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Abstract. In this paper, we get some convergence rates in total variation distance in approximating
discretized paths of Lévy driven stochastic differential equations, assuming that the driving process
is locally stable. The particular case of the Euler approximation is studied. Our results are based
on sharp local estimates in Hellinger distance obtained using Malliavin calculus for jump processes.
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1 Introduction

On a complete probability space (Ω,F ,P), we consider the process (Xt)t∈[0,1] solution of the stochastic equation

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

a(Xs−)dLs, (1.1)

where L is a pure jump locally stable Lévy process. Pure jump driven stochastic equations are widely used
to model dynamic phenomena appearing in many fields such as insurance and finance and approximation of
such processes attracts many challenging problems. A large part of the literature is devoted to the study of
weak convergence at terminal date Eg(XT ) − Eg(XT ) (we assume in this paper that T = 1), where X is a
numerical scheme. Let us mention some results obtained in approximating Lévy driven stochastic equations
by the simplest and widely used Euler scheme. The weak order 1 for equations with smooth coefficients and
for smooth functions g is obtained in Protter and Talay [15] and some extensions to Hölder coefficients are
studied in Mikulevičius and Zhang [13] and Mikulevičius [11]. Expansions of the density are considered in
Konakov and Menozzi [10]. Turning to pathwise approximation, convergence rates in law for the error process
are obtained by Jacod [6] and some strong convergence results have been established in Mikulevičius and Xu
[12]. To overcome the difficulties related to the simulation of the small jumps of L, more sophisticated schemes
have been considered. We quote among others the works of Rubenthaler [16] and Kohatsu-Higa and Tankov
[8].

In this paper, we consider a different control of the accuracy of approximation and we focus on high-
frequency pathwise approximation of (1.1) in total variation distance. We mention that this result has also
additional interesting consequence in parametric statistics and permits to derive asymptotic properties such
as efficiency for the statistical experiment based on high-frequency observation of the stochastic equation by
using the numerical scheme for which the log-likelihood function is explicitly connected to the distribution of
the driving Lévy process.

∗LAMA, Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, F-77447 Marne-la-Vallée, France.
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We now precise the schemes considered in the present work. To deal with small values of the Blumenthal-
Getoor index of L (characterizing the jump activity), we not only consider the Euler approximation of (1.1)
but also a scheme with better drift approximation. Introducing the time discretization (ti)0≤i≤n with ti = i/n,
we approximate the process (Xt)t∈[0,1] by (Xt)t∈[0,1] defined by X0 = x0 and for t ∈ [ti−1, ti], 1 ≤ i ≤ n

Xt = ξt−ti−1(Xti−1) + a(Xti−1)(Lt − Lti−1), (1.2)

where (ξt(x))t≥0 solves the ordinary equation

ξt(x) = x+

∫ t

0

b(ξs(x))ds. (1.3)

Approximating ξ by
ξ̃t(x) = x+ b(x)t,

we obtain the Euler approximation (X̃t)t∈[0,1] defined by X̃0 = x0 and for t ∈ [ti−1, ti], 1 ≤ i ≤ n

X̃t = X̃ti−1 + b(X̃ti−1)(t− ti−1) + a(X̃ti−1)(Lt − Lti−1). (1.4)

Our aim is to study the rate of convergence of (Xti)0≤i≤n or (X̃ti)0≤i≤n to (Xti)0≤i≤n in total variation distance.
Let us present briefly our results. For the scheme (1.2), we obtain some rates of convergence, depending on the
jump activity index α ∈ (0, 2). Essentially the rate of convergence is of order 1/n1/α−1/2 if α > 1 and 1/n1/2−ε

if α ≤ 1. If the scale coefficient a is constant, we obtain in some cases the rate 1/
√
n for any value of α. For

the Euler scheme, the results are similar if α ≥ 1 but are working less well if α < 1, and we have no rate at
all if α ≤ 2/3. Intuitively, on a time step, the drift term has order 1/n and the stochastic jump part has order
1/n1/α, consequently if the jump activity is small the main part of the stochastic equation is the drift and an
approximation of (1.3) with higher order than the Euler one is required.

To get these results, our methodology consists in estimating the local Hellinger distance at time 1/n and to
conclude by tensorisation. Using Malliavin calculus for jump processes, we can bound the Hellinger distance
by the L2-norm of a Malliavin weight. The difficult part is next to identify a sharp rate of convergence for this
weight. This is done by remarking some judicious compensations between the rescaled jumps.

The paper is organized as follows. Section 2 introduces the notation and some preliminary results. Bounds
for the local Hellinger distance are given in Section 3. The main results are presented in Section 4. They
concern the pathwise approximation in total variation distance and also include one step approximation results
in small time. The optimality of the local bounds is discussed on some specific examples. Section 5 contains
the technical part of the paper involving Malliavin calculus and the proof of the local estimates of Section 3.

2 Preliminary results and notation

We first recall some properties of total variation and Hellinger distance (see Strasser [18]). Let P and Q be
two probability measures on (Ω,A) dominated by ν, the total variation distance between P and Q on (Ω,A) is
defined by

dTV (P,Q) = sup
A∈A

|P (A)−Q(A)| = 1

2

∫
∣

∣

∣

∣

dP

dν
− dQ

dν

∣

∣

∣

∣

dν.

The total variation distance can be estimated by using the Hellinger distance H(P,Q) defined by

H2(P,Q) =

∫

(
√

dP

dν
−
√

dQ

dν

)2

dν = 2

(

1−
∫

√

dP

dν

√

dQ

dν
dν

)

(2.1)

and we have
1

2
H2(P,Q) ≤ dTV (P,Q) ≤ H(P,Q).
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If P , respectively Q, is the distribution of a random variable X , respectively Y , we also use the notation
dTV (X,Y ) for dTV (P,Q) and H(X,Y ) for H(P,Q). The Hellinger distance has interesting properties, in
particular for product measures

H2(⊗n
i=1Pi,⊗n

i=1Qi) ≤
n
∑

i=1

H2(Pi, Qi).

We extend this property in the next proposition to the distribution of Markov chains.
Let (Xi)i≥0 and (Yi)i≥0 be two homogenous Markov chains on R with transition density p and q with respect

to the Lebesgue measure. We define the conditional Hellinger distance between X1 and Y1 given X0 = Y0 = x
by

H2
x(p, q) =

∫

(

√

p(x, y)−
√

q(x, y)
)2

dy.

We denote by Pn, respectively Qn, the distribution of (Xi)1≤i≤n given X0 = x0, respectively (Yi)1≤i≤n given
Y0 = x0 (the two Markov chains have the same initial value), then we can bound H(Pn, Qn) with Hx(p, q).

Proposition 2.1. With the previous notation, we have

H2(Pn, Qn) ≤ 1

2

n
∑

i=1

(

EH2
Xi−1

(p, q) + EH2
Yi−1

(p, q)
)

≤ n sup
x∈R

H2
x(p, q).

Proof. We have from (2.1)

H2(Pn, Qn) = 2



1−
∫

Rn

(

n
∏

i=1

p(xi−1, xi)

n
∏

i=1

q(xi−1, xi)

)1/2

dx1 . . . dxn



 .

But
∫

R

√

p(xn−1, xn)q(xn−1, xn)dxn = 1− 1

2
H2

xn−1
(p, q),

consequently

H2(Pn, Qn) = H2(Pn−1, Qn−1)

+

∫

Rn−1

(

n−1
∏

i=1

p(xi−1, xi)

n−1
∏

i=1

q(xi−1, xi)

)1/2

H2
xn−1

(p, q)dx1 . . . dxn−1,

and from the inequality
√
ab ≤ 1

2 (a+ b), this gives

H2(Pn, Qn) ≤ H2(Pn−1, Qn−1) +
1

2
(EH2

Xn−1
(p, q) + EH2

Yn−1
(p, q)).

We deduce then the first inequality in Proposition 2.1 by induction, the second inequality is immediate.

The result of Proposition 2.1 motivates the study of the Hellinger distance between X1/n and X1/n given

X0 = X0 = x (respectively X̃1/n) to bound dTV ((Xi/n)i, (X i/n)i) (respectively dTV ((Xi/n)i, (X̃i/n)i)). Before
stating our main results, let us explain briefly our approach.

We will use the Malliavin calculus developed in [2] and [3] and follow the methodology proposed in [4] with
some modifications. This requires some regularity assumptions on the coefficients a and b. We assume that
a and b are real functions satisfying the following regularity conditions. In the sequel, we use the notation
||f ||∞ = supx∈R

|f(x)| for f bounded. We make the following assumptions.
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HR : the functions a and b are C3 with bounded derivatives and a is lower bounded

∀x ∈ R, 0 < a ≤ a(x).

The Lévy process L admits the decomposition

Lt =

∫ t

0

∫

R\{0}
z1{|z|≤1}µ̃(ds, dz) +

∫ t

0

∫

R\{0}
z1{|z|>1}µ(ds, dz),

with µ̃ = µ − µ, where µ is a Poisson random measure and µ(dt, dz) = dtF (dz) its compensator. We assume
that L satisfies assumption A (i) and either (ii) or (iii).

A : (Lt)t≥0 is a Lévy process with triplet (0, 0, F ) with

F (dz) =
g(z)

|z|α+1
1R\{0}(z)dz, α ∈ (0, 2).

(i) We assume that g : R 7→ R is a continuous symmetric non negative bounded function with g(0) = c0 > 0.
(ii) We assume that g is differentiable on {|z| > 0} and g′/g is bounded on {|z| > 0}.
(iii) We assume that g is supported on {|z| ≤ 1

2||a′||∞ } and differentiable with g′ bounded on {0 < |z| ≤
1

2||a′||∞ } and that
∫

R

∣

∣

∣

∣

g′(z)

g(z)

∣

∣

∣

∣

p

g(z)dz < ∞, ∀p ≥ 1.

In the sequel we use the notation
A0 : A (i) and (ii),
A1 : A (i) and (iii).
Let us make some comments on these assumptions. We remark that A0 is satisfied by a large class of

processes, in particular α-stable processes (g = c0) or tempered stable processes (g(z) = c0e
−λ|z|, λ > 0). On

the other hand, assumption A1 is very restrictive. Actually, the restriction on the support of g implies the
non-degeneracy assumption (Assumption (SC) p.14 in [2]) that can be written in our framework

∀x, z, |1 + a′(x)z| ≥ ξ > 0. (SC)

This condition permits to apply Theorem 5.2 in Section 5 (integrability of the inverse of UK,n,r
1 ). Assumption

A1 is required to deal with a non constant scale function a (||a′||∞ > 0). Conversely, if a is constant, then
the non-degeneracy assumption (SC) is satisfied and we get our results assuming the weaker assumption A0.
We also observe that these assumptions can be relaxed and that only regularity of g around zero is required to
obtain a rate of convergence in total variation of X1/n (or X̃1/n) to X1/n (see Section 4.2).

Since Malliavin calculus requires integrability properties for the driving process L, to deal with assumption
A0, we introduce a truncation function in order to suppress the jumps larger than a constant K (the truncation
is useless under A1). In a second step we will make K tend to infinity. So we consider the truncated Lévy
process (LK

t )t≥0with Lévy measure FK defined by

FK(dz) = τK(z)F (dz),

where F is the Lévy measure of L and τK is a smooth truncation function such that τK is supported on
{|x| ≤ K} and equal to 1 on {|x| ≤ K/2}.

We associate to LK the truncated process that solves

XK
t = x0 +

∫ t

0

b(XK
s )ds+

∫ t

0

a(XK
s−)dL

K
s , t ∈ [0, 1], (2.2)
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and its discretization defined by X
K

0 = x0 and (with ξ defined in (1.3))

X
K

t = ξt−ti−1(X
K

ti−1
) + a(X

K

ti−1
)(LK

t − LK
ti−1

), t ∈ [ti−1, ti], 1 ≤ i ≤ n. (2.3)

Thanks to the truncation τK , E|LK
t |p < ∞, for any p ≥ 1, we can apply the Malliavin calculus on Poisson space

introduced in [2].

Now under HR and A0 or A1, the random variables XK
t and X

K

t admit a density for t > 0 (see [3]). Note

that under A1, X = XK and X = X
K

for K large enough. Let pK1/n, respectively pK1/n, be the transition

density of the Markov chain (XK
i/n)i≥0, respectively (X

K

i/n)i≥0. From Proposition 2.1, we have

dTV ((X
K
i
n
), (X

K
i
n
)) ≤

(

1

2

n
∑

i=1

(

EH2
XK

i−1
n

(pK1/n, p
K
1/n) + EH2

X
K
i−1
n

(pK1/n, p
K
1/n)

)

)1/2

. (2.4)

Consequently to bound the total variation distance between (XK
i
n

)0≤i≤n and (X
K
i
n
)0≤i≤n it is sufficient to control

Hx(p
K
1/n, p

K
1/n) in terms of n, K and x. Bounds for Hx(p

K
1/n, p

K
1/n) are presented in the next section. They are

obtained by connecting Hx(p
K
1/n, p

K
1/n) to the L2-norm of a Malliavin weight. This technical part of the paper

is postponed to Section 5.
Of course, the methodology is exactly the same if we replace the scheme X by the Euler scheme X̃ . In that

case we consider the truncated Euler scheme defined by X̃K
0 = x0 and for t ∈ [ti−1, ti], 1 ≤ i ≤ n,

X̃K
t = X̃K

ti−1
+ b(X̃K

ti−1
)(t− ti−1) + a(X̃K

ti−1
)(LK

t − LK
ti−1

). (2.5)

We denote by p̃K1/n the transition density of the Markov chain (X̃K
i/n)i≥0.

Throughout the paper, C(a, b, α) (or C(a, b), C(b), C(α)) denotes a constant, whose value may change from
line to line, independent of n, K but depending on the functions a, b and the index α. We write simply C
if C(a, b, α) does not depend on a, b, α. The constant may depend on other fixed parameters such as the
parameter p in Hölder’s inequality and we omit in general this dependence except if some optimal choices are
required, such as p = 1 + ε for ε arbitrarily small, in that case we use the notation Cε(a, b, α).

3 Estimates for the local Hellinger distance

We state in this section our main results concerning the rate of convergence in approximating XK
1/n solution

of (2.2) starting from x, by X
K

1/n or X̃K
1/n that solve respectively (2.3) or (2.5) with initial value x. In what

follows, the constant C(a, b, α) does not depend on x.
Before stating our results, we precise the assumptions on the auxiliary truncation τK . Let τ be a symmetric

C1 function such that 0 ≤ τ(x) ≤ 1, τ(x) = 1 if |x| ≤ 1/2 and τ(x) = 0 if |x| ≥ 1. We assume moreover that

∀p ≥ 1,

∫
∣

∣

∣

∣

τ ′(z)

τ(z)

∣

∣

∣

∣

p

τ(z)dz < ∞. (3.1)

For K ≥ κ0 > 0, we define τK by τK(x) = τ(x/K).
We first assume that a is constant. In that case, our methodology does not require additional non-degeneracy

assumptions on the Lévy measure and we assume A0. We present in the next theorem the bounds obtained for
the schemes defined by (2.3) and (2.5). In general, the bound depends on the truncation K but if g satisfies
the additional integrability assumption

∫

|z|g(z)dz < ∞ then the bound is independent of K. We observe also
that the bound is slightly better in the stable case.

5



Theorem 3.1. We assume A0 and HR with a constant.
(i) For the scheme (2.3), for any α ∈ (0, 2) we have

sup
x

H2
x(p

K
1/n, p

K
1/n) ≤











C(a,b,α)
n2 (1 + K2−α

n ),
C(a,b,α)

n2 , if
∫

|z|g(z)dz < ∞,
C(a,b,α)

n2 (1 + K2−α

n3 ), in the stable case g = c0.

(ii) For the Euler scheme (2.5), we have for α > 1/2

H2
x(p

K
1/n, p̃

K
1/n) ≤

{

C(a,b,α)
n2 (1 + K2−α

n + |b(x)|2 n2/α

n2 ),
C(a,b,α)

n2 (1 + |b(x)|2 n2/α

n2 ), if
∫

|z|g(z)dz < ∞.

In (i) and (ii), C(a, b, α) has exponential growth in ||b′||∞ and polynomial growth in ||b′′||∞, 1/a, a, 1/ α and
1/(α− 2).

In the general case (a non constant), we need strong restrictions on the support of the Lévy measure F and

assume A1. So we have XK = X and X
K

= X for K large enough and we omit the dependence on K.

Theorem 3.2. We assume A1 and HR with ||a′||∞ > 0, then we have
(i)

H2
x(p1/n, p1/n) ≤

{

C(a, b, α)(1 + |x|2) 1
n2/α , if α > 1,

Cε(a, b, α)(1 + |x|2) 1
n2−ε , if α ≤ 1, ∀ε > 0,

(ii) For the Euler scheme (1.4), we obtain for α > 1/2

H2
x(p1/n, p̃1/n) ≤











C(a, b, α)(1 + |x|2) 1
n2/α , if α > 1,

Cε(a, b, α)(1 + |x|2) 1
n2−ε , if α = 1, ∀ε > 0,

C(a, b, α)(1 + |x|2) 1
n4−2/α , if 1/2 < α < 1.

In (i) and (ii), C(a, b, α) (or Cε(a, b, α)) has exponential growth in ||b′||∞ and polynomial growth in ||b′′||∞,
||a′||∞, ||a′′||∞, 1/||a′||∞, b(0), a(0), 1/a, 1/ α and 1/(α− 2).

Remark 3.1. In the Brownian case (α = 2), we obtain the rate of convergence 1/n for the square of the
Hellinger distance between X1/n and its Euler approximation X̃1/n. This sharp rate (see Remark 4.4) does not
permit to obtain a path control of the total variation distance between the stochastic equation and the Euler
scheme. This is why we focus in this paper on pure jump processes. To obtain pathwise convergence in the
Brownian case, one has to consider a discretization scheme with finer step as in Konakov and al. [9].

The proof of these theorems is given in Sections 5.4 and 5.5.

4 Total variation distance : rate of convergence and examples

4.1 Pathwise total variation

The local behavior of the Hellinger distance established in Section 3 permits to obtain some pathwise rates
of convergence in total variation. As in the previous section, we distinguish between the cases a constant
(where the rate of convergence is better) or a non constant and we study rate of convergence for the total
variation distance between (Xi/n)0≤i≤n and (X i/n)0≤i≤n (respectively (X̃i/n)0≤i≤n) defined by (1.1) and (1.2)
(respectively (1.4)).
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Theorem 4.1. We assume A0 and HR with a constant.
(i) For the scheme (1.2), we have

dTV ((X i
n
)0≤i≤n, (X i

n
)0≤i≤n) ≤











C(a, b, α)max( 1√
n
, 1
n2α/(α+2) ),

C(a,b,α)√
n

, if
∫

R
|z|g(z)dz < ∞,

C(a, b, α)max( 1√
n
, 1
n4α/(α+2) ), in the stable case g = c0,

where C(a, b, α) has exponential growth in ||b′||∞ and polynomial growth in ||b′′||∞, 1/a, a, 1/ α and 1/(α− 2).
(ii) For the Euler scheme (1.4), we have for α > 2/3

dTV ((X i
n
)0≤i≤n, (X̃ i

n
)0≤i≤n) ≤ C(a, b, α)max(

1√
n
,

1

n
3α−2
α+2

).

Moreover with the additional assumption on g,
∫

R
|z|g(z)dz < ∞, then

dTV ((X i
n
)0≤i≤n, (X̃ i

n
)0≤i≤n) ≤

{

C(a, b, α) 1√
n
, if α ≥ 1,

C(a, b, α) 1

n
3
2
− 1

α
, if 2

3 < α < 1.

Remark 4.1. (i) We observe that without integrability assumptions on g, the rate of convergence vanishes if α
goes to zero. Moreover we have max( 1√

n
, 1
n2α/(α+2) ) =

1√
n
if α ≥ 2/3. In the stable case, the rate 1√

n
is obtained

if α ≥ 2/7.
(ii) For the Euler scheme, we have no rate at all if α ≤ 2/3.

Remark 4.2. We can apply our methodology if the Lévy process L is a Brownian Motion. In that case the
Malliavin calculus is more standard and we compute easily the Malliavin weight of Section 5. Assuming HR
and a constant, we obtain the rate of convergence 1/

√
n in total variation distance between (X i

n
)0≤i≤n and

(X̃ i
n
)0≤i≤n.

Proof of Theorem 4.1. (i)We first establish a relationship between the total variation distance dTV ((Xi/n)i, (Xi/n)i)

and dTV ((X
K
i/n)i, (X

K

i/n)i). On the same probability space (Ω,F , (Ft),P) we consider the Lévy process (Lt)t≥0

with Lévy measure F and the truncated Lévy process (LK
t )t≥0 with Lévy measure FK defined by

FK(dz) = τK(z)F (dz).

We recall (see Section 4.1 in [4]) that this can be done by setting Lt =
∫ t

0

∫

R
z1{|z|≤1}µ̃(ds, dz)+

∫ t

0

∫

R
z1{|z|>1}µ(ds, dz),

respectively LK
t =

∫ t

0

∫

R
zµ̃K(ds, dz), where µ̃, respectively µ̃K , are the compensated Poisson random measures

associated respectively to

µ(A) =

∫

[0,1]

∫

R

∫

[0,1]

1A(t, z)µ
∗(dt, dz, du), A ⊂ [0, 1]× R

µK(A) =

∫

[0,1]

∫

R

∫

[0,1]

1A(t, z)1{u≤τK(z)}µ
∗(dt, dz, du), A ⊂ [0, 1]× R,

for µ∗ a Poisson random measure on [0, 1] × R × [0, 1] with compensator µ∗(dt, dz, du) = dtF (dz)du. By
construction, the measures µ and µK coincide on the event

ΩK = {ω ∈ Ω;µ∗([0, 1]× {z ∈ R; |z| ≥ K/2} × [0, 1]) = 0}. (4.1)

Since µ∗([0, 1]× {z ∈ R; |z| ≥ K/2} × [0, 1]) has a Poisson distribution with parameter

λK =

∫

|z|≥K/2

g(z)/ |z|α+1
dz ≤ C/(αKα),
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we deduce that
P(Ωc

K) ≤ C(α)/Kα. (4.2)

We observe that (Xt, Xt, Lt)t∈[0,1] = (XK
t , X

K

t , LK
t )t∈[0,1] on ΩK and so we deduce

dTV ((X i
n
)0≤i≤n, (X i

n
)0≤i≤n) ≤ dTV ((X

K
i
n
)0≤i≤n, (X

K
i
n
)0≤i≤n) + C(α)/Kα. (4.3)

General bound. Combining (4.3), (2.4) with Theorem 3.1 (i) we have

dTV ((X i
n
)0≤i≤n, (X i

n
)0≤i≤n) ≤ C(a, b, α)√

n
(1 +

K2−α

n
)1/2 +

C(α)

Kα

≤ C(a, b, α)(
1√
n
+

K1−α/2

n
+

1

Kα
).

Choosing K = n2/(α+2), we deduce
K1−α/2

n
=

1

n2α/(α+2)
=

1

Kα
,

this gives the first part of the result.
With the integrability assumption on g. We have

dTV ((X i
n
)0≤i≤n, (X i

n
)0≤i≤n) ≤

C(a, b, α)√
n

+
C(α)

Kα
,

and we conclude choosing K = n1/(2α).
In the stable case. We have

dTV ((X i
n
)0≤i≤n, (X i

n
)0≤i≤n) ≤ C(a, b, α)(

1√
n
+

K1−α/2

n2
+

C(α)

Kα
).

We conclude with K = n4/(α+2).
(ii) From (2.4) and Theorem 3.1 (ii) we have

dTV ((X
K
i
n
)0≤i≤n, (X̃

K
i
n
)0≤i≤n) ≤ C(a, b, α)√

n

(

1 +
K2−α

n

+[ sup
t∈[0,1]

E|XK
t |2 + sup

t∈[0,1]

E|X̃K
t |2]n

2/α

n2

)1/2

.

Standard computations give

sup
t∈[0,1]

E|XK
t |2 ≤ C(a, b, α)K2−α, sup

t∈[0,1]

E|X̃K
t |2 ≤ C(a, b, α)K2−α.

So we obtain

dTV ((X
K
i
n
)0≤i≤n, (X̃

K
i
n
)0≤i≤n) ≤

C(a, b, α)√
n

(1 +K1−α/2n
1/α

n
).

Now proceeding as in the beginning of the proof of Theorem 4.1, we see that (4.3) holds, replacing X by X̃ ,
and we deduce

dTV ((X i
n
)0≤i≤n, (X̃ i

n
)0≤i≤n) ≤

C(a, b, α)√
n

(1 +K1−α/2n
1/α

n
) +

C(α)

Kα
.
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Choosing K = n(3α−2)/(α(2+α)) gives the first result.
With the integrability assumption on g. The L2-norm of (XK

t ) and (X̃K
t ) does not depend on K and we

have
sup

t∈[0,1]

E|XK
t |2 ≤ C(a, b, α), sup

t∈[0,1]

E|X̃K
t |2 ≤ C(a, b, α).

So it yields

dTV ((X i
n
)0≤i≤n, (X̃ i

n
)0≤i≤n) ≤

C(a, b, α)√
n

(1 +
n1/α

n
) +

C(α)

Kα
.

With K = n1/(2α) we deduce

dTV ((X i
n
)0≤i≤n, (X̃ i

n
)0≤i≤n) ≤ C(a, b, α)max(

1√
n
,

1

n(3α−2)/(2α)
).

We now study the convergence rate in total variation distance for a general scale coefficient a, assuming A1.
We observe that in the Brownian case α = 2, we do not have convergence.

Theorem 4.2. We assume A1 and HR with ||a′||∞ > 0.
(i) Then we have

dTV ((X i
n
)0≤i≤n, (X i

n
)0≤i≤n) ≤

{

C(a, b, α) 1
n1/α−1/2 , if α > 1,

Cε(a, b, α)
1

n1/2−ε if α ≤ 1, ∀ε > 0.

where C(a, b, α) (or Cε(a, b, α)) has exponential growth in ||b′||∞ and polynomial growth in ||b′′||∞, ||a′||∞,
||a′′||∞, 1/||a′||∞, b(0), a(0), 1/a, 1/ α and 1/(α− 2).

(ii) For the Euler scheme (1.4), we obtain if α > 2/3

dTV ((X i
n
)0≤i≤n, (X̃ i

n
)0≤i≤n) ≤











C(a, b, α) 1
n1/α−1/2 , if α > 1,

Cε(a, b, α)
1

n1/2−ε if α = 1, ∀ε > 0,

C(a, b, α) 1
n3/2−1/α if 2/3 < α < 1.

Proof. Under A1, g is a truncation function and the result is an immediate consequence of (2.4) and Theorem
3.2 observing that for any p ≥ 1

sup
t∈[0,1]

E|Xt|p ≤ C(a, b, α), sup
t∈[0,1]

E|Xt|p ≤ C(a, b, α), sup
t∈[0,1]

E|X̃t|p ≤ C(a, b, α).

Remark 4.3. The result of Theorems 4.1 and 4.2 has interesting consequences in statistics. Assume that b
and a depend on unknown parameters θ and σ and that we are interested in estimating the three parameters
β = (θ, σ, α). Let En be the experiment based on the observations (Xβ

i
n

)0≤i≤n given by (1.1) and let En
be the

experiment based on the observations (X
β
i
n
)0≤i≤n given by (1.2). With additional assumptions on the coefficients

a and b, we can prove that the total variation distance between the two experiments goes to zero, uniformly with
respect to β, and consequently statistical inference in experiment En inherits the same asymptotic properties
as in experiment En

. Efficiency in En is still an open problem for a general scale coefficient a (assuming a
constant, the LAMN property for (θ, a) has been established in [5] assuming additionally that (Lt) is a truncated
stable process). The main difficulty comes from the fact that the likelihood function is not explicit. But using the
asymptotic equivalence of En and En

, it is sufficient to study asymptotic efficiency in the simplest experiment
En

where the likelihood function has an explicit expression in term of the density of the driving Lévy process.
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4.2 Local total variation

The local estimates in Hellinger distance give bounds for the local total variation distance and permit to extend
the results obtained in [4] where the Euler scheme and the case a constant were not considered (only (i) in
Proposition 4.2 below is considered in [4] and we slightly improve here the bound for α > 1). So in this section
we precise the bounds for the total variation distance between X1/n and X1/n, or X̃1/n, that we deduce from
the results of Section 3. Since we consider approximation in small time, we do not need to make the truncation
K tend to infinity, consequently we can relax the assumptions on the Lévy measure and only assume regularity
around zero. We now assume that L satisfies assumption AL below.

AL : (Lt)t≥0 is a Lévy process with triplet (0, 0, F ) with

F (dz) =
g(z)

|z|α+1
1{0<|z|<η}dz + F1(dz), α ∈ (0, 2), η > 0,

where F1 is a symmetric finite measure supported on {|z| ≥ η} and g a continuous symmetric non negative
bounded function on {|z| < η}, with g(0) = c0 > 0. We also assume that g is continuously differentiable on
{0 < |z| < η} with g′/g bounded on {0 < |z| < η}.

We summarize our results in the next propositions.

Proposition 4.1. We assume AL and HR with a constant.
(i) For the scheme (1.2), for any α ∈ (0, 2) we have

sup
x

dTV (X1/n, X1/n) ≤
C(a, b, α)

n
.

(ii) For the Euler scheme (1.4), we have for α > 1/2

dTV (X1/n, X̃1/n) ≤
{

C(a,b,α)
n (1 + |b(x)|), if α > 1,

C(a,b,α)
n2−1/α (1 + |b(x)|), if 1/2 < α ≤ 1.

Proposition 4.2. We assume AL and HR with ||a′||∞ > 0.
(i) For the scheme (1.2), we have

dTV (X1/n, X1/n) ≤
{

C(a, b, α)(1 + |x|) 1
n1/α , if α > 1,

Cε(a, b, α)(1 + |x|) 1
n1−ε , if α ≤ 1, ∀ε > 0.

(ii) For the Euler scheme (1.4), we obtain for α > 1/2

dTV (X1/n, X̃1/n) ≤











C(a, b, α)(1 + |x|) 1
n1/α , if α > 1,

Cε(a, b, α)(1 + |x|) 1
n1−ε , if α = 1, ∀ε > 0,

C(a, b, α)(1 + |x|) 1
n2−1/α , if 1/2 < α < 1.

Proof of Propositions 4.1 and 4.2. We consider the truncation τK defined at the beginning of Section 3. If a
is constant, we fix 0 < K < η, consequently Theorem 3.1 holds. In the case ||a′||∞ > 0, we fix 0 < K <
min(η, 1

2||a′||∞ ), then A1 is satisfied for gτK and we can apply Theorem 3.2.

Proceeding as in the proof of Theorem 4.1 (i), we can define the processes on the same probability space

such that (X1/n, X1/n, X̃1/n) = (XK
1/n, X

K

1/n, X̃
K
1/n) on an event ΩK,n with

P(Ωc
K,n) ≤

C(α)

n
.

The constant depends on K but since K is fixed we omit it. The result follows then immediately from Theorems
3.1 and 3.2.
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4.3 Examples

To end this section, we discuss the optimality of the previous upper bounds by establishing lower bounds for
the local total variation distance for specific stochastic equations. We consider an Ornstein-Uhlenbeck process
driven by a stable Lévy process and the stochastic exponential.

Stable Ornstein-Uhlenbeck process. We assume that (Xt)t≥0 solves the equation

Xt = x−
∫ t

0

Xsds+ Sα
t , x 6= 0 (4.4)

where (Sα
t )t≥0 is a stable process with characteristic function E(eiuS

α
1 ) = e−|u|α , α ∈ (0, 2). The next result

shows that the rates of Proposition 4.1 are reached.

Proposition 4.3. For the stable Ornstein-Uhlenbeck process (4.4), we have for n large enough

dTV (X1/n, X1/n) ≥
C(α)

n

and for the Euler scheme

dTV (X1/n, X̃1/n) ≥
{

C(α)
n if α > 1
C(α)

n2−1/α if 1/2 < α ≤ 1

where C(α) > 0 and depends on x for the Euler scheme.

Proof. For this process, we can check (using the scaling property of the stable distribution) that X1/n, X1/n

and X̃1/n have the following distributions :

X 1
n

L
= xe−

1
n + e−

1
n

(

∫ 1
n

0

eαudu

)1/α

Sα
1 = xe−

1
n +

(

1− e−α/n

α

)1/α

Sα
1 ,

X 1
n

L
= xe−

1
n +

1

n1/α
Sα
1 , X̃ 1

n

L
= x(1 − 1

n
) +

1

n1/α
Sα
1 .

We denote by ϕα the density of the stable variable Sα
1 and we set σ0,n = 1

n1/α , σn =
(

1−e−α/n

α

)1/α

. We check

easily that
σ0,n

σn
= 1 +

1

2n
+ o(

1

n
). (4.5)

With this notation, we have

p1/n(x, y) =
1

σn
ϕα

(

y − xe−
1
n

σn

)

, p1/n(x, y) =
1

σ0,n
ϕα

(

y − xe−
1
n

σ0,n

)

,

p̃1/n(x, y) =
1

σ0,n
ϕα

(

y − x(1− 1
n )

σ0,n

)

Consequently, we obtain

dTV (X1/n, X1/n) = 1
2

∫

R
|
ϕα

(

y−xe
− 1

n
σn

)

σn
−

ϕα

(

y−xe
− 1

n
σ0,n

)

σ0,n
|dy

= 1
2

∫

R
|σ0,n

σn
ϕα

(

σ0,n

σn
y
)

− ϕα (y) |dy

≥ 1
2

∫ 1

0
|σ0,n

σn
ϕα

(

σ0,n

σn
y
)

− ϕα (y) |dy.

11



Since ϕα is continuously differentiable, we have the expansion

ϕα

(

σ0,n

σn
y

)

= ϕα (y) + y(
σ0,n

σn
− 1)ϕ′

α(cy,n), cy,n ∈ (y,
σ0,n

σn
y),

and we deduce

dTV (X1/n, X1/n) ≥ 1
2 |

σ0,n

σn
− 1|

∫ 1

0
|ϕα (y) + y

σ0,n

σn
ϕ′
α (cy,n) |dy.

But by dominated convergence

∫ 1

0

|ϕα (y) + y
σ0,n

σn
ϕ′
α (cy,n) |dy n→∞−−−−→

∫ 1

0

|ϕα (y) + yϕ′
α (y) |dy > 0,

and we conclude using (4.5) that dTV (X1/n, X1/n) ≥ C(α)
n .

For the Euler scheme, we have similarily

dTV (X1/n, X̃1/n) ≥ 1

2

∫ 1

0

|σ0,n

σn
ϕα

(

σ0,n

σn
y + x

1− 1
n − e−

1
n

σn

)

− ϕα (y) |dy.

Setting fn(y) =
σ0,n

σn
ϕα

(

σ0,n

σn
y + x

1− 1
n−e−

1
n

σn

)

− ϕα (y) and dn = 1− 1
n − e−

1
n , some easy calculus give

|fn(y)| = |σ0,n

σn
− 1|

∣

∣

∣

∣

∣

ϕα (y) + y
σ0,n

σn
ϕ′
α (cy,n) + x(

σ0,n

σn
)2

dn
σ0,n(

σ0,n

σn
− 1)

ϕ′
α(cy,n)

∣

∣

∣

∣

∣

,

with cy,n ∈ (y,
σ0,n

σn
y + x dn

σn
). Moreover, we have

dn
σ0,n(

σ0,n

σn
− 1)

= −n1/α

n
(1 + o(1)) and

dn
σn

= −n1/α

2n2
(1 + o(1)).

This finally gives by dominated convergence

dTV (X1/n, X̃1/n) ≥











C
n

∫ 1

0
|ϕα (y) + yϕ′

α (y) |dy if α > 1
C
n

∫ 1

0
|ϕα (y) + yϕ′

α (y)− xϕ′
α (y) |dy if α = 1

C
n2−1/α |x|

∫ 1

0 |ϕ′
α (y) |dy if 1

2 < α < 1.

Stochastic exponential. We now consider the process (Xt)t≥0 that solves

Xt = 1 +

∫ t

0

Xs−dS
α,τ
s , (4.6)

where (Sα,τ
t )t≥0 is a truncated stable process with Lévy measure given by

F (dz) =
c0

|z|α+1
1{|z|≤1/2}dz,

and admitting the representation Sα,τ
t =

∫ t

0

∫

R
zµ̃(ds, dz). Since the equation has no drift, we only consider the

Euler scheme and we obtain the following result.
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Proposition 4.4. For the stochastic exponential (4.6), we have for α ∈ (1, 2) and for n large enough

dTV (X1/n, X̃1/n) ≥
C(α)

n1/α(logn)2/α
, C(α) > 0.

Proof. We have X̃1/n = 1 + Sα,τ
1/n and from Itô’s formula, for t ≥ 0, Xt = eYt (see [1]) where

Yt =

∫ t

0

∫

R

log(1 + z)µ̃(ds, dz) +

∫ t

0

∫

R

(log(1 + z)− z)F (dz)ds

= Sα,τ
t +

∫ t

0

∫

0<|z|≤1/2

(log(1 + z)− z)µ(ds, dz).

Observing that for 0 < |z| ≤ 1/2, we have z − log(1 + z) ≥ z2/4, we deduce

dTV (X1/n, X̃1/n) ≥ |P(X1/n ≥ 1)− P(X̃1/n ≥ 1)|
= |P(Y1/n ≥ 0)− P(Sα,τ

1/n ≥ 0)|

≥ P

(

0 ≤ Sα,τ
1/n ≤ 1

4

∫ t

0

∫

0<|z|≤1/2

z2µ(ds, dz)

)

.

Now, for εn > 0, we consider the event An = {µ([0, 1/n]× {εn ≤ |z| ≤ 1/2}) ≥ 1}. We remark that on An,
∫ t

0

∫

0<|z|≤1/2
z2µ(ds, dz) ≥ ε2n, this yields

dTV (X1/n, X̃1/n) ≥ P

(

{0 ≤ Sα,τ
1/n ≤ ε2n

4
} ∩An

)

≥ P

(

0 ≤ Sα,τ
1/n ≤ ε2n

4

)

− P(Ac
n).

As done previously, we consider on the same probability space the stable process Sα and the truncated stable
process Sα,τ such that Sα,τ

1/n = Sα
1/n on Ωn with P(Ωc

n) = C(α)/n, then we deduce using that Sα
1/n has the

distribution of 1
n1/αS

α
1

dTV (X1/n, X̃1/n) ≥ P

(

0 ≤ Sα
1 ≤ n1/αε2n

4

)

− P(Ac
n)−

C(α)

n
.

Since µ([0, 1/n]× {εn ≤ |z| ≤ 1/2}) has a Poisson distribution with parameter

λn =
2c0
αn

(
1

εαn
− 2α),

we have P(Ac
n) = e−λn = e

− 2c0
αnεαn e

C(α)
n . Choosing εn = (2c0/(αn log(n))1/α, we finally obtain

dTV (X1/n, X̃1/n) ≥ P

(

0 ≤ Sα
1 ≤ C(α)

(n(logn)2)1/α

)

− 1

n
[e

C(α)
n + C(α)].

Since the density of Sα
1 is continuous and strictly positive (see [17]), we deduce for n large enough if α > 1 that

dTV (X1/n, X̃1/n) ≥ C(α)
(n(logn)2)1/α

with C(α) > 0.

Remark 4.4. If we replace the truncated stable process in (4.6) by a Brownian motion (Bt)t≥0, we have

X1/n = eB1/n− 1
2n and X̃1/n = 1 +B1/n. Consequently we deduce immediately that

dTV (X1/n, X̃1/n) ≥ |P(X1/n ≥ 1)− P(X̃1/n ≥ 1)|

= P(0 ≤ B1 ≤ 1

2
√
n
) ≥ C√

n
.
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5 Local Hellinger distance and Malliavin calculus

This section is devoted to the proof of Theorems 3.1 and 3.2. Our methodology consists in writing the Hellinger
distance as the expectation of a Malliavin weight and to control this weight. We define Malliavin calculus with
respect to the truncated Lévy process (LK

t ) specified in Section 2, recalling that if A1 holds the additional
truncation is useless.

5.1 Interpolation and rescaling

The first step consists in introducing a rescaled interpolation between the processes (XK
t )0≤t≤1/n and (X

K

t )0≤t≤1/n

(or (X̃K
t )0≤t≤1/n) starting from x, defined in Section 2.

Let us define Y K,n,r for 0 ≤ r ≤ 1 and 0 ≤ t ≤ 1 by

Y K,n,r
t = x+

1

n

∫ t

0

(rb(Y K,n,r
s ) + (1− r)b(ξns (x)))ds (5.1)

+
1

n1/α

∫ t

0

(ra(Y K,n,r
s− ) + (1− r)a(x))dLK,n

s

with

ξnt (x) = x+
1

n

∫ t

0

b(ξns (x))ds, (5.2)

and where (LK,n
t )t∈[0,1] is a Lévy process admitting the decomposition (using the symmetry of the Lévy measure)

LK,n
t =

∫ t

0

∫

R

zµ̃K,n(ds, dz), t ∈ [0, 1], (5.3)

where µ̃K,n is a compensated Poisson random measure, µ̃K,n = µK,n − µK,n, with compensator µK,n(dt, dz) =

dt g(z/n
1/α)

|z|α+1 τK(z/n1/α)1R\{0}(z)dz.

By construction, the process (LK,n
t )t∈[0,1] is equal in law to the rescaled truncated process (n1/αLK

t/n)t∈[0,1].

Moreover if r = 0, Y K,n,0
1 has the distribution of X

K

1/n starting from x, and if r = 1, Y K,n,1
1 has the distribution

of XK
1/n starting from x, so we have Hx(p

K
1/n, p

K
1/n) = Hx(Y

K,n,1
1 , Y K,n,0

1 ).

For the Euler scheme, to study the Hellinger distance Hx(p
K
1/n, p̃

K
1/n), we proceed as previously, replacing

the interpolation Y K,n,r by Ỹ K,n,r with

Ỹ K,n,r
t = x+

1

n

∫ t

0

[rb(Ỹ K,n,r
s ) + (1 − r)b(x)]ds (5.4)

+
1

n1/α

∫ t

0

(ra(Y K,n,r
s− ) + (1− r)a(x))dLK,n

s .

We check easily that Ỹ K,n,1
1 has the distribution of XK

1/n starting from x and Ỹ K,n,0
1 the distribution of X̃K

1/n

starting from x.
To simplify the notation, we set

b(r, y, t) = rb(y) + (1− r)b(ξnt (x)) (5.5)

b̃(r, y) = rb(y) + (1− r)b(x) (5.6)

a(r, y) = ra(y) + (1 − r)a(x), (5.7)
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so we have

dY K,n,r
t =

1

n
b(r, Y K,n,r

t , t)dt+
1

n1/α
a(r, Y K,n,r

t− )dLK,n
t ,

dỸ K,n,r
t =

1

n
b̃(r, Ỹ K,n,r

t )dt+
1

n1/α
a(r, Ỹ K,n,r

t− )dLK,n
t .

Note that ∀r ∈ [0, 1], ∀y, a(r, y) ≥ a > 0.

5.2 Integration by Part

For the reader convenience, we recall some results on Malliavin calculus for jump processes, before stating our
main results. We follow [4] Section 4.2 and also refer to [2] for a complete presentation. We will work on

the Poisson space associated to the measure µK,n defining the process (LK,n
t ) assuming that n is fixed. By

construction, the support of µK,n is contained in [0, 1]× En, where

En = {z ∈ R; |z| < Kn1/α}.

We recall that the measure µK,n has compensator

µK,n(dt, dz) = dt
g(z/n1/α)

|z|α+1 τK(z/n1/α)1{R\{0}}(z)dz := dtFK,n(z)dz. (5.8)

We define the Malliavin operators L and Γ (we omit here the dependence in n and K) and their basic proper-
ties (see Bichteler, Gravereaux, Jacod, [2] Chapter IV, sections 8-9-10). For a test function f : [0, 1]×R 7→ R (f
is measurable, C2 with respect to the second variable, with bounded derivatives, and f ∈ ∩p≥1L

p(dtFK,n(z)dz)),

we set µK,n(f) =
∫ 1

0

∫

R
f(t, z)µK,n(dt, dz). As auxiliary function, we consider ρ : R 7→ [0,∞) such that ρ is

symmetric, two times differentiable and such that ρ(z) = z4 if z ∈ [0, 1/2] and ρ(z) = z2 if z ≥ 1. Thanks to

the truncation τK , we check that ρ, ρ′ and ρ
F ′

K,n

FK,n
belong to ∩p≥1L

p(FK,n(z)dz). We also observe that at this

stage the truncation is useless if we have for any p ≥ 1

∫

R

|z|pg(z)dz < ∞.

This assumption is satisfied for the tempered stable process. But to include the stable process in our study, we
need to introduce the truncation function.

With the previous notation, we define the Malliavin operator L, on a simple functional µK,n(f) as follows

L(µK,n(f)) =
1

2
µK,n

(

ρ′f ′ + ρ
F ′
K,n

FK,n
f ′ + ρf ′′

)

,

where f ′ and f ′′ are the derivatives with respect to the second variable. This definition permits to construct a
linear operator on a space D ⊂ ∩p≥1L

p which is self-adjoint :

∀Φ,Ψ ∈ D, EΦLΨ = ELΦΨ.

We associate to L, the symmetric bilinear operator Γ :

Γ(Φ,Ψ) = L(ΦΨ)− ΦLΨ−ΨLΦ.

If f and h are two test functions, we have :

Γ(µK,n(f), µK,n(h)) = µK,n (ρf ′h′) ,
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The operators L and Γ satisfy the chain rule property :

LG(Φ) = G′(Φ)LΦ +
1

2
G′′(Φ)Γ(Φ,Φ),

Γ(G(Φ),Ψ) = G′(Φ)Γ(Φ,Ψ).

These operators permit to establish the following integration by parts formula (see [2] Theorem 8-10 p.103).

Theorem 5.1. Let Φ and Ψ be random variables in D, and f be a bounded function with bounded derivatives
up to order two. If Γ(Φ,Φ) is invertible and Γ−1(Φ,Φ) ∈ ∩p≥1L

p, we have

Ef ′(Φ)Ψ = Ef(Φ)HΦ(Ψ), (5.9)

with

HΦ(Ψ) = Ψ
Γ(Φ,Γ(Φ,Φ))

Γ2(Φ,Φ)
− 2Ψ

LΦ

Γ(Φ,Φ)
− Γ(Φ,Ψ)

Γ(Φ,Φ)
. (5.10)

We apply now the result of Theorem 5.1 to the random variable Y K,n,r
1 observing that under A0 (or A1)

and HR, (Y K,n,r
t )t∈[0,1] ∈ D, ∀r ∈ [0, 1] and then the following Malliavin operators are well defined (see Section

10 in [2]). Let us introduce some more notation. For 0 ≤ t ≤ 1, we set

Γ(Y K,n,r
t , Y K,n,r

t ) = Uk,n,r
t (5.11)

L(Y K,n,r
t ) = L

K,n,r
t . (5.12)

We also introduce the derivative of Y K,n,r with respect to r, denoted by ∂rY
K,n,r and solving the equation

d∂rY
K,n,r
t = 1

n∂yb(r, Y
K,n,r
t , t)∂rY

K,n,r
t dt+ 1

n1/α ∂ya(r, Y
K,n,r
t− )∂rY

K,n,r
t− dLK,n

t

+ 1
n∂rb(r, Y

K,n,r
t , t)dt+ 1

n1/α ∂ra(r, Y
K,n,r
t− )dLK,n

t , (5.13)

with ∂rY
K,n,r
0 = 0 and

∂rb(r, y, t) = b(y)− b(ξnt (x)), ∂yb(r, y, t) = rb′(y),

∂ra(r, y) = a(y)− a(x), ∂ya(r, y) = ra′(y).

For the vector V K,n,r
t = (Y K,n,r

t , ∂rY
K,n,r
t , UK,n,r

t )T , we denote by WK,n,r
t = (W

K,n,r,(i,j)
t )1≤i,j≤3 the matrix

Γ(V K,n,r
t , V K,n,r

t ) such that

UK,n,r
t = W

K,n,r,(1,1)
t

Γ(Y K,n,r
t , ∂rY

K,n,r
t ) = W

K,n,r,(2,1)
t (5.14)

Γ(Y K,n,r
t ,Γ(Y K,n,r

t , Y K,n,r
t )) = W

K,n,r,(3,1)
t . (5.15)

With this notation, we establish the following bound for H2
x(p

K
1/n, p

K
1/n). It is obvious that the same bound

holds for H2
x(p

K
1/n, p̃

K
1/n), replacing the process Y K,n,r by Ỹ K,n,r, but to shorten the presentation we only state

the result for Y K,n,r.

Theorem 5.2. We assume HR, A0 or A1 and that for any r ∈ [0, 1], UK,n,r
1 is invertible and (UK,n,r

1 )−1 ∈
∩p≥1L

p. Then we have

H2
x(p

K
1/n, p

K
1/n) = H2

x(Y
K,n,1
1 , Y K,n,0

1 ) ≤ sup
r∈[0,1]

Ex

∣

∣

∣HY K,n,r
1

(∂rY
K,n,r
1 )

∣

∣

∣

2

,

where

HY K,n,r
1

(∂rY
K,n,r
1 ) =

∂rY
K,n,r
1

UK,n,r
1

W
K,n,r,(3,1)
1

UK,n,r
1

− 2∂rY
K,n,r
1

L
K,n,r
1

UK,n,r
1

− W
K,n,r,(2,1)
1

UK,n,r
1

. (5.16)
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Proof. We first observe that under A0 or A1, HR and assuming UK,n,r
1 invertible with (UK,n,r

1 )−1 ∈ ∩p≥1L
p,

∀r ∈ [0, 1], the random variable Y K,n,r
1 (starting from x) admits a density for any r ∈ [0, 1]. Morerover this

density is differentiable with respect to r (the existence and the regularity of the density can be deduced from
[3] [2] or [14]). We denote by qK,n,r this density and by ∂rq

K,n,r its derivative with respect to r. We have

H2
x(p

K
1/n, p

K
1/n) =

∫

R

(
√

qK,n,1(y)−
√

qK,n,0(y))2dy

=
1

4

∫

R

(

∫ 1

0

∂rq
K,n,r(y)

√

qK,n,r(y)
dr)2dy

≤ 1

4

∫ 1

0

Ex

(

∂rq
K,n,r

qK,n,r
(Y K,n,r

1 )

)2

dr.

Using the integration by part formula, we obtain a representation for ∂rq
K,n,r

qK,n,r . Let f be a smooth function, by

differentiating r 7→ Ef(Y K,n,r
1 ), we obtain

∫

f(u)∂rq
K,n,r(u)du = Ef ′(Y K,n,r

1 )∂rY
K,n,r
1

= Ef(Y K,n,r
1 )HY K,n,r

1
(∂rY

K,n,r
1 )

= Ef(Y K,n,r
1 )E[HY K,n,r

1
(∂rY

K,n,r
1 )|Y K,n,r

1 ]

=

∫

f(u)E[HY K,n,r
1

(∂rY
K,n,r
1 )|Y K,n,r

1 = u]qK,n,r(u)du.

This gives the representation

∂rq
K,n,r

qK,n,r
(y) = Ex[HY K,n,r

1
(∂rY

K,n,r
1 )|Y K,n,r

1 = y],

and we deduce the bound

H2
x(p

K
1/n, p

K
1/n) ≤ sup

r∈[0,1]

Ex

∣

∣

∣HY K,n,r
1

(∂rY
K,n,r
1 )

∣

∣

∣

2

.

The computation of the weight HY K,n,r
1

(∂rY
K,n,r
1 ) is derived in the next section.

5.3 Computation of UK,n,r
1 , LK,n,r

1 and W
K,n,r
1

We derive here the stochastic equations satisfied by versions of processes (UK,n,r
t )t∈[0,1], (LK,n,r

t )t∈[0,1] and

(WK,n,r
t )t∈[0,1], assuming HR and A0 or A1. Using the result of Theorem 10-3 in [2] (we omit the details), we

obtain the following equations. These equations are solved in the next sections.
We first check that (UK,n,r

t ) and (LK,n,r
t ) solve respectively

UK,n,r
t = 2

n

∫ t

0 ∂yb(r, Y
K,n,r
s , s)UK,n,r

s ds+ 2
n1/α

∫ t

0

∫

R
∂ya(r, Y

K,n,r
s− )UK,n,r

s− zµ̃K,n(ds, dz)

+ 1
n2/α

∫ t

0

∫

R
(∂ya(r, Y

K,n,r
s− ))2UK,n,r

s− z2µK,n(ds, dz)

+ 1
n2/α

∫ t

0

∫

R
a(r, Y K,n,r

s− )2ρ(z)µK,n(ds, dz). (5.17)
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L
K,n,r
t = 1

n

∫ t

0 ∂yb(r, Y
K,n,r
s , s)LK,n,r

s ds+ 1
n1/α

∫ t

0

∫

R
∂ya(r, Y

K,n,r
s− )LK,n,r

s− zµ̃K,n(ds, dz)

+ 1
2n

∫ t

0
∂2
yb(r, Y

K,n,r
s , s)UK,n,r

s− ds+ 1
2n1/α

∫ t

0

∫

R
∂2
ya(r, Y

K,n,r
s− )UK,n,r

s− zµ̃K,n(ds, dz)

+ 1
2n1/α

∫ t

0

∫

R
a(r, Y K,n,r

s− )(ρ′(z) + ρ(z)
F ′

K,n(z)

FK,n(z)
)µK,n(ds, dz). (5.18)

We write now the equation satisfied by the vector V K,n,r
t = (Y K,n,r

t , ∂rY
K,n,r
t , UK,n,r

t )T , replacing µK,n(ds, dz)
by µ̃K,n(ds, dz) + dsFK,n(z)dz to obtain

dV K,n,r
t = BK,n,r(V K,n,r

t , t)dt+

∫

R

AK,n,r(V K,n,r
t− , z)µ̃K,n(dt, dz)

with BK,n,r(., ., ., t) : R3 7→ R
3 and AK,n,r : R4 7→ R

3 (precised below) and V K,n,r
0 = (x, 0, 0)T .

BK,n,r,1(v1, v2, v3, t) =
1

n
b(r, v1, t),

BK,n,r,2(v1, v2, v3, t) =
1

n
(∂yb(r, v1, t)v2 + ∂rb(r, v1, t)),

BK,n,r,3(v1, v2, v3, t) =
2

n
∂yb(r, v1, t)v3 +

1

n2/α
(∂ya(r, v1))

2v3

∫

R

z2FK,n(z)dz

+
1

n2/α
a(r, v1)

2

∫

R

ρ(z)FK,n(z)dz,

AK,n,r(v1, v2, v3, z) =
1

n1/α





a(r, v1)z
(∂ya(r, v1)v2 + ∂ra(r, v1))z

2∂ya(r, v1)v3z +
1

n1/α (∂ya(r, v1))
2v3z

2 + 1
n1/αa(r, v1)

2ρ(z)



 .

We use the notation

DvB
K,n,r(v, t) =





∂v1B
K,n,r,1(v, t) ∂v2B

K,n,r,1(v, t) ∂v3B
K,n,r,1(v, t)

∂v1B
K,n,r,2(v, t) ∂v2B

K,n,r,2(v, t) ∂v3B
K,n,r,2(v, t)

∂v1B
K,n,r,3(v, t) ∂v2B

K,n,r,3(v, t) ∂v3B
K,n,r,3(v, t)



 ,

we obtain

DvB
K,n,r(v, t) =





1
nrb

′(v1) 0 0
1
n [rb

′′(v1)v2 + b′(v1)]
1
nrb

′(v1) 0
∂v1B

K,n,r,3(v, t) 0 ∂v3B
K,n,r,3(v, t)





with

∂v1B
K,n,r,3(v, t) = 2

nrb
′′(v1)v3 +

2
n2/α r

2(a′a′′)(v1)v3
∫

R
z2FK,n(z)dz

+ 2
n2/α ra(r, v1)a

′(v1)
∫

R
ρ(z)FK,n(z)dz,

∂v3B
K,n,r,3(v, t) = 2

nrb
′(v1) +

1
n2/α r

2a′(v1)2
∫

R
z2FK,n(z)dz.

Defining analogously the matrix DvA
K,n,r(v, z) and the vector DzA

K,n,r, we have

DvA
K,n,r(v, z) =





1
n1/α ra

′(v1)z 0 0
1

n1/α [ra
′′(v1)v2 + a′(v1)]z

1
n1/α ra

′(v1)z 0
∂v1A

K,n,r,3(v, z) 0 ∂v3A
K,n,r,3(v, z)




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with
∂v1A

K,n,r,3(v, z) = 2
n1/α ra

′′(v1)v3z +
2

n2/α r
2(a′a′′)(v1)v3z2 +

2
n2/α ra(r, v1)a

′(v1)ρ(z)
∂v3A

K,n,r,3(v, z) = 2
n1/α ra

′(v1)z +
1

n2/α r
2a′(v1)2z2,

DzA
K,n,r(v, z) =

1

n1/α





a(r, v1)
ra′(v1)v2 + (a(v1)− a(x))

2ra′(v1)v3 +
2

n1/α r
2a′(v1)2v3z +

1
n1/αa(r, v1)

2ρ′(z)



 .

With this notation, the matrix WK,n,r
t solves

WK,n,r
t =

∫ t

0

[WK,n,r
s− DvB

K,n,r(V K,n,r
s− , s)T +DvB

K,n,r(V K,n,r
s− , s)(WK,n,r

s− )T ]ds

+

∫ t

0

∫

R

[WK,n,r
s− DvA

K,n,r(V K,n,r
s− , z)T +DvA

K,n,r(V K,n,r
s− , z)(WK,n,r

s− )T ]µ̃K,n(ds, dz)

+

∫ t

0

∫

R

DvA
K,n,r(V K,n,r

s− , z)WK,n,r
s− DvA

K,n,r(V K,n,r
s− , z)TµK,n(ds, dz)

+

∫ t

0

∫

R

DzA
K,n,r(V K,n,r

s− , z)DzA
K,n,r(V K,n,r

s− , z)Tρ(z)µK,n(ds, dz).

From this, we extract directly the equations for WK,n,r,(2,1) = Γ(Y K,n,r, ∂rY
K,n,r) and

WK,n,r,(3,1) = Γ(Y K,n,r,Γ(Y K,n,r, Y K,n,r)).

W
K,n,r,(2,1)
t =

2

n

∫ t

0

rb′(Y K,n,r
s )WK,n,r,(2,1)

s ds (5.19)

+
2

n1/α

∫ t

0

∫

R

ra′(Y K,n,r
s− )W

K,n,r,(2,1)
s− zµ̃K,n(ds, dz)

+
1

n2/α

∫ t

0

∫

R

r2a′(Y K,n,r
s− )2W

K,n,r,(2,1)
s− z2µK,n(ds, dz)

+
1

n

∫ t

0

(rb′′(Y K,n,r
s )∂rY

K,n,r
s + b′(Y K,n,r

s ))UK,n,r
s ds

+
1

n1/α

∫ t

0

∫

R

(ra′′(Y K,n,r
s− )∂rY

K,n,r
s− + a′(Y K,n,r

s− ))UK,n,r
s− zµ̃K,n(ds, dz)

+
1

n2/α

∫ t

0

∫

R

ra′(Y K,n,r
s− )(ra′′(Y K,n,r

s− )∂rY
K,n,r
s− + a′(Y K,n,r

s− ))UK,n,r
s− z2µK,n(ds, dz)

+
1

n2/α

∫ t

0

∫

R

a(r, Y K,n,r
s− )(ra′(Y K,n,r

s− )∂rY
K,n,r
s− + a(Y K,n,r

s− )− a(x))ρ(z)µK,n(ds, dz).

19



W
K,n,r,(3,1)
t =

3

n

∫ t

0

rb′(Y K,n,r
s )WK,n,r,(3,1)

s ds (5.20)

+
3

n1/α

∫ t

0

∫

R

ra′(Y K,n,r
s− )W

K,n,r,(3,1)
s− zµ̃K,n(ds, dz)

+
3

n2/α

∫ t

0

∫

R

r2a′(Y K,n,r
s− )2W

K,n,r,(3,1)
s− z2µK,n(ds, dz)

+
1

n3/α

∫ t

0

∫

R

r3a′(Y K,n,r
s− )3W

K,n,r,(3,1)
s− z3µK,n(ds, dz)

+
2

n

∫ t

0

rb′′(Y K,n,r
s )(UK,n,r

s )2ds+
2

n1/α

∫ t

0

∫

R

ra′′(Y K,n,r
s− )(UK,n,r

s− )2zµ̃K,n(ds, dz)

+
2

n2/α

∫ t

0

∫

R

[r2(a′a′′)(Y K,n,r
s− )UK,n,r

s− z2 + ra(r, Y K,n,r
s− )a′(Y K,n,r

s− )ρ(z)]UK,n,r
s− µK,n(ds, dz)

+
1

n2/α

∫ t

0

∫

R

ra′(Y K,n,r
s− )

(

2ra′′(Y K,n,r
s− )UK,n,r

s− z +
2

n1/α
r2(a′a′′)(Y K,n,r

s− )UK,n,r
s− z2

+
2

n1/α
ra(r, Y K,n,r

s− )a′(Y K,n,r
s− )ρ(z)

)

UK,n,r
s− zµK,n(ds, dz)

+
1

n2/α

∫ t

0

∫

R

a(r, Y K,n,r
s− )

(

2ra′(Y K,n,r
s− )UK,n,r

s− +
2

n1/α
r2a′(Y K,n,r

s− )2UK,n,r
s− z

+
1

n1/α
a(r, Y K,n,r

s− )2ρ′(z)

)

ρ(z)µK,n(ds, dz).

5.4 Proof of Theorem 3.1 (a constant and A0)

Part (i) Assuming a constant, the interpolation Y K,n,r between (2.2) and (2.3) solves the equation

Y K,n,r
t = x+

1

n

∫ t

0

[rb(Y K,n,r
s ) + (1 − r)b(ξns (x))]ds +

1

n1/α
aLK,n

t (5.21)

with ξn(x) defined by (5.2) and LK,n by (5.3).

Now, to apply Theorem 5.2, we check that UK,n,r
1 is invertible and (UK,n,r

1 )−1 ∈ ∩p≥1L
p.

We start by solving the equations (5.13), (5.17), (5.18), (5.19), (5.20) defining respectively ∂rY
K,n,r
1 , UK,n,r

1 ,

L
K,n,r
1 , W

K,n,r,(2,1)
1 and W

K,n,r,(3,1)
1 . This is done easily since a is constant. We define (ZK,n,r

t )t∈[0,1] by

ZK,n,r
t = e

r
n

∫

t
0
b′(Y K,n,r

s )ds. (5.22)

Then we obtain the following explicit expressions.

∂rY
K,n,r
1 =

ZK,n,r
1

n

∫ 1

0

(ZK,n,r
s )−1[b(Y K,n,r

s )− b(ξns (x))]ds (5.23)

UK,n,r
1 = a2

(ZK,n,r
1 )2

n2/α

∫ 1

0

∫

R

(ZK,n,r
s− )−2ρ(z)µK,n(ds, dz) (5.24)
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L
K,n,r
1 =

(ZK,n,r
1 )

2n

∫ 1

0

(ZK,n,r
s )−1rb′′(Y K,n,r

s )UK,n,r
s− ds (5.25)

+
aZK,n,r

1

2n1/α

∫ 1

0

∫

R

(ZK,n,r
s− )−1(ρ′(z) + ρ(z)

F ′
K,n(z)

FK,n(z)
)µK,n(ds, dz)

W
K,n,r,(2,1)
1 =

(ZK,n,r
1 )2

n

∫ 1

0

(ZK,n,r
s )−2UK,n,r

s [rb′′(Y K,n,r
s )∂rY

K,n,r
s + b′(Y K,n,r

s )]ds (5.26)

W
K,n,r,(3,1)
1 =

2r(ZK,n,r
1 )3

n

∫ 1

0

(ZK,n,r
s )−3(UK,n,r

s )2b′′(Y K,n,r
s )ds (5.27)

+a3
(ZK,n,r

1 )3

n3/α

∫ 1

0

∫

R

(ZK,n,r
s− )−3ρ′(z)ρ(z)µK,n(ds, dz).

We obviously have the bounds

sup
t≤1

|ZK,n,r
t | ≤ C(b), sup

t≤1
|(ZK,n,r

t )−1| ≤ C(b). (5.28)

This implies that

sup
t≤1

|UK,n,r
t | ≤ a2

n2/αC(b)µK,n(ρ), (5.29)

1

|UK,n,r
1 |

≤ C(b) n2/α

a2µK,n(ρ) . (5.30)

With the definition of ρ, we can then check that for any p ≥ 1 (the constant depends on p but not on K and n)

E

(

1

|µK,n(ρ)|p
)

≤ C.

The proof follows the same line as in [4] section 4.2 equation (4.25) and we omit it. Consequently UK,n,r
1 is

invertible and (UK,n,r
1 )−1 ∈ ∩p≥1L

p. From Theorem 5.2 it is now sufficient to bound Ex[HY K,n,r
1

(∂rY
K,n,r
1 )2]

where

HY K,n,r
1

(∂rY
K,n,r
1 ) =

∂rY
K,n,r
1

UK,n,r
1

W
K,n,r,(3,1)
1

UK,n,r
1

− 2∂rY
K,n,r
1

L
K,n,r
1

UK,n,r
1

− W
K,n,r,(2,1)
1

UK,n,r
1

.

We study the L2-norm of each term. We first deduce from Gronwall’s Lemma,

sup
t≤1

|Y K,n,r
t − ξnt (x)| ≤ ae||b

′||∞/n 1

n1/α
sup
s≤1

|LK,n
s | ≤ C(a, b)

1

n1/α
sup
s≤1

|LK,n
s |. (5.31)

Combining this with (5.28), (5.29) and (5.30), we obtain the intermediate bounds

|∂rY K,n,r
1 | ≤ C(a, b)

n

1

n1/α
sup

t∈[0,1]

|LK,n
t |, (5.32)

|LK,n,r
1 | ≤ C(a, b)

n

µK,n(ρ)

n2/α
+

C(a, b)

n1/α
µK,n(|ρ′ + ρ

F ′
K,n

FK,n
|),

|WK,n,r,(2,1)
1 | ≤ C(a, b)

n

µK,n(ρ)

n2/α
[1 +

1

n

supt∈[0,1] |LK,n
t |

n1/α
],
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|WK,n,r,(3,1)
1 | ≤ C(a, b)

n

µK,n(ρ)2

n4/α
+

C(a, b)

n3/α
µK,n(|ρ′ρ|).

With this background, we control each term in HY K,n,r
1

(∂rY
K,n,r
1 )

|∂rY
K,n,r
1

UK,n,r
1

W
K,n,r,(3,1)
1

UK,n,r
1

| ≤ C(a, b)

n

(

supt∈[0,1] |LK,n
t |

n1+1/α
+

supt∈[0,1] |LK,n
t |µK,n(|ρ′ρ|)

µK,n(ρ)2

)

,

|∂rY K,n,r
1

L
K,n,r
1

UK,n,r
1

| ≤ C(a, b)

n





supt∈[0,1] |LK,n
t |

n1+1/α
+

supt∈[0,1] |LK,n
t |µK,n(|ρ′ + ρ

F ′
K,n

FK,n
|)

µK,n(ρ)



 ,

|W
K,n,r,(2,1)
1

UK,n,r
1

| ≤ C(a, b)

n

(

1 +
supt∈[0,1] |LK,n

t |
n1+1/α

)

.

This permits to deduce that

|HY K,n,r
1

(∂rY
K,n,r
1 )| ≤ C(a, b)

n
(1 +

1

n
T1 + T2 + T3),

with

T1 =
supt∈[0,1] |LK,n

t |
n1/α

, T2 =
supt∈[0,1] |LK,n

t |µK,n(|ρ′ρ|)
µK,n(ρ)2

,

T3 =
supt∈[0,1] |LK,n

t |µK,n(|ρ′ + ρ
F ′

K,n

FK,n
|)

µK,n(ρ)
.

We first study the L2-norm of T1. Since LK,n
t =

∫ t

0

∫

R
zµ̃K,n(ds, dz), we have immediately using the definition

of the compensator (5.8)

E

∣

∣

∣

∣

∣

supt∈[0,1] |LK,n
t |

n1/α

∣

∣

∣

∣

∣

2

≤ C

n2/α

∫ Kn1/α

0

z2g(
z

n1/α
)

1

|z|α+1
dz.

Since g is bounded, we deduce after some calculus

ET 2
1 = E

∣

∣

∣

∣

∣

supt∈[0,1] |LK,n
t |

n1/α

∣

∣

∣

∣

∣

2

≤ C(α)K2−α/n. (5.33)

Now if g satisfies the additional assumption
∫

R
|z|g(z)dz < ∞, then

ET 2
1 = E

∣

∣

∣

∣

∣

supt∈[0,1] |LK,n
t |

n1/α

∣

∣

∣

∣

∣

2

≤ C(α)/n, (5.34)

with C(α) independent of K.

Turning to T2, we decompose LK,n
t (using the symmetry of FK,n) into the small jump part and the large

jump part as

LK,n
t =

∫ t

0

∫

{0<|z|<1}
zµ̃K,n(ds, dz) +

∫ t

0

∫

|z|≥1}
zµK,n(ds, dz).
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Since the small jump part is bounded in Lp, for any p ≥ 1, by a constant independent of K, we focus on the
large jump part and study the worst term in T2

∫ 1

0

∫

R
|z|1{|z|≥1}µ

K,n(ds, dz)µK,n(|ρ′ρ|1{|z|≥1})

µK,n(ρ1{|z|≥1})2
.

Proceeding as in the proof of Lemma 4.3 in [4], we deduce that

∫ 1

0

∫

R
|z|1{|z|≥1}µ

K,n(ds, dz)µK,n(|ρ′ρ|1{|z|≥1})

µK,n(ρ1{|z|≥1})2
≤ CµK,n({|z| ≥ 1})1/2.

Then observing that µK,n({|z| ≥ 1}) has a Poisson distribution with parameter λK,n ≤ C(α), we obtain

ET 2
2 ≤ C(α).

For the last term T3, the definition of FK,n gives for z 6= 0

|ρ(z)
F ′
K,n(z)

FK,n(z)
| ≤ C(

ρ(z)

|z| +
ρ(z)

n1/α
|g

′

g
(

z

n1/α
)|+ ρ(z)

n1/α
|τ

′
K

τK
(

z

n1/α
)|).

Consequently T3 can be split into three terms, T3 ≤ T3,1 + T3,2 + T3,3 with

T3,1 =
supt∈[0,1] |LK,n

t |µK,n(|ρ′|+ |ρ/z|)
µK,n(ρ)

,

T3,2 =
1

n1/α

supt∈[0,1] |LK,n
t |µK,n(ρ| g′

g (
z

n1/α )|)
µK,n(ρ)

,

T3,3 =
1

n1/α

supt∈[0,1] |LK,n
t |µK,n(ρ| τ

′
K

τK
( z
n1/α )|)

µK,n(ρ)
.

For T3,1, we obtain by distinguishing between the small jump part and the large jump part (as for T2)

E(T3,1)
2 ≤ C(α).

Since g′/g is bounded, we deduce for T3,2

E(T3,2)
2 ≤ CE

∣

∣

∣

∣

∣

supt∈[0,1] |LK,n
t |

n1/α

∣

∣

∣

∣

∣

2

,

and we conclude using (5.33) or (5.34). Remark that T3,2 = 0 in the stable case g = c0.
Finally, considering T3,3, we first remark that by definition of τK

T3,3 ≤ 1

n1/α
sup

t∈[0,1]

|LK,n
t |µK,n

(

1{Kn1/α/2≤|z|≤Kn1/α}|
τ ′K
τK

(
z

n1/α
)|
)

.

From Burkholder inequality (see Lemma 2.5, inequality 2.1.37 in [7]),

E

∣

∣

∣

∣

∣

supt∈[0,1] |LK,n
t |

n1/α

∣

∣

∣

∣

∣

4

≤ C(α)
K4−α

n
,
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and using a change of variables and assumption (3.1)

EµK,n

(

1{Kn1/α/2≤|z|≤Kn1/α}|
τ ′K
τK

(
z

n1/α
)|
)4

≤ C(α)

nK4+α
.

This permits to deduce from Cauchy Schwarz inequality

E(T3,3)
2 ≤ C(α)

1

nKα
≤ C(α)/n.

To summarize, we have established (and the worst term comes from T3,2)

Ex|HY K,n,r
1

(∂rY
K,n,r
1 )|2 ≤ C(a, b, α)

n2
(1 +

K2−α

n
),

and if we have additionally
∫

R
|z|g(z)dz < ∞, then

Ex|HY K,n,r
1

(∂rY
K,n,r
1 )|2 ≤ C(a, b, α)

n2
.

In the stable case, T3,2 = 0 and the worst term is T1/n

Ex|HY K,n,r
1

(∂rY
K,n,r
1 )|2 ≤ C(a, b, α)

n2
(1 +

K2−α

n3
).

To simplify the presentation, we have not expressed explicitly the dependence of C(a, b, α) in a, α and the
derivatives of b, but it is not difficult to check that we have

C(a, b, α) ≤ CeC||b′||∞(||b′′||p1
∞ + ap2 +

1

ap3
+

1

αp4
+

1

(2− α)p5
),

with pi ≥ 1, for 1 ≤ i ≤ 5.
The proof of Theorem 3.1 (i) is finished.

Part (ii)
The proof follows the same lines as the one of part (i) and we only indicate the main changes observing that

(5.4) is obtained replacing b(ξns (x)) in (5.1) by b(x). We first deduce from Gronwall’s Lemma,

sup
t≤1

|Ỹ K,n,r
t − x| ≤ C(a, b)(

|b(x)|
n

+
1

n1/α
sup
s≤1

|LK,n
s |). (5.35)

This yields

|∂rỸ K,n,r
1 | ≤ C(a, b)

n
(
|b(x)|
n

+
1

n1/α
sup

t∈[0,1]

|LK,n
t |).

Consequently, comparing to (5.32), we have the additional term |b(x)|
n2 , so we deduce the bound

|HỸ K,n,r
1

(∂rỸ
K,n,r
1 )| ≤ C(a, b)

n

(

1 +
1

n
T1 + T2 + T3

+
|b(x)|
n2

+ |b(x)|n
1/α

n
[
µK,n(|ρ′ρ|)
µK,n(ρ)2

+
µK,n(|ρ′ + ρ

F ′
K,n

FK,n
|)

µK,n(ρ)
]



 .

We show easily that µK,n(|ρ′ρ|)
µK,n(ρ)2

and
µK,n(|ρ′+ρ

F ′
K,n

FK,n
|)

µK,n(ρ)
are bounded in L2 and with the previous study of the terms

T1, T2, T3 we obtain the result of Theorem 3.1 (ii).
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5.5 Proof of Theorem 3.2 (a non constant and A1)

Since g is compactly supported, X1/n and X1/n have moments of all order and the additional truncation τK is
useless (g is a truncation). So from now on, the interpolation Y n,r and the Malliavin operators do not depend
on K.

To solve equations (5.13), (5.17), (5.18), (5.19), (5.20) (defining ∂rY
n,r
1 , Un,r

1 , Ln,r
1 , W

n,r,(2,1)
1 , W

n,r,(3,1)
1 ),

we introduce (Zn,r
t ) that solves the linear equation

Zn,r
t = 1+

1

n

∫ t

0

rb′(Y n,r
s )Zn,r

s ds+
1

n1/α

∫ t

0

∫

R

ra′(Y n,r
s− )Zn,r

s− zµ̃n(ds, dz). (5.36)

Under A1, Zn,r
t is invertible and from Itô’s formula, we check that

∂rY
n,r
t = Zn,r

t

∫ t

0

(Zn,r
s− )−1 1

n
(b(Y n,r

s )− b(ξns (x)))ds (5.37)

+
Zn,r
t

n1/α

∫ t

0

∫

R

(Zn,r
s− )−1(a(Y n,r

s− )− a(x))zµ̃n(ds, dz)

−Zn,r
t

n1/α

∫ t

0

∫

R

(Zn,r
s− )−1





(a(Y n,r
s− )− a(x))

1 +
ra′(Y n,r

s− )z

n1/α





ra′(Y n,r
s− )z2

n1/α
µn(ds, dz),

Un,r
t =

(Zn,r
t )2

n2/α

∫ t

0

∫

R

(Zn,r
s− )−2





a(r, Y n,r
s− )

1 +
ra′(Y n,r

s− )z

n1/α





2

ρ(z)µn(ds, dz), (5.38)

L
n,r
t =

Zn,r
t

2n

∫ t

0

(Zn,r
s− )−1rb′′(Y n,r

s )Un,r
s− ds

+
Zn,r
t

2n1/α

∫ t

0

∫

R

(Zn,r
s− )−1









a(r, Y n,r
s− )

1 +
ra′(Y n,r

s− )z

n1/α



 (ρ′(z) + ρ(z)
F ′
n(z)

Fn(z)
)µn(ds, dz) (5.39)

+ra′′(Y n,r
s− )Un,r

s− zµ̃n(ds, dz)−





ra′′(Y n,r
s− )Un,r

s−

1 +
ra′(Y n,r

s− )z

n1/α





ra′(Y n,r
s− )z2

n1/α
µn(ds, dz)



 .

Since equations (5.19) and (5.20) are more complicated, we just explicit the structure of the solution forW
n,r,(2,1)
1

and W
n,r,(3,1)
1 , where Pn,0, Pn,1, Pn,2 are obtained from (5.19) and (5.20) respectively.

W
n,r,(2,1)
t = (Zn,r

t )2
∫ t

0

(Zn,r
s )−2



Pn,0
s ds+

∫

R

Pn,1
s− (z)

(1 +
ra′(Y n,r

s− )z

n1/α )2
µn(ds, dz)

+

∫

R

Pn,2
s− (z)µ̃n(ds, dz)−

∫

R

Pn,2
s− (z)[1− 1

(1 +
ra′(Y n,r

s− )z

n1/α )2
]µn(ds, dz)



 , (5.40)

W
n,r,(3,1)
t = (Zn,r

t )3
∫ t

0

(Zn,r
s )−3



Pn,0
s ds+

∫

R

Pn,1
s− (z)

(1 +
ra′(Y n,r

s− )z

n1/α )3
µn(ds, dz)

+

∫

R

Pn,2
s− (z)µ̃n(ds, dz)−

∫

R

Pn,2
s− (z)[1− 1

(1 +
ra′(Y n,r

s− )z

n1/α )3
]µn(ds, dz)



 . (5.41)

25



To identify the rate of convergence in the previous expressions and to simplify the study, we introduce some
integrable processes (Pt)t∈[0,1] (we omit the dependence on n), whose expressions change from line to line, but
such that

∀n ≥ 1, ∀r ∈ [0, 1], Ex sup
s∈[0,1]

|Ps|p ≤ C(a, b, α)(1 + |x|p), ∀p ≥ 1.

The constant C(a, b, α) is independent of n, r and x but depend on p. To avoid heavy notation, we omit the
dependence on p, except in Lemma 5.2 below. We also use the notation

Mt =

∫ t

0

Ps−dL
n
s , Rt =

∫ t

0

∫

R

|z|1{|z|>1}µ
n(ds, dz), t ∈ [0, 1]. (5.42)

From Burkholder inequality,

Ex

supt∈[0,1] |Mt|p

np/α
≤ C(a, b, α)(1 + |x|p),

that is Mt/n
1/α = Pt. Moreover using |z|/n1/α ≤ 1/(2||a′||∞), we also have Rt/n

1/α = Pt. In the following, we
distinguish between the small jump part and the large jump part of Mt

MSJ
t =

∫ t

0

∫

R

Ps−z1{|z|≤1}µ̃
n(ds, dz), MLJ

t =

∫ t

0

∫

R

Ps−z1{|z|>1}µ
n(ds, dz),

where we used the symmetry of the compensator for the second expression. We check that MSJ
t = Pt and that

|MLJ
t | ≤ PtRt.

We now give some relatively simple expressions or bounds for the variables ∂rY
n,r
1 , Un,r

1 , Ln,r
1 , W

n,r,(2,1)
1 ,

W
n,r,(3,1)
1 . We first remark that from A1, µn has support in {|z| ≤ n1/α 1

2||a′||∞ } and we have for any y and any

z such that |z| ≤ n1/α 1
2||a′||∞

2

3
≤ 1

|1 + ra′(y) z
n1/α |

≤ 2.

Moreover standard arguments give Zn,r
t = Pt and (Zn,r

t )−1 = Pt. This permits to deduce

∀t ∈ [0, 1], 0 ≤ Un,r
t ≤ Pt

µn(ρ)

n2/α
, (5.43)

0 ≤ 1

Un,r
1

≤ P1
n2/α

a2µn(ρ)
. (5.44)

So as in Section 5.4, we check that 1/Un,r
1 ∈ ∩p≥1L

p. We also observe that

∀t ∈ [0, 1], Y n,r
t − x =

Pt

n
+

Mt

n1/α
, (5.45)

and from Gronwall’s inequality, we have

∀t ∈ [0, 1], |Y n,r
t − ξnt (x)| ≤ C(b)

supt∈[0,1] |Mt|
n1/α

. (5.46)

The next lemma summarizes our results, having in mind that we want to identify the rate of convergence of

∂rY
n,r
1 W

n,r,(3,1)
1 /(Un,r

1 )2, ∂rY
n,r
1 L

n,r
1 /Un,r

1 and W
n,r,(2,1)
1 /Un,r

1 , where Un,r
1 is approximately µn(ρ)/n2/α.

Lemma 5.1. With Rt =
∫ t

0

∫

R
|z|1{|z|>1}µ

n(ds, dz), we have the bounds
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1.

sup
t∈[0,1]

|∂rY n,r
t | ≤ P1

n1+1/α
(1 +R1)

+
P1

n2/α

(

1 +R1 +

∫ 1

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz)

)

,

2.

|Ln,r
1 | ≤ P1

n1+2/α
µn(ρ) +

P1

n2/α
(1 + µn(ρ)) +

P1

n1/α
µn(|ρ′ + ρ

F ′
n

Fn
|),

3.

|Wn,r,(2,1)
1 | ≤ P1

n1+2/α
µn(ρ) +

P1

n2/α
µn(ρ) sup

t
|∂rY n,r

t |

+
P1

n3/α
[µn(ρ) +R1 +R1

∫ 1

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz)],

4.

|Wn,r,(3,1)
1 | ≤ P1

n1+4/α
µn(ρ)2 +

P1

n4/α
(1 + µn(ρ)2) +

P1

n3/α
µn(|ρ′ρ|).

Proof. 1. Using equation (5.37) with (5.45) and (5.46), ∀t ∈ [0, 1]

|∂rY n,r
t | ≤ Pt

n

supt |Mt|
n1/α

+
Pt

n

1

n1/α

∫ t

0

∫

R

z2

n1/α
µn(ds, dz)

+
Pt

n2/α
|
∫ t

0

∫

R

Ps−Ms−zµ̃
n(ds, dz)|+ Pt

n2/α
|
∫ t

0

∫

R

Ps−Ms−
z2

n1/α
µn(ds, dz)|.

In this expression to identify a sharp rate of convergence, we distinguish between the small jumps and the large
jumps for each integral. Remarking that |z|/n1/α is bounded, the first two terms on the right-hand side of the
inequality are bounded by

Pt

n1+1/α
(1 +R1).

Moreover the last term satisfies

Pt

n2/α
|
∫ t

0

∫

R

Ps−Ms−
z2

n1/α
µn(ds, dz)| ≤ Pt

n2/α
(1 +R1 +

∫ t

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz)).

Considering
∫ t

0

∫

R
Ps−Ms−zµ̃n(ds, dz) =

∫ t

0
Ms−dMs, we split into four integrals (small jumps and large jumps

of M)
∫ t

0

∫

R

Ps−Ms−zµ̃
n(ds, dz) = I1t + I2t + I3t + I4t

with I1t =
∫ t

0
MSJ

s− dMSJ
s = Pt,

|I2t | = |
∫ t

0

MLJ
s− dMLJ

s | ≤ Pt

∫ t

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz),

|I3t | = |
∫ t

0

MSJ
s− dMLJ

s | ≤ PtRt, I4t =

∫ t

0

MLJ
s− dMSJ

s .
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For I4, observing that [MSJ ,MLJ ]t = 0, we deduce from Itô’s formula that
∫ t

0
MLJ

s− dMSJ
s = MLJ

t MSJ
t −

∫ t

0 M
SJ
s− dMLJ

s and then |I4t | ≤ PtRt. Putting together these inequalities, we finally deduce the first result.
2. On a similar way, using equation (5.39) we obtain

|Ln,r
1 | ≤ P1

n1+2/α
µn(ρ) +

P1

n1/α
µn(|ρ′ + ρ

F ′
n

Fn
|)

+
P1

n1/α

(

|
∫ 1

0

∫

R

Ps−Us−zµ̃
n(ds, dz)|+ |

∫ 1

0

∫

R

Ps−Us−
z2

n1/α
µn(ds, dz)|

)

.

We check easily
P1

n1/α
|
∫ 1

0

∫

R

Ps−Us−
z2

n1/α
µn(ds, dz)| ≤ P1

n2/α
µn(ρ).

To bound |
∫ 1

0

∫

R
Ps−Us−zµ̃n(ds, dz)|, we introduce the processQt =

∫ t

0
Ps−ρ(z)µn(ds, dz) and its decomposition

QSJ
t =

∫ t

0

Ps−ρ(z)1{|z|≤1}µ
n(ds, dz) = Pt,

|QLJ
t | = |

∫ t

0

Ps−ρ(z)1{|z|>1}µ
n(ds, dz)| ≤ Ptµ

n(ρ).

So we have Ut =
Pt

n2/αQt and
∫ 1

0

∫

R
Ps−Us−zµ̃n(ds, dz) = 1

n2/α

∫ t

0
Qs−dMs. We conclude by splitting

∫ t

0
Qs−dMs

into the small jumps and large jumps of Q and M , with Itô’s formula for
∫ t

0 Q
LJ
s−dMSJ

s (as for I4 in 1.), that

P1

n1/α
|
∫ 1

0

∫

R

Ps−Us−zµ̃
n(ds, dz)| ≤ P1

n2/α
(1 + µn(ρ)).

3. We turn to W
n,r,(2,1)
1 . From (5.40) and (5.19), we have

|Wn,r,(2,1)
1 | ≤ P1

n1+2/α
µn(ρ) +

P1

n1/α
|
∫ 1

0

∫

R

Ps−Us−
z2

n1/α
µn(ds, dz)|

+
P1

n1/α
|
∫ 1

0

∫

R

Ps−Us−zµ̃
n(ds, dz)|

+
P1

n2/α

∫ 1

0

∫

R

[Ps−|∂rY n,r
s− |+ Ps−|Y n,r

s− − x|]ρ(z)µn(ds, dz),

where we also used for some terms that ∂rY
n,r
t = Pt (this can be deduced from 1.). We see easily that

P1

n1/α |
∫ 1

0

∫

R
Ps−Us−

z2

n1/αµ
n(ds, dz)| ≤ P1

n2/αµ
n(ρ), but this does not permit to control W

n,r,(2,1)
1 /Un,r

1 . So we

write once again Ut = Pt

n2/αQt with Q defined above. Using ρ(z) = z2 if |z| > 1, we have |QLJ
t | ≤ PtR1Rt.

Consequently we obtain

P1

n1/α
|
∫ 1

0

∫

R

Ps−Us−
z2

n1/α
µn(ds, dz)| ≤ P1

n3/α
[µn(ρ) +R1

+R1

∫ 1

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz)].

The same inequality holds for P1

n1/α

∫ 1

0

∫

R
Ps−Us−zµ̃n(ds, dz) = P1

n3/α

∫ 1

0 Qs−dMs by decomposing into the small
jumps and large jumps of Q and M , as already done previously. Finally, considering the last term, we have

P1

n2/α

∫ 1

0

∫

R

Ps−|∂rY n,r
s− |ρ(z)µn(ds, dz) ≤ P1

n2/α
µn(ρ) sup

t
|∂rY n,r

t |,
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and from (5.45)

P1

n2/α

∫ 1

0

∫

R

Ps−|Y n,r
s− − x|ρ(z)µn(ds, dz) ≤ P1

n1+2/α
µn(ρ)

+
P1

n3/α
[µn(ρ) +R1 +R1

∫ 1

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz)].

This completes the proof of 3.
4. Using (5.41) and (5.20)

|Wn,r,(3,1)
1 | ≤ P1

n1+4/α
µn(ρ)2 +

P1

n1/α
|
∫ 1

0

∫

R

Ps−U
2
s−

z2

n1/α
µn(ds, dz)|

+
P1

n1/α
|
∫ 1

0

∫

R

Ps−U
2
s−zµ̃

n(ds, dz)|

+
P1

n2/α

∫ 1

0

∫

R

Ps−Us−ρ(z)µ
n(ds, dz) +

P1

n3/α
µn(|ρ′ρ|).

We have
P1

n2/α

∫ 1

0

∫

R

Ps−Us−ρ(z)µ
n(ds, dz) ≤ P1

n4/α
µn(ρ)2,

P1

n1/α
|
∫ 1

0

∫

R

Ps−U
2
s−

z2

n1/α
µn(ds, dz)| ≤ P1

n4/α
µn(ρ)2.

Turning to the integral with respect to µ̃n, J =
∫ 1

0

∫

R
Ps−U2

s−zµ̃
n(ds, dz), we have the representation (recalling

that Ut =
Pt

n2/αQt)

J =
1

n4/α

∫ 1

0

(Qs−)
2dMs

and analyzing each term in the decomposition of J between the large and small jumps of Q and M , we obtain

P1

n1/α
|
∫ 1

0

∫

R

Ps−U
2
s−zµ̃

n(ds, dz)| ≤ P1

n4/α
(1 + µn(ρ)2).

The proof of lemma 5.1 is finished.

Lemma 5.1 combined with (5.44) permits to obtain simple bounds for the Malliavin weightHY K,n,r
1

(∂rY
K,n,r
1 )

:
∣

∣

∣

∣

∂rY
n,r
1 L

n,r
1

Un,r
1

∣

∣

∣

∣

≤ P1|∂rY n,r
1 |+ P1n

1/α|∂rY n,r
1 |

µn(|ρ′ + ρ
F ′

n

Fn
|)

µn(ρ)
, (5.47)

∣

∣

∣

∣

∣

W
n,r,(2,1)
1

Un,r
1

∣

∣

∣

∣

∣

≤ P1

(

1

n
+ sup

t
|∂rY n,r

t |
)

(5.48)

+
P1

n1/α

(

1 +
R1

µn(ρ)
+

R1

∫ 1

0

∫

R
Rs−|z|1{|z|>1}µ

n(ds, dz)

µn(ρ)

)

,

∣

∣

∣

∣

∣

∂rY
n,r
1 W

n,r,(3,1)
1

(Un,r
1 )2

∣

∣

∣

∣

∣

≤ P1|∂rY n,r
1 |+ P1n

1/α|∂rY n,r
1 |µ

n(|ρ′ρ|)
µn(ρ)2

. (5.49)

It remains to evaluate the L2-norm of these three terms. For this purpose, we establish an intermediate result.
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Lemma 5.2. We recall that Rt =
∫ t

0

∫

R
|z|1{|z|>1}µ

n(ds, dz). We have ∀ε > 0
(a)

Ex

(

P1

∫ 1

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz)

)2

≤ Cε(a, b, α)(1 + |x|2)n
4/α

n2−ε
,

(b)

Ex

(

P1

R1

∫ 1

0

∫

R
Rs−|z|1{|z|>1}µ

n(ds, dz)

µn(ρ)

)2

≤
{

C(a, b, α)(1 + |x|2), if α > 1,

Cε(a, b, α)(1 + |x|2)n2/α

n2−ε if α ≤ 1.

Proof. We first recall that
∫ t

0

∫

R
f(z)1{|z|>1}µ

n(ds, dz) =
∑Nt

i=1 f(Zi), where (Nt) is a Poisson process with in-

tensity λn =
∫

R
Fn(z)1{|z|>1}dz such that λn ≤ C(α) and (Zi)i≥1 are i.i.d. variables with density

Fn(z)1{|z|>1}

λn
dz.

(a) We have

|P1

∫ 1

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz)| ≤ P1

N1
∑

i=1

|Zi|
i−1
∑

j=1

|Zj | ≤ P1

∑

i6=j

|Zi||Zj |.

So, we obtain from Hölder’s inequality for any p > 1

Ex(P1

∫ 1

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz))2 ≤ C(a, b, α)(1 + |x|2)[E(

∑

i6=j

|Zi||Zj |)2p]
1
p .

But we easily check that

E(
∑

i6=j

|Zi||Zj |)2p ≤ E(N4p
1 )[E|Zi|2p]2,

and that (the constant depends on a through the truncation)

E|Zi|2p ≤ C(a, α)
n2p/α

n
.

This leads to

[E(
∑

i6=j

|Zi||Zj|)2p]
1
p ≤ C(a, α)

n4/α

n2/p
,

and (a) is proved by choosing p arbitrarily close to 1 (recalling that C(a, α) depends on p).
(b) Observing that µn(ρ) ≥ µn(ρ1{|z|>1}) and proceeding as in (a)

|P1

R1

∫ 1

0

∫

R
Rs−|z|1{|z|>1}µ

n(ds, dz)

µn(ρ)
| ≤ P1

∑N1

i=1 |Zi|
∑N1

i=1 |Zi|
∑i−1

j=1 |Zj|
∑N1

i=1 |Zi|2
.

But using successively Cauchy Schwarz inequality and |Zi||Zj | ≤ 1
2 (|Zi|2 + |Zj |2)

(

∑N1

i=1 |Zi|
∑N1

i=1 |Zi|
∑i−1

j=1 |Zj |
∑N1

i=1 |Zi|2

)2

≤ Nt

(
∑

i6=j |Zi||Zj |)2
∑N1

i=1 |Zi|2

≤ N2
t

∑

i6=j

|Zi||Zj|.

Now for any p > 1 we have

E(
∑

i6=j

|Zi||Zj |)p ≤ E(N2p
1 )[E(|Zi|p)]2 ≤ C(a, α)(1 +

np/α

n
)2
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If α > 1, choosing 1 < p < α gives E(
∑

i6=j |Zi||Zj |)p ≤ C(a, α) and we obtain the first part of (b) from Hölder’s
inequality.

If α ≤ 1 then E(
∑

i6=j |Zi||Zj |)p ≤ C(a, α)n
2p/α

n2 and finally Hölder’s inequality gives ∀p > 1

Ex

(

P1

∫ 1

0

∫

R
Rs−|z|1{|z|>1}µ

n(ds, dz)R1

µn(ρ)

)2

≤ C(a, b, α)(1 + |x|2)n
2/α

n2/p
,

and we conclude by choosing p arbitrarily close to 1.

From Lemma 5.2 (a) and Lemma 5.1, we obtain immediately

Ex sup
t

|∂rY n,r
t |2 ≤ Cε(a, b, α)(1 + |x|2)( 1

n2
+

1

n2/α
+

1

n2−ε
), (5.50)

Consequently combining (5.50), (5.48), Lemma 5.2 (b) and observing that R1/µ
n(ρ) ≤ 1, we have

Ex

∣

∣

∣

∣

∣

W
n,r,(2,1)
1

Un,r
1

∣

∣

∣

∣

∣

2

≤ Cε(a, b, α)(1 + |x|2)( 1

n2
+

1

n2/α
+

1

n2−ε
).

To control the L2-norm of
∂rY

n,r
1 W

n,r,(3,1)
1

(Un,r
1 )2

, in view of (5.49) and (5.50) it remains to bound

n1/α|∂rY n,r
1 |µ

n(|ρ′ρ|)
µn(ρ)2

.

We check that µn(|ρ′ρ|)
µn(ρ)2 (1+R1) ≤ P1, and using µn(|ρ′ρ|) = µn(|ρ′ρ|1{|z|≤1})+µn(|ρ′ρ|1{|z|>1}) with µn(|ρ′ρ|1{|z|>1}) ≤

2R1µ
n(ρ), it yields

µn(|ρ′ρ|)
µn(ρ)2

∫ 1

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz) ≤ P1 + P1

R1

∫ 1

0

∫

R
Rs−|z|1{|z|>1}µ

n(ds, dz)

µn(ρ)
.

So from Lemma 5.1 we have

n1/α|∂rY n,r
1 |µ

n(|ρ′ρ|)
µn(ρ)2

≤ P1(
1

n
+

1

n1/α
) +

P1

n1/α

R1

∫ 1

0

∫

R
Rs−|z|1{|z|>1}µ

n(ds, dz)

µn(ρ)
,

and consequently from (5.49), (5.50) and Lemma 5.2 we conclude

Ex

∣

∣

∣

∣

∣

∂rY
n,r
1 W

n,r,(3,1)
1

(Un,r
1 )2

∣

∣

∣

∣

∣

2

≤ Cε(a, b, α)(1 + |x|2)( 1

n2
+

1

n2/α
+

1

n2−ε
).

For the last term
∂rY

n,r
1 L

n,r
1

Un,r
1

, in view of (5.47) and (5.50) it remains to study

P1n
1/α|∂rY n,r

1 |
µn(|ρ′ + ρ

F ′
n

Fn
|)

µn(ρ)
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where
F ′

n

Fn
(z) = 1

z + 1
n1/α

g′

g (
z

n1/α ). For any p ≥ 1, we have using A1

E

∫ 1

0

∫

R

|g
′

g
(

z

n1/α
)|p1{|z|>1}µ

n(ds, dz) = 2

∫ n1/α

2||a′||∞

1

|g
′

g
(

z

n1/α
)|pg( z

n1/α
)

1

zα+1
dz

=
2

n

∫ 1
2||a′||∞

1/n1/α

|g
′

g
(u)|pg(u) 1

uα+1
du

≤ C

n
[

∫ 1

1/n1/α

1

uα+1
du+

∫

|g
′

g
(u)|pg(u)du]

≤ C(α).

So it yields, introducing 1{|z|≤1} and 1{|z|>1}

µn(|ρ′ + ρ
F ′
n

Fn
|) ≤ P1(1 +R1).

Next, Lemma 5.1 and the previous bound give

P1n
1/α|∂rY n,r

1 |
µn(|ρ′ + ρ

F ′
n

Fn
|)

µn(ρ)
≤ P1(

1

n
+

1

n1/α
) +

P1

n1/α

R1

∫ 1

0

∫

R
Rs−|z|1{|z|>1}µ

n(ds, dz)

µn(ρ)
,

and we conclude with (5.47), (5.50) and Lemma 5.2

Ex

∣

∣

∣

∣

∂rY
n,r
1 L

n,r
1

Un,r
1

∣

∣

∣

∣

2

≤ Cε(a, b, α)(1 + |x|2)( 1

n2
+

1

n2/α
+

1

n2−ε
).

Collecting all these results, we finally have proved, ∀ε > 0

Ex|HY K,n,r
1

(∂rY
K,n,r
1 )|2 ≤ Cε(a, b, α)(1 + |x|2)( 1

n2
+

1

n2/α
+

1

n2−ε
).

We can easily see that the constant Cε(a, b, α) has exponential growth in ||b′||∞ and polynomial growth in
||b′′||∞, ||a′||∞, ||a′′||∞, 1/||a′||∞, b(0), a(0), 1/a, 1/ α and 1/(α− 2).

To complete the proof of Theorem 3.2, we consider the Euler approximation. The proof follows the same
lines but the bound for ∂rỸ

n,r
t has the additional term b(x)/n2. So the first item in Lemma 5.1 is replaced by

sup
t∈[0,1]

|∂rỸ n,r
t | ≤ P1

n2
+

P1

n1+1/α
(1 +R1)

+
P1

n2/α

(

1 +R1 +

∫ 1

0

∫

R

Rs−|z|1{|z|>1}µ
n(ds, dz)

)

.

Since we have to control not only supt |∂rỸ n,r
t | but also n1/α supt |∂rỸ n,r

t |, we have the extra term n1/α/n2 and
finally

Ex|HỸ K,n,r
1

(∂rỸ
K,n,r
1 )|2 ≤ Cε(a, b, α)(1 + |x|2)(n

2/α

n4
+

1

n2
+

1

n2/α
+

1

n2−ε
).
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[10] Valentin Konakov and Stéphane Menozzi. Weak error for stable driven stochastic differential equations:
expansion of the densities. J. Theoret. Probab., 24(2):454–478, 2011.

[11] R. Mikulevicius. On the rate of convergence of simple and jump-adapted weak Euler schemes for Lévy
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