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Abstract

Sentiment analysis assigns a positive, negative or neutral polarity to an item
or entity, extracting and aggregating individual opinions from their textual expres-
sions by means of natural language processing tools. In this paper we observe that
current sentiment analysis techniques are satisfactory in case there is a single entity
under consideration, but can lead to inaccurate or wrong results when dealing with
a set of multiple items. We argue in favor of importing techniques from voting
theory and preference aggregation to provide a more accurate definition of the col-
lective sentiment over a set of multiple items. We propose a notion of Borda count
which combines individuals’ sentiment with comparative preference information,
we show that this class of rules satisfies a number of properties which have a nat-
ural interpretation in the sentiment analysis domain, and we evaluate its behavior
when faced with highly incomplete domains.

1 Introduction
We live in a world where we communicate more and more on social media, writing
text that reflects our opinions and feelings. Being able to formalize such opinions
and reason with them can be very useful for a number of practical applications. First,
service providers may personalize their offer based on customers opinions. Second,
companies may test what products would be better received by potential consumers,
and adjust their strategy accordingly. Third, community councils and candidates in
political elections may evaluate the reception of their proposals, and focus their atten-
tion on the most preferred ones. It comes therefore as no surprise that the extraction
of individual opinions from textual expressions, such as tweets, blog posts, or product
reviews, has been the subject of a very active area of research in recent years.
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Researchers in sentiment analysis and opinion mining (34; 40) developed a collec-
tion of tools in natural language processing (NLP) for the extraction of opinions, senti-
ments, or attitudes of individuals from their textual expressions. In order to summarize
the opinion of all the individuals in a unique indicator, the opinions extracted are then
used to define a notion of collective sentiment about the entities under consideration,
be they commercial products, policies or candidates.

In this paper we observe that current sentiment analysis techniques are good enough
when we are trying to understand the positive or negative opinion of a set of agents
over a single item, but they fall short when we are considering several items. Our
claim stems from the observation that, when several items are being compared, the
approach taken by sentiment analysis of only focusing on positive or neutral polarities
may differ from the approach that computes the most preferred item by making use of
comparative preference information. Consider for instance the following situation, in
which two candidates Ann and Bob are competing in an election.

Example 1. Assume there are a total of 35 people who are expressing their positive or
negative attitude on social media about two candidates Ann and Bob: 20 persons are
talking positively about Ann, 15 persons are talking negatively about Ann, 30 persons
are talking positively about Bob, and 5 persons are talking negatively about Bob. How-
ever, what people write on social media is just a textual abstraction of the comparative
preferences they have in mind, which in this particular case we assume to be a ranked
list of the two candidates. Assume therefore that their preferences are as described in
the following table, where candidates to the left are more preferred than candidates to
the right, and the bar signals the threshold of positive vs. negative opinions:

20 voters: Ann Bob |
10 voters: Bob | Ann
5 voters: | Ann Bob

Sentiment analysis Bob
Majority rule Ann

In the profile described above there are 30 voters that express a positive opinion about
Bob, and 20 voters that express a similar opinion about Ann. Hence, sentiment analy-
sis, as well as similar methods based solely on sentiment information, would conclude
that Bob is the most popular candidate. However, if we assume that the election will be
decided by majority voting (which is the only sensible rule to be used when deciding
among two candidates), then Ann will be the winner of the election with 25 votes over
10 for Bob, unlike the outcome of sentiment analysis. Observe that the positive/negative
opinions expressed by the individuals are consistent with the preferences that will then
be revealed at the time of voting.

The situation above is a good example of the use of sentiment analysis and pref-
erence aggregation for the prediction of a real-world event. In this particular case, a
prediction of an electoral result is being based on the number of positive opinions ex-
tracted from voters. Similar examples can also be devised to point out a problem in
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situations of decision-making: think of Ann and Bob as two products that a firm is
considering to promote, and the sentiment and preferences expressed in the table be
those extracted from conversations and reviews of its customers. When the firm needs
to decide which of the two products to invest in, sentiment analysis and preference
aggregation would give two different recommendations.

The first message of this paper is that all these considerations can be phrased in the
framework of preference analysis (43; 28) and voting theory (4). For instance, senti-
ment analysis as presented in the example above uses a preference aggregation method
called approval voting (11), which is based only on positive or negative opinions ex-
pressed over candidates. Text-extracted opinions may present both polarities and pref-
erence orderings, and the main contribution of this paper is to propose a definition of
collective sentiment that makes use of both kinds of information.

Building on the classical Borda count (see, e.g., (10)) we define and study a class
of voting rules that aggregate both polarities and preference orderings into a collective
sentiment, taking into account the incompleteness inherent in text-extracted opinions,
where each individual may refer only to some of the items under consideration. We
study the behavior of this class of rules from a decision-theoretic perspective. First, we
list a number of properties that are desirable in the context of sentiment analysis, and
we show that our proposed rules satisfy all such conditions. Second, we perform exper-
iments to quantify the discrepancy between classical sentiment analysis techniques and
our proposed rule, and we investigate its behavior with respect to partial information.
The results we obtain indicate that our proposed Borda count not only satisfies a list of
desirable properties when its outcome is used as a basis for decision-making, but also
it is computationally tractable and it behaves well in highly incomplete domains.

To the best of our knowledge this paper is the first attempt to apply techniques
from preference aggregation and voting theory to sentiment analysis over multiple is-
sues. Related work has focused on sketching a road map for developing sentiment
analysis as an alternative to opinion polls for the prediction of electoral results (37), fo-
cusing however on the statistical significance of the population studied rather than on
the aggregation method used. Preference aggregation techniques have been used with
success in other areas of computer science such as human computation and collective
annotation of textual corpora (21; 35), and on developing procedures for collective de-
cision making that are able to handle incomplete preferences (42; 44). A line of work
which is similar in spirit to the one proposed in this paper is the work of Brams and San-
ver (9) in social choice theory, albeit for the specific setting of committee decisions and
elections. We refer to Section 4.3 for a more detailed discussion of this approach. We
also acknowledge the work of Garg et al. (26) on opinion pooling, which is however
focused on the aggregation of probabilistic opinions. The present work expands our
previous position paper on the use of preferences and voting techniques in sentiment
analysis (27).

The paper is organized as follows. In Section 2 we present the basic concepts and
definitions of the framework of sentiment analysis and that of voting theory. In Sec-
tion 3 we provide a formal definition of preferential information extracted from text,
we formalize the two classical approaches of sentiment analysis and voting theory, and
we present our novel definition of preference structure that combines sentiment with
comparative preference. In Section 4 we put forward our definition of a Borda count
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for collective sentiment analysis and we evaluate rules from this class from both an
axiomatic and an algorithmic perspective. Section 5 presents an experimental analysis
of the differences between classical sentiment analysis and our proposed Borda count,
and evaluates it in conditions of data sparsity. Section 6 concludes the paper and points
at a number of challenges for future work in applying techniques from preference ag-
gregation and voting theory to the domain of sentiment analysis.

2 Background
In this section we present the basic definitions of sentiment analysis, voting theory and
preference aggregation.

2.1 Sentiment Analysis
Sentiment analysis and opinion mining (40; 34) is a collection of techniques for the
extraction of people’s opinions, sentiments, and evaluations from textual expressions.
A set of entities or alternatives X is defined as the sentiment targets, and individual
opinions about entities in X are extracted from a given set of product reviews, blog
posts or other sources of textual information.

Formally, two forms of opinions can be identified:

Definition 1. (33) A regular opinion is a tuple (g, s, h, t) where g is the sentiment
target, s is the sentiment about the target, h is the opinion holder and t is the opinion
time.

Definition 2. (30) A comparative opinion (e1, e2, pa, h, t) is a tuple where e1 and e2
are two entities that are being compared, pa is the preferred alternative among e1 and
e2, h is the opinion holder and t the time.

Sentiment targets are also called entities or items, and can be anything such as
products, policies or persons. The sentiment s in a regular opinion is usually taken to
be a positive, negative or neutral polarity, i.e., an element of {+,−, 0}, although recent
developments are directed to a more general setting of graded polarity such as a “five-
stars” scale or numerical score (22). The opinion holder h is the individual who wrote
a text expressing sentiment s, and the time t is the moment at which h wrote the text.
In this paper we will not make use of the temporal information, but we refer the reader
to Section 6 for further discussion on the important role that temporal information may
play in the development of principled notions of collective sentiment.

The objective of sentiment analysis is to extract all possible opinion tuples as in
Definitions 1 and 2. Popular approaches to perform this task use a bag of words ex-
tracted from a tagged corpus of positive sentences, and then count in a more or less
complex way the presence of such positive words in untagged documents (41). Ma-
chine learning techniques such as naive Bayes approaches and sentiment classificators
built using semi-supervised learning are also widely used for these tasks (see, e.g.,
(41; 5) for regular opinions and (30; 25) for comparative opinions).

A notion of collective sentiment aggregates individuals’ opinions into a collective
view, and it is usually expressed as a polarity. The most common approaches define the
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collective sentiment as a positive sentiment if the number of positive opinions about
the item outnumbers the number of negative opinions. When more than one item is
considered, each textual expression is classified as positive, negative or neutral, and the
items with the largest number of positive expressions are declared as the most preferred
ones according to the collective opinion (see, e.g., (38; 6; 13)).

2.2 Voting Theory
There is a wide literature in the field of economic theory and, more recently, artificial
intelligence, which studies the problem of aggregating the preferences of a set of agents
into a common collective choice or preference (4). Formally, the problem is defined
by a set of individuals I expressing preferences over a number of alternatives X , and
by a voting rule F which associates a set of winning candidates with such preferences.
Preferences can be specified in many different ways, for instance rankings, approvals
or a set of binary comparisons. In this paper we consider two such definitions. The first
and more common approach represents preferences as linear orders, i.e., transitive,
anti-symmetric and complete binary relations over X . A profile of preferences P =
(<1, . . . , <n) is defined by the choice of a preference relation <i for each of the n
individuals. We write a <i b to denote that agent i prefers item b to item a in profile
P . A (non-resolute) voting rule F associates with every profile P a non-empty subset
of winning candidates F (P ) ∈ 2X \ ∅. A large number of voting rules have been
proposed in the literature (see, e.g., Brams and Fishburn, (10)), and we now present the
definition of a widely used procedure that we will later use to ground our definition of
collective sentiment:

Definition 3 (Borda rule). Given a linear order <i for each i ∈ I, the Borda rule
assigns to each alternative c ∈ X one point for each alternative that is ranked lower
than c in <i, and then takes the sum over all individuals. The alternatives with the
highest overall score are elected as the winners.

The Borda rule is a widely studied voting procedure that can easily be adapted to
different preference models, such as orders with ties (23) and partial orders (24; 1; 16).
An axiomatic characterization of this rule was first presented by Young (45).

The second approach that we will consider represents individual preferences as a set
of approved alternatives. In this case, the only information collected from individuals
is whether they approve or not a given alternative, and the following procedure is used
to decide the winning alternative:

Definition 4 (Approval voting). Given a subset of approved alternatives Ai ⊆ X for
each i ∈ I, the winners of approval voting are the candidates that receive the highest
number of approvals.

Despite its simple definition, approval voting has been the subject of an extensive
literature since its first appearance (see, e.g., (32)).

Both approval voting and the Borda rule can be adapted to output a ranking of the
candidates (from higher to lower score) transforming the two voting rules into social
welfare functions (43), i.e., functions which associate with every profile of preferences
a ranking of the alternatives.

5



Research in voting theory and preference aggregation has focused on the evaluation
of different definitions of collective preference, either by means of axiomatic proper-
ties that specify desirable characteristics of the outcome of aggregation, by running
experiments on realistic preference distributions, or by analyzing their computational
properties such as the complexity of determining the winner (4; 12). We refer to Sec-
tion 4.1 and 4.4 for a more detailed discussion of these aspects.

3 How to model individuals’ opinions
Sentiment analysis and preference aggregation take two different approaches in the
representation of absolute and comparative preferential information that is extracted
from individual data. The aim of this section is to formally define these two approaches,
and to propose a novel structure for preference representation that combines sentiment
polarity with comparative preferences.

3.1 Individual data
We assume to have collected a set of textual expressions Ti for every individual i ∈ I,
and that exploiting tools from NLP we are able to extract regular opinions expressed
by individuals about the entities in a set X in the form of a score (see Definition 1), as
well as comparative opinions in the form of binary comparisons (see Definition 2).

Definition 5. The individual data extracted from a set of individual expressions Ti is a
tuple (σi,6Pi ,6

N
i ) where:

• σi : Di → R is a function defined on a subset of entities Di ⊆ X representing
all regular opinions, i.e., degrees of positive and negative opinions over entities;

• 6Pi is a preorder with domain Pi ⊆ X , representing the set of positive compar-
ative opinions of individual i;

• 6Ni is a preorder with domain Ni ⊆ X representing the set of negative compar-
ative opinions of individual i.

We make the further assumption that the individual data is always coherent, i.e.,
the sets Pi and Ni are disjoint sets and when entities a and b are in Pi (resp. Ni)
then both σi(a) and σi(b) are positive numbers (resp. negative), and also that a 66Pi b
(resp. a 66Ni b) if σi(b) < σi(a). Observe moreover that the sets Di, Pi and Ni may
have non-empty intersection.

Example 2. A company wants to evaluate three products of different colors: red (R),
green (G) and blue (B). A corpora of textual expressions by three individuals is col-
lected and the individual data extracted is as follows. The first individual has a positive
opinion about all three products R,G,B, but the degree of these opinions is slightly
different: we extract a score of 5 for product R, a score of 4 for entities G and B,
and no pairwise comparison among the products. The second individual has a positive
score of 1 about product G while expressing a negative opinion about the other two
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colors. She also expresses a direct preference ofR overB. Finally, the third individual
has a neutral opinion aboutR andB, while she considers alternativeG negatively with
a score of −4. We can summarize the opinions extracted from the three individuals in
the terminology of our Definition 5:

• Individual 1: σ1(R) = 5, σ1(G) = σ1(B) = 4 and P1 = N1 = ∅;

• Individual 2: σ2(G) = 1, P2 = ∅, and N2 = {R,B} with B 6N2 R;

• Individual 3: σ3(R) = σ3(B) = 0, σ3(G) = −4, and P3 = N3 = ∅.

3.2 The sentiment analysis approach
Sentiment analysis (at least in its most common implementation) disregards the inten-
sity of sentiment as well as the comparative opinions, focusing only on the extraction
of a positive, negative or neutral polarity from individual expressions.

Definition 6. Given individual data (σi,6Pi ,6
N
i ) extracted from individual expres-

sions Ti, the pure sentiment data associated with it is a function Senti : Ei →
{+,−, 0}, where Ei = Di ∪ Pi ∪Ni, defined as:

Senti(c) =


sgn(σi(c)) if c ∈ Di

0 if σi(c) = 0

+ if c ∈ Pi
− if c ∈ Ni

After the information about the individual sentiments have been extracted, the most
common approach in the definition of the collective sentiment is to choose the entities
with the largest amount of positive opinions, disregarding the number of negative opin-
ions.

Example 3. The pure sentiment data associated with Example 2 is the following:

• Individual 1: Sent1(R) = Sent1(G) = Sent1(B) = +

• Individual 2: Sent2(G) = + and Sent2(R) = Sent2(B) = −

• Individual 3: Sent3(R) = Sent3(B) = 0 and Sent3(G) = −

Using approval voting as a definition of the collective sentiment we obtain G as the
most preferred entity, with two positive opinions received. With the same method we
can easily construct a collective ranking of the entities, obtaining R and B tied in the
second position with just one positive opinion received.
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3.3 The voting theory approach
While sentiment analysis focuses only on polarities, the other extreme of the spectrum
is the approach of voting theory, that is restricted to comparative preference informa-
tion only. For the purpose of this paper we represent individual preferences by using
preorders, i.e., reflexive and transitive binary relations. This choice is motivated by two
important characteristics of preferences extracted from textual expressions:

• Interpersonal incomparability: Since individuals have very different styles of
writing or attitudes towards judging the entities under consideration, we believe
that scores or any other form of graded polarity cannot be compared across indi-
viduals. Therefore we argue in favor of an ordinal representation of both regular
and comparative opinions.

• Incompleteness: Since preferences and sentiments are observed from individual
expressions we cannot assume this information to be complete.

Formally, we can define the voting theory approach as follows:

Definition 7. Given the individual data (σi,6Pi ,6
N
i ) extracted from individual ex-

pressions Ti, the pure preference data associated with it is a preordered set (Di,6Di ),
where Di = Di ∪ Pi ∪Ni, defined as:

x 6Di y ⇔


x 6Pi y and x, y ∈ Pi or
x 6Ni y and x, y ∈ Ni or
x ∈ Ni and y ∈ Pi or
σi(x) 6 σi(y) and x, y ∈ Di

Pure preference data is thus the union of the comparative opinions extracted from
the ordinal relation entailed by σi, with the addition of all the binary comparisons
between elements from Pi and elements from Ni.

Example 4. The pure preference data associated with Example 2 is the following:

• Individual 1: B ∼1 G <1 R

• Individual 2: B <2 R <2 G

• Individual 3: G <3 B ∼ R

Where G < R stands for G 6 R and R 66 G, and G ∼ R stands for G 6 R and
R 6 G. Using a straightforward adaptation of the Borda rule to preorders, we obtain
B < G < R as the collective ranking: R receives 4 points, one for each alternative
that is strictly ranked below by one of the individuals, G receives 2 points, and B only
1 point.
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3.4 Combining Sentiment with Preference
In this section we propose a novel structure that combines features from both the sen-
timent analysis approach and the voting theory approach presented in the previous two
sections. On the one hand we take binary comparisons as central to our analysis, us-
ing preorders to represent comparative preferential information. On the other hand,
we complement this representation with a classification of the alternatives into three
disjoint sets representing the positive, negative and neutral polarity:

Definition 8. An SP-structure (for Sentiment-Preference structure) over a set of candi-
dates X is a tuple S = (P,N ,Z), where P , N and Z are disjoint subsets of X , and
both P and N are ordered respectively by preorders 6P and 6N .

An SP-structure indicates the subsets of positive (P), negative (N ) and neutral
(Z) candidates among the set of entities X , and specifies a set of binary comparisons
between positive or negative candidates. The remaining elements of X \ (P ∪N ∪Z)
are those alternatives for which no information has been collected.

We obtain SP-structures from individual data as follows:

Definition 9. Let (σi,6Pi ,6
N
i ) be the individual data extracted from individual ex-

pressions Ti. The SP-structure associated with it is the tuple (Pi,Ni,Zi):

• Pi = Pi ∪D+
i where D+

i = {x ∈ Di | σi(x) > 0}

• Ni = Ni ∪D−i where D−i = {x ∈ Di | σi(x) < 0}

• Zi = {x ∈ Di | σi(x) = 0}

with preorder relations defined as follows:

x 6Pi y ⇔

{
x 6Pi y and x, y ∈ Pi or
σi(x) 6 σi(y) and x, y ∈ D+

i

x 6Ni y ⇔

{
x 6Ni y and x, y ∈ Ni or
σi(x) 6 σi(y) and x, y ∈ D−i

Example 5. The SP-structures associated with Example 2 are the following:

• Individual 1: P1 = {R,G,B} with G 6P1 R and G ∼P1 B, N1 = Z1 = ∅

• Individual 2: P2 = {G}, N2 = {R,B} with B 6N2 R, Z2 = ∅

• Individual 3: P3 = ∅, N3 = {G} and Z3 = {R,B}

SP-structures can be easily visualized, and in Figure 1 we draw the three structures
described above. Alternatives that are in higher positions in the table are preferred
to those that are in lower positions, and the three sets P , Z and N are separated by
horizontal lines.
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Individual 1 Individual 2 Individual 3

R
P|

G ∼ B G

R,B Z
R G

N|
B

Figure 1: SP-structures associated with Example 2.

In conclusion, an SP-structure compactly represents both sentiment information in
the form of three polarity sets, as well as comparative opinions in the two preorders
over the positive and negative sets. SP-structures are based on a purely ordinal view of
preferences, hence assuming a very low degree of interpersonal comparability among
individuals’ preferences. This assumption could be relaxed by, for instance, normal-
izing the scores extracted from the individual data, or directly using them in the con-
struction of the collective sentiment. While these approaches may fit some particular
applications, they require additional important assumptions when merging comparative
opinions, which are of an ordinal nature, with the possibly normalized scores used to
represent regular opinions.

4 Borda counts for aggregating SP-structures
In order to aggregate SP-structures, and therefore put forward our definition of col-
lective sentiment, in this section we define a class of aggregation procedures based on
the classical Borda count (see Definition 3). We begin by introducing a list of prop-
erties which are desirable in the context of sentiment analysis, and then put forward
our definition of aggregation method. We show that this method satisfies all the desir-
able properties we introduced and that it generalizes both the existing definition used by
sentiment analysis and the classical Borda rule in preference aggregation. We conclude
the section with a study of the algorithmic aspects of our proposed Borda count.

4.1 Desired Axiomatic Properties
The axiomatic method consists in first specifying a number of desirable properties
about the problem at hand, and then show a solution that satisfies them, or prove that
there exists none. In this section we adapt classical axiomatic properties from the
literature in social choice theory to the case of SP-structures, providing a suitable in-
terpretation in the domain of sentiment analysis. We build on the axiomatization of the
Borda rule proposed by Young (45), which we complement with axioms specific to our
domain of application.
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We first need to introduce some useful notation. Let us call a collection of SP-
structures (S1, . . . , Sn) a profile, which we denote by S. If S1 and S2 are pro-
files of SP-structures, let S1 + S2 be the profile obtained by putting together the
two original profiles (renaming voters if necessary), i.e. if S1 = (P1, . . . , Pn) and
S2 = (Q1, . . . , Qm), then S1 + S2 = (P1, . . . , Pn, Q1, . . . , Qm). A profile is called
symmetric if the set of individuals can be partitioned in pairs of individuals {i, i′}
with completely opposite SP-structures, i.e., if Pi = Ni′ , Ni = Pi′ , 6Pi =

←−−
6Ni′ and

6Ni =
←−
6Pi′ , where 6Pi =

←−−
6Ni′ means that the preorder over the set P for voter i is

equal to the inverted preorder over the set N of voter i′. A symmetric profile neces-
sarly contains an even number of SP-structures. Finally, given a single SP-structure
S = (P,N ,Z), we say that a voter i ranks a above b in S if one of the following
four conditions holds: b 6Pi a and a 66Pi b, or b 6Ni a and a 66Ni b, or a ∈ P and
b ∈ Z ∪N , or a ∈ Z and b ∈ N .

Let F be a rule which associates a set of most preferred alternatives with a profile
of SP-structures. We now list a number of desirable properties for such an aggregation
rule F .

The first set of properties is an adaptations of classical axioms from social choice
theory, regarding the equality of treatment of alternatives and individuals:

• Neutrality: For any profile S and permutation of entities ρ : X → X , we have
that F (Sρ) = ρ(F (S)), where Sρ is profile S with alternatives in X renamed
by ρ.

• Anonymity: For any profile S and permutation of individuals ρ : I → I, we
have that F (Sρ(1), . . . , Sρ(n)) = F (S1, . . . , Sn).

Neutrality requires that if we rename the items in X , the result should be the renaming
of the initial result. Anonymity instead formalizes the fact that the collective opinion
should not depend on the name of the individuals. The following two properties pro-
vide requirements on how to treat consensus and total disagreement in the individual
preferences:

• Weak-Pareto: If S is a profile in which all individuals rank a above b, then
b 6∈ F (S).

• Cancellation. If a profile S is symmetric then all entities are in the winning set,
i.e., F (S) = X .

The weak-Pareto property is a fundamental property when aggregating individuals’
preferences: agreement among all individuals should be reflected in the collective
opinion. Cancellation requires instead that if the disagreement is so extreme, as in
a symmetric profile where individuals come in pairs whose preferences cancel each
other out, then all items should be declared as the most preferred ones in the collective
opinion.
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The following two properties formalize the requirement that more information col-
lected over an individual’s preferences should lead to a result that is more preferred by
that individual:

• Voters participation: For all profiles S = (S1, . . . , Sn) and SP-structure Sn+1,
any candidate in F (S + Sn+1) \ F (S) is ranked in higher or same position
than any candidate in F (S) in the preferences of voter n+ 1.

• Rank participation: For all profiles S = (S1, . . . , Sn) and SP-structure S′ ⊂
Sn, any candidate in F (S) \ F (S−n + S′) is ranked in higher or same position
than any candidate in F (S−n + S′) in the preferences of voter n.1

In the classical voting theory context, participation means that voters have an incentive
to participate (39). In a sentiment analysis context individuals have already expressed
their opinion, so we do not need to favor their participation. However, the first prop-
erty tells us that considering one more individual in the computation of the collective
sentiment should result in a candidate that is higher in her ranking. In a similar way,
the second property requires that more information on an individual’s opinion lead to
results that the individual ranks higher.

Finally, the following property formalizes the possibility of using techniques such
as map-reduce (18) in particular profiles, for a more efficient computation of the set of
most preferred alternatives:

• Consistency: For all profiles S1 and S2, if F (S1) ∩ F (S2) 6= ∅ then F (S1 +
S2) = F (S1) ∩ F (S2).

Consistency can be an important property in an application domain where one needs to
deal with big quantities of data, such as sentiment analysis. It tells us that if we manage
to partition the (possibly very large set of) individual opinions into smaller sets which
have some best candidate in common, perhaps by means of a proper heuristic, then
we can work on the elements of the partition independently. Thus divide and conquer
approaches are possible, which parallelize and possibly speed up the computation.

All properties presented above are adapted from the literature on social choice the-
ory (4). Not all combinations of axiomatic properties are feasible: for instance, the
well-known Arrow’s Theorem showed that it is not possible to aggregate linear orders
using a rule that satisfies three simple desirable properties (namely, a weaker version of
anonymity, an additional property called independence of irrelevant alternatives, and
weak-Pareto) (3). This is not the case for the list of axioms presented above, as we will
show in the following sections.

4.2 The B∗α Rule
In this section we propose a parameterized class of aggregation procedures for pro-
files of SP-structures that builds on the classical Borda count, taking into account the

1Inclusions of SP-structures is defined as inclusions of preorders, and S−n represents profile S without
SP-structure Sn.

12



incompleteness of the ordering and the additional information given by the sentiment
polarity expressed by the individuals.

Definition 10. Given an SP-structure S = (P,N ,Z) over X , the s∗α-score of an entity
c ∈ X in S is defined as follows:

s∗α(c, S) =


α1|downP(c)|+ α2| incP(c)|+ α3|Z|+ α4 if c ∈ P
−α1|upN (c)| − α2| incN (c)| − α3|Z| − α4 if c ∈ N
0 if c 6∈ P ∪ N

Where α = (α1, α2, α3, α4) with α1, α2, α3, α4 ∈ R+. If c in P , downP(c) is the set
of elements of N that are less preferred than c, upP(c) is the set of elements of P that
are more preferred than c, and incP(c) is defined as the the set of elements that are
incomparable to c in P (in N , respectively, for downN , upN and incN ). We will omit
the reference to S when it is clear from the context.

The s∗α-score is defined as a parametrized class of scoring functions over SP-
structures. It combines the approach from sentiment analysis, giving α4 points to each
alternative in the positive set and −α4 to all those in the negative set, with a general-
ization of the classical Borda rule, giving α1 points to an alternative for all those that
are ranked below, α2 points for those ranked incomparable, and α3 points for those al-
ternatives that are in the neutral set (negative points if the alternative is in the negative
set).

Note that no point is given to entities for which an individual has a neutral sentiment
or for which she does not have any opinion. We are hence assuming that all score
variables are initialized to 0, while an equivalent formulation could leave unspecified
the score of alternatives for which no opinion has been extracted. The main difference
between alternatives in Z and alternatives in X \ (P ∪ N ∪ Z) is that the former
do contribute to the score of alternatives in the positive or in the negative set via the
parameter α3, while the latter are not taken into consideration when assigning scores
to alternatives.

The use of a score may at first seems counterintuitive given our discussion in Sec-
tion 3 on the interpersonal incomparability of preferential information. However, what
is being represented in the s∗α-score is purely ordinal information about the number of
alternatives being more or less preferred to others, and should not be confused with
the intensity of preference that could have been expressed in the individual data via the
scoring function σi.

To exemplify the flexibility of our setting, we can consider several assumptions on
the α vector that the modeler can choose, depending on the application at hand. For
instance, assuming α1 > α2 and α3 > α2 will make sure that more points are given
to alternatives that are strictly preferred to others than to those that are incomparable.
Another possibility is to assume that the score difference between two successive ele-
ments in the positive or negative part should be less than the score difference between
the least positive and the best negative elements, for instance when 2α4 > α1. If these
two figures were equal, then the s∗α-score would be equivalent to the classical Borda
score when the set Z is empty, disregarding the sentiment information.
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Definition 11. The score of an entity c ∈ X in the profile of SP-structures S = {Si =
(Pi,Ni,Zi) | i ∈ I} is defined as follows:

S∗α(c,S) =
∑
i∈I

s∗α(c, Si)

where s∗α(c, Si) is s∗α-score of alternative c in the SP-structure Si. The winners of the
B∗α rule are the candidates with maximal total score:

B∗α(S) = argmax
c∈X

S∗α(c,S)

Example 6. Let the parameters in α be α1 = α4 = 2 and α2 = α3 = 1, and therefore
let the corresponding score be as follows

s∗(2,1,1,2)(c, S) =


2× | downP(c)|+ | incP(c)|+ |Z|+ 2 if c ∈ Pi
−2× | upN (c)| − | incN (c)| − |Z| − 2 if c ∈ Ni
0 if c 6∈ Pi ∪Ni

The winner of B∗(2,1,1,2) on the profile of SP-structures associated with Example 2
is R. Indeed, the score s∗(2,1,1,2)(R) = 4 since there are 2 elements ranked below R in
the positive part by the first individual (4 + 2 points), and R is ranked in the negative
side by individual 2 (-2 point). G follows with a score of 1 since there is one element
incomparable in the positive part by the first individual (1 + 2 points), G is ranked
in the positive side by individual 2 (+2 point) and G is ranked in the negative side by
individual 3 with 2 elements in the neutral set (-2-2 points). B is the worst preferred
alternative with a score of −1, obtaining 3 points by individual one, -4 points by the
second individual and 0 points by the third individual.

4.3 Axiomatic analysis
We begin by showing that our Borda count generalizes the existing approaches used
by sentiment analysis and preference aggregation. Let us first introduce some notation.
Call a profile purely preferential if, for all i ∈ I, the set Pi is equal to X and is
linearly ordered, i.e., 6Pi is anti-symmetric, transitive and complete. Call a profile
purely sentimental if for all i ∈ I the two sets Pi and Zi form a partition of X , and the
candidates in Pi are all incomparable, i.e., the relation 6Pi is empty, and the set Ni is
also empty. We now show that B∗α coincides with the Borda rule on purely preferential
profiles, and that it coincides with approval voting on purely sentimental ones.

Theorem 1. If a profile S is purely preferential, then for all α we have that B∗α(S) =
Borda(S). If a profile S is purely sentimental, then for all α such that α2 = α3 we
have that B∗α(S) = Approval(S).

Proof. Let S be a purely preferential profile, i.e., all individuals are expressing a linear
order over entities in X which are all in P . Let SB(c,B) be the classical Borda score,
i.e., the number of candidates ranked below c. Since in a purely preferential profile
there are no alternatives that are incomparable to each other, and the sets N and Z are
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empty, the score S∗α(c) = α1S
B(c) + α4n, where n is the number of voters. Since n

is constant then the two rules elect the same candidates, no matter the value of α1 and
α4.

Let now S be a purely sentimental profile and let SA(c) be the approval score
of an entity c, i.e., the number of individuals approving c. Since all alternatives in
Pi are incomparable, every approved entity in each single SP-structure gets a score
equal to α2(|X | − 1) + α4. To see this, it is sufficient to observe that alternatives
in Z give α3 points to alternatives in P and α2 = α3, and moreover in a purely
sentimental profile the two sets P and Z form a partition of X . Hence, we obtain that
S∗α(c) = (α2(|X |−1)+α4)·SA(c) and thusB∗α elects the same candidates as approval
voting.

Theorem 1 formalizes the fact that our proposed Borda count is a generalization of
both approaches at the extreme of the spectrum described in Section 3: a pure senti-
ment analysis approach, which uses approval voting, and a pure preference aggregation
approach, as described by the Borda rule. The result of Theorem 1 can be generalized
to profiles of partial orders to show that B∗α extends the partial Borda count defined by
Cullinan, Hsiao and Polett (16) as well as the bucket averaging method of Fagin et al.
(24).

We now show that our proposed Borda count for collective sentiment analysis sat-
isfies all the axiomatic properties presented in Section 4.1.

Theorem 2. B∗α satisfies consistency, neutrality, anonymity, voters participation, rank
participation, and cancellation for all α. If we assume that α1 > α2, then B∗α also
satisfies weak-Pareto.

Proof. For the sake of clarity we omit the reference to α where it is not necessary.
To prove that B∗α satisfies consistency it is sufficient to observe that S∗S1+S2

(c) =
S∗S1

(c) + S∗S2
(c). Those entities with maximal score in both S1 and S2 are then the

entities with maximal score in S1 + S2. Neutrality and anonymity are straightforward
consequences of our definition of S∗α.

A simple monotonicity argument can be used to prove both versions of partic-
ipation. Consider first voters-participation. Let w ∈ B∗α(S), and let Sn+1 be the
additional SP-structure. We show that the winner of the joint profile w′ is not worse in
n + 1’s ranking than w. Since we have only added information from n + 1, w′ must
have received strictly more points than w to become the new winner, and this can only
happen if agent n + 1 prefers w′ to w. The same argument can be straightforwardly
adapted to the case of rank-participation.

Finally, to prove that B∗α satisfies cancellation we observe that in a symmetric
profile all entities have score 0, since S∗α is symmetric with respect to P and N .

For weak-Pareto, there are four cases for an individual to rank a above b, and we
can show that in all cases s∗α(a) > s∗α(b) and thus that b cannot be in the winning
set. Recall that we assumed α1 > α2. Assume that b 6Pi a and a 66Pi b. If a
third alternative c is ranked below b then by transitivity c is also ranked below a, and
hence a and b get the same points from c. If c ∈ incPi(b) or c ∈ Zi then this also
gives the same points to a (or more, if c is ranked below a since α1 > α2). Finally,
downPi(b) ⊂ downPi(a) and thus a gets α1 more points than b. The case in which a
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and b are both in Ni is treated symmetrically: just consider alternatives ranked above
the two and the set upNi(a) rather than downPi(a). If we instead assume that a ∈ Pi
and b ∈ Zi ∪ Ni, then it is easy to observe that s∗α(a) > 0 while s∗α(b) 6 0 and thus
that also in this case s∗α(a) > s∗α(b). Finally, if a ∈ Zi and b ∈ Ni then s∗α(a) = 0 but
s∗α(b) < 0 since b ∈ Ni gets −α4 points and any other alternatives c ∈ Ni can only
decrease the score of b.

We conclude this section by comparing B∗α with another rule, introduced in pre-
vious work by Brams and Sanver (9), that aims at combining approval voting with
preference aggregation: fallback voting. Under this rule, each voter approves a subset
(which could be empty) of candidates and ranks them in a linear order. The winner
of fallback voting is obtained in an iterative way, by first checking whether there is a
candidate that is top-ranked by a majority of voters. If such a candidate does not exist,
then the first and the second ranked candidates in each voters’ preference are consid-
ered, and once again it is checked if there is a candidate that is ranked first or second by
a majority of the voters. The process goes on adding the third and subsequently ranked
candidates until an alternative obtains a majority of approvals. The structures used by
fallback voting to combine approvals with comparative preferences can be seen as a
special case of SP-structures, with no neutral nor negative sets and linearly ordered
items. Fallback voting may result in a different outcome than B∗α. A detailed study
of the difference between these two rules is left as future work. While fallback voting
constitutes an interesting voting rule when individuals have incentives to express their
preferences, in applications such as sentiment analysis the individual data that is col-
lected will rarely be complete (see Section 3). Hence the need for rules that are able to
handle incomplete profiles, such as our proposed B∗α.

4.4 Algorithmic properties of B∗α
In this section we analyze the algorithmic aspects of our proposed Borda count for
collective sentiment analysis. Given the envisioned application, it is important that
the basic problem of computing the most preferred alternative in a given profile be
tractable, i.e. that the computational complexity of winner determination be solvable
in polynomial time. We also provide an exact bound on the minimum number of bits
required to compute the outcome of B∗α (aka. its communication complexity) and we
show that it can be computed with an incremental algorithm.

Let us first make some considerations about the size of representing an SP-
structure. Recall that we start from a set of m alternatives or entities X , and n in-
dividuals. We assume that the sets N , P and Z are encoded with a vector of length m
containing for each alternative in X a label of 2 bits for the set to which it belongs to.
Since the setN andP are disjoint, the two preorders 6P and 6N can be represented as
binary relations on anm×mmatrix, indicating for every pair (a, b) whether a 6P b or
a 6N b. The size of a profile of SP-structures with n individuals is therefore O(nm2).

The problem of winner determination is the algorithmic task of deciding whether a
designed alternative a ∈ X is in the winning set of a given profile of SP-structures S.
This problem has been widely studied in voting theory (12), where its tractability is
often considered a requirement for a rule to be considered of practical interest. We
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now show that the winner of our proposed Borda count can be computed in polynomial
time:

Theorem 3. The winner of B∗α can be computed in time O(nm2), hence in time linear
in the size of the input.

Proof. Given a single SP-structure Si, the s∗α-score of an alternative a can be computed
in the following way. First check whether a ∈ Zi, a ∈ Pi, or a ∈ Ni, which can be
done in constant time. If a ∈ Zi then its score is 0. Otherwise we can compute its
score by first counting how many alternatives are in Zi, which can be done in O(m),
and then counting how many alternatives are ranked below a, in case a ∈ Pi, or how
many alternatives are ranked above a, if a ∈ Ni, and finally how many alternatives
are incomparable to a. All these operations can be done in O(m). We repeat this
process for each alternative a and for each individual i, obtaining the upper bound
O(nm2).

A further important algorithmic property of a voting procedure is its communica-
tion complexity, i.e. the minimal amount of bits that needs to be expressed by the
individuals in order to compute the most preferred alternatives. Previous work (15)
provided lower and upper bounds for many voting procedures including the Borda
rule, showing that the communication complexity of computing the Borda winner is
Θ(nm logm), i.e., lower and upper bounds are both equal, up to multiplication by
a constant, to the function nm logm.Since our Borda count for collective sentiment
analysis generalizes the classical Borda rule (see Theorem 1), the communication com-
plexity could in principle be higher, but as we show in the following result we simply
move from a polylogarithmic to a polynomial factor:

Theorem 4. The communication complexity of B∗α is in Θ(nm2).

Proof. An upper bound is easy to obtain, since it is sufficient for each individual to
specify their SP-structure to be able to compute the winner of B∗α. Given our represen-
tation of SP-structures, a profile can be specified in O(nm2) bits. A lower bound can
instead be obtained by adapting the same bound for the classical Borda rule provided
in (15).

We conclude the section by proposing a notion of incremental complexity that
should capture the feasibility of computing the result of an aggregation procedure in an
on-line fashion. This is a very important aspect when data is examined incrementally
or when using methods such as map-reduce (18) to deal with large quantities of data.
Recall the two participation axioms we introduced in Section 4.1: they imply that the
result of an aggregation procedure should take into consideration the additional infor-
mation collected from the individuals. A good aggregation procedure that can be used
to define a notion of collective sentiment should not only take care of this additional
information, but also be able to update the outcome in little time.

Let X be a set of alternatives. An individual expression P over X is a preference,
a vote, an opinion, or an SP-structure defined on X . Given a profile of individual
expressions (P1, . . . , Pn) – be it a profile of linear orders, of approval sets or of SP-
structures – a generalized voting rule F is a function that outputs a set of most preferred
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alternatives F (P1, . . . , Pn) ⊆ X . If we denote with PR the space of all possible
profiles for all finite n, then F : PR → 2X . The Borda rule, approval voting, fallback
voting and B∗α are all generalized voting rules. We give the following definition:

Definition 12. An generalized voting rule F is incremental if there exists a represen-
tation of profiles r : PR → {0, 1}∗ and a function F̂ : {0, 1}∗ × PR1 → 2X , where
PR1 is the set of all individual expressions, such that:

• F (P1, . . . , Pn+1) = F̂ (r(P1, . . . , Pn), Pn+1) for all profiles (P1, . . . , Pn+1) ∈
PR and all finite n;

• for every sequence of individual expressions {Pi | i ∈ N}, the following holds:

lim
n→+∞

size[r(P1, . . . , Pn)]

size[(P1, . . . , Pn)]
= 0

A generalized voting rule is incremental if its outcome, i.e. the set of most preferred
candidates, can be computed by receiving the individuals expressions in a sequence, at
each step computing the new outcome and storing a minimal amount of information
that is needed to compute the outcome of the following step. Moreover, we require
that the information stored at each step using function r be much smaller than the full
representation of a profile as n grows.

Let us first show that both the Borda rule and approval voting are incremental.
The Borda rule can be computed incrementally by storing the total Borda score of
each alternative, and this can be done in space O(m log(nm)) since n × (m − 1) is
the maximal Borda score that an alternative can obtain. When additional information
is collected in the form of a linear order Pn+1, the total Borda scores can simply be
updated with the additional scores computed. Since the size of a profile of linear orders
is O(nm logm), the requirement on the size of the representation holds:

lim
n→+∞

size[r(P1, . . . , Pn)]

size[(P1, . . . , Pn)]
= lim
n→∞

O(m log(nm))

O(nm logm)
= lim
n→∞

log n

n
= 0

Approval voting receives as input a profile of sets of approved candidates, which
has size O(nm). An incremental procedure for its computation stores the number of
approvals received by any candidate, and updates them when a new voter submits her
ballots. Hence size[r(P1, . . . , Pn)] = O(m log n), showing that approval voting is also
an incremental aggregation procedure.

Let us conclude by showing that B∗α is incremental for any α. In the same way as
the Borda rule, the total score obtained by each alternative in a profile of SP-structures
S can be stored in space O(m log(nm)), since the maximal S∗α-score is a linear func-
tion of n×m. When a new SP-structure S is extracted, the total scores can be updated
and the new outcome computed. Since a profile of SP-structures is represented in space
O(nm2) we obtain the following:

lim
n→+∞

size[r(P1, . . . , Pn)]

size[(P1, . . . , Pn)]
=
m log(nm)

nm2
= 0
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We conjecture that all anonymous voting rules are incremental by Definition 12. In
fact, if a voting rule is anonymous then the information contained in a profile with n
voters can be summarized by using an amount of space that grows sub-linearly with
n. However, our definition measures an important characteristic of a generalized vot-
ing rule, one that is particularly useful in applications that deal with large numbers
of individuals. The notion of incrementality we proposed resembles the on-line time
discussed by Maudet et Al. (36), which however focuses mostly on space complexity
requirements. A complete study of the notion of incrementality in generalized voting
rules is beyond the scope of this paper, but the above discussion may serve as a starting
point for further work on this topic.

5 Empirical Analysis
This section reports on our experimental evaluation of the B∗α rule proposed in Sec-
tion 4. The problem we face in this section is two-fold: First, in order to assess the
relevance of preferential ordering information in determining the collectively preferred
alternatives, we present experiments showing that there is a significant difference be-
tween the classical definition used by sentiment analysis and the result of the B∗α rule.
Second, given the information sparsity which is characteristic of sentiment analysis do-
mains, we evaluate the accuracy of the B∗α rule in situations of incompleteness, show-
ing that its accuracy grows linearly with the amount of information available. In all our
experiments we fix the parameters of the B∗α rule to α = (2, 1, 1, 2).

5.1 Sentiment Analysis and Borda Count
A crucial factor supporting our claim that more complex models of preferences and
aggregation procedures should be used in the definition of collective sentiment is that
the classical sentiment analysis method (equivalent to approval voting) and B∗α output
different results over the same data. In fact, if they did not differ enough, it would
mean that the ordering information (not considered by approval/sentiment analysis) is
not relevant for determining the winner. Thus there would be no point in extracting
ordering information from individuals.

Figure 2 reports on our experiments on the simplest case of 2 candidates. We
enumerated all profiles of totally ordered SP-structures with n voters, with n from 2
to 90, where a totally ordered SP-structure is an ordering over the two candidates (that
is, a over b or b over a), plus a threshold which associates to each candidate either a
positive or a negative sentiment. Thus, there are 6 possible such SP-structures. We
have computed the winning candidates according to sentiment analysis (i.e, approval
voting) and according to B∗α, which in the case of 2 candidates is equivalent to using
the majority rule, and we have counted the percentage of profiles on which the two
winners are different. Figure 2 shows that such percentage stabilizes at around 30%.

We have also varied the number of candidates from 2 to 100, keeping the number
of voters fixed at 10, in which case however we did not enumerate all possibilities
but we generated 10.000 profiles of complete SP-structures with the impartial culture
assumption, i.e., we sampled profiles with uniform distribution. Figure 3 shows that the
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Figure 2: Percentage of profiles where sentiment analysis andB∗α differ (2 candidates).
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Figure 3: Percentage of profiles where sentiment analysis and B∗α differ (10 voters).

percentage of cases where B∗α yields a different result than sentiment analysis grows
with the number of candidates reaching more than 60%.

5.2 Incomplete Data
In practical applications individuals are likely to express their opinions over a small
subset of the alternatives under considerations, as observed, e.g., in the studies con-
ducted on the Netflix dataset (7). It is therefore important to assess the behavior of our
proposed Borda count on incomplete profiles.

To do this we generated profiles of complete SP-structures with 10 candidates and
100 voters, and we deleted a certain percentage of information to obtain an incomplete
version of the profile. More precisely, we generated incomplete profiles in the follow-
ing way: we first generated complete profiles and then we picked randomly a voter

20



0%

10%

20%

30%

40%

50%

60%

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

%
 o

f e
rr

or

% of completeness

Error mean random

Figure 4: Mean error of B∗α on incomplete profiles in terms of S∗α-score.

and a candidate, which is either positive or negative for that voter, and we changed the
SP-structure of that voter to have no opinion on the selected candidate. With n vot-
ers and c candidates, nc corresponds to 100% of the information. Thus deleting x%
of the information means performing the above described modification of the profile
(xnc)/100 times. We then compared the winner (according to B∗α) in the complete
profile and in the incomplete one, by computing the absolute value of the difference
between their S∗α-scores, and we normalized it by dividing by the maximal error in the
complete profile. Finally, we averaged over 10.000 profiles, obtaining the mean error
introduced by the incompleteness of the profile. Figure 4 shows the trend in the error
depending on the completeness of the profiles (mean error and variance). We also show
the error of the random procedure, which outputs a candidate with uniform probability.

It is easy to see that Borda* always behaves better than the random procedure in
identifying the winner in the complete profile, and moreover that its shape shows that
accuracy quickly grows when the completeness of the profile increases.

6 Future Work
This work opens several directions for future work, and we conclude the paper by
listing a number of challenges that arise from the use of techniques from preference
aggregation and voting theory for collective sentiment analysis.

More refined models of opinions. As already noted in Section 2, our analysis of
preference and opinion extraction disregarded two important parameters:

• Time. Individual opinions are expressed at a given point in time and are also
subject to change or updates. Hence, temporal information plays an important
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role in defining a coherent individual view. We believe that the literature on
knowledge representation (28), in particular belief revision and merging, pro-
vides useful tools for the analysis and summarization of conflicting information
that can be applied to the modeling of this problem.

• Features. Entities or items are usually described by means of features, i.e., they
may be elements of a product space. Techniques from natural language process-
ing can be used to extract the relevant features and thus build the set of entities.
However, in this setting preferences and opinions may compare features rather
than entities, requiring a more elaborate framework for its extraction and repre-
sentation. Moreover, the combinatorial explosion resulting from a large set of
features may give rise to computational problems that require an adequate com-
pact representation framework for preferences. The literature on social choice
in combinatorial domains (31) and in particular on judgment aggregation (20) is
highly relevant to this problem.

Validation of aggregation rules. Since the variety of preference aggregation meth-
ods that can be defined is very large, of which a prime example is the B∗α rule de-
pending on the values given to its parameters α, a natural question is how to make a
choice among them. Two options are possible, depending on the use of sentiment anal-
ysis techniques as a predictor for real-world events or as a tool for decision-making.
First, if methods of collective sentiment analysis are used over time, tested for several
settings and items, and employed in the context of predicting the result of real-world
processes (such as elections or the evolution of a market, see, e.g., (2)), then machine
learning techniques can be used to learn the best aggregation method, that is, the one
that has proven to be the most accurate. Work on voting rules seen as maximum like-
lihood estimators can also be useful in this respect (15). Alternatively, as in classical
voting theory and as performed in this paper, axiomatic properties as well as results
about the computational complexity of aggregation rules could guide the choice of
some aggregation methods over others.

Strategic behavior in sentiment analysis. The individuals composing a society, as
well as the agents in a multiagent system, are very often connected by interpersonal
ties, e.g., when individuals are organised in a network. In this case, individual pref-
erences and opinions are not only the result of personal reflection but may also take
into consideration the position taken by influential individuals or simply by agents that
are close to them in the network. The field of social network analysis (29; 19) is a
burgeoning research area which has the potential of generating highly interesting re-
sults once combined with techniques of preference and sentiment analysis. Sentiment
analysis techniques are moreover not immune to strategic manipulation. A rising phe-
nomenon is the creation of web services proposing the opening of thousands of fake
Twitter accounts to be used as followers of the manipulator’s account, or the publishing
of big volumes of positive posts related to the manipulator’s products. This represents
a prime example of strategic behavior in collective choice problems, and the whole
body of literature published on this topic may be put to test with real world data once
the two fields of sentiment analysis and preference aggregation have been put together
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to their full potential. While the problem of manipulation for a single agent is compu-
tationally easy for the classical case of the Borda rule, we conjecture that for B∗α this
is not the case, given the higher amount of possibilities that an agent has to manipu-
late the election. However, single-agent manipulation is unlikely to occur in sentiment
analysis applications, given the high number of individuals concerned and the absence
of a well-defined elicitation protocol. Instead, an interesting direction for future work
is the study of coalitional manipulation, which was recently shown intractable even for
the classical Borda rule (17; 8).

Big data and collective sentiment analysis. When the aggregation operation is rel-
atively simple (e.g., the majority rule), it is possible to use straightforward techniques
such as Hadoop MapReduce (18) to perform computations in parallel. The mapping
phase can be used to run sentiment classifiers on text corpora in parallel; the result-
ing data objects can be combined/reduced in parallel. However, with more complex
structures (e.g., conditional preference networks when the set of entities is described
by means of features), the combination procedure may be more combinatorial in na-
ture and may require non-trivial parallel processing. In this context, modern scale-out
programming languages such as X10 can be particularly valuable (14), making it easy
to write code that runs over thousands of cores and deals with hundreds of gigabytes
of main memory data. Of particular interest is developing incremental parallel algo-
rithms that can update collective sentiments as new utterances stream in and need to be
processed.
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