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Heuzé d , Laurent Stainier d

(a) Zienkiewicz Centre for Computational Engineering, College of Engineering
Swansea University, Bay Campus, SA1 8EN, United Kingdom

(b) Glasgow Computational Engineering Centre, James Watt School of Engineering
University of Glasgow, Glasgow, G12 8QQ, United Kingdom

(c) University of Greenwich, London, SE10 9LS, United Kingdom
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Abstract

This paper presents a novel Smooth Particle Hydrodynamics computational framework for the
simulation of large strain fast solid dynamics in thermo-elasticity. The formulation is based on
the Total Lagrangian description of a system of first order conservation laws written in terms of
the linear momentum, the triplet of deformation measures (also known as minors of the defor-
mation gradient tensor) and the total energy of the system, extending thus the previous work
carried out by some of the authors in the context of isothermal elasticity and elasto-plasticity
[1–3]. To ensure the stability (i.e. hyperbolicity) of the formulation from the continuum point
of view, the internal energy density is expressed as a polyconvex combination of the triplet
of deformation measures and the entropy density. Moreover, and to guarantee stability from
the spatial discretisation point of view, consistently derived Riemann-based numerical dissipa-
tion is carefully introduced where local numerical entropy production is demonstrated via a
novel technique in terms of the time rate of the so-called ballistic free energy of the system.
For completeness, an alternative and equally competitive formulation (in the case of smooth
solutions), expressed in terms of the entropy density, is also implemented and compared. A
series of numerical examples is presented in order to assess the applicability and robustness of
the proposed formulations, where the Smooth Particle Hydrodynamics scheme is benchmarked
against an alternative in-house Finite Volume Vertex Centred implementation.

Keywords: Conservation laws, SPH, Upwind, Riemann Solver, Explicit dynamics,
Thermo-elasticity

1. Introduction

Since the pioneering works of Lucy [4] and Monaghan [5], the field of Smooth Particle
Hydrodynamics (SPH) has seen a dramatic development over the last few decades due to the
attractiveness of the formulation, especially when dealing with very large deformation processes.
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Numerous authors have steadily worked in the topic [6–20], fundamentally seeking the contin-
uous enhancement of the original methodology. With focus on solid mechanics applications,
the displacement-based formalism has been typically accepted as the preferred formulation and
the state-of-art literature has focussed on addressing one or more of the following numerical
deficiencies:

• existence of numerical instabilities of various types, such as the so-called tensile instability
(when using a non-Lagrangian description of the problem) [6, 11, 21, 22], the appearance
of zero-energy modes due to the rank-deficiency introduced as a result of using particle
(reduced nodal) integration [10, 23], pressure spurious oscillations in the vicinity of near
incompressibility [1, 24, 25] and the possible development of long term instabilities [12],
and

• development of numerical errors associated to lack of conservation, consistency and re-
duced order of convergence for derived variables [26–28]

Some of these numerical problems have been partially alleviated through the use of cor-
rected kernel gradient approximations [6, 7] combined with so-called non-consistent stabilisa-
tion strategies [5]. Interestingly, another recently developed mesh-free method, namely the
Peridynamics state-based approach [29–32], has been shown [9] to be equivalent to a Total
Lagrangian SPH scheme, when used in conjunction with corrected derivatives and nodal in-
tegration (or collocation). This equivalence implies that most of the numerical shortcomings
described above for SPH schemes are persistent in peridynamics based methods. As a result,
and despite the tremendous development in the field, the ab initio stability of SPH schemes is
still an open problem.

In a recent series of papers in the context of isothermal hyperelasticity and elastoplastic-
ity [1–3], some of the authors of the present manuscript have successfully introduced a mixed
based SPH computational framework for explicit fast solid isothermal dynamics, where the
conservation of linear momentum p is solved along with geometric conservation equations for
the deformation gradient tensor F , the co-factor of the deformation gradient tensor H and
the Jacobian of the deformation gradient tensor J . In addition to ensure conservation and
equal (second) order of convergence for all derived variables, the short and long term sta-
bility of the proposed schemes is achieved through a variety of alternative, and consistently
derived, numerical schemes inspired from the field of Computational Fluid Dynamics, namely,
Jameson-Schmidt-Turkel [1], Streamline-Upwind Petrov-Galerkin [2] and Upwinding [3]. In all
these schemes, tailor-made numerical dissipation is added with the purpose of addressing the
instabilities inherently due to the use of nodal (particle) integration, without jeopardising either
the conservation or the numerical accuracy of the scheme.

Consideration of thermal effects, especially in the context of large strain fast transient
dynamics, is fundamental in order to obtain a realistic representation of stresses when a solid
undergoes a complex and rapidly evolving thermally-coupled deformation pattern [33–41]. With
focus on thermo-elasticity and thermo-inelasticity, numerous authors have worked over the years
putting forward a variety of computational schemes where both displacements and thermal
variables are solved either monolithically or in staggered fashion [42–47]. Traditionally, authors
prefer the use of the temperature θ as the thermal unknown to be solved instead of the entropy
density η (although the latter is equally plausible [42, 48]).

The aim of this paper is to further extend the work thus far presented in the context of
isothermal elasticity [1–3] to account for possible strongly thermally-coupled scenarios, through
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the consideration of thermo-elastic constitutive models4. As a result, a generalised system of
first order conservation laws is presented where the first law of thermodynamics, written in
terms of the total energy of the system E, is also solved in addition to the conservation of
linear momentum and the geometric conservation laws. Furthermore, and in the case of smooth
solutions, the resulting {p,F ,H , J, E} formulation will be compared against an alternative,
albeit equally competitive, {p,F ,H , J, η} formulation.

A crucial aspect that requires special attention (especially in the case of coupled problems)
is that of the stability of the formulation, from both the continuum and numerical standpoints.
With respect to the former, this paper seeks the use of ab initio stable polyconvex constitutive
internal energy functionals in the most generic thermal case [49], that is, not only restricted
to isothermal or isentropic scenarios. With that in mind, internal energy density functionals
which are (objectively) polyconvex in the extended set of arguments {F ,H , J, η} are exploited
in this work [50], ensuring existence of solutions regardless of the level of strains and thermal
fields. As for the spatial discretisation, a Riemann based (upwinding) approach is pursued
where a consistently derived numerical stabilisation is introduced ensuring local production
of numerical entropy. The latter is demonstrated by the monitoring of the so-called ballistic
energy of the system [51].

The paper is organised as follows. Section 2 starts by presenting the complete set of con-
servation laws which will be solved, encompassing linear momentum, geometric conservation
laws and first law of thermodynamics. This is followed by the introduction of appropriate ab
initio stable polyconvex strain energy density functionals for two prototypical thermo-elastic
models, namely, modified entropic elasticity and Mie-Grüneisen. Section 3 presents the varia-
tional statements of the problem as well the second law of thermodynamics written in terms
of the so-called ballistic free energy. Section 4 presents the Smooth Particle Hydrodynamics
discretisation numerical scheme where special attention is paid to the Riemann based (upwind-
ing) numerical dissipation employed. A proof of entropy production is included as a necessary
condition for stability at the semi-discrete level. Section 5 briefly presents the two-stage ex-
plicit Runge-Kutta scheme used to evolve the semi-discrete equations in time. Section 6 simply
includes the algorithmic flowchart of the resulting numerical scheme. Section 7 presents a wide
spectrum of numerical examples in order to assess the convergence, conservation and stability
of the computational framework, where comparisons will be carried out against an alternative
Vertex Centred Finite Volume implementation. Section 8 presents some concluding remarks. In
addition, the paper includes an appendix summarising key aspects related to the computation
of the entropy conjugates of the conservation variables with respect to the ballistic energy.

2. Irreversible elastodynamics

Consider the motion of a thermo-elastic body that is described by a time-dependent mapping
field φ(X, t) which links a material particle from initial reference configuration X ∈ VR of
boundary ∂VR (with outward unit normal N ) to the time-dependent spatial configuration
x ∈ VR(t) of boundary ∂VR(t) (with outward unit normal n) according to x = φ(X, t). In
addition, the elastic body can experience thermal variations described by the evolution of the
temperature field θ(X, t). In general, the thermo-mechanical evolution of the body can be

4Further inelastic contributions (i.e. plasticity, viscoplasticity, viscoelasticity, thermo-viscoplasticity) are not
within the scope of this paper.
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described [50] by the following system of first order Total Lagrangian conservation laws

∂p

∂t
−DIVP = fR; (1a)

∂F

∂t
−DIV (v ⊗ I) = 0; (1b)

∂H

∂t
− CURL (v F ) = 0; (1c)

∂J

∂t
−DIV

(
HTv

)
= 0; (1d)

∂E

∂t
−DIV

(
P Tv −Q

)
= fR · v + sR. (1e)

In above system of equations, p = ρRv is the linear momentum per unit undeformed
volume, ρR is the density of the undeformed configuration, v represents the velocity field, fR
is the body force per unit undeformed volume, F is the deformation gradient tensor (or fibre
map), H is the co-factor of the deformation gradient tensor (or area map), J is the Jacobian
of the deformation gradient tensor (or volume map), E is the total energy per unit undeformed
volume, P represents the first Piola-Kirchhoff stress tensor, Q represents the so-called material
or Lagrangian heat flux vector, sR denotes a possible heat source term and DIV and CURL
represent the material divergence and curl operators, respectively, carried out with respect to
undeformed configuration. The symbol represents the tensor cross product between vectors
and/or second order tensors, originally introduced in [52, 53] and used for the first time in the
context of continuum mechanics in [54, 55].

Equation (1a) represents the conservation of linear momentum. Equations (1b) to (1d) rep-
resent geometric conservation laws for the triplet of deformation measures {F ,H , J}5. Finally,
equation (1e) represents the first law of thermodynamics written in terms of the total energy E.
As the system of conservation laws presented above has more equations than needed, suitable
compatibility relationships, also known as involutions [56, 57], are necessary, namely

CURLF = 0; DIVH = 0. (2)

These two equations allow the geometric conservation laws (1c) and (1d) to be written in
an alternative non-conservative form as

∂H

∂t
= F ∇0v; (3a)

∂J

∂t
= H : ∇0v. (3b)

It is now possible to combine all of the Total Lagrangian conservation equations described
in (1) into a single system of conservation equations6

∂U
∂t

+
3∑
I=1

∂F I

∂XI

= S, (4)

5The definitions for the triplet of deformation measures are F = ∇0φ, H = 1
2F F and J = 1

3H : F ,
respectively, [54, 55].

6In the presence of non-smooth solutions, above balance equations (1) are accompanied by appropriate
Rankine Hugoniot jump conditions in the reference space [1–3, 58–63].
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where U is the vector of conservation variables, F I is the flux column vector in I-th material
direction and S is the source term, which can be written as

U =


p
F
H
J
E

 , F I = −


PEI

v ⊗EI

F (v ⊗EI)
H : (v ⊗EI)

v · PEI −Q ·EI

 , S =


fR
0
0
0

fR · v + sR

 , (5)

and the Cartesian coordinate basis

E1 =

 1
0
0

 ; E2 =

 0
1
0

 ; E3 =

 0
0
1

 . (6)

For closure of system (1), suitable relationships between the heat flux vector Q and the
first Piola-Kirchhoff stress tensor P must be given in terms of the conservation variables U .
Specifically, a conductive type heat flux vector will be adopted in this paper and presented
in the following section. Moreover, in order to guarantee the existence of real wave speeds in
the material (also known as hyperbolicity) for the entire range of possible deformations and
thermal variations, suitable constitutive laws compliant with the principle of objectivity (frame
invariance) and the second law of Thermodynamics (Coleman-Noll procedure) will be discussed
in the following section. Finally, for a complete definition of the initial boundary value problem,
initial and boundary (essential and natural) conditions must also be specified as appropriate.

2.1. Constitutive relationships for stresses and heat flux

The total energy E in the above first law of thermodynamics (1e) includes kinetic and
internal energy components. Multiplying the linear momentum conservation equation (1a) by
v and subtracting it from equation (1e), after some algebra7, gives [50]

∂E

∂t
+ DIVQ = P : ∇0v + sR, (7)

where E (X, t) = E − 1
2ρR

(p · p) represents the internal energy per unit undeformed volume.
In the current paper, we consider the case of strict thermo-elasticity, where the internal energy
E (X, t) is postulated to depend on the triplet of deformation measures {F ,H , J} and the
entropy density per unit undeformed volume η(X, t), as

E (X, t) = E (X η) ; X η = {X , η}; X = {F ,H , J}, (8)

where E and E denote two alternative functional representations of the same magnitude. As
it is customary[64], entropy η and temperature θ are defined as conjugates of each other with
respect to the internal energy density E , namely

θ(X, t) =
∂E (X η)

∂η
= Θ(X η), (9)

where θ and Θ are used to denote the same temperature magnitude albeit with different func-
tional dependency. It is clear that the coupling between the thermal and the deformation

7This transformation is only possible in the case of smooth fields.
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process takes place via the dependency of the temperature on the triplet X within X η. Sim-
ilarly, energy conjugate fields can be defined to the three deformation measures of the triplet
X as [50]

ΣF (X η) =
∂E(X η)

∂F
; ΣH(X η) =

∂E(X η)

∂H
; ΣJ(X η) =

∂E(X η)

∂J
. (10)

Coupling between the thermal and the deformation process takes place via the dependency
of the conjugate stresses on the entropy η within X η. With (9) and (10) at hand, it is now
possible to relate the conjugate stresses defined in (10) to the standard first Piola-Kirchhoff
stress tensor. This can be achieved by comparing the time rate of the internal energy density
E (X, t) (7) to that of its equivalent re-expression E(X η) (8) via the chain rule, and using the
properties of the tensor cross product as shown in [58], to give

∂E (X, t)

∂t
=
∂E(X η)

∂F
:
∂F

∂t
+
∂E(X η)

∂H
:
∂H

∂t
+
∂E(X η)

∂J

∂J

∂t
+
∂E(X η)

∂η

∂η

∂t

= ΣF : ∇0v + ΣH : (F ∇0v) + ΣJ(H : ∇0v) + θ
∂η

∂t

= [ΣF + ΣH F + ΣJH ] : ∇0v + θ
∂η

∂t
,

(11)

which leads to the following relationship

P (X η) = ΣF + ΣH F + ΣJH . (12)

Concerning the heat flux vector Q, we consider the typical Fourier law to hold8 and which
can be defined in a Total Lagrangian fashion as

Q = −K∇0θ; K = J−1HTkH , (13)

where k represents the positive semi-definite second order thermal conductivity tensor in the
deformed configuration. For the case of isotropy, above thermal conductivity tensor can then
be expressed in terms of the scalar conductivity field h, that is k = hI.

Notice that in expressions (12) and (13), the constitutive relationships derived for both the
first Piola-Kirchhoff stress tensor and the heat flux are expressed as functions of the triplet of
deformations X and either the entropy η or the temperature θ. The remaining aspect to be
addressed is how to relate the thermal unknown of the system, that is the total energy E in
this case, with entropy η and temperature θ. This will be discussed in the following section.

Remark 1: In this paper we also explore an alternative formulation by re-writing the first law
of thermodynamics (1e) in terms of the entropy density η(X, t). Proceeding in this manner,
and in the case of strict thermo-elasticity, would give a thermal expression in which mechanical
terms can be conveniently eliminated to yield [50]

θ
∂η

∂t
+ DIVQ = sR. (14)

8Technically speaking, this term transforms the equations into parabolic. However, for sufficiently small
values of this term, the formulation can be regarded as fundamentally hyperbolic.
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Alternatively, noting that 1
θ
DIVQ = DIV

(
Q
θ

)
+ 1

θ2
Q ·∇0θ, a conservation type of law for

the entropy emerges as
∂η

∂t
+ DIV

(
Q

θ

)
=
sR
θ
− 1

θ2
Q ·∇0θ, (15)

where Q/θ represents the flux of entropy and terms on the right hand side are collectively
known as the entropy source per unit undeformed volume. Note that this expression for the
entropy assumes smooth solutions and it is still an expression of the first law. Combination of
equation (15) with the linear momentum equation p (1a) and the geometric conservation laws
for {F ,H , J} (1b)-(1d) yields an alternative set of conservation laws in terms of {p,F ,H , J, η},
in contrast to the set {p,F ,H , J, E} featuring in (5).

2.2. General thermal relationships

In general, the Calorimetry relationships between internal energy E , temperature θ and
entropy η can be derived from the definition of the specific heat at constant volume cv [50].
This requires the re-definition of the entropy η(X, t) and the internal energy density E (X, t) in
terms of the triplet of deformation measures X and the temperature θ of the system, namely,
X θ = {X , θ} = {F ,H , J, θ}. Specifically,

cv
def
=
dE

dθ

∣∣∣
X=const

=
∂Ẽ (X θ)

∂θ
; Ẽ (X θ) = E (X , η̃ (X θ)) ; η(X, t) = η̃(X θ), (16)

with cv = ρRCv > 0, where ρR is the density measured at a reference temperature θR and Cv
the specific heat per unit mass.

As the internal energy E (X, t) can be expressed as a function of the set of arguments
X η (8), and given the fact that ∂E(X η)/∂η = θ (9), a constitutive relationship between the
temperature θ and the entropy η at constant deformation can be established [50] by recasting
equation (16) using the chain rule to yield

∂η̃ (X θ)

∂θ
=
cv
θ
. (17)

Restricting the derivation to the simple constant heat coefficient case, enables expression
(17) to be integrated analytically with respect to the entropy or temperature changes as∫ η̃(X θ)

η̃R(X )

dη = cv

∫ θ

θR

1

θ
dθ, (18)

which leads to a simple relationship between entropy and temperature as

η̃(X θ) = η̃R(X ) + cv ln
θ

θR
; η̃R(X ) = η̃(X , θ = θR). (19)

In this expression, η̃R(X ) denotes the entropy measured at a constant (reference) temper-
ature θR and expressed as a function of the deformation X (i.e. after the deformation, the
temperature is allowed to return to the reference value θR).

Using expression (19), and noting the alternative functional representation η(X, t) = η̃(X θ)
(16), the reverse relationship yielding the temperature as a function of the deformation and
entropy is given by

Θ(X η) = θRe
(η−η̃R(X ))/cv . (20)
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Again, with the assumption of a constant specific heat coefficient cv, it is possible to write
an explicit relationship for the internal energy E (X, t) as functions of deformations X and
temperature θ, that is Ẽ(X θ), instead of E(X η). This is achieved by directly integrating
equation (16) with respect to temperature between the limits θR and a given value θ to give∫ Ẽ(X θ)

ẼR(X )

dE = cv

∫ θ

θR

dθ, (21)

which then yields

Ẽ (X θ) = ẼR (X ) + cvϑ; ẼR(X ) = Ẽ (X , θ = θR) ; ϑ = θ − θR. (22)

Here, ϑ represents the temperature change (with respect the reference temperature θR)
and the term ẼR(X ) represents the internal energy per unit reference volume caused by the
deformation after the temperature has been allowed to return back to the reference value θR.

Since the terms E (X, t) and Ẽ(X θ) are used to denote the same energy (with different
functional dependency), and recalling that E (X, t) = E− 1

2ρR
(p · p), rearrangement of equation

(22) gives the temperature update as

θ̂(p,XE) = θR +
1

cv

(
Ẽ(X θ)− ẼR(X )

)
= θR +

1

cv

(
E − 1

2ρR
p · p− ẼR(X )

)
,

(23)

where XE = {X , E}. Equation (23) provides an expression of the temperature in terms of the
linear momentum, the triplet of deformation measures and the total energy density, namely,
θ(X, t) = θ̂(p,XE). Moreover, noticing equation (19), it is also possible to obtain a similar
relationship between the entropy density η and the set XE, namely, η(X, t) = η̂(p,XE), that
is

η̂(p,XE) = η̃R(X ) + cv ln

(
θ̂(p,XE)

θR

)
(24)

A final useful relationship necessary to compute the conjugate stresses {ΣF ,ΣH ,ΣJ} (10)
is that of the internal energy density, namely

Ê(p,XE) = E − 1

2ρR
p · p, (25)

where Ê(p,XE) represents an alternative functional representation of the internal energy E(X η).
Finally, in order to complete the definition of the thermo-elastic constitutive model (refer to
equations (23), (24) and (25)), it is necessary to provide suitable functional expressions for
ẼR(X ) and η̃R(X ), which will depend on the specific material under consideration.

Following [50], in order to guarantee the existence of real wave speeds (hyperbolicity) in the
material for the entire thermo-elastic deformation process, that is regardless of the amount of
deformation X and thermal state η (or θ), a sufficient condition is that of selecting ẼR(X ) and
−η̃R(X ) to be convex in X , that is both functions shall be polyconvex. For further details, the
reader is referred to [50]. In this work, two well-established thermo-elastic models derived from
universally polyconvex strain energy functions will be used, namely modified entropic elasticity
and Mie-Grüneisen. The reader is referred to [50] where hyperbolicity is demonstrated for these
two thermo-elastic constitutive models where the closed-form computation of bounds for the
propagating wave speeds is also shown.
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2.2.1. Modified Entropic Elasticity (MEE)

The internal energy density at reference temperature θR for this material is typically given
by a purely volumetric function as[50]

ẼMEE
R (J) = cvΓ0θR(J − 1), (26)

where Γ0 is a positive material constant. In addition, the entropy function at reference tem-
perature θR is given by

η̃MEE
R (X ) =

1

θR

(
ẼMEE
R (J)− ψMEE

R (X )
)
, (27)

where ψMEE
R (X ) is the Helmholtz’s free energy function at reference temperature θR, where a

possible deviatoric-volumetric expression of the Mooney-Rivlin type is

ψMEE
R (X ) = ςR(J−2/3(F : F )− 3) + ξR(J−2(H : H)3/2 − 3

√
3) +

κR
2

(J − 1)2, (28)

where {ςR, ξR, κR} are material parameters. Notice that if ξR = 0, the material degenerates to
a neo-Hookean type of model. Typically, these material parameters and Γ0 introduced above,
are calibrated against those of linear elasticity, namely, shear modulus µ, bulk modulus κ and
thermal expansion coefficient α as[65]

µ = 2ςR + 3
√

3ξR; κ = κR; α =
cvΓ0

3κ
. (29)

2.2.2. Mie-Grüneisen (MG)

A plausible deviatoric-volumetric expression for the internal energy density of the Mooney-
Rivlin type at reference temperature θR for this material can be given as

ẼMG
R (X ) = ζR(J−2/3(F : F )−3)+γR(J−2(H : H)3/2−3

√
3)+

χR
2

(J−1)2+cvθRΓ0(J−1), (30)

where {ζR, γR, χR} are material parameters (if γR = 0, the material degenerates to a neo-
Hookean type of model) and the entropy function at reference temperature θR is given by

η̃MG
R (X ) = cvΓ0

(
Jq − 1

q

)
, (31)

where q is a dimensionless coefficient that varies from zero (for a perfect gas) to one (for solid
materials). The material parameters can be calibrated against those of linear elasticity, namely,
shear modulus µ, bulk modulus κ and thermal expansion coefficient α as

µ = 2ζR + 3
√

3γR; κ = χR + cvθRΓ0(1− q); α =
cvΓ0

3κ
. (32)

3. Weak form statements

In general, a standard weak variational statement for the thermo-mechanical system (1a-1e)
is established by multiplying the local differential equations (4) (written in terms of the con-
servation variables U) with their appropriate work conjugate virtual fields δV , and integrating
over the reference domain VR of the body, to give∫

VR

δV • ∂U
∂t

dVR −
∫
VR

δV • S dVR +

∫
VR

δV • ∂F I

∂XI

dVR = 0, (33)
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where the symbol • is used to denote the inner (dual) product of work conjugate pairs.
In order to give a proper physical meaning to the conjugate virtual fields δV and pave

the way for the proof of numerical entropy production presented in a subsequent section, it is
important to introduce the concept of ballistic free energy B = B(X, t) [51]. As already shown
in [50], the ballistic free energy can be used as the thermodynamic convex entropy function9

of the system of conservation laws (4), from where so-called entropy conjugate fields10 V (that
is, conjugate to U with respect to B) can be derived. The procedure to derive the conjugate
entropy variables V to U = {p,F ,H , J, E}T with respect to the ballistic energy was presented
in [50] and is summarised in Appendix A for completeness.

Specifically, the ballistic free energy B is defined in terms of the linear momentum p, the
triplet of deformation measures X and the total energy E density as

B(X, t) = B̂(p,XE) = E − θRη̂(p,XE),

where B(X, t) and B̂(p,XE) represent alternative functional representations of the same mag-
nitude. With this, the associated virtual work conjugates δV can then be obtained as

δV =


δΓv

δΓF

δΓH

δΓJ

δΓE

 ; V =


Γv

ΓF

ΓH

ΓJ

ΓE

 =
∂B̂

∂U =
θR
θ


v

ΣF

ΣH

ΣJ
ϑ
θR

 , (34)

where δΓv is the virtual velocity field, {δΓF , δΓH , δΓJ} are appropriate virtual conjugate
stresses to {F ,H , J} respectively, and δΓE is the (dimensionless) energy conjugate, related
to the temperature change ϑ = θ − θR.

It is very interesting to realise that when considering an isothermal deformation process,
that is θ = θR, it is easy to see that δV = [δv, δΣF , δΣH , δΣJ , 0]T , and hence, the energy
equation (1e) decouples from the rest of the system when treated in a weak manner. This would
then imply that the fields (34) degenerate to the usual work conjugates used for isothermal
hyperelasticity [3] and the ballistic free energy reduces to the sum of the kinetic energy and
the Helmholtz’s free energy ψR, which was used as convex entropy function in previous work
by the authors in the context of isothermal hyperelasticity11 [1–3].

Integrating by parts the last term on the right hand side of (33), and expanding the resulting
equation yields∫

VR

δV • ∂U
∂t

dVR =

∫
VR

δV • S dVR +

∫
VR

F I •
∂δV
∂XI

dVR −
∫
∂VR

δV •FN dA, (35)

where the normal fluxes FN = F INI with NI being the material outward normal in I-th
material direction. Above representation (35) can be particularised to the case of the linear
momentum p, the triplet of geometric strain measures {F ,H , J} and the total energy density

9Not to be confused with the concept of entropy density η.
10The fields V are generally known as entropy conjugates because they are obtained from the calculation of

the partial derivatives of the convex entropy function with respect to the conservation variables U .
11This is easily seen because B̂(p,XE)

∣∣∣
θ=θR

= 1
2ρR
p · p+ ẼR(X )− θRη̃R(X ) = 1

2ρR
p · p+ ψR(X ).
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E as∫
VR

δΓv ·
∂p

∂t
dVR =

∫
VR

−P : ∇0δΓv dVR +

∫
VR

δΓv · f 0 dVR +

∫
∂VR

δΓv · tB dA; (36a)∫
VR

δΓF :
∂F

∂t
dVR =

∫
VR

δΓF : ∇0v dVR; (36b)∫
VR

δΓH :
∂H

∂t
dVR =

∫
VR

δΓH : (F ∇0v) dVR; (36c)∫
VR

δΓJ
∂J

∂t
dVR =

∫
VR

δΓJH : (∇0v) dVR; (36d)∫
VR

δΓE
∂E

∂t
dVR =

∫
VR

−v · P (∇0δΓE) dVR +

∫
VR

Q · (∇0δΓE) dVR

+

∫
VR

δΓE (v · fR + sR) dVR +

∫
∂VR

δΓE (vB · tB −QB) dA. (36e)

Notice that the main advantage of integrating by parts as shown in (35) is to enable the
imposition of the physical boundary conditions. This is indeed useful for the linear momentum
equation (36a) and the total energy equation (36e) as both expressions introduce naturally
the boundary tractions tB, the boundary velocity vector vB and the heat flux QB, but less
important in the case of geometric conservation laws. Hence, as shown in (36b)-(36d), the
update equations for the deformation measures {F ,H , J} are obtained without resorting to
integration by parts, and using the non-conservative form of the evolution equations (3a) and
(3b).

Remark 2: Following Remark 1, an alternative weak form statement to that of (36e) can be
formulated by regarding the entropy density η as the thermal unknown (instead of the total
energy density E). In this case, the weak form of the entropy equation (15) is presented as∫
VR

δϑ
∂η

∂t
dVR = −

∫
∂VR

δϑ

(
QB

θB

)
dA+

∫
VR

(
Q

θ

)
·∇0δϑ dVR+

∫
VR

δϑ

(
rR
θ
− 1

θ2
Q ·∇0θ

)
dVR,

(37)
where δϑ = δθ is the virtual conjugate field of the entropy η with respect to the ballistic energy
B (that is, ϑ = ∂B/∂η). Above weak statement (37) can be used instead of (36e) when solving
the system of conservation laws.

3.1. Second law of thermodynamics

It is instructive to revisit the second law of thermodynamics when written in terms of the
ballistic free energy. The time rate of the volume integral of the ballistic free energy is obtained

11



as follows

d

dt

∫
VR

B dVR =

∫
VR

V • ∂U
∂t

dVR

=

∫
VR

(
Γv ·

∂p

∂t
+ ΓF :

∂F

∂t
+ ΓH :

∂H

∂t
+ ΓJ

∂J

∂t
+ ΓE

∂E

∂t

)
dVR

=

∫
VR

(
θR
θ

(
v · ∂p

∂t
+ ΣF :

∂F

∂t
+ ΣH :

∂H

∂t
+ ΣJ

∂J

∂t

)
+
ϑ

θ

∂E

∂t

)
dVR

=

∫
VR

(
θR
θ

(
v · ∂p

∂t
+ (ΣF + ΣH F + ΣJH) : ∇0v

)
+
ϑ

θ

∂E

∂t

)
dVR

=

∫
VR

(
θR
θ

(
v · ∂p

∂t
+ P : ∇0v

)
+
ϑ

θ

∂E

∂t

)
dVR,

(38)

where, in the first line of (38), use has been made of the conjugacy of the fields U and V (refer
to Appendix A). In addition, equations (3a) and (3b) have been substituted in the fourth line
of (38). Finally, equation (12) has been substituted in the last line of (38). Subsequently, we
can substitute the linear momentum and total energy conservation laws (1a) and (1e), into (38)
to give

d

dt

∫
VR

B dVR =

∫
VR

(
θR
θ

(
fR · v + DIV

(
P Tv

))
+
ϑ

θ

(
fR · v + sR + DIV

(
P Tv −Q

)))
dVR,

(39)
which can be re-written as

d

dt

∫
VR

B dVR =

∫
VR

(
fR · v + DIV

(
P Tv

))
dVR +

∫
VR

ϑ

θ
(sR −DIV (Q)) dVR. (40)

By performing integration by parts of the DIV terms in equation (40) and after some re-
arrangement, it yields

d

dt

∫
VR

B dVR − Π̇ext −Qext =

∫
VR

θR
θ2
Q ·∇0θ dVR, (41)

where Π̇ext denotes the power introduced by mechanical forces, defined as

Π̇ext =

∫
VR

fR · v dVR +

∫
∂VR

v · tB dA, (42)

andQext represents the heat source and heat flux added (removed) to (from) the system, defined
as

Qext =

∫
VR

ϑ

θ
sR dVR −

∫
∂VR

ϑ

θ
QB dA. (43)

Noticing in above equation (41) that the right hand side is always non-positive (i.e. Q·∇0θ ≤
0), equation (41) can be transformed into the following inequality

d

dt

∫
VR

B dVR − Π̇ext −Qext ≤ 0, (44)

which represents a valid expression for the second law of thermodynamics. Satisfaction of
inequality (44) is a necessary ab initio condition to ensure stability, otherwise referred to as

12



the Coleman-Noll procedure [66]. In the special case of an isolated system (i.e. Π̇ext = 0 and
Qext = 0), inequality (44) reduces to

d

dt

∫
VR

B dVR ≤ 0. (45)

This means that for an isolated system, the decrease in ballistic free energy is intrinsically
linked to the dissipation introduced by any inelastic effects. This key concept will be further
exploited in the following section at a semi-discrete level. Finally, it is interesting to see that,
in the case of an isothermal process θ = θR (i.e. the ballistic free energy becomes the sum of
the kinetic energy 1

2ρR
p · p and the Helmholtz’s free energy ψR), above inequality reduces to

[67]
d

dt

∫
VR

(
1

2ρR
p · p+ ψR

)
dVR − Π̇ext ≤ 0. (46)

Remark 3: Alternatively, if the entropy η is used as the thermal unknown (instead of the total
energy E), the time rate of the ballistic free energy B can also be computed as

d

dt

∫
VR

B dVR =

∫
VR

V • ∂U
∂t

dVR

=

∫
VR

(
v · ∂p

∂t
+ ΣF :

∂F

∂t
+ ΣH :

∂H

∂t
+ ΣJ

∂J

∂t
+ ϑ

∂η

∂t

)
dVR,

(47)

where it can be noticed the alternative set of entropy conjugate fields {v,ΣF ,ΣH ,ΣJ , ϑ},
obtained as the partial derivative of the ballistic free energy B with respect to the conservation
variables {p,F ,H , J, η}. Use of the geometric conservation laws (1b) to (1d) and equation
(12) into (47) results in

d

dt

∫
VR

B dVR =

∫
VR

((
v · ∂p

∂t
+ P : ∇0v

)
+ ϑ

∂η

∂t

)
dVR. (48)

Substitution of the linear momentum (1a) and entropy conservation law (15) into (48),
yields

d

dt

∫
VR

B dVR =

∫
VR

((
fR · v + DIV

(
P Tv

))
+ ϑ

(
sR
θ
−DIV

(
Q

θ

)
− 1

θ2
Q ·∇0θ

))
dVR,

(49)
which, after some algebraic manipulation of the last term within the integrand of the right
hand side, equation (49) reduces to above equation (40) and thus, inequality (44).

4. Spatial discretisation

Consider the thermo-elastic body is described (discretised) by a cloud of particles as shown
in Figure 1. For the case of corrected SPH methods [1–3, 6, 7], both the problem variables U
and the conjugate pairs δV are in general interpolated at any given position via corrected kernel
(or smoothing) functions W̃ with a given compact support around every particle. Specifically,
for a given position Xa, both U and δV can be approximated as

Ua(t) ≈
∑
b∈Λba

Nb(Xa)U b(t); δVa ≈
∑
b∈Λba

Nb(Xa)δVb; Nb(Xa) = V b
RW̃b(Xa). (50)
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Figure 1: Particle approximation

Here, Λb
a represents the set of neighbouring particles b that lie inside a sphere of a given

radius around Xa, V
b
R represents the volume associated to particle b and U b(t) and δVb rep-

resent the time varying variables and their virtual conjugate pairs stored at particle b, respec-
tively. In addition, [•]a (t) represent the problem variables at position Xa and time t, that is
[•]a (t) = [•] (Xa, t). Additionally, the use of (corrected) SPH shape functions N ensure that
both constant and linear functions are perfectly interpolated [7].

In addition, for the evaluation of the material gradient ∇0(•) of any arbitrary vector function
f , we employ the well-known gradient correction [1] described as follows

∇0f(Xa) ≈
∑
b∈Λba

(f b − fa)⊗Gb(Xa); Gb(Xa) = V b
R∇̃0Wb(Xa); ∇̃0Wb(Xa) = La∇0Wb(Xa),

(51)
where La is explicitly evaluated as [7]

La =

∑
b∈Λba

V b
R∇0Wb(Xa)⊗ (Xb −Xa)

−1

. (52)

In this expression, the use of the kernel gradient correction ∇̃0 ensures the gradient of
any linear field distribution is exactly evaluated. This type of kernel gradient correction has
been extensively discussed in References [7, 10]. Interestingly, by defining the vector Cab :=
2V a

RGb(Xa) [3], we can now re-write above expression (51) to give

∇0f(Xa) ≈
1

V a
R

∑
b∈Λba

1

2
(f b − fa)⊗Cab. (53)

Its reciprocal relationship can also be defined as Cba = 2V b
RGa(Xb) where Ga(Xb) =

V a
R∇̃0Wa(Xb). Due to the anti-symmetric nature of the SPH gradient correction [3], notice

here that Gb(Xa) 6= −Ga(Xb) which in turn lead to Cab 6= −Cba.
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4.1. SPH semi-discrete equations

Substituting the expressions for the corrected SPH shape functions (50) (for U and δV) and
using the corrected gradient evaluations (53) (for ∇0δV) into (35), the SPH discretisation for
the system {p,F ,H , J, E} described in (36) becomes, after some algebraic manipulations,12

V a
R

dpa
dt

= T a + V a
Rf

a
R + AaRt

a
B; (54a)

V a
R

dF a

dt
=
∑
b∈Λba

(
vb − va

2

)
⊗Cab; (54b)

V a
R

dHa

dt
= F a

∑
b∈Λba

(
vb − va

2

)
⊗Cab

 ; (54c)

V a
R

dJa
dt

= Ha :

∑
b∈Λba

(
vb − va

2

)
⊗Cab

+
∑
b∈Λba

DabJ ; (54d)

V a
R

dEa
dt

=
∑
b∈Λba

1

2
[(P aCab) · vb − (P bCba) · va]−

∑
b∈Λba

1

2

[(
Qa

θa
·Cab

)
θb −

(
Qb

θb
·Cba

)
θa

]
+ V a

R (faR · va + saR) + AaR (taB · vaB −Qa
B) +

∑
b∈Λba

DabE . (54e)

Here, the representation for the (algorithmic) internal nodal force T a is defined as

T a =
∑
b∈Λba

1

2
(P aCab − P bCba) +

∑
b∈Λba

Dab
p . (55)

The heat flux evaluation at particle a is approximated via (53) as

Qa = −Ka∇0θ(Xa, t) ≈ −
1

V a
R

∑
b∈Λba

1

2
(θb − θa)KaCab; Ka = J−1

a haH
T
aHa, (56)

where the same heat flux approximation (56) also holds for particle b (just by renaming particle
a as particle b).

In expression (54a), AaR represent the material tributary area and taB its traction vector
computed directly from the given traction boundary conditions. Notice that in (54a), AaR = 0
for those particles not placed on the boundary.

Finally, the remaining terms to be defined in equations (54a), (54d) and (54e) are the so-
called numerical dissipation terms {Dab

p ,DabJ ,DabE }. These terms can be derived using the semi-
discrete version of the classical Coleman-Noll procedure [66] in order to ensure the production
of numerical entropy. This will be presented in the following section. For the isothermal case,
equation (54e) is not strictly needed and equations (54a)-(54d) reduce to the semi-discrete SPH
scheme already explored by the authors in [1–3].

Notice here that the stabilisation term applied to the linear momentum evolution (54a) alle-
viates the appearance of spurious zero-energy (hourglass-like [1]) modes due to rank deficiency

12For an in-depth derivation, the reader is referred to Sections 3.3.1 and 3.3.2 in previous contribution [1] by
the authors.
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inherent to the use of (nodal) particle integration, whereas the stabilisation in the volume map
evolution (54d) addresses pressure instabilities (especially, in near incompressibility). Addi-
tionally, it is also interesting to show the possible addition of stabilisation to the total energy
equation (54e).

Remark 4: Following Remark 2, an alternative SPH scheme can be formulated where the
semi-discrete form of equation (37) gives, after some algebra

V a
R

dηa
dt

= −
∑
b∈Λba

1

2

(
Qa

θa
Cab −

Qb

θb
Cba

)
−Qa

θ2
a

·
∑
b∈Λba

1

2
(θb−θa)Cab+V

a
R

saR
θa
−Q

a
B

θaB
AaR+

∑
b∈Λba

Dabη , (57)

where ηa represents the entropy stored at particle a and Dab
η denotes the associated numerical

dissipation.

4.2. Numerical entropy production

In this section, inequality (44) is assessed for the above set of SPH semi-discrete equations
(54). Specifically, the semi-discrete counterpart of (38) is∑

a

V a
R

dBa

dt
=
∑
a

V a
RVa ·

dUa

dt

=
∑
a

V a
R

[
θR
θa

(
va ·

dpa
dt

+ Σa
F :

dF a

dt
+ Σa

H :
dHa

dt
+ Σa

J

dJa
dt

)
+
ϑa
θa

dEa
dt

]
=
∑
a

V a
R

[
θR
θa

(
va ·

dpa
dt

+ P a :
dF a

dt

)
+
ϑa
θa

dEa
dt

]
,

(58)

where ϑa = θa − θR represents the change in temperature at particle a with respect to the
reference temperature. Subsequently, we can substitute the linear momentum (54a), the de-
formation gradient (54b) and total energy conservation laws (54e) into (58) and, after some
algebra, gives∑
a

V a
R

dBa

dt
=
∑
a

∑
b∈Λba

1

2
[(P aCab) · vb − (P bCba) · va]−

∑
a

∑
b∈Λba

1

2

[(
Qa

θa
·Cab

)
θb −

(
Qb

θb
·Cba

)
θa

]

+
∑
a

∑
b∈Λba

θR
2θa

[(
Qa

θa
·Cab

)
θb −

(
Qb

θb
·Cba

)
θa

]
+
∑
a

∑
b∈Λba

DabE

−
∑
a

∑
b∈Λba

θR
θa

[
DabE − va ·Dab

p − Σa
JDabJ

]
+ Π̇ext +Qext.

(59)
Here, Π̇ext and Qext denote the semi-discrete power and total heat contribution, respectively,

expressed as

Π̇ext =
∑
a

(V a
Rva · faR + AaRt

a
B · vaB) ; Qext =

∑
a

ϑa
θa

(V a
Rs

a
R − AaRQa

B) . (60)

In the current paper, we strongly enforce local conservation for the pair-wise stabilisation
terms, in such a way that DabE = −DbaE , Dab

p = −Dba
p and DabJ = −DbaJ . By doing this the second
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term in the second line of (59) vanishes as a result of global conservation. Additionally, by
noticing the nested summation carried out over particles in (59) and the anti-symmetric nature
of the two terms in the first line of the right hand side, we can conclude that these terms cancel
and thus (59) reduces to∑

a

V a
R

dBa

dt
− Π̇ext −Qext =

∑
a

∑
b∈Λba

θR
2θa

[(
Qa

θa
·Cab

)
θb −

(
Qb

θb
·Cba

)
θa

]
−
∑
a

∑
b∈Λba

θR
θa

[
DabE − va ·Dab

p − Σa
JDabJ

]
︸ ︷︷ ︸

DEtotal

. (61)

It is now the objective to demonstrate that both terms on the right hand side of (61) are
non-positive (to be in agreement with inequality (44)). With respect to the first,∑
a

∑
b∈Λba

θR
2θa

[(
Qa

θa
·Cab

)
θb −

(
Qb

θb
·Cba

)
θa

]
=
∑
a

∑
b∈Λba

θR
2θa

[(
Qa

θa
·Cab

)
θb −

(
Qa

θa
·Cab

)
θa

]

=
∑
a

V a
R

θR
θ2
a

Qa ·

 1

V a
R

∑
b∈Λba

1

2
(θb − θa) Cab


=
∑
a

V a
R

θR
θ2
a

Qa ·∇0θ(Xa, t) ≤ 0,

(62)
where the last inequality is fulfilled due to the definition of the conductive heat flux.

As for the last term on the right hand side of (61) (namely DEtotal), and with the use of
Ξa,b = θa,b/θR, this term can be equivalently written by swapping indices a and b to give

DEtotal =
∑
a

∑
b∈Λba

1

Ξa

[
DabE − va ·Dab

p − Σa
JDabJ

]
=
∑
a

∑
b∈Λba

1

Ξb

[
DbaE − vb ·Dba

p − Σb
JDbaJ

]
.

(63)

Adding the first line and the second line of the equation above, and noting the anti-
symmetric nature of the stabilisation terms (e.g. DbaE = −DabE , Dba

p = −Dab
p and DbaJ = −DabJ ),

an alternative expression for DEtotal is

DEtotal =
1

2

∑
a

∑
b∈Λba

DEtotal,ab, (64)

with

DEtotal,ab =

(
vb
Ξb

− va
Ξa

)
·Dab

p +

(
Σb
J

Ξb

− Σa
J

Ξa

)
DabJ +

(
1

Ξa

− 1

Ξb

)
DabE . (65)

Dissipation terms {Dab
p ,DabJ ,DabE } remain to be defined in order to ensure non-negative entropy

production. Sufficient conditions to guarantee this (and hence, the fulfilment of the second law
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of thermodynamics), namely DEtotal ≥ 0 (63), are given by

Dab
p = Sp

ab

(
vb
Ξb

− va
Ξa

)
;

DabJ = SJab

(
Σb
J

Ξb

− Σa
J

Ξa

)
;

DabE = SEab

(
1

Ξa

− 1

Ξb

)
,

(66)

with Sp
ab being defined as a positive semi-definite stabilisation matrix and {SJab, SEab} ≥ 0. It

is very interesting to observe how the dissipation terms {Dab
p ,DabJ ,DabE } are directly related

to the difference in velocity, stresses and temperature between interacting particles, typical of
Riemann solver based upwinding terms [59].

Remark 5: Alternatively, inequality (44) also holds for the entropy based counterpart {p,F ,H , J, η}.
Following the same procedure carried out above, the semi-discrete version of ballistic free energy
in this case becomes∑

a

V a
R

dBa

dt
=
∑
a

V a
RVa ·

dUa

dt

=
∑
a

V a
R

(
va ·

dpa
dt

+ Σa
F :

dF a

dt
+ Σa

H :
dHa

dt
+ Σa

J

dJa
dt

+ ϑa
dηa
dt

)
=
∑
a

V a
R

(
va ·

dpa
dt

+ P a :
dF a

dt
+ ϑa

dηa
dt

)
,

(67)

where ϑa = θa − θR represents the temperature change of particle a. Making use of the linear
momentum equation (54a), the deformation gradient equation (54b) and the entropy equation
(57) enables the above expression after some algebra to yield∑
a

V a
R

dBa

dt
− Π̇ext −Qext =

∑
a

∑
b∈Λba

1

2
[(P aCab) · vb − (P bCba) · va]

+
∑
a

∑
b∈Λba

θR
2

[(
Qa

θa
·Cab

)
−
(
Qb

θb
·Cba

)]
+
∑
a

V a
R

θR
θ2
a

Qa ·∇0θ(Xa, t) +
∑
a

∑
b∈Λba

(
va ·Dab

p + Σa
JDabJ + ϑaDabη

)
,

(68)
where {Dab

p ,DabJ ,Dabη } represent appropriate numerical stabilisation terms, which need not co-
incide with those used in the case of E being used instead of η as the thermal variable. Again,
due to the anti-symmetric nature of the terms in the first line and the second line of the right
hand side, we can conclude that these terms cancel and thus (68) reduces to∑

a

V a
R

dBa

dt
− Π̇ext −Qext =

∑
a

V a
R

θR
θ2
a

Qa ·∇0θ(Xa, t)−Dηtotal, (69)

where

Dηtotal =
1

2

∑
a

∑
b∈Λba

Dηtotal,ab, (70)
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with
Dηtotal,ab = (vb − va) ·Dab

p + (Σb
J − Σa

J)DabJ + (ϑb − ϑa)Dabη . (71)

To arrive at equation (70), we have used a similar reasoning to that in equations (63)-(65)
and we have imposed local conservation Dabη = −Dbaη , Dab

p = −Dba
p and DabJ = −DbaJ . In above

equation (69), the first term on the right hand side involvingQa ·∇0θ(Xa, t) ≤ 0 is non-positive
due to the definition of conductive heat flux. It remains to ensure that the second term in the
right hand side of (69) Dηtotal is non-negative. Sufficient conditions guaranteeing this is the case,
namely Dηtotal ≥ 0 (70), are

Dab
p = Sp

ab(vb − va);
DabJ = SJab(Σ

b
J − Σa

J);

Dabη = Sηab(ϑb − ϑa),
(72)

where Sp
ab is a positive semi-definite stabilisation matrix and both terms {SJab, S

η
ab} ≥ 0. Again,

a Riemann solver type of upwinding stabilisation arises.

Remark 6: In this work, the dissipation terms used for the η formulation are chosen as

Sp
ab =

1

2
ρAve
R,ab‖CSkew

ab ‖Aab; SJab =
cSkew
ab · cSkew

ab

2ρAve
R,abc

Ave
p,ab‖C

Skew
ab ‖

; Sηab = 0, (73)

where
Aab = cAve

p,abn
Skew
ab ⊗ nSkew

ab + cAve
s,ab(I − nSkew

ab ⊗ nSkew
ab ), (74)

and

ρAve
R,ab =

1

2
(ρR,a + ρR,b) ; cAve

p,ab =
1

2
(cp,a + cp,b) ; cAve

s,ab =
1

2
(cs,a + cs,b) , (75)

where ρR,a denotes the material density evaluated at particle a and cp,a and cs,a represent the vol-
umetric and shear wave speeds (computed at particle a). In addition, the material vector CSkew

ab

and its push forward equivalent (spatial) vector cSkew
ab are defined as CSkew

ab = 1
2

(Cab −Cba) and

cSkew
ab = 1

2
(HaCab −HbCba) with their magnitudes (norms) defined as ‖CSkew

ab ‖ and ‖cSkew
ab ‖,

respectively, and nSkew
ab =

cSkewab

‖cSkewab ‖ representing the (upwinding) direction of the stabilisation.

As for the alternative E formulation, SEab is chosen in this work so as to ensure that the
same amount of numerical stabilisation is introduced by both η and E implementations. One
possible way to enforce this is by imposing Dηtotal,ab in (71) to match DEtotal,ab in (65), which

permits to deduce the term SEab by solving the scalar equation Dηtotal,ab = DEtotal,ab, resulting in

SEab =

(
1

Ξa

− 1

Ξb

)−2
[
Dηtotal,ab − S

p
ab :

[(
vb
Ξb

− va
Ξa

)
⊗
(
vb
Ξb

− va
Ξa

)]
− SJab

(
Σb
J

Ξb

− Σa
J

Ξa

)2
]
,

(76)
with Sp

ab and SJab the positive semi-definite tensors already defined in (73).

5. Temporal discretisation

Insofar as the mixed-based system {p,F ,H , J, E} (4) (or its alternative set {p,F ,H , J, η})
is rather large, it will only be suitable to employ an explicit type of time integrator. In this work,
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an explicit one-step two-stage Total Variation Diminishing Runge-Kutta (TVD-RK) scheme is
utilised [1, 2, 43, 58, 59, 61, 63, 68, 69]. This is described by the following time update equations
from time step tn to tn+1

U?
a = Un

a + ∆t U̇n

a(Un
a , t

n);

U??
a = U?

a + ∆t U̇?

a(U?
a, t

n+1);

Un+1
a =

1

2
(Un

a + U??
a ).

(77)

Moreover, the geometry is also updated through the above TVD-RK algorithm [1, 2, 61]. This
results in a monolithic time integration procedure where the unknowns U together with the
geometry x are all updated via (77).

The maximum time step ∆t := tn+1−tn is governed by a standard Courant-Friedrichs-Lewy
(CFL) condition [70] given as

∆t = αCFL
hmin
cp,max

, (78)

where cp,max is the maximum p-wave speed13, hmin is the smallest particle spacing within the
computational domain and αCFL is the CFL stability number. For the numerical computations
presented in this paper, a value of αCFL = 0.3, unless otherwise stated, has been chosen to
ensure both accuracy and stability [63] of the algorithm.

It is worth mentioning that the resulting SPH algorithm (54) does not intrinsically ful-
fill conservation of angular momentum, since strong compatibilities between the three strain
measures {F ,H , J} are weakly enforced [61]. To address this, , a monolithic discrete angular
momentum projection algorithm is presented14. Specifically, the local internal nodal force T a

described in (55) is suitably modified in order to preserve the total angular momentum, whilst
still ensuring the global conservation of linear momentum.

Following reference [1], sufficient conditions for the global preservation of the discrete linear
and angular momentum within a time step are enforced at each stage of the TVD-RK time
integrator (77) described as

∑
a

V a
RT

χ
a = 0;

∑
a

V a
RXa × T χ

a = 0; Xa =

{
xna , χ = n

xna + ∆t
2ρR

(pna + p∗a), χ = ∗ (79)

where χ = {n, ∗}.
A least-square minimisation procedure is used to obtain a set of modified internal nodal

forces T̂ a that satisfy the above conditions (79). This can be achieved by computing the
minimum of the following functional (ignoring time arguments for brevity), that is

Π(T̂ a,λang,λlin) =
1

2

∑
a

V a
R(T̂ a−T a)·(T̂ a−T a)−λang·

(∑
a

V a
RXa × T̂ a

)
−λlin·

(∑
a

V a
R T̂ a

)
.

(80)

13The reader is referred to [50] for an accurate computation of this wave speed for the two constitutive models
presented in Section 2 of this paper.

14In our experience, the angular momentum projection algorithm is only needed for problems involving very
large and sustained rotations.
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After some simple algebra, a set of modified internal nodal forces T̂ a arises

T̂ a = T a + λang ×Xa + λlin, (81)

for which the Lagrange multipliers {λang,λlin} are the solutions of the following system of
equations[ ∑

a V
a
R [(Xa ·Xa)I −Xa ⊗Xa]

∑
a V

a
RX̂a∑

a V
a
RX̂a −

∑
a V

a
R

] [
λang

λlin

]
=

[
−
∑

a V
a
RXa × T a∑
a V

a
RT a

]
, (82)

where the indicial notation
[
X̂a

]
ik

= Eijk [Xa]j.

6. Algorithmic description

For ease of implementation, Algorithm 1 summarises the complete algorithmic description
of the mixed-based Upwind Smooth Particle Hydrodynamics (Upwind-SPH) methodology de-
scribed above.

Algorithm 1: Complete Upwind-SPH algorithm for thermo-elasticity

Input : Un
a where U either [p F H J E]T or [p F H J η]T

Output: Un+1
a , P n+1

a , θn+1
a , xn+1

a

(1) ASSIGN old primary variables: Uold
a = Un

a and xold
a = xna

(2) EVALUATE p-wave speed: cp (see References [61, 65])

(3) COMPUTE time increment: ∆t

for TVD-RK time integrator = 1 to 2 do

(4) COMPUTE right-hand-side of the mixed-based system:
ṗa (54a), Ḟ a (54b), Ḣa (54c), J̇a (54d) and Ėa (54e) (or η̇a (57))

(5) APPLY discrete angular momentum preserving algorithm (see Section 6 of [1])
(6) EVOLVE {Ua,xa} via TVD-RK (77)

(7) IMPOSE essential boundary conditions directly on particles pa and Ea (or ηa)
(8) COMPUTE first Piola-Kirchhoff stress tensor P a

(9) COMPUTE temperature θa
end

(10) UPDATE {Un+1
a ,xn+1

a }
(11) COMPUTE first Piola-Kirchhoff stress tensor P n+1

a

(12) COMPUTE temperature θn+1
a

7. Numerical examples

In this section, a number of challenging numerical examples are presented in order to as-
sess the performance of the Upwind Smooth Particle Hydrodynamics (Upwind-SPH) described
above. The examples will be used to demonstrate that the Upwind-SPH algorithm:
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• achieves second order convergence for all the variables solved, namely velocities, stresses
(or strains) and temperature (or entropy or total energy),

• circumvents spurious zero-energy modes due to rank deficiency,

• removes non-physical pressure instabilities when approaching the near incompressibility
limit,

• preserves total angular momentum and total energy over a long term response, and

• guarantees long-term stability by ensuring a non-negative rate of production of entropy
(when considering an isolated system) and, simultaneously, displays a decrease of the
ballistic energy.

For all the examples presented in this paper, uniform particle refinement is employed. Ad-
ditionally, the constant smoothing length is determined by multiplying the largest particle
spacing within the compact support with a scale factor of 0.6. Notice that for the case of
non-smooth (i.e. shock dominated) problems, which rests outside the scope of this paper, the
use of non-uniform particle refinement should be considered [71–73].

It will be shown that both proposed formulations, namely {p,F ,H , J, E} and {p,F ,H , J, η},
yield extremely similar results, almost undistinguishable. In addition, and for benchmarking
purposes, the SPH discretisation will also be compared against an alternative in-house Vertex
Centred Finite Volume implementation.

The material properties used in the examples are typically given in terms of the linear
thermal expansion coefficient α, the Young’s modulus E and the Poisson’s ratio ν, from which
the shear and Bulk moduli can be obtained as

µ =
E

2(1 + ν)
; κ =

E

3(1− 2ν)
, (83)

which permit to calibrate the material parameters according to equations (29) and (32).

7.1. Manufactured problem: linear thermo-elasticity

The main objective of this example is to display the spatial convergence of the proposed
{p,F ,H , J, E} Upwind-SPH methodology. Inspired by Reference [50], a cube of unit side
length L = 1 m (see Figure 2) is subjected to a thermo-mechanical deformation process given
by the following mapping and temperature functions

φexact(X, t) = X +
At

L
(X ·X)1; (84a)

θexact(X, t) = θR

[
1 +B sin

(
πX ·E1

L

)
(t+ 1)

]
, (84b)

where 1 = [1, 1, 1]T and E1 = [1, 0, 0]T . For a range of A and B values, the solution can be
considered to be linear and a closed-form solution can be derived. In this case, the values of
A=0.2381 s−1 and B=−0.0012 s−1 are used. A linear thermo-elastic model is employed with
Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.3, thermal
conductivity h = 10 Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion
coefficient α = 2.223× 10−4 K−1 and reference temperature θR = 293.15 K.
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The exact velocity vexact(X, t), the exact deformation gradient tensor F exact(X, t) and the
exact temperature gradient ∇0θ

exact(X, t) follow from (84) as

vexact(X, t) =
∂φexact(X, t)

∂t
=
A

L
(X ·X) 1, (85)

F exact(X, t) = ∇0φ
exact(X, t) = I +

2At

L
1⊗X, (86)

∇0θ
exact(X, t) =

(
BπθR(t+ 1)

L

)
cos

(
πX ·E1

L

)
E1. (87)

This enables the evaluation of the area and volume mappings as [58]

Hexact(X, t) =
1

2
F exact F exact; Jexact(X, t) =

1

3
Hexact : F exact. (88)

With these at hand, we can obtain the exact expressions for the body force fR (1a) and the
heat source term sR (14). Using the chain rule, and after some simple algebra, the body force
term becomes

fR =
∂(ρRv

exact)

∂t
−DIVP exact = − (2µ+ λ)

(
2At

L

)
1 +

BCvΓ0θRπ

L
cos

(
πX ·E1

L

)
(t+ 1)E1

(89)
and the heat source term yields

sR = θexact

[
BCv sin

(
πX ·E1

L

)
+

2ACvΓ0

L
(X · 1)

]
+BhθR

(π
L

)2

(t+ 1) sin

(
πX ·E1

L

)
.

(90)
Dirichlet boundary conditions compatible with the exact fields φexact (84a) and θexact (84b)

are applied on the boundary of the domain. Specifically, fixed (i.e. restricted the movement
in all directions) boundary conditions are enforced at position X=Y=Z=0. Moreover, fixed
reference temperature θ = θR is constantly applied on the faces X = 0 and X = 1.

Additionally, initial conditions for the velocity, the triplet of deformation measures and
temperature (see Figure 2) can be obtained by substituting time t = 0 into expressions (85),
(86), (88) and (84b), which results in

v
∣∣∣
t=0

= vexact(X, t = 0) =
A

L
(X ·X) 1, (91a)

F
∣∣∣
t=0

= F exact(X, t = 0) = I; H
∣∣∣
t=0

= Hexact(X, t = 0) = I; J
∣∣∣
t=0

= Jexact(X, t = 0) = 1,

(91b)

θ
∣∣∣
t=0

= θexact(X, t = 0) = θR

(
1 +B sin

(
πX ·E1

L

))
. (91c)

Figure 3 displays the spatial order of convergence of the numerical SPH approximation
against the closed-form solution. For completeness, the spatial convergence of the numerical
approximation using an in-house Upwind Vertex Centred Finite Volume Method (Upwind-
VCFVM) [43] is also depicted. Both SPH and vertex centred implementations use the same
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Figure 2: Linear thermo-elasticity: (a) geometry and the initial conditions for (b) velocity and (c) temperature.
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Figure 3: Linear thermo-elasticity: L2 norm convergence of (a) the components of linear momentum; (b) the
components of the first Piola-Kirchhoff stress; and (c) temperature at a particular time t = 0.001 s. Results
obtained using a linear thermo-elastic model. The material properties used are Young’s modulus E = 50.05 KPa,
density ρR = 1000 kg/m3, thermal conductivity h = 10 Wm−1K−1, Specific heat capacity Cv = 1 Jkg−1K−1,
thermal expansion coefficient α = 2.223 × 10−4K−1 and αCFL = 0.3. Grid size refers to the minimum particle
spacing between particles within the computational domain.
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Figure 4: L-shaped block configuration

Riemann based numerical dissipation. In all cases, Figure 3 depicts the expected second order
convergence pattern (e.g. L2 norm error) for the components of the linear momentum, compo-
nents of the stress tensor (same results are obtained for all the components of the stress tensor)
and temperature. It is interesting to note that the proposed Upwind-SPH methodology requires
a finer grid size (i.e. the characteristic length defining the minimum spacing between parti-
cles) for the same level of accuracy than Upwind-VCFVM [43]. This is expected as the SPH
algorithm is prone to a slightly more diffusive behaviour, due to the use of SPH interpolating
functions.

7.2. L-shaped block

As reported in References [44, 46, 50, 74, 75], a flexible L-shape block structure is studied
in this section. The main objective of this problem is to examine the capability of the proposed
{p,F ,H , J, E} Upwind-SPH algorithm in preserving linear momentum, angular momentum
and also the total energy over a long term response. The structure is subjected to time-varying
forces (see Figure 4) on two of its boundary faces and is then left free flying in space. From
the thermal viewpoint, all boundaries are treated as insulated, thus with null normal heat flux
across. The applied forces are described as

F 1(t) = −F 2(t) =

 150
300
450

 f(t); f(t) =


t 0 ≤ t < 2.5 s,

5− t 2.5 s ≤ t < 5 s,

0 t ≥ 5 s.

The temperature profile across the structure is initiated by

θ
∣∣∣
t=0

=


300 K Y = 10 m,

250 K X = 6 m,

θR elsewhere.

In this case, a polyconvex Mie-Grüneisen equation of state is employed with Young’s mod-
ulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity
h = 10 Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1 thermal expansion coefficient
α = 2.223× 10−4K−1 and the reference temperature given by θR = 293.15 K.

25



(a) 680 particles (b) 1900 particles (c) 5400 particles (d) 17600 particles

Figure 5: L-shaped block: particle refinement of deformed states with pressure contour plots at time t = 7.7 s for
four different number of particles (a) 680 particles; (b) 1900 particles; (c) 5400 particles and (d) 17600 particles.
Results obtained using a polyconvex Mie-Grüneisen equation of state. The material properties are Young’s
modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity h = 10
Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion coefficient α = 2.223 × 10−4K−1, the
reference temperature θR = 293.15 K and αCFL = 0.3.

Figure 6: L-shaped block: comparison of deformed shapes plotted with pressure and temperature distributions
using the Upwind-SPH and Upwind-VCFVM at time t = 11 s. Results obtained using a polyconvex Mie-
Grüneisen equation of state with material properties Young’s modulus E = 50.05 KPa, density ρR = 1000
kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity h = 10 Wm−1K−1, specific heat capacity Cv = 1
Jkg−1K−1, thermal expansion coefficient α = 2.223 × 10−4K−1, the reference temperature θR = 293.15 K
and αCFL = 0.3.
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(a) (b)

Figure 7: L-shaped block: time evolution of (a) components of velocity and (b) components of displacement
at material point X = [0, 10, 0]T m. A comparison is carried out between the { p,F ,H, J, E } Upwind-
VCFVM algorithm and the { p,F ,H, J, E } Upwind-SPH methodology. A polyconvex Mie-Grüneisen equation
of state with properties Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.3,
thermal conductivity h = 10 Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion coefficient
α = 2.223 × 10−4K−1, reference temperature θR = 293.15 K and αCFL = 0.3. P1, P2 and P3 represent 1900,
5400 and 17600 number of particles/nodes.

A mesh refinement study for the block is carried out in Figure 5 at time t = 7.7 s. For such
a sequence of particle refinement, the solver delivers linear computational cost in terms of CPU
time with respect to the number of unknowns. Very good predictions for the deformed shape of
the structure and the pressure distribution are seen even with the coarsest discretisation. For
benchmarking purposes, results are compared against an alternative in-house Upwind-VCFVM
[43]. Comparison of the Upwind-SPH and Upwind-VCFVM schemes (see Figure 6) renders
almost identical results. The time history of the components of velocity and displacement at
position X = [0, 10, 0]T are also monitored in Figure 7 for completeness.

Figures 8a,b demonstrate the ability of the proposed method in preserving both the linear
and angular momenta of the system. Specifically, the total linear momentum is close to (and
oscillates around) zero machine accuracy at all times, whereas the total angular momentum is
expected to be conserved after the loading phase, that is when time t ≥ 5 s. In addition, Figure
8c displays the time history of various energetic contributions. These include kinetic energy,
internal energy, total energy and ballistic energy. As a result of the external boundary traction,
the total energy and the ballistic energy increase during the loading phase. Subsequently, upon
the release of the boundary force, that is when t ≥ 5 s, the total energy is expected to remain
constant and the ballistic energy is expected to decrease. The difference between the total
energy and the Ballistic energy corresponds to the term θRη which is intimately linked to
the global entropy production associated with (i) the irreversible heat conduction and (ii) the
generation of numerical entropy due to the numerical scheme itself. This is also shown in Figure
8d as the value of global entropy increases over time for the entire simulation.

Finally, Figure 9 illustrates the time evolution of the deformation of the L-shaped block,
displaying smooth temperature and pressure fields. It is interesting to note how the heat flows
through the insulated body as the result of the initial temperature gradient.
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(a) (b)

(c) (d)

Figure 8: L-shaped block: time evolution of (a) linear momentum; (b) angular momentum (c) energy measures;
and (d) global entropy. Results obtained using a polyconvex Mie-Grüneisen equation of state. The material
properties used are Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.3,
thermal conductivity h = 10 Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion coefficient
α = 2.223× 10−4K−1, the reference temperature θR = 293.15 K and αCFL = 0.3.
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Figure 9: L-shaped block: a sequence of deformed configurations with temperature and pressure distributions
at times t = 10 ∗ {0, 1, 2, 2.5, 3} s (left to right) and t = 2 ∗ {0, 4, 9, 14, 19} s (left to right), respectively. Results
obtained using a polyconvex Mie-Grüneisen equation of state. The material properties used are Young’s modulus
E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity h = 10 Wm−1K−1,
specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion coefficient α = 2.223 × 10−4K−1, the reference
temperature θR = 293.15 K and αCFL = 0.3.

 

Figure 10: Rotating disk configuration
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(a) 850 particles (b) 4500 particles (c) 7800 particles (d) 16000 particles

Figure 11: Rotating disk: particle refinement of deformed states with pressure contour plots at time t = 1.35 s for
four different number of particles (a) 850 particles; (b) 4500 particles; (c) 7800 particles and (d) 16000 particles.
Results obtained using a polyconvex Mie-Grüneisen equation of state. The material properties used are Young’s
modulus E = 1474 Pa, density ρR = 10 kg/m3, Poisson’s ratio ν = 0.478, thermal conductivity h = 10
Wm−1K−1, specific heat capacity Cv = 10 Jkg−1K−1, thermal expansion coefficient α = 2.223× 10−4K−1, the
reference temperature θR = 308.15 K and αCFL = 0.3.
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Figure 12: Rotating disk: time evolution of the components of (a) vertical velocity vZ and (b) temperature at
material point X = [2, 4, 0]T m for different discretisations (800, 4500 and 16000 particles). Results obtained
using the proposed {p,F ,H, J, E} and {p,F ,H, J, η} Upwind-SPH methodologies considering a polyconvex
Mie-Grüneisen equation of state. The material properties used are Young’s modulus E = 1474 Pa, density
ρR = 10 kg/m3, Poisson’s ratio ν = 0.478, thermal conductivity h = 10 Wm−1K−1, specific heat capacity
Cv = 10 Jkg−1K−1, thermal expansion coefficient α = 2.223×10−4K−1, the reference temperature θR = 308.15
K and αCFL = 0.3.
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Figure 13: Rotating disk: time evolution of the components of (a) linear momentum, (b) angular momentum;
(c) energy measures, and (d) global entropy. Results obtained using a polyconvex Mie-Grüneisen equation of
state. The material properties used are Young’s modulus E = 1474 Pa, density ρR = 10 kg/m3, Poisson’s
ratio ν = 0.478, thermal conductivity h = 10 Wm−1K−1, specific heat capacity Cv = 10 Jkg−1K−1, thermal
expansion coefficient α = 2.223× 10−4K−1, the reference temperature θR = 308.15 K and αCFL = 0.3.
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Figure 14: Rotating disk: a sequence of deformed configurations with temperature and pressure distributions
at time t = 0.5 ∗ {0, 4, 9, 14} s (left to right) and t = 3.3 ∗ {0, 1, 2, 3} s (left to right), respectively. Results
obtained using a polyconvex Mie-Grüneisen equation of state. The material properties used are Young’s modulus
E = 1474 Pa, density ρR = 10 kg/m3, Poisson’s ratio ν = 0.478, thermal conductivity h = 10 Wm−1K−1,
specific heat capacity Cv = 10 Jkg−1K−1, thermal expansion coefficient α = 2.223 × 10−4K−1, the reference
temperature θR = 308.15 K and αCFL = 0.3.
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7.3. Rotating Disk

Similar to the objectives described in Section 7.2, another benchmark problem previously
explored in References [44, 50] is considered. This example presents the (large) rotation of a
free flying disk and its geometry is shown in Figure 10. In terms of initial conditions, the disk

is initiated by a homogeneous temperature profile of θ
∣∣∣
t=0

= θR, and a velocity field specifically

chosen as

v
∣∣∣
t=0

= ωR ×X, with ωR =

 1
1
1

 . (92)

In addition, the disk is thermally insulated from the environment, except for a quarter of
its lateral surface (see Figure 10), where a time-varying (sinusoidal) boundary heat flux QB is
prescribed as

QB = 1591.5f(t) (W/m2), where f(t) =

{
sin
(π

2
t
)

t ≤ 4s

0 t > 4s
. (93)

A thermo-elastic Mie-Grüneisen equation of state is employed with Young’s modulus E = 1474
Pa, density ρR = 10 kg/m3, Poisson’s ratio ν = 0.478, thermal conductivity h = 10 Wm−1K−1,
specific heat capacity Cv = 10 Jkg−1K−1, thermal expansion coefficient α = 2.223 × 10−4K−1

and the reference temperature θR = 308.15 K.
Figure 11 illustrates a series of snapshots for different levels of discretisations (i.e. particle

refinement), at time t = 1.35 s. It is evident how the pressure resolution is enhanced as the
number of particles is increased. Figure 12 presents the comparison between the proposed
{p,F ,H , J, E} and {p,F ,H , J, η} Upwind-SPH methodologies. The time evolution of both
the vertical component of the velocity vZ and the temperature are monitored at position X =
[2, 4, 0]T m. Very similar (almost identical) results are obtained.

As expected, Figure 13a shows the components of linear momentum preserve up to zero
machine accuracy. The evolution of the components of angular momentum are also shown in
Figure 13b, where the initial values are conserved. Figure 13c presents the time history of the
different energetic contributions. As it can be seen, the total energy initially increases and
then decreases as a result of the applied boundary heat flux (93). This is expected as the disk
only exchanges heat through a quarter of its boundary (in which the heat flux is imposed)
and the rest of the body is insulated. For this reason, the total energy (see Figure 13c) has
the exact same profile as the prescribed (sinusoidal) heat flux and, more importantly, remains
almost constant after t = 4 s due to the removal of heat flux. Once the system is isolated
(after t = 4 s), the ballistic energy decreases over time, whereby the irreversibility is caused by
heat conduction and numerical dissipation, which can be understood as the satisfaction of the
second law of thermodynamics. Similarly, the fluctuations of the total kinetic energy and the
total internal energy are gradually damped due to the diffusive nature of the heat conduction.

For completeness, the time evolution of the deformed disk is depicted in Figure 14. The
implication of (outflow) heat flux described in (93) can be clearly observed through the evolution
of the temperature field. Additionally, the pressure pattern indicates the contraction and
expansion of the inner circle of the disk during deformation process.
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(a) Initial configuration

 

(b) Planar 1/4th geometry

Figure 15: Punch test: problem setup

7.4. Punch test

As displayed in Figure 15, a perforated cylinder is initially punched on the middle-top face
with a linear velocity field described as

v
∣∣∣
t=0

= −10

 0
0
Z
H

 m/s, (94)

where H = 1 m. Symmetric boundary conditions (i.e. roller support) are set on the bottom
surface of the cylinder whilst the rest of the boundaries are left free. The cylinder, with an initial

homogeneous temperature profile θ
∣∣∣
t=0

= θR, is thermally insulated from the environment. The

objective of this example is to show the capability of the {p,F ,H , J, E} Upwind-SPH algorithm
in alleviating spurious pressure modes in the vicinity of near incompressibility. A polyconvex
Mie-Grüneisen model is employed with material properties Young’s modulus E = 50.05 KPa,
density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.499, thermal conductivity h = 10 Wm−1K−1,
specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion coefficient α = 2.223 × 10−4K−1

and reference temperature θR = 293.15 K.
In Figure 16, it is evident that the reduced version {p,F ,H , E} of the Upwind-SPH

methodology suffers from spurious temperature/pressure modes. The numerical oscillations,
however, are immediately removed by using the complete Upwind-SPH {p,F ,H , J, E} algo-
rithm. Specifically, the geometric conservation J equation is proven to be extremely useful when
attempting to alleviate these spurious pressure modes, especially in the case of a nearly incom-
pressible material. Figure 17 depicts a comparison between the proposed SPH methodology
and the in-house Upwind-VCFVM [43], where excellent agreement is observed.

For qualitative comparison purposes, the time history of the vertical velocity vZ and the com-
ponent P11 of the stress tensor are monitored. In this Figure 18, two proposed methodologies
are compared, namely the {p,F ,H , J, E} Upwind-SPH and the {p,F ,H , J, η} Upwind-SPH.
Practically identical results are seen for both algorithms. Figure 19 shows a time sequence of
the deformed structure, indicating smooth pressure and temperature fields.
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Figure 16: Punch test: a sequence of deformed configurations with temperature and pressure distributions
using the reduced version { p,F ,H, E } and a complete { p,F ,H, J, E } Upwind-SPH methodologies. Re-
sults obtained using a polyconvex Mie-Grüneisen equation of state. The material properties used are Young’s
modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.499, thermal conductivity h = 10
Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion coefficient α = 2.223 × 10−4K−1,
reference temperature θR = 293.15 K and αCFL = 0.3.
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Figure 17: Punch test: comparison of deformed shapes plotted with pressure and temperature distributions
using the { p,F ,H, J, E } Upwind-SPH and { p,F ,H, J, E } Upwind-VCFVM at time t = 0.38 s. Results
are obtained using a polyconvex Mie-Grüneisen equation of state. The material properties used are Young’s
modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.499, thermal conductivity h = 10
Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion coefficient α = 2.223 × 10−4K−1,
reference temperature θR = 293.15 K and αCFL = 0.3.
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Figure 18: Punch test: time evolution of (a) component of velocity vZ and (b) component of first Piola-
Kirchhoff stress tensor P11 at material point X = [0, 1, 1]T m. A comparison is carried out between the {
p,F ,H, J, E } Upwind-SPH and { p,F ,H, J, η } Upwind-SPH methodologies. A polyconvex Mie-Grüneisen
equation of state with properties Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio
ν = 0.499, thermal conductivity h = 10 Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion
coefficient α = 2.223× 10−4K−1, reference temperature θR = 293.15 K and αCFL = 0.3. {P1, P2, P3} comprise
{2500, 5000, 10000} number of particles, respectively.
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Figure 19: Punch test: a sequence of deformed configurations with temperature (top view) and pressure (iso-
metric view) distributions at time t = 0.07∗{0, 1, 2, 3, 4, 5} s (left to right), respectively. Results obtained using
a polyconvex Mie-Grüneisen equation of state. The material properties used are Young’s modulus E = 50.05
KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.499, thermal conductivity h = 10 Wm−1K−1, specific
heat capacity Cv = 1 Jkg−1K−1, thermal expansion coefficient α = 2.223 × 10−4K−1, reference temperature
θR = 293.15 K and αCFL = 0.3. Discretisation of 5000 number of particles.

7.5. Gripper

In this example, we study the thermo-elastic deformation of a gripper-like structure (see
Figure 20) widely used in soft robotic applications. The main objective of this example is
to show the robustness of the proposed {p,F ,H , J, E} Upwind-SPH algorithm in a bending
dominated scenario. The gripper has four geometrically symmetric arms with L = 0.4 m which
are connected to a hollow cylindrical shape with radius of R = 0.1 m. The central interior of the
cylinder has a constant temperature of θ = 280 K (thermal Dirichlet boundary condition) while
the rest of the domain boundaries are regarded as thermally insulated from the environment.
Additionally, the four end faces of the arms are also subjected to a constant vertical traction
tB = 1000 N/m2 where the temperature is initially set to be θ = 300 K. For the rest of the
domain, an initial temperature distribution of θR = 293.15 K is prescribed.

A polyconvex Mie-Grüneisen equation of state is employed. The material properties used
are Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.45,
thermal conductivity h = 10 Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1 and thermal
expansion coefficient α = 2.223× 10−4K−1.

Figure 21 shows, for a given time step, the deformation of the gripper from three different
viewpoints, namely isometric view, front view and top/bottom view. Very smooth pressure and
temperature distributions are also observed. Notice that heat conduction occurs through the
four arms of the gripper as a result of the temperature difference within the structure. For com-
pleteness, the time history of the components of displacement at position X = [0.4, 0,−0.03]T

m (i.e. one end of the gripper) are also monitored in Figure 22.
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Figure 20: Gripper: problem setup

7.6. Spherical ball

In this last example, we demonstrate the robustness of the {p,F ,H , J, E} Upwind-SPH
algorithm on a thin-walled structure. The geometry and problem setup are shown in Figure
23. A spherical ball, with an unsymmetrical hole pattern, is initially punched on its top surface
with a velocity field of

v
∣∣∣
t=0

=

 0
0
−1.5

 m/s. (95)

For consideration of thermal effects, the ball is initially subjected to a uniform temperature

profile of θ
∣∣∣
t=0

= θR, in combination with a boundary heat flux prescribed on the inner surface

of the ball as
QB(t) = 470.871 (KW/m2) t ≥ 0 s, (96)

A polyconvex modified entropic elasticity is used with the material properties chosen as
Young’s modulus E = 17 MPa, density ρR = 1100 kg/m3, Poisson’s ratio ν = 0.3, thermal
conductivity h = 0.2 Wm−1K−1, specific heat capacity Cv = 1000 Jkg−1K−1, thermal expansion
coefficient α = 2.223× 10−4K−1 and reference temperature θR = 293.15 K.

Figure 24 shows the time evolution of the deformations of a ball. Again, very smooth
pressure and temperature profiles are seen throughout the entire structure. Neither hour-
glassing nor spurious instabilities are observed.

8. Conclusions

In this paper, a new Smooth Particle Hydrodynamics computational framework bas been
introduced for the analysis of fast transient solid dynamics in the context of thermo-elasticity.
In addition to conservation laws for the linear momentum p, the deformation gradient F , its co-
factorH and its Jacobian J , previously used [1–3] in isothermal elasticity, a further conservation
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Figure 21: Gripper: a sequence of deformed configurations with temperature and pressure distributions at
t = 0.47 s. Results obtained using a polyconvex Mie-Grüneisen equation of state. The material properties used
are Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.45, thermal conductivity
h = 10 Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion coefficient α = 2.223×10−4K−1

and αCFL = 0.3.
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Figure 22: Gripper: time evolution of the components of displacement profile at material point X =
[0.4, 0,−0.03]T m. Results obtained using a polyconvex Mie-Grüneisen equation of state. The material prop-
erties used are Young’s modulus E = 50.05 KPa, density ρR = 1000 kg/m3, Poisson’s ratio ν = 0.45, ther-
mal conductivity h = 10 Wm−1K−1, specific heat capacity Cv = 1 Jkg−1K−1, thermal expansion coefficient
α = 2.223× 10−4K−1 and αCFL = 0.3.

Figure 23: Spherical ball: problem setup
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Side view Top view Front view

Figure 24: Spherical ball: a sequence of deformed configurations with temperature and pressure distributions
at time t = 0.042 s and t = 0.01∗{0, 1, 2, 3, 4, 4.2} s (left to right-top to bottom), respectively. Results obtained
using a polyconvex modified entropic-elastic model. The material properties used are Young’s modulus E = 17
MPa, density ρR = 1100 kg/m3, Poisson’s ratio ν = 0.3, thermal conductivity h = 0.2 Wm−1K−1, specific heat
capacity Cv = 1000 Jkg−1K−1, thermal expansion coefficient α = 2.223× 10−4K−1 and αCFL = 0.3.
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law, representing the first law of thermodynamics in terms of the total energy density E, is
incorporated to extend the range of applications into thermally coupled hyperelasticity.

From the continuum standpoint, the methodology is built upon the careful definition of
polyconvex internal energy density functionals with respect to the extended set {F ,H , J, η}
by establishing sufficient conditions on the internal energy density and the entropy, when both
are measured at a reference temperature. From the discretisation point of view, an explicit
Smooth Particle Hydrodynamics is presented where consistent Riemann-based (upwinding)
numerical stabilisation is introduced satisfying local numerical entropy production, the latter
demonstrated by monitoring the so-called ballistic energy of the system.

A wide spectrum of numerical examples is presented in order to assess the applicability
and robustness of the proposed formulation. Crucially, both velocities, stresses (volumetric
and deviatoric) and total energy display the same (second order) rate of convergence. For the
sake of completeness, the scheme is compared against an alternative and equally competitive
entropy-based implementation {p,F ,H , J, η}.

Appendix A. Derivation of suitable conjugate entropy variables to {p, F ,H, J, E}

In the context of thermo-elasticity, a generalised convex entropy function, namely the bal-
listic energy, is expressed in terms of linear momentum p, the triplet of deformation measures
X = {F ,H , J} and total energy density E as15

B(p,XE) = E − θRη̂(p,XE); XE = {X , E}. (A.1)

Recalling that Ê(X , η̂(p,XE)) = E − 1
2ρR
p ·p [50], the entropy η̂(p,XE) is obtained implicitly

via the expression ϕ(p,XE, η̂) generally defined as [76]

0 = ϕ(p,XE, η̂) = Ê(X , η̂)−
(
E − 1

2ρR
p · p

)
. (A.2)

Differentiating B(p,XE) (A.1) gives the conjugate entropy variables V as

V =
∂B(p,XE)

∂U =



∂B
∂p

∂B
∂F

∂B
∂H

∂B
∂J

∂B
∂E


=


Γp

ΓF

ΓH

ΓJ
ΓE

 =


−θR ∂η̂(p,XE)

∂p

−θR ∂η̂(p,XE)
∂F

−θR ∂η̂(p,XE)
∂H

−θR ∂η̂(p,XE)
∂J

1− θR ∂η̂(p,XE)
∂E

 . (A.3)

Moreover, derivatives of η̂(p,XE) can now be obtained by differentiating ϕ (A.2) with
respect to each component of U . For instance, the derivative of η̂(p,XE) with respect to p is
achieved using the chain rule to give

0 =
∂ϕ(p,XE, η̂(p,XE))

∂p
+
∂ϕ(p,XE, η̂)

∂η̂

∂η̂(p,XE)

∂p
. (A.4a)

15As shown by Wagner in [76], the function −η̂(p,XE) is convex in p and XE .
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Since ∂ϕ(p,XE ,η̂)
∂η̂

= ∂Ê(X ,η̂)
∂η̂

= θ, equation above after rearranging becomes

− ∂η̂(p,XE)

∂p
=

(
∂ϕ

∂η̂

)−1
∂ϕ

∂p
=
v

θ
. (A.5)

Repeating the same procedure on the derivatives of η̂ with respect to F , H , J and E,
results in

−∂η̂(p,XE)

∂F
=

(
∂ϕ

∂η̂

)−1
∂ϕ

∂F
=

1

θ
ΣF ; (A.6a)

−∂η̂(p,XE)

∂H
=

(
∂ϕ

∂η̂

)−1
∂ϕ

∂H
=

1

θ
ΣH ; (A.6b)

−∂η̂(p,XE)

∂J
=

(
∂ϕ

∂η̂

)−1
∂ϕ

∂J
=

1

θ
ΣJ ; (A.6c)

−∂η̂(p,XE)

∂E
=

(
∂ϕ

∂η̂

)−1
∂ϕ

∂E
=

1

θ
. (A.6d)

Finally, by combining equations (A.6) and (A.3), components of the conjugate entropy
variables become

Γp =
θR
θ
v; ΓF =

θR
θ

ΣF ; ΓH =
θR
θ

ΣH ; ΓJ =
θR
θ

ΣJ ; ΓE =
ϑ

θ
. (A.7)
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