in central Europe [46,47]. 

Our study would indicate a wider spread of the IMP-7-producing P. aeruginosa of ST357. 

 

In P. aeruginosa, international high-risk clones such as ST235, ST111, ST175, and 

ST357 are responsible for epidemics of nosocomial infections by MDR strains worldwide [46-

48]. Another high-risk emerging clone, ST308, has been described in France, Germany, and 

Singapore [51-54]. Here we report the presence of ST308 and ST357 epidemic clones among 

P. aeruginosa isolates for the first time from Turkey. Since high risk clones of P. aeruginosa 

play a major role in the spread of resistance, early detection of these clones should have major 

consequence for infection control, helping to prevent their spread in the hospital environment. 

A method described by Cabrolier et al [26] was able to accurately and quickly detect several P. 

aeruginosa high-risk clones, including ST235, ST111, ST175, ST253 and ST395, using the 

MALDI-TOF MS. With this method, one non-carbapenemase producing isolate in our 

collection yielded peaks characteristic for ST253. The ST253 is known as a globally spread 

clone that previously had been detected in P. aeruginosa from various animal, human and 

environmental samples [55-61].  

In the present study, genetic characterization of the carbapenemase producing P. 

aeruginosa strains also revealed the presence of novel resistance determinants such as crpP 

(ciprofloxacin resistance protein, plasmid encoded) and crpP-2 genes. The CrpP enzyme 

encoded by the pUM505 plasmid was recently described by Chavez-Jacobo et al [29]. It was 

isolated from a clinical isolate of P. aeruginosa and was shown to confer an increase in 

ciprofloxacin MIC value when conjugated to E. coli J53-3 strain. It is suggested that the CrpP 
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decreases ciprofloxacin susceptibility through the enzymatic phosphorylation of the antibiotic 

[29]. In a subsequent study, Chavez-Jacobo et al. reported the presence of the crpP gene in 

ESBL-producing enterobacterial isolates and ESBL-producing transconjugants with plasmids 

from clinical isolates, suggesting the spread of crpP genes among hospital bacteria including 

other Gram-negative species [62].  

 Ceftolozane/tazobactam is a new second-generation cephalosporin/β-lactamase 

inhibitor combination with activity against P. aeruginosa, including drug-resistant strains, and 

other common gram-negative bacteria, including ESBL producing Enterobacteriaceae strains 

[63]. Ceftolozane/tazobactam was cleared in 2014 by the Food and Drug Administration for the 

treatment of complicated intraabdominal infections and complicated urinary tract infections.  In 

many studies, it has been reported that ceftolozane-tazobactam retained good activity against 

MDR isolates of P. aeruginosa [63-67]. In the present study, ceftolozane/tazobactam retained 

activity against 3 of the 12 carbapenem resistant P. aeruginosa isolates, with MIC50 and MIC90 

values of 64 and 256 μg/ml, respectively. Carbapenemase-producing isolates (VIM-5 and IMP-

7) were highly resistant (MIC> 256 mg/L) to ceftolozane/tazobactam, which supports the stated 

lack of antimicrobial activity of the antibiotic against carbapenemase producers by Cho et al. 

and Pazzini et al. [68-69]. Despite the limited number of isolates tested for ceftolozane-

tazobactam, our results are useful for evaluating the efficiency of ceftolozane-tazobactam 

therapy on carbapenem-resistant P. aeruginosa isolates in Turkey. Further extensive studies are 

needed to define ceftolozane-tazobactam's activity against P. aeruginosa isolates in our area. 

Carbapenem resistant P. aeruginosa isolates should be further tested for 

ceftolozane/tazobactam susceptibility as it can be an alternative therapy for infections with 

multidrug resistant and extremely drug resistant GNB.  

In conclusion, this study reveals new information about carbapenemases, high-risk 

clones, and other resistance determinants among P. aeruginosa isolates in Turkey. Detection of 
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carbapenemase producers by reliable phenotypic methods can provide effective infection 

control surveillance with the ability of detecting unkown carbapenemases.  Although we 

detected a low prevalence of carbapenemase genes among the study strains, detection of these 

carbapenemases is still important as they can easily disseminate among the strains of the 

bacterium. As this is the first report of IMP-7 producing P. aeruginosa from Turkey, caution 

must be taken against further spread of this type of carbapenemase in our area. Our findings 

illustrates the particular threat of P. aeruginosa high-risk clones with multiple resistance 

determinants in a tertiary care hospital in Turkey in a time of dearth of new antibiotics for the 

treatment of infections caused by these bacteria.  
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