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Lattice support structure discrete optimization for additive manufacturing

Abstract

The emergence and improvement of Additive Manufacturing technologies allow the fabrication of complex shapes so
far inconceivable. However, to produce those intricate geometries, support structures are required. Besides wasting
unnecessary material, these structures are consuming valuable production and post-processing times. This paper pro-
poses a new framework to optimize the geometry and topology of inner and outer support structures. Starting from
a uniform lattice structure filling both the inner and outer areas to be supported, the approach removes a maximum
number of beams so as to minimize the volume of the support. The geometry of the initial lattice structure is optimized
at the beginning considering the possibilities of the manufacturing technologies. Then, the pruning of the structure
is performed through a genetic algorithm, the parameters of which have been optimized through a design of experi-
ments. The proposed approach is validated on several test cases of various geometries, containing both inner and outer
parts to be supported. The generated support structures are compared to the ones obtained by commercial software.

Keywords: support structures, lattice structures, genetic algorithm, directed Steiner tree, additive manufacturing.

1. Introduction

Additive Manufacturing (AM) has taken a huge step to-
wards industrialization over the last few years, and the
area is growing rapidly [1]. This new family of manu-
facturing technologies enables the production of com-
plex shaped parts, impossible to produce with tradi-
tional manufacturing processes. Thus, it plays a key role
in the emergence of the latest industrial revolution, In-
dustry 4.0, that is encouraging the integration of in-
telligent production systems and advanced information
technologies [2]. As opposed to subtractive manufactur-
ing methodologies, AM consists in joining materials to
make objects from 3D model data, usually layer upon
layer [3]. Thanks to this approach, geometries like lattice
and porous structures, organic structures generated by
topological optimization, parts with intricate flow chan-
nels are becoming possible and easier to manufacture.

Despite the growing interest and the apparent ease
of implementation, the production of parts in additive
manufacturing requires some precautions. Actually, with
most of the AM technologies, the addition of support
structures is required to ensure the good production
of a part. Support structures can fulfill three main
functions [4]: (i) sustain overhangs, bridges and islands;
(ii) stiffen the part to prevent distortions; (iii) dissipate
heat from thermal accumulation areas. An overhang
corresponds to a surface forming an angle inferior to
45° with the horizontal plane. A bridge is a large over-
hanging area, generally horizontal, sustained at its two
end points. An island corresponds to a material volume
that will, at a certain building layer, be completely
disconnected from the rest of the part and from the
building platform.

This paper focuses on the sustainment function. The
stiffening and dissipation requirements are further dis-
cussed in the conclusion. Support structures can be clas-
sified into two main categories:

• removable support structures are usually located in
reachable spaces around the part and are removed
after the production, during a post-processing
phase. This type of support is widely used.

• permanent support structures are included in the fi-
nal part to support internal cavities and unreachable
areas after the production. This category is avoided
as much as possible.

The optimization of support structures represents a
great financial stake for the industry. For removable
support structures, three characteristics can be opti-
mized: volume, production time and removability. The
volume of a support structure impacts the quantity of
material fused during production. It also affects the pro-
duction time. However, the time spent to manufacture the
object also depends on the geometry of the support. This
is because the scan speed is not the same for all the areas
of the support, and usually the scan speed for the out-
line of a geometry is lower than the one for the filling of
that same geometry. Finally, the ease of removal of a sup-
port decreases the finishing time, and diminish therefore
the overall cost of the part. For permanent support struc-
tures, by definition, only the volume and the production
time are to be optimized.

This article proposes a new framework for the opti-
mization of support structures, based on a discrete op-
timization of lattice structures. Starting from a uniform
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Figure 1: Optimized lattice support structures (b) generated from a tri-
angle mesh of the Stanford Bunny (a) using the framework presented in
this paper.

lattice structure filling both the inner and outer areas to
be supported, the approach removes a maximum num-
ber of beams so as to minimize the volume of the sup-
port (fig. 1). The geometry of the initial lattice structure
is optimized at the beginning considering the possibilities
of the manufacturing technologies. Its topology is then
optimized while pruning the lattice structure through a
genetic algorithm. Additional post-processing steps are
also performed to finalize the model and make it ready
for printing.

The contribution is threefold: (i) the volume of the gen-
erated support structures is minimized, in order to re-
duce the overall production cost of the part; (ii) the algo-
rithm generates aperiodic self-supporting tree-like struc-
tures, with no privilege direction, making it optimal for
future mechanical optimization; (iii) the framework im-
plements a new methodology using a genetic algorithm
to solve the Directed Steiner Tree (DST) problem associ-
ated to our lattice support structure optimization.

The rest of the paper is organized as follows. After an
overview of the current developments on support opti-
mization (section 2), the section 3 describes the proposed
framework composed of several steps. The problem of
finding the best lattice support structure is then intro-
duced together with the proposed genetic algorithm (GA)
used for its resolution (section 4). The approach is then
discussed and validated on several test cases, and the con-
trol parameters of the different steps are also optimized
through several experimentations (section 5). The results
are compared with the ones obtained by commercial soft-
ware. Section 6 ends this paper with conclusions and per-
spectives.

2. Related works

Support structures are essential for the good produc-
tion of parts. They prevent material collapse and part de-
formation. However, they represent an important propor-
tion of the production cost of parts (e.g. material volume,

production time and support removal time). Industry is
thus really keen on optimizing them.

Depending on the adopted technology, the support
structures do not have the same role, and therefore the
same geometries. Various support structures geometries
can be found in the literature. They can be classified in
four main categories: extruded patterns, dually periodic
patterns, triply periodic patterns and aperiodic struc-
tures.

The extruded patterns consist in a 2D shape in the
XY plane repeated at each layer up to the part geome-
try. They are the most common geometries because they
can be easily generated and manipulated. For example in
Laser Beam Melting (LBM), Calignano carries out a de-
sign of experiments to optimize perforated blocks and
lines supports with regard to part deformation, and he
also proposes an orientation optimization procedure as
well as a support optimization procedure [5]. Järvinen
et al. optimize part surface roughness and removability
of tube and web extruded structures by varying various
parameters such as the thickness [6]. Jhabvala et al. gen-
erate filled block support structures with porous micro-
structure, thanks to a pulsed laser, making them easily
removable [7]. Krol et al. developed a discrete optimiza-
tion based on a Finite Element Analysis (FEA) model by
subdividing extruded crossing walls [8][9]. For the Fused
Deposition Modeling (FDM) technology, Jin et al. propose
a slice-based algorithm to generate plastic support struc-
tures [10]. Crump et al. also filed a patent on the creation
of an interface between the part and the support struc-
tures to facilitate the removal of the latter [11]. For the
StereoLithography Apparatus (SLA) technology, Quian et
al. developed an algorithm projecting overhanging areas
onto the building platform to generate block-like sup-
port structure [12]. Finally, for the Electron Beam Melt-
ing (EBM) technology, Cheng et al. and Cooper et al. use
contact-free blocks placed underneath the overhanging
areas to dissipate the thermal energy induced by the pro-
cess [13][14][15].

The dually periodic patterns consist in 3D complex
shapes repeated according to a 2D pattern in the XY
plane. For example in LBM, Gan and Wong optimize tree-
like geometries by varying the repetition frequency in the
XY plane and analyze for each support structure thus
generated its influence on the temperature distribution
during production, and on the surface roughness after
support removal [16]. In FDM, Boyard repeats a tree-like
structure under the overhanging areas to support plastic
parts [17].

The triply periodic patterns consist in 3D complex
shapes repeated in the X, Y and Z directions. For exam-
ple, Hussein et al. make use of minimal surface structures
(like the Schwartz diamond or the Schoen gyroid) to sup-
port a cantilever part [4][18], whereas Cloots et al. stack
parts on top of each other in the building chamber by us-
ing lattice support structures [19]. In FDM, Li et al. vary
the diameter of lattice structure beams in order to cre-
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ate stiffer support structures [20], whereas Lee et al. pro-
pose a voxel-based hollowing method to create inner sup-
port structures [21]. In SLA, Swaelens et al. filed a patent
on the geometries of support structures, including perfo-
rated crossing walls and lattice support structures [22].

The aperiodic support structure category gathers all the
support geometries that do not present any repetition
pattern. For example, in FDM, Vanek et al. compute the
intersection of cones placed under overhanging surfaces
to create tree-like support structures [23], whereas Zhang
et al. generate lattice structures leaning on the medial
axis of the part to sustain hollow part [24]. Vaidya et
al. also repeat octahedral unit cells in order to create tree-
like support structures sustaining overhanging areas [25].

Most of the previously mentioned articles are propos-
ing algorithms or frameworks to support all the over-
hanging surfaces but fewer are taking into account the
importance of minimizing the volume of the generated
structures. Besides removing unnecessary beams and
thus unnecessary fused material, the framework detailed
in this paper operates on a pre-optimized lattice structure
which geometry has the minimal volume to make it man-
ufacturable. This results in a highly low volume support
structure.

Furthermore, many approaches are exploring ex-
truded, dually periodic and triply periodic structures
but fewer are focusing on aperiodic supports. However,
the overhanging and thermo-mechanical constraints of a
part supporting problem do not, most of the time, fol-
low any pattern. Therefore, the geometry of the support
structures should not a priori present any shape repeti-
tion. The framework presented in this paper optimize a
lattice structure by removing the unnecessary beams and
therefore generates an aperiodic tree-like structure, pre-
senting no repetition bias.

3. Overall framework

This section introduces the new optimization frame-
work developed to sustain the overhanging surfaces of a
part.

Basically, an overhanging surface is sustained if every
point p0 of the surface is at a distance smaller than an
overhang distance op from at least one other point p1
with support material directly below it. The overhang
distance op (with p referring to process) depends on
the adopted AM technology, material and print param-
eters. For example, with the LBM technology, it is con-
sidered that op ' 0.5mm. This is illustrated on figure 3
wherein green areas are sustained since they gather to-
gether points which are close enough to existing sup-
port structures. At the opposite, red zones correspond to
unsustained areas far from any existing support struc-
ture. The sustainment condition can therefore be ex-
pressed as:

∀S ∈OS(P ),∀p0 ∈ S ,∃p1 ∈ SP (S) : ‖p0 −p1‖ 6 op (1)

where S corresponds to an overhanging surface, OS(P )
is the set of all the overhanging surfaces of a part P , and
SP (S) is the set of all the sustained points of S with sup-
port material directly below them.

From this definition, it becomes straightforward that
the use of lattice structures is a good mean to ensure
the sustainment condition while minimizing the support
material to be used under the overhanging surfaces. The
principle of the proposed framework is to generate such
an initial lattice structure under the overhanging surfaces
of a part and to remove from this lattice the maximum
number of beams, without breaking the sustainment con-
dition. More precisely, the proposed framework is com-
posed of several steps illustrated on figure 2:

1. Initial lattice generation: starting from a watertight
triangle mesh composed of one or more oriented
shells, a lattice structure with a manufacturable unit
cell geometry is generated to support the inner and
outer overhanging areas. This lattice is obtained by
repeating a parallelepipedic unit cell in the three or-
thogonal directions of the 3D space, with 3 constant
repetition distances. In this paper, one specific unit
cell geometry is used, but any other self-supporting
geometry could have been chosen. The adopted unit
cell combines a body-centered cubic (BCC) cell and
5 vertical beams, located at each vertical edge and
at the vertical axis of the cube (fig. 4). It is defined
by three parameters: a corresponds to the size of the
base, h to the height of the cell, and d to the diameter
of the beams. As a consequence, the maximum beam
angle αmax and the overhanging distance of the lat-
tice o` (with ` referring to lattice) can be easily com-
puted. Thus, the sustainment condition for this spe-
cific unit cell is o` 6 2op which gives:

a 6 (d + 2op)
√

2 (2)

Then the lattice is trimmed to the part surface, which
means every beam going through the part surface
is cut short. This lattice must satisfy the sustain-
ment condition (1) because the optimization algo-
rithm will identify the best sub-lattice of this initial
lattice.
Furthermore, the parameters of the lattice structure
are not considered as variables of our lattice support
structure discrete optimization. Thus, they are opti-
mized in a preliminary step that is discussed in sec-
tion 5.2.

2. Pre-processing: the variables and parameters of the
optimization problem are identified. The nodes of
the lattice connected to only one beam, also called
"isolated nodes" with a valency of 1, are identi-
fied. Those nodes appear because of the trimming of
the lattice to the part surface. Among the isolated
nodes, the ones connected to an overhanging area
are called sources and are the ones that must be sus-
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Figure 2: The proposed optimization framework (example on the plane turbine internal supports)

tained. The other isolated nodes are called wells and
do not need to be sustained.

3. Pre-optimization: the variables of the optimization
problem for which the value in the optimal solu-
tion can be deduced are isolated and removed from
the set of optimization variables, thus reducing the
computation time. For example, if a source (i.e. a
node that needs to be sustained) has only one out-
going beam, this beam is needed to preserve the
sustainment constraint and is thus necessarily part
of the optimal solution. This beam is therefore di-
rectly added to the solution beam set, the source is
removed from the set of variables, and the beam’s
lower extremity is added to the set of variables as a
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Figure 3: The sustainment condition: a partially (a) and a fully (b) sus-
tained surface. The unsustained areas are in red.
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Figure 4: The unit cell used in this paper

new source. Likewise, if one of the smallest outgoing
beams is directly connected to a well (i.e. its lower
extremity is a well), this beam is added to the solu-
tion beam set and the source is removed from the set
of variables.

4. Optimization: a Genetic Algorithm (GA) is used to de-
termine which sub-lattice of the initial lattice struc-
ture has the smallest cumulated beam length while
respecting the sustainment constraint. In this step,
the initial lattice structure is pruned until the stop
criteria are reached. This algorithm is introduced in
section 4 and the method used to optimize its param-
eters is discussed in section 5.1.

5. Post-processing: once the optimized sub-lattice is
found, a post-processing step is applied to even bet-
ter reduce its length. The beam paths between con-
nection points (i.e. points of valency greater than 1)
are straightened by replacing each beam path with a
unique rectilinear beam between the two associated
connection points. Because of the initial lattice topol-
ogy, this added beam is assured to be self-sustained,
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and will not generate any additional overhanging
area.

At the end of this optimization process, some prepara-
tion steps are still required before the printing. The re-
sulting lattice structure is to be triangulated using for in-
stance the approach of Chougrani et al. [26] to minimize
the number of generated triangles. Then, the generated
geometry can be sliced and the printing parameters se-
lected.

4. Solving the Lattice Support Structure Discrete Opti-
mization (LS2DO) problem

The lattice support structure optimization problem in-
troduced in the previous section is a discrete problem
because the number of potential solutions is finite. To
solve it, a Directed Acyclic Graph (DAG) is associated
with the initial lattice structure and a Genetic Algorithm
(GA) is used to find the subgraph respecting the sustain-
ment constraints and with the smallest cumulated beam
length.

4.1. Problem formalization

Inspired by the graph theory, a lattice L = (N,B) is a
set of beams B connecting a set of nodes N . The num-
ber of beams is denoted b = card(B) = |B| and the number
of nodes n = card(N ) = |N |. Let us define L3 the set of
all the lattices embedded in R

3. For a lattice L, the pre-
processing step of the proposed framework identifies the
set of all the source nodes NS and the set of all the well
nodes NW . A lattice L′ = (N ′ ,B′) is defined as a sublat-
tice of L if B′ ⊂ B. This also implies N ′ ⊂ N . Let us de-
note sub(L) the set of all the sublattices of L.

The lattice graph associated to a lattice L = (N,B) is the
graph G = (V ,E) in which each vertex in V corresponds
to a node in N , and each edge in E corresponds to a beam
in B. Therefore, card(V ) = |V | = n and card(E) = |E| =
b. An element of V is denoted vi with i ∈ {1, ..., |V |}. Sim-
ilarly, a source vertex vsi is associated to a lattice source
node, and a well vertex vwi is associated to a lattice well
node. Likewise, VS represents the set of all the source ver-
tices, and VW the set of all the well vertices. For a vertex vi
of V , out(vi) denotes the set of outgoing edges of vi , and
in(vi) denotes the set of incoming edges of vi . Let us de-
note G3 the set of lattice graphs generated from L3 and
sub(G) the set of all the subgraphs of G.

In the proposed approach, a lattice graph is oriented
as follows. Each edge of the graph is oriented from its
vertex corresponding to the highest lattice node (in the
Z direction, perpendicular to the build platform) to the
vertex corresponding to the lowest lattice node. Further-
more, the lattice graph is weighted with a function we :
E → R which associates to each edge of the lattice graph
a cost value equal to the length of the corresponding
lattice beam. For an edge ej with j ∈ {1, ..., |E|}, the cost

value we(ej ) can be referred to as the length of the cor-
responding beam in the lattice structure. Consequently,
the weight (or length) w(G) of a lattice graph G = (V ,E) is
given by:

w(G) =
|E|∑
j=1

we(ej ) (3)

This is the objective function to be minimized when
solving the LS2DO problem. Indeed, the framework starts
by generating a lattice structure L under the overhanging
areas (red parts on the 2D Stanford Bunny of figure 5) and
optimizes it by finding a sub-lattice in sub(L) with the
minimum cumulated beam length, that sustains all the
identified sources in NS . In terms of graph, the problem
is to find a sub-graph of the initial lattice graphG = (V ,E)
with the minimum cost w(G), and which connects every
source vertex in VS to at least one well vertex in VW . Fig-
ure 5 shows the weighted DAG associated to our LS2DO
problem. Red vertices are the sources, and blue vertices
are the wells. The weights on the edges are equal to the
lengths of the beams in the lattice structure, except the
blue edges which all have a null weight and which are
not associated to any beam of the lattice structure.

Now, if one connects all the well vertices to a new root
vertex r, by simply adding a set of edges E′ weighted with
a 0 value (fig. 5), the problem remains unchanged, but it
can be formulated as: "Find the tree T = (VT ,ET ) in Gini =
(V ∪ {r},E ∪ E′ ,we) with the minimal cost w(T ), rooted at
r such that VS ⊂ VT ⊆ V and ET ⊆ E".
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Figure 5: Example of LS2DO problem on a 2D Stanford Bunny (left) and
the weighted directed acyclic graph (DAG) associated (right).

This corresponds to the definition of the Directed
Steiner Tree (DST) problem [27]. The DST problem is
known to be NP-hard [28], i.e. no polynomial algorithm
has been found to compute the optimal solution, and
presumably none will ever be. Furthermore, Halperin et
al. proved that, for any ε > 0, there is no polynomial
approximation algorithm within a log2−εn ratio, unless
P =NP [29].

Therefore, many subjects of research focus on approx-
imating the solution of the DST problem. For example,
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Charikar et al. presents an algorithm with an approxima-
tion ratio ofO(k2/3log1/3k), where k is the number of pairs
of vertices that are to be connected [30]. Zelikovsky also
proposes anO(kε)-approximation algorithm for any ε > 0
in the case of a DAG [31].

4.2. Resolution using a Genetic Algorithm
To find an approximated solution of the DST problem

associated with the lattice support structure optimiza-
tion problem, a Genetic Algorithm (GA) has been set up
and its control parameters have been tuned. Genetic al-
gorithms are metaheuristics. They are generic, adaptable
to various kinds of problems, and are random by na-
ture. This randomness makes the output of every run un-
predictable and potentially different from the result of a
previous run. In this sense they are non-deterministic al-
gorithms. They are part of the larger family of evolution-
ary algorithms.

A GA manipulates populations of chromosomes. Each
chromosome encodes a potential solution to a problem,
i.e. a sub-graph in the present case. To solve the LS2DO
problem, two encoding approaches have been considered:

• the activation encoding (fig. 6 left) is one of the sim-
plest ways to encode a sub-graph into a chromo-
some. Here, a boolean variable xi is associated to
each edge ei in the set of edges E of the initial graph,
and these variables are concatenated to form the acti-
vation chromosome. If xi = 0, then the edge ei is not ac-
tivated, else if xi = 1 it is activated. Every sub-graph
of a graph can thus be encoded.

• the switch node encoding (fig. 6 right) is another way
to encode a solution of the DST problem into a chro-
mosome. Here, a variable xi is associated to each ver-
tex vi in the set of vertices V of the initial graph,
selecting the only outgoing edge of vi that will be
activated if at least one incoming edge of vi is acti-
vated. In the 2D example of figure 6 (right), three
values can be assigned to the variables. If xi = 1, then
the oriented edge starting from vi and pointing to
the left is activated, else if xi = 2 then the one point-
ing vertically downward is activated, else if xi = 3
the one pointing to the right is activated. This en-
coding method can only encode sub-trees of a graph
because for each vertex, only one outgoing edge can
be activated. The set of potential solution is, there-
fore, the set of all the sub-trees of the initial graph
rooted in r. Actually, since the solution of the DST
problem must be a tree rooted in r, the switch node
encoding is particularly adapted to solve the LS2DO
problem. The set of all sub-trees rooted in r is con-
sistently smaller than the set of all sub-graphs, so the
switch node encoding reduces greatly the computation
time of the GA.

For all those reasons, in this paper, the switch node en-
coding has been chosen. Considering a 3D lattice struc-

ture initially composed of basic cells as the one of fig-
ure 4, the variable xi associated to a vertex vi of the initial
graph can take five different values corresponding to the
five directions of the oriented edges starting from vi and
going down. Of course, if another type of unit cell is cho-
sen, the values of the variables are to be changed.

The execution of our GA is described in the flowchart
of figure 7. At first, an initial population of chromosomes
(corresponding to potential solutions) is selected. In our
case, the initial population is chosen randomly but it can
be selected through a heuristic algorithm, in order to ob-
tain good initial solutions. Then the so-called fitness of
each initial chromosome is computed in parallel. The fit-
ness of a chromosome corresponds to its evaluation by
the objective function. Here it is directly equal to the
sum of the weights associated the edges activated by that
chromosome. Once each chromosome is evaluated, a set
of parent chromosomes is selected in the initial popula-
tion. Those parents are going to make birth to the next
generation of chromosomes, through crossovers and mu-
tations. Crossover is the process of subdividing and mix-
ing portions of at least two parent chromosomes to cre-
ate at least one child chromosome, whereas mutation is
the process of randomly changing gene values of a parent
chromosome. However, all the selected parents are not
giving birth to children: each parent has a probability to
be part of a crossover, and a probability to mutate. Those
probabilities are parameters of our GA. Once the child
chromosomes are created, their fitness is once again com-
puted in parallel. Some children are then selected to be
reinserted into the previous population to form the next
generation of chromosomes. Finally, our GA checks if the
termination conditions are fulfilled by this new genera-
tion: if so, the best chromosome of the last generation is
considered as the solution of the problem, and otherwise,
our evolutionary algorithm goes on with a new generation
created through the GA steps.

Finally, our GA makes use of 4 operators: selection,
crossover, mutation and reinsertion. Moreover, our GA
has 4 execution parameters that influence the algorithm:
minimal size of a population (MinSize), maximal size of
a population (MaxSize), crossover probability (CP) and
mutation probability (MP). Thus, our GA is controlled by
8 parameters which can be optimized to solve efficiently
the LS2DO problem.

5. Experimentations and results

This section adresses the way the parameters of the lat-
tice structure and the parameters of the GA can be opti-
mized. Once the best parameters identified, the proposed
approach is applied to several test cases and the gener-
ated support structure are compared to the ones obtained
with commercial softwares.
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Figure 6: The activation encoding (left), the switch node encoding (right) and the resulting 2D supports (center).

Levels 0 1 2 3
Selection Elite Roulette Wheel Stochastic Universal Sampling Tournament
Crossover One-Point Two-Points Uniform Three parents
Mutation Reverse Sequence Twors Uniform –
Reinsertion Elistist Uniform – –
MinSize 50 100 500 1000
Span (MaxSize-MinSize) 50 100 500 1000
Crossover Probability 0.25 0.5 0.75 1
Mutation Probability 0.01 0.1 0.3 0.5

Table 1: Factors and their levels for the design of experiments parametrization

5.1. GA parameters optimization
The GA adopted in the proposed framework has

been implemented through the GeneticSharp library, cre-
ated by Giacomelli, and available on the GitHub plat-
form. Therefore, the levels for the 4 operators of the GA
steps are the ones available in this library and applicable
to the DST problem. The names of these operators corre-
spond to the ones used in the GeneticSharp library. The
strategy behind each operator is not described in this pa-
per, but it can be found with great details on the GitHub
webpage. Table 1 lists the levels of the 8 parameters (4
operators and 4 each execution parameters) controlling
our GA: 6 parameters with 4 levels, 1 parameter with 3
levels and 1 parameter with 2 levels have been identified
as potential parameters for the DST problem.

5.1.1. Design of Experiments set up
A design of experiments (DoE) has been carried out

to determine which GA parameters are the most suited
for the LS2DO problem. Among all the available DoE

methods (e.g. full factorial, Doehlert, Box-Behnken), the
Taguchi tables method has been selected because it of-
fers a good trade-off between accuracy of the results and
number of different experiments to realize. According to
the number of parameters and the number of levels for
each parameter, the L32(21×49) table has been selected. It
must be noted that this particular Taguchi table does not
accept any 3-level parameter, whereas, for the mutation
operator, only 3 levels have been identified. Therefore,
the Uniform level of the mutation operator has been re-
peated twice. However, for the result analysis of the DoE,
the effects of the 2 Uniform levels have been considered
independently so that it does not affect the results. Dur-
ing the 32 experimentations, two quantities have been ob-
served to define the quality of the GA parameterization:
the length of the lattice structure associated to the solu-
tion graph (which need to be minimized for the LS2DO
problem) and the optimization time (i.e. the time before
the algorithm returns a solution).

Because of the random nature of the GA, the DoE can
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Figure 7: Genetic algorithm flowchart

be biased: one run of the GA with a certain set of param-
eters can produce exceptional results compared to what
it would produce most of the time. In order to smooth
this effect, for each set of parameters, it has been decided
to run the GA 5 times, to discard the two extrema (the
lowest and the highest measurements) for each measured
quantity (length of the solution and optimization time),
and to analyze the effects of the set of parameters with
the mean of the 3 remaining measurements, called the
trimmed response.

Finally, to set up the DoE, it is important to stress
that the LS2DO is also a part specific problem: from one
part to another, the initial lattice structure is different, so
the evolution of the algorithm varies. Therefore, it is not
straightforward that the optimal GA parameters for one
supported part are the same for another. To check this as-
sertion, the DoE has been carried out on 3 different parts:
the academic Standford Bunny, an industrial Stem and an
industrial Turbina (figures 12, 13 and 14). Each part con-
tains several more or less complex inner and outer areas
to be sustained.

5.1.2. Analysis of the DoE results
Following this DoE, the 32 experimentations have been

run 5 times on the 3 parts. Figure 8 compares the effects
of the 3 DoE on the length measurement whereas figure 9
compares the effects of the 3 DoE on the time measure-
ment. As a reminder, the length measurement represents
the weight of the graph (equal to the length of the corre-
sponding lattice) at the end of a run of the GA with a spe-
cific bundle of parameters. Therefore, the objective of the
DoE is to find out the parameters which optimize both the
length and the optimization time. For each parameter, the
optimal level is thus the one with the smallest effect. The

effect of each level is computed as follow: it is the sum of
the considered measurement (length of returned solution
or optimization time) of all the experiments for which the
factor is set to the corresponding level. Then, the effect
of each level is normalized (by dividing it by the mean of
the considered measurement of all the experiments of the
DoE) to be able to compare the tendencies over all the test
cases.

For example, one can consider the DoE carried out on
the Stem part. For this DoE, 32 experiments have been re-
peated 5 times. For each experiment, the repetitions with
the lowest and the highest lengths have been discarded,
and the trimmed length response of the experiment has
been computed as the sum of the length of the 3 remain-
ing repetitions divided by 3. Then, the trimmed length
response of all the experiments have been gathered in a
table. To compute for instance the effect of the Elitist level
for the Selection operator, the experiments for which the
Selection operator is set to Elitist are considered and the
corresponding effect is computed as the mean of these ex-
periments trimmed length responses. Finally, this effect is
divided by the mean of all the trimmed length responses
of the Stem DoE, giving 110.7% according to figure 8.

For the length measurement (fig. 8), it can be noted that
the tendencies of the effects are globally similar over the
three parts. For the selection, crossover and reinsertion
operators, the optimal levels are identical for the 3 test
cases (namely the Tournament, Uniform and Elitist lev-
els). For the mutation operator, the Reverse and the Twors
levels seem more effective than the Uniform level. How-
ever, between the two, none is better than the other on all
the test cases. Therefore, the Twors level has been arbi-
trarily selected. For the MinSize parameter, the two high-
est levels (namely 500 and 1000) seem to be more efficient
than the others, but the best one is difficult to isolate. The
same tendency can be noticed for the Crossover Probabil-
ity (with the 0.75 and 1 levels) and for the Mutation Prob-
ability (with the 0.3 and 0.5 levels). For the Span factor,
the 500 level is better than the others for the Turbina and
the Stanford Bunny parts, but it returns a slightly longer
solution for the Stem part.

For the proposed framework, the length measurement
can be seen of more importance in comparison to the
optimization time, because the latter should be negligi-
ble with regards to the production time of the parts (es-
pecially in the case of series production). Therefore, to
select the best parameters for the proposed framework,
the most beneficial levels over the length measurement
have been selected, and for the conflicting parameters,
the level with the lowest time-consumption has been cho-
sen. Following this rule, the 8 optimized parameters val-
ues are presented in table 2. Thus, for the mutation opera-
tor, the time consumption cannot help to decide between
the Reverse and the Twors level. However, for the MinSize
parameter, the 1000 level clearly increases the optimiza-
tion time, and the 500 level will be favored. Likewise, for
the Crossover Probability, the 0.75 level will be privileged
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Figure 8: Effect analysis of the DoE regarding the length of the solution
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Figure 9: Effect analysis of the DoE regarding the optimization time

over the 1 level, and for the Mutation Probability, the 0.3
level will be chosen over the 0.5 level. For the Span pa-
rameter, the time-consumption graph comfort the prese-
lection made.

Parameters Optimized levels
Selection Tournament
Crossover Uniform
Mutation Twors
Reinsertion Elitist
MinSize 500
Span (MaxSize-MinSize) 500
Crossover Probability 0.75
Mutation Probability 0.3

Table 2: Optimized parameters levels implemented for the proposed
framework.

5.2. Lattice parameters optimization

As mentioned in section 3, the proposed framework
does not consider the parameters of the initial lattice as
variables of the optimization process. Thus, those param-
eters have to be tuned before generating the initial lat-
tice structure and before solving the LS2DO problem us-

ing the GA. The lattice structure parameters are as fol-
lows (fig. 4):

• maximal beam angle αmax which corresponds to the
maximal angle between a beam of the lattice and the
horizontal plane. It can vary between 45° and 90°.

• beam diameter d which value is constrained by the
adopted technology. For LBM technology, it can vary
between 0.5mm (minimal beam diameter that can be
manufactured) and +∞.

• unit cell parameter a corresponding to the repeti-
tion distance of the unit cells in the X and Y direc-
tions. It is a lattice generation parameter, but it is not
really a lever for action. Indeed, the value of a must
satisfy the sustainment condition stated by equation
(2). This equation makes a dependent of the beam
diameter d and overhanging distance o`, the two lat-
ters being independent from each other. o` is there-
fore the true lever of action, and has to be smaller
than 1mm (o` 6 2op) for the LBM technology.

9



222.42

395.68

597.33

776.76

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

0.25 0.5 0.75 1 1.25 1.5O
p

ti
m

iz
ed

 s
u

p
p

o
rt

 v
o

lu
m

e 
(i

n
 m

m
3 )

Beam diameter d (in mm)

Figure 10: Volumes of optimized internal supports for the Stanford
Bunny according to the initial lattice beams diameter d. (unmanufac-
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Figure 11: Volumes of optimized internal supports for the Stanford
Bunny according to the initial lattice maximal beam angle αmax . (un-
manufacturable area in red)

According to equation (2), if the overhang distance o`
decreases, the unit cell parameter a decreases and the lat-
tice structure becomes denser. The main objective of the
developed framework being to minimize the volume of
the lattice support structure, one can clearly understand
that the optimal value for o` is the highest possible.

However, for the beam diameter, increasing the value
of d results in a sparser lattice structure, but with
thicker beams. Likewise for the maximal beam angle
αmax, changing the value will result in a lattice with less
but longer beams. Therefore, it is not obvious that set-
ting these initial lattice parameters to there lowest values
will minimize the optimized support volume. To clarify
this point, some experimentations have been carried out
by varying the beam diameter d and the maximal beam
angle αmax on the internal support structure of the Stan-
ford Bunny part. Figure 10 and 11 presents the results of
these experimentations. As it can be seen in figure 10, a
low beam diameter d induces the lowest volume of the
optimized supports. Likewise, on figure 11, a low maxi-
mal beam angle produces the lowest volume for the opti-
mized supports. Therefore, the best values for the d and
αmax parameters of the initial lattice are the lowest possi-
ble.

Following those rules, the values of the three control
parameters have been chosen equal to the commonly
used lower limits of the manufacturing constraints of the
LBM technology: αmax = 45°, d = 0.5mm and o` = 1mm.
This technology is the one used to print the generated
support structures (fig. 15).

5.3. Results comparison

*** TO BE IMPROVED *** To evaluate the interest of
using lattice structures to support overhanging area on a
part, Table 3 compare the volume of the support struc-
tures obtained by using the proposed framework to the
volume of the support structures suggested by common
commercial software. This comparison is done on the in-
ternal and external support structures of the 3 test cases.

Table 3 clearly shows that the proposed framework en-
ables the generation of the support structures with the
lowest volume. However, the supports generated by com-
mercial software strategies are generic ones and could be
optimized furthermore. The conclusion to be drawn from
Table 3 is thus not that the proposed framework is better
than any commercial solution available, but rather that it
generates low volume support structures in comparison
to what is generally used in the industry.

6. Conclusions and future works

In this paper, a new framework has been proposed
to optimize support structures for additive manufactur-
ing. The aim of the framework is to sustain all the over-
hanging areas of a part, leaving aside the deformation
and thermo-accumulation issues. To do so, a manufac-
turable lattice structure is generated under the overhang-
ing areas. Then, a genetic algorithm optimizes this lattice
by removing the maximum number of beams, while in-
suring that all the areas to support are still sustained.

This article has presented the various results in the uti-
lization of this framework: the parameters of the GA have
been optimized through a design of experiments, the in-
ternal and external support structures of 3 test cases have
been successfully generated by the proposed framework
and manufactured, and their volumes have been com-
pared to the ones of support structures suggested by com-
mercial software, underlining the interest of the devel-
oped algorithm in terms of volume optimization.

As a perspective for this research, the initial popu-
lation selection of the genetic algorithm could be fur-
ther improved through the implementation of heuristic
search. The convergence of the GA itself could also be
increased thanks to a quick local search done after each
crossover and mutation, in order to obtain better child
chromosomes.

Furthermore, because the deformation and thermal
accumulation problems have been left aside, the pro-
posed framework cannot be used to support any kind
of additively manufactured part. However, it is a first
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b) a) c) 

 

Figure 12: Stem external supports generated by our framework (a), by the SLM support strategy (b) and the DLP support strategy (c) of commercial
software.

                   

                     

b) a) c) 

 
Figure 13: Standford Bunny external supports generated by our framework (a), by the SLM support strategy (b) and the DLP support strategy (c) of
commercial software.

Stem supports Turbine supports Bunny supports
internal external internal external internal external

Volumes (in mm3)
LS2DO using GA 420 1300 45 1465 210 320
(Commercial) SLM strategy 630 3100 – 1790 380 470
(Commercial) DLP strategy 620 3880 80 – 390 1720

Gain
Gain LS2DO wrt SLM -33.3% -% – +xx% -% -%
Gain LS2DO wrt DLP +xx% -66.5% +xx% – -46.2% -81.4%

Table 3: Volumes comparison between solutions obtained by the proposed framework and the support structures suggested by commercial software.

block in the wide area of support structure optimiza-
tion. Its coupling with thermo-mechanical optimization
algorithms is of interest in the future, in order to generate

poly-functional support structures, that can sustain over-
hangs, rigidify features subject to deformation, and dis-
sipate the thermal accumulation areas of any additively
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Figure 14: Turbina external supports generated by our framework (a),
by the SLM support strategy (b) and the DLP support strategy (c) of
commercial software.

                   

                     

b) a) 

 

Figure 15: The Stem test case printed in LBM

manufactured part.
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