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Approximation Methods to solve Stochastic
Problems in Computational Electromagnetics

Stéphane Clénet

Abstract To account for uncertainties on model parameters, the stochastic approach
can be used. The model parameters as well as the outputs are then random fields or
variables. Several methods are available in the literature to solve stochastic mod-
els like sampling methods, perturbation methods or approximation methods. In this
paper, we propose an overview on the solution of stochastic problems in compu-
tational electromagnetics using approximation methods. Some applications will be
presented in order to illustrate the possibilities offered by the approximation meth-
ods but also their current limitations due to the curse of dimensionality. Finally,
recent numerical techniques proposed in the literature to face the curse of dimen-
sionality are presented for non-intrusive and intrusive approaches.

1 Introduction

Applying a discretisation scheme (Finite Element Method-FEM, Finite Integration
Technique-FIT, ...) to solve the Maxwell equations leads to valuable tools for under-
standing and predicting the features of electromagnetic devices. With the progress in
the fields of numerical analysis, CAD and postprocessor tools, it is now possible to
represent and to mesh very complex geometries and also to take into account more
realistic material behaviour laws with non-linearities, hysteresis .... Besides, com-
puters have nowadays such capabilities that it is common to solve problems with
millions of unknowns. The modelling error due to the assumptions made to build
the mathematical model (the set of equations) and the numerical errors due espe-
cially to the discretisation (by a FEM for example) can be negligible. Consequently,
in some applications represented by very accurate models (the modelling and the
numerical errors are negligible), if a gap exists between the measurements, assum-
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2 Stéphane Clénet

ing perfect, and the results given by the numerical model, it comes from deviations
on input parameters which are not in the ”real world” equal to their prescribed val-
ues. The origins of these deviations are numerous and are related to either a lack of
knowledge (epistemic uncertainties) or uncontrolled variations (aleatoric uncertain-
ties). For example, mechanical parts are manufactured with dimensional tolerances
whereas some dimensions, such as air gaps in electric machines, are critical as they
strongly influence performance. Besides uncertainties in material composition, the
material characteristics which change with uncontrolled environmental factors (hu-
midity, pressure, etc.) are also often unknown [39]. Even if the environmental fac-
tors are perfectly known, in some situations, the behaviour law parameters cannot
be identified because measurements are not possible under the right experimental
conditions. Consequently, to be more realistic, numerical models must now be able
to take into account uncertainties.

The stochastic approach which consists in representing the uncertain parameters
as random variables, (the output variables are then also random variables) is one
possible way to model and to evaluate the influence of the uncertainties on the pa-
rameters. Monte Carlo Simulation methods or perturbation methods are available to
solve stochastic problems since early 50′s [11, 12]. In the 90′s, researches on quan-
tification of uncertainties in numerical models using approximation methods first
began in the field of mechanical and civil engineering [31]. In the 2000′s, this ap-
proach has met a growing interest with the development of approximation methods
based especially on truncated polynomial chaos expansions that offer a higher con-
vergence rate than the Monte Carlo Simulation Method if the model outputs present
a sufficient regularity versus the input parameters.

In this paper, we propose a survey on the solution of stochastic problems in com-
putational electromagnetics using approximation methods. First, we present the de-
terministic model based on FEM then the stochastic model is derived when the input
parameters are considered as random variables. The approximation method is intro-
duced which consist in finding a solution in a finite dimensional functional space.
Different numerical techniques, available in the literature, are described to solve the
stochastic problem. Then, a description of applications of the stochastic approach
in the field of computational electromagnetics is proposed in order to illustrate the
capabilities of such approach but also its current limitations particularly due to the
curse of dimensionality. Finally, recent numerical techniques proposed in the litera-
ture to face the curse of dimensionality are presented.

2 Presentation of the Problem

2.1 Deterministic Problem

In the following, we will address the magnetostatic problem but the results can be
easily extended to other static and quasi static field problems. In the following, the



Approximation Methods to solve Stochastic Problems 3

aim is to introduce notations when the magnetostatic problem is solved numerically
using the vector potential formulation and FEM. The partial differential equations
to be solved on a domain D are:

curl H(x) = J(x) (1)

divB(x) = 0 (2)

with H the magnetic field, B the magnetic flux density and J the current density that
is assumed to be known. In addition, boundary conditions on H and B are added and
also the behaviour law of the material which will be assumed to be written in the
form:

H(x) = ν(x)B(x) (3)

with ν the reluctivity. To solve the problem, the vector potential formulation can be
used:

curl[ν(x)curlA(x)] = J(x) (4)

with A the vector potential. To find an approximate solution of this equation,
FEM is often applied. We seek for an approximation A of the vector potential in the
edge element space such that:

A(x) =
N
∑
i=0

aiwi(x) (5)

with N the number of Degrees of Freedom (DoFs), wi the edge shape functions
and ai unknown real coefficients. By applying the Galerkin method to a weak form
of (4): ∫

D
ν(x)curl A(x).curl wi(x)dx =

∫
D

J(x)wi(x)dx ∀i ∈ [1;N] (6)

Replacing A by its expression (5) in (6), a system of N linear equations with N
unknown coefficients ai is obtained which can be written in the form:

S A = F (7)

with S the stiffness matrix (NxN), F the source vector (Nx1) and A the vector of
the coefficients ai. We should mention that non-homogeneous boundary conditions
can be taken into account, additional entries are then added to the source vector F.
The coefficients si j of S and fi of F satisfy:

si j =
∫

D
ν(x)curlw j(x).curlwi(x)dx fi =

∫
D

J(x).wi(x)dx (8)

Once the equation system (6) is solved, local quantities like the magnetic flux
density distribution or global quantities of interest like the flux, the torque can be
calculated in a post processing step.
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2.2 Stochastic Problem

In the deterministic case, the input parameters like the dimensions related to the ge-
ometry of the device, the material characteristics and the electromagnetic sources
are supposed to be perfectly known. If the input parameters of the model are subject
to variability, the solution of (7) will be also subject to variability. The stochastic
approach enables to quantify this variability. When accounting for the uncertainties
using the stochastic approach, the input parameters are then modelled by random
variables p(θ ) with θ an elementary event. The joint probability density function is
supposed to be known (or each marginal probability density functions if the random
variables are independent). The outputs of the electromagnetic model become then
random and should be characterized. A stochastic partial differential equation sys-
tem is generally numerically solved by applying, like in the deterministic case (see
2.1), a semi-discretisation in space (see 6). The DoF’s ai of the vector potential (see
(5)), which were real numbers in the deterministic case, becomes random variables
ai[p(θ)]. The matrix S and the vector F have random entries si j[p(θ)] and fi[p(θ)]
and the unknown vector A is random and satisfies:

S[p(θ)]A[p(θ)] = F[p(θ)] (9)

As already mentioned above, the input parameters p(θ ) of the model are related
either to the geometry or to the behaviour laws of the material or to the sources
(including non-homogeneous boundary conditions). Taking into account the ran-
domness on the source is quite straightforward especially when the deterministic
problem is linear [4]. In the following, we will assume that the sources are deter-
ministic. For the other kinds of randomness, the problem is more complicated. The
processing of uncertain geometries is slightly different than the processing of un-
certain behaviour laws and requires additional treatments. The most natural way to
account for randomness on the geometry consist in remeshing according to the de-
formation but the remeshing leads to a discontinuous solution in the space of the
input parameters and can create additional numerical noise which can disturb the
random solution. Alternatives have been proposed in the literature [5–9] to avoid
remeshing. In the following, we will focus mainly on uncertainties on the behaviour
laws. However, the quantification methods presented in the following can be applied
to solve problems with random geometries as mentioned previously.

To solve (9), sampling techniques, like the Monte Carlo Simulation Methods
(MCSM) [12] [11], or perturbation methods [44] [45] can be applied. In this paper,
we will focus only on the approximation methods which are well fitted to solve (9)
when the entries of the vector A(p) are smooth functions of the input parameters p.
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3 Approximation methods

We denote G the quantity of interest which can be an unknown of the problem (a
value of the circulation ai[p(θ)] of the vector potential along an edge i), a local
quantity like the value of the magnetic field or the Joule losses at one point of the
domain or a global quantity derived from the magnetic fields like the magnetic flux
flowing through a stranded inductor or the magnetic energy. An approximation of
the quantity G which is a function of the random input parameters p(θ ), is sought
in a finite dimensional function space of p(θ ) that is to say:

G[p(θ)] =
P
∑
i=0

giΨi[p(θ)] (10)

with gi coefficients to determine. The approximation functions Ψi[p(θ)] can be
chosen in different finite dimensional spaces [4,15]. If the output G has a finite vari-
ance and is sufficiently smooth, polynomial expansions are well suited. If it exists
some singularities (for example in the case random geometry), other approximation
spaces should be introduced [13]. Approximations based on the Polynomial Chaos
Expansion (PCE) are currently the most used in engineering. PCE was first intro-
duced by Wiener [16] to represent Gaussian processes. In [17], Xiu et al. proposed
a more general approach by referring to the Wiener-Askey scheme. A PCE requires
the random components pi(θ) of the vector p(θ ) to be independent. If it is not the
case, alternatives are proposed in the literature either to modify the approximation
space or to express the vector p(θ ) as a function of a vector p’(θ ) of independent
random variables (using isoprobabilistic transformation for example). In the fol-
lowing, we will assume the random variables pi(θ) independent with a probability
density function (pdf) fi(y). The size of the random vector p(θ ) will be equal to K.
We denote E[X(θ )] the expectation of the random variable X(θ ) (the expectation
of X(θ ) is equal to the mean of X(θ )). We introduce now the monovariate orthogo-
nal polynomial ψ l

i (y) of order l associated to the parameter pi(θ). The polynomials
ψ l

i (y) are orthogonal with respect to the pdf fi(y) that is to say:

E[ψ l
i (pi(θ))ψ

m
i (pi(θ))] =

∫ +∞

−∞

ψ
l
i (y)ψ

m
i (y) fi(y)dy = δlm (11)

with δlm the kronecker symbol. The determination of the monovariate polynomi-
als ψ l

i (y) is not an issue whatever the pdf of fi(y) (see [17]). We define now the set
of multivariate orthogonal polynomials Ψα [p(θ)] with α a K-tuple such that:

Ψα(p(θ)) =
K

∏
i=1

ψ
αi
i (pi(θ)) with α = (α1, ...,αK) αi ∈ N (12)

Since p(θ) is a vector of independent random variables, the multivariate polyno-
mials Ψα(p(θ)) are orthogonal with respect to the joint probability density func-
tion ∏

K
i=1 fi and we have E[Ψα(p(θ))Ψβ (p(θ))]=0 if α 6= β . If the random variable
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G[p(θ)] has a finite variance, the PCE refers to the representation of G[p(θ)] as a
linear combination of multivariate polynomials Ψα(p(θ)):

G[p(θ)] =
+∞

∑
α1=0

...
+∞

∑
αK=0

gαΨα [p(θ)] (13)

In practice, the expansion (13) is truncated up to the multivariate polynomials of
order p (the sum α1 + ...+αK is lower or equal than p). The total number of multi-
variate polynomials P to be considered is:

P =
(K+p)!

K!p!
(14)

In Table 1, we have reported the number of multivariate polynomials P of the space
of approximation as a function of the maximum polynomial order p and the number
K of input parameters. We can see that P increases exponentially with K which is
usually so-called the curse of dimensionality.

Table 1 Example of the multivariate polynomial number as a function of the maximum multivari-
ate polynomial order p and the number of random inputs K

p=1 p=2 p=3 p=4

K=2 3 6 10 15
K=5 6 21 56 126
K=10 11 66 286 1001
K=20 21 231 1771 10626

In the following, to simplify the notation, the multivariate polynomials Ψα(p(θ))
will be indexed by an integer i (1 ≤ i ≤ P) instead of the K-tuple α . The function
G[p(θ)] is approximated by a truncated expansion given by (10) of orthogonal mul-
tivariate polynomials defined by (12). As already mentioned previously, after apply-
ing the semi-discretisation in space, the terms ai[p(θ)] of the decomposition of the
vector potential A[x,p(θ)] are random (see (5)). Each term ai[p(θ)] is approximated
using a truncated PCE (13). Finally, the vector potential A[x,p(θ)] is approximated
by the expression:

A[x,p(θ)] =
N
∑
i=0

K
∑
j=0

ai jΨj(p(θ))wi(x) (15)

The number of coefficients ai j is equal to NxP. It is not seldom to meet in practise
deterministic models with a number of unknowns N of order 105. According to (14)
and Table 1, the unknown number NxP can be quickly very huge (of order 108) if
the number K of random input parameters is higher than a dozen.

In a postprocessing step, quantities of interest (energy, flux,) can be also ex-
pressed using (10). Among the method proposed in the literature to determine these
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coefficients, some are called non-intrusive since they encapsulate a deterministic
model in an environment of stochastic procedures. A preprocessor generates a sam-
ple of parameter values according to their probability density function. A determin-
istic model is then run for each set of parameter values of the sample and a new sam-
ple of output values is then obtained. From this sample, a postprocessor determines
the approximation of the output. Collocation [32], regression [24] and projection
methods belongs to this group of non-intrusive methods. Some stochastic meth-
ods, so-called intrusive methods, require to access to the heart of the deterministic
model to be implemented like the Spectral Stochastic Finite Element Method. In the
following, to illustrate the main principles of intrusive and non-intrusive methods,
we will present the projection method and the Spectral Stochastic Finite Element
Method.

3.1 A non-intrusive method : Projection Method

Since the polynomials Ψi(p(θ)) are orthogonal, the coefficients ai j satisfy:

ai j =
E[ai(p(θ))Ψj(p(θ))]]

E[Ψ 2
j (p(θ))]]

(16)

=

∫ +∞

−∞
...

∫ +∞

−∞
ai(p1, ..., pK)Ψj(p1, ..., pK) f1(p1)... fK(pK)d p1...d pK∫ +∞

−∞
...

∫ +∞

−∞
Ψ 2

j (p1, ..., pK) f1(p1)... fK(pK)d p1...d pK

The determination of ai j yields the calculation of multidimensional integrals. The
denominator of (16) can be calculated generally analytically (d j =E[Ψ 2

j (p(θ))]) but
not the numerator. Different methods can be used to approximate the multidimen-
sional integral: MCSM, Gauss quadrature methods, sparse grid methods, adaptive
integration schemes... [2] [20]. All of them yield the following expression for the
approximation:

ai j =
∑

Q
l=1 ai(pl)Ψj(pl)wl

d j
(17)

where wl are the weights and pl = (pl
1, ..., pl

K) the Q evaluation points. The model
(9) is solved for Q sets of the input parameters pl to determine ai(pl) that is to say
that the deterministic model (7) has to be solved Q times with pl as input param-
eters. One should notice that Q can increase dramatically with K. Let consider for
example a Gauss quadrature of order qi along the random direction i associated to
each parameter pi (1 ≤ i ≤ K). We denote by pl

i 1 ≤ l ≤ qi the evaluation points
and wl

i 1≤ l ≤ qi the associated weights. The points are the roots of the polynomial
ψ

q
i (y) of order q introduced in (11). A multidimensional quadrature can be obtained

by tensorizing the monodimensional gauss quadratures along each random dimen-
sion. In that case, the number of evaluation points Q is equal to q1q2...qK and so
increases exponentially with the number K of parameters. The number of evalua-
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tion points can be reduced by using sparse grids like Smolyak cubature [23] but the
exponential increasing with the dimension remains.

The coefficients gi of the approximation of any quantity of interest G[p(θ)], like
the flux or the force, can be determined using the same approach. If G is the only
quantity of interest for the user, there is no need to access to the ai[p(θ)]’s. The
deterministic model is run Q times, as a black box, with the different parameter
values pl to calculate Q evaluations G[pl]. From the G[pl]’s, the coefficients gi are
approximated using a quadrature formula (see 17). The non-intrusive approach is
very convenient because the coupling with existing deterministic models, especially
commercial software, is straightforward.

One should note that the non-linearities on the behaviour laws are naturally taken
into account within the deterministic model that is to say that the non-intrusive
method is the same when dealing with either a linear model or a non-linear model.

3.2 Galerkin method : Stochastic Finite Element Method

To solve stochastic partial differential equations, the Galerkin approach was first in-
troduced in the early 90s by Ghanem et al in mechanics [31]. It consists in searching
the solution in a tensorial space W (D)⊗PK

P with W (D) the standard finite element
space used in the deterministic case and PK

P the space of approximation of random
variables spanned by the basis functions (Ψi[p(θ)])1≤i≤P introduced previously (see
(10)). In magnetostatics, the vector potential is sought in a space generated by the
basis function Ψj(p(θ))wi(x). The solution should satisfy a weak form of the ini-
tial problem. Let consider again our magnetostatic problem, the weak form (6) is
extended in the stochastic case and can be written [26]:

E[
∫

D
ν(x,p(θ))curl A(x,p(θ)).curlwi(x)dxΨj(p(θ))] (18)

= E[
∫

D
J(x)wi(x)dxΨj(p(θ))] ∀i ∈ [1;N] and ∀ j ∈ [1;P]

Replacing A[(x),p(θ)] in (18) by its expression (15) and applying the weak for-
mulation for the NxP test functions Ψj(p(θ))wi(x), a NxP equation system is ob-
tained:

SsAs = Fs (19)

with Ss a (NxP)x(NxP) matrix, As the (NxP) vector of the unknowns ai j and Fs a
(NxP) vector. The ”intrusivity” of the method is related to the fact that the entries of
Ss and Fs are integral functions of Ψj(p(θ)) and wi(x). Their calculation requires
to have access to the procedures of the calculation of the terms si j and fi (see (8))
of the deterministic model. The size of the system (NxP) can be extremely large
preventing the storage of the matrix As and so its solution. If the reluctivity can be
written as a sum of separable functions like,
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ν(x,p(θ)) =
M

∑
i=1

νi[p(θ)]gi(x) (20)

the system (19) can be rewritten taking advantage of the Kronecker product [46].
This representation of the reluctivity as a sum of separable functions can be obtained
either during the process of probabilistic modelling of the input data or by applying
a model reduction technique (Karuhnen-Loeve expansion for example). According
to this new expression, the matrix Ss can be written in the form [3]:

Ss =
M

∑
i=1

Ci⊗Di (21)

The memory space required can be significantly reduces by storing only the 2M
matrices Ci and Di with Ci depending only on the functions wi(x) and Di on the
functions Ψj(p(θ)). It should be noticed that the matrices Ci can be easily extracted
from a deterministic standard finite element code. The determination of the matrix
Ss does not require a high modification of the deterministic code and so the intru-
sivity of the Galerkin approach can be highly alleviated using expression based on
separable functions. This approach can be extended to quasistatics. Besides, dedi-
cated solvers can be employed to solve the equation (19) by taking advantage the
expression (21) based on Kronecker products. Accounting for non-linearities in the
Galerkin approach is more tricky than in the non-intrusive case but remains possi-
ble [28]. The Galerkin method, for given approximation spaces W (D) and PK

P , min-
imizes the error of approximation in the L2 sense which is not the case with other
approximation methods based on the evaluations of the deterministic model (non
intrusive methods like projection method, collocation method, regression method).
However, when a multivariate double orthogonal polynomial expansion is used to
approximate the stochastic dimension then the collocation and the Galerkin methods
are equivalent [26].

4 Applications

Approximation methods have been already applied in computational electromag-
netics to study EEG Source Analysis [19], Eddy Current in human body [18], Eddy
Current Non Destructive Testing [1] [2], Accelerator Cavities and Magnets [21] [47]
[48], Dosimetry [22], electrical machines [29] [30] The development and the appli-
cation of such models have started in the early 2000′s and know a growing interest
in the community. The methods have been evaluated on academic examples [26,28]
but one can notice a trend towards more and more realistic applications which shows
that the stochastic approach is getting more and more mature in the community of
computational electromagnetics. In [19], the projection method has been applied
uncertainties in the EEG source analysis. In [32], a 2D dosimetry problem has been
tested by comparing several non-intrusive approximation methods and the Monte
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Carlo Simulation Method. It has been shown that the approximation methods en-
able to reduce dramatically the number of evaluation points compared to sampling
technics. An Eddy Current-Non Destructive Testing problem where some material
characteristics are assumed to be random has been addressed. Samples were not
accessible for measurement (nuclear application) [34] to determine the conductiv-
ity and the permeability of material like magnetite deposit. The lack of knowledge
was modelled by a stochastic approach considering the material characteristic as
random variables. The aim was to determine the influence of this lack of knowl-
edge on the model output, here the output sensor. In this application, a sensitivity
analysis showed that only one material characteristic among the 6 considered has
an influence on the variability of the sensor output. In other words, only the lack
of knowledge of one material characteristic (p) has an influence on the accuracy of
the model. Consequently, to improve the accuracy, investigation shall focus on the
parameter p and not on the others. This study shows that the stochastic approach
is a powerful tool for improving the accuracy of models by determining the input
parameters whose uncertainties (due to a lack of knowledge) strongly influence the
quantity of interest. It can also be very helpful to develop indicators based on mea-
surements that are robust, that is to say that these indicators are few influenced by
the variability introduced by the imperfections on the device studied. To solve this
problem, the Galerkin method and an Projection method are compared [1] [2]. It
shows that the Galerkin approach can be competitive compared to a non-intrusive
approach. The influence of the lack of knowledge on the B(H) curve of the ferro-
magnetic material has been also addressed in the case of a turbo alternator [35]. The
global sensitivity analysis based on the Sobol approach [50–52] allows to determine
the most influential parameters of the B(H) curve. It appears that the magnetic flux
density is the most influential but not the magnetic field H in the saturation area.
The proposed approach provides the quantity of interest domain where the param-
eter uncertainties are the most influential and then allows to act in order to reduce
their variability by increasing the accuracy of the measurement in the corresponding
area.

The influence of the dimension and material characteristics variability on the
performances of an electrical machines produced in mass is also studied when the
number of random parameters is about a dozen [29, 30]. The aim is to propose a
methodology based on a stochastic approach to assess the influence of the variability
of the manufacturing process on the performances of the electrical machines which
can be applied in robust design. The tolerancing using the stochastic approach has
been also studied for a permanent magnet machine [36].

5 Facing the curse of dimensionality

If we want to go further with the stochastic approach which can be very useful
to solve numerous problems in engineering, the curse of dimensionality should be
overcome in order to be able to deal with real world problems where the number of
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parameters is often greater than the dozen. In the following, we will present briefly
methods that have been proposed recently to overcome this challenge. We will keep
the distinction between non-intrusive and intrusive methods.

5.1 Non-intrusive Methods

First, to limit the number of calls of the deterministic model which grows exponen-
tially with the number of random parameters, the number of quadrature points qi
(see 3.1) can not be the same along each random direction pi(θ). In fact, if a param-
eter pi has almost no influence on the variability of the quantity of interest G then G
needs to be evaluated only on one quadrature point p1

i along the dimension i, which
limits the number of evaluations Q (Q=q1× ..×qi−1×1×qi+1× ...×qK). The num-
ber of quadrature points is optimized automatically based an error indicator which
can be for example the value of the variance of the quantity of interest. Adaptive
methods coupled with sparse grids and nested quadrature scheme have shown their
efficiency on practical application [2]. However, with a high parameter number, the
expansion based on truncated PCE becomes too large (see (14)). To limit the num-
ber of terms, a sparse basis should be constructed which can be determined from
the adaptive scheme or directly from a random sampling of the quantity of interest.
In [25, 27], the most significant terms of the PCE are extracted using iterative algo-
rithm aiming at reducing not only the error of approximation but also the number of
terms of the expansion. These methods are efficient if a small fraction of coefficients
gi in the exact expression (10) of the quantity of interest are dominant.

Another alternative to reduce the number of terms of the expansion is to de-
compose the quantity of interest under a sum of separable functions G[p(θ)] =
∑

T
j=1 u j

1[p1(θ)]....u
j
K [pK(θ)] with T the tensor rank. The functions u j

i [p j(θ)] are the
unknowns of the problem and are sought in a one dimensional space for example
the space generated by the polynomials ψ l

i [pi(θ)] (see (11)). The calculation of the
optimal low rank approximation (the value of T as smaller as possible) is a difficult
task. Methods have been recently proposed in the literature to tackle this issue [37]
for stochastic problems.

Finally, an adaptive interpolation technique is proposed in [38] to determine
a sparse polynomial approximation using an iterative procedure. The evaluation
points pl are determined iteratively by comparing the error between the approxi-
mation and the full model. These evaluation points must satisfy an admissible con-
dition in order to obtain interpolant polynomials. For a class of parametric elliptic
problems, a fast convergence of the method has been proved.
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5.2 Intrusive Methods

We have seen that the application of the Galerkin Method requires the solution of
a huge equation system (9) of size NxP. Under separability condition on the be-
haviour law, this system of equations can be written in the form of (21) which
alleviates the storage space requirement. Dedicated solvers can be applied [1, 14]
but it does not decrease the size of the equation system. Model Order Reduction
Methods like Proper Orthogonal Decomposition (POD), Reduced Basis Method en-
ables to reduce the stochastic problem (9) to solve to an order R ≤≤ N (N is the
number of DoF’s of the spatial mesh) [49]. The unknown vector A[p(θ)] is ap-
proximated by ∑

R
i=1 ar

i [p(θ)]A
r
i with Ar

i solutions of (9) for a given set of param-
eters (p1, ...,pR) 1. Replacing A[p(θ)] in (9) leads to an overdetermined system
of N equations with R unknowns. Then, by applying the Galerkin method for ex-
ample, a reduced equation system of R equations with R unknowns is obtained
under the form Sr[p(θ)]Ar[p(θ)] = F[p(θ)]. The R functions ar

i [p(θ)] becomes
the unknowns which are then approximated by the expression (10) that is to say
ar

i [p(θ)] =∑
P
j=0 ar

i jΨi[p(θ)]. The terms ar
i j can be determined by applying the meth-

ods presented in (3.2) or (3.1). This approach has been applied to solve a dosimetry
problem where the reduced basis method and a non-intrusive collocation have been
combined [32]. The efficiency of the model order reduction method relies on the
choice of the reduced basis spanned by the Ar

i . Error indicators, available in the
literature, can help for the determination of the reduced basis.

Another approach has been proposed in [40] and applied recently in electromag-
netism in [41] called the Proper Generalized Decomposition (PGD) [41]. The idea
is to search a solution under the form:

A[x,p(θ)] =
T

∑
i=1

aPGD
i [p(θ)]APGD

i (x) (22)

with APGD
i (x) in W (D) and aPGD

i [p(θ)] in PK
P (see (3.2)). The couple of func-

tions (aPGD
i [p(θ)],APGD

i (x)) is determined iteratively from the previous couples
(aPGD

j [p(θ)],APGD
j (x)) 1≤ j ≤ i−1. The process is stopped when the contribution

of the couple (aPGD
i [p(θ)],APGD

i (x)) is ”sufficiently” small. The term aPGD
i [p(θ)]

satisfies a system of P equations which depends on the terms APGD
i (x) and the term

APGD
i (x) a system of N equations which depends on the functions aPGD

i [p(θ)]. The
determination of (aPGD

i [p(θ)],APGD
i (x)) requires the solution of two coupled equa-

tion systems of size N and P which are usually solved iteratively using a fixed point
method. If T couples are required we can see that we have only T×(N+P) unknowns
instead of NxP in the Galerkin approach (see (3.2)). If the number T of couples to
approximate correctly the solution is small, this method is very interesting in terms
of memory storage and computation time. Moreover, under ”separabilty” conditions

1 The vectors Ar
i must be linearly independent to enforce the uniqueness of the solution of the

reduced problem. If it is not the case, a Singular Value Decomposition (SVD) or a Gram-Schmidt
process can be applied to obtain linearly independent vectors
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on the behaviour law (see ), the term aPGD
i [p(θ)] can be sought under the following

separable form:

ai[p(θ)] =
K

∏
j=1

aPGD
i j [p j(θ)] (23)

Then ai[p(θ)] is obtained by solving K one dimensional problems which avoid the
curse of dimensionality when the number K of parameters is too large. The PGD
remains intrusive in the sense that, to be implemented, numerous additional devel-
opments in a deterministic software are required. However, recently, a method has
been proposed to compute an approximation of the solution based on simple evalu-
ations of the residual of the deterministic problem [43].

6 Conclusion

In this paper, we have presented approximation methods to solve stochastic prob-
lems based on partial differential equations. Examples of application in computa-
tional electromagnetism have been presented showing that the stochastic approach
based on approximation methods provide very useful tools for the study and the de-
sign of electromagnetic devices. It has been shown that when the number of random
parameters is high, the approximation can leads to an unsolvable problem (curse of
dimensionality). To face this issue, recent methods proposed in the literature have
been listed.
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1. Beddek, K.; Clénet, S.; Moreau, O.; Le Menach, Y., Solution of Large Stochastic Finite Ele-
ment Problems Application to ECT-NDT, IEEE Transactions on Magnetics, 49:5, pp. 1605-
1608, 2013
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