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Abstract

This paper addresses the two-scale problem underlying the enriched continuum for
transient diffusion problems, which was previously developed and tested at the single
scale level only (Waseem et al., Comp.Mech, 65, 2020). For a linear material model
exhibiting a relaxed separation of scales, a model reduction was proposed at the micro-
scale that replaces the micro-scale problem with a set of uncoupled ordinary differential
equations (ODEs). At the macro-scale, the balance law, the ODEs and the macroscopic
constitutive equations collectively represent an enriched continuum description. Exam-
ining different discretization techniques, distinct solution methods are presented for the
macro-scale enriched continuum. Proof-of-principle examples are solved for a mass diffu-
sion system in which species diffuse slower in the inclusion than in the matrix. The results
from the enriched continuum formulation are compared with the computational transient
homogenization (CTH) and direct numerical simulations (DNS). Without compromising
the solution accuracy, significant computational gains are obtained through the enriched
continuum approach.

Keywords Model Reduction · Diffusion Problems · Multi-scale Analysis · Computational
Homogenization · Enriched Continuum

1 Introduction
Composite materials are used in a wide range of applications from large structures to micrometer
size components [1]. The contrast between the properties of the constituents may differ by
several orders of magnitude [2]. In general, it is computationally very expensive to simulate
such heterogeneous materials at the micro-scale since the analysis involves a large number of
degrees of freedom to capture the physical phenomena. Homogenization can be used instead,
which provides the effective properties through an averaging procedure. Various homogenization
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methods can be found in the literature, i.e. analytical bounds [3, 4], self-consistent methods [5]
and asymptotic homogenization [6, 7, 8]. Most of these homogenization methods assume a
steady-state condition at the micro-scale to calculate the effective properties. However, in
reality, due to the high contrast in material properties and time varying loading conditions,
this assumption is often not valid. For example, the steady-state assumption is not appropriate
in the case of diffusing species in polycrystaline materials, where the diffusion process in the
grain boundaries reaches steady-state while the grain interior still remains transient [9]. Similar
phenomena are observed for fluid and solute transport in geo-materials [10], diffusion in porous
gels [11] and diffusion of Lithium ions in electrode-electrolyte systems of Li-ion batteries [12].

Computational homogenization (CH) [13, 14, 15, 16] is a more recent and robust ho-
mogenization procedure, which has been extended to transient problems [17], including dif-
fusion [18, 19]. For a detailed review and perspectives of CH see [20, 21, 22]. Computational
homogenization for transient problems, despite its robustness, suffers from a high computa-
tional cost. It requires the solution of a micro-scale problem at each macroscopic material
point, which in transient problems must be solved at each time increment. To circumvent this
problem, reduced models for the effective diffusion response in transient regimes have recently
been proposed [23, 24], in which a chemical creep function is obtained. This chemical creep
function behaves similar to phenomenological models of viscoelasticity and consists of an infinite
number of Kelvin-Voigt units. A reduced model is then obtained by selecting a finite number
of Kelvin-Voigt units. In [24], an analytical expression is obtained for a transient inclusion,
embedded in an infinitely fast matrix, which is only possible for certain inclusion morphologies.

In a previous paper, an alternative reduced order model was proposed for the micro-scale
problem, first for dynamics [25] and then for diffusion problems in the context of heat conduc-
tion [26]. It is based on computational homogenization and applies a reduction technique to the
whole unit-cell (as opposed to the inclusion only in [24]). This numerical approach accounts
for different complex RVE morphologies. It is applicable in the relaxed separation of scales
regime in which the characteristic diffusion time τm of species in the matrix is much smaller
than the characteristic diffusion time τi in the inclusions. Moreover, the macroscopic loading
time T is such that the matrix can be assumed in a steady-state regime while the inclusion
exhibits transient inertia effects. The relaxed separation of scales can be expressed in terms
of the characteristic diffusion times of the constituents and the characteristic loading time as
follows

τm � (T ∼ τi) , (1)
For more discussion on the relaxed separation of scales in diffusion problems, see [8, 24]. Assum-
ing a linear material model for both the matrix and inclusions, allows to perform an additive
decomposition of the microscopic solution field into a steady-state and a transient part. The
reduced model is defined by means of a static condensation of the steady-state part of the
response, and by projecting the transient part onto a reduced (eigen)basis. The size of the
microscopic system of equations is thereby reduced from N coupled finite element degrees of
freedom (d.o.f) to just a few Nq decoupled d.o.f with Nq � N . An averaging is performed
to obtain the macroscopic constitutive equations in terms of the coefficients of the reduced
basis and the emerging macroscopic (internal) variables. The resulting set of equations to be
solved at the macro-scale describes what is called an enriched-continuum, consisting of the
macroscopic mass balance, constitutive equations obtained by homogenization and an evolu-
tion equation for the enrichment variables. The coefficients of the micro-scale reduced basis
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are called enrichment-variables and the vectors, constituting the micro-scale reduced basis are
called enrichment-functions. For a certain microscopic domain and material properties, the
enrichment-functions and the coupling terms in the macroscopic constitutive equations are
computed once and for all, and the subsequent on-line computation only consists in solving Nq
decoupled ordinary differential equations along with the macroscopic mass balance equation.
Such an enriched-continuum formulation can be applied to a heterogeneous medium which ex-
hibits transient diffusion phenomena within the assumption of linear material properties and
the relaxed separation of scales, for example mass diffusion problems in batteries where these
assumptions are valid in application some ranges.

The enriched continuum formulation for (heat) diffusion problems was developed in [26] and
validated at the micro-scale unit-cell level against full transient computational homogenization
results. No macro-scale enriched continuum simulations were used in [26]. The aim of this work
is to demonstrate the applicability of the reduced order framework to the solution of transient
problems with an underlying microstructure obeying the relaxed separation of scales. Since
the resulting macroscopic problem consists of an enriched continuum with enriched variables
and corresponding evolution equations, dedicated solution techniques have to be adopted. To
this end, two solution methods based on different spatial discretization schemes are analyzed.
First, a multi-field solution method is presented, in which both the enrichment-variables and
the primary macroscopic field are computed on the nodes and interpolated using finite ele-
ment shape functions. Next, an internal-variable solution method is presented, in which the
enrichment-variables are evaluated at the macroscopic quadrature points and considered as
internal-variables, while the macroscopic primary field variable is interpolated in a classical
manner using the finite element shape functions, as shown in Figure 1.

Macro-scale Variable

Enrichment Variables

(a) Multi-Field (b) Internal-Variable

Figure 1: Spatial discretizations schemes for the enriched-continuum. (a) Multi-field: both the
macro-scale and enrichment-variables are interpolated using bi-linear quadrilateral finite ele-
ments. (b) Internal-variable: the macro-scale variable is interpolated by bi-linear quadrilateral
finite elements while the enrichment-variables are computed at the Gauss quadrature points.

The advantage of the multi-field solution method is that the macroscopic primary variable
and the enrichment-variables are solved in a coupled manner at each time step; the disadvantage
is the significantly increased size of the finite element system of equations. In the internal-
variable method, the enrichment-variables are eliminated, locally at the Gauss quadrature point,
by condensation. Once the solution of the macroscopic variable field is available, the enrichment-
variables are evaluated and stored for the next time increment. This allows to use different
time integration schemes for the enrichment variables as opposed to the primary field, e.g. to
better capture micro-scale transient effects. The local condensation of the enrichment-variables
reduces the size of finite element system of equations to be solved globally. However, on the
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downside the internal flux vector needs to be evaluated at each time step, in the internal-
variable method since it depends on the values of the enrichment-variables from the previous
time step. This again makes it less efficient. These two solution methods will be assessed in
this paper. The novel contributions of the work presented here are:

• the two-scale enriched macroscopic continuum implementation emerging from the model
order reduction approach, applied to the solution of diffusion boundary value problems
with incorporation of micro-structural transient effects;

• the proposed different solution methods for the enriched-continuum for transient diffusion
problems;

• a comparison between the two-scale diffusion enriched-continuum macroscopic solution,
the conventional transient homogenization and direct numerical simulations, allowing to
evaluate the associated computational cost reduction.

1.1 Outline

Section 2 summarizes the enriched-continuum equations with expressions for the effective mass
flux and the effective concentration rate. Section 3 presents the analyzed solution methods
for the macro-scale enriched-continuum. First, the time integration schemes are presented
and, subsequently, the multi-field and the internal-variable solution methods are derived. In
section 4, proof-of-concept numerical examples are solved for species diffusion in a material with
high contrast material properties. This will demonstrate the ability of the enriched-continuum
formulation to reliably reproduce the results obtained by conventional transient homogenization
(CTH) or direct numerical simulations (DNS), which are both will be shown to be outperformed
in terms of computational efficiency.

1.2 Symbols and Notations

The (homogenized) macroscopic quantities are shown with a bar on top, e.g. a scalar, a vector
and a second-order tensor are represented with a, a, A. There is no bar on top of a quantity
belonging to the heterogeneous micro-scale problem, i.e., a scalar, a vector and a second-order
tensor are written as a, a, A. The same Cartesian coordinate system is used at the micro- and
macro-scale. Standard calculus operators are used in this work. For example, the dot product
between two vectors is a·b = aibi, between a second-order tensor and a vector is A·b = Aijbjei.
The tensorial dyadic product between two vectors is a⊗ b = aibjei⊗ej and between a second-
order tensor and a vector is A ⊗ b = Aijbkei ⊗ ej ⊗ ek, where ei represent the vectors of the
Cartesian basis. The gradient of a scalar, a vector and a second-order tensor is defined as
∇a := ∂a/∂xiei, ∇a := ∂ai/∂xjei ⊗ ej and ∇A := ∂Aij/∂xkei ⊗ ej ⊗ ek, respectively. Similarly,
the divergence operates as ∇ · a := ∂ai/∂xi and ∇ ·A := ∂Aij/∂xiej. For linear algebra notation,
columns are represented with a tilde underneath a lowercase letter, e.g. a˜, and matrices with a
bar underneath an uppercase letter, e.g. A . A tensorial product between two column arrays of
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vectors is defined as a˜T⊗b˜, where
⊗ :=


⊗ 0 . . . 0

0 ⊗ ...
... . . .
0 0 . . . ⊗

 . (2)

The microscopic domain and its boundary are represented by Ω� and ∂Ω�, respectively. The
volume average of a microscopic quantity • is defined as〈

•
〉

:=
1

V

∫
Ω�

•dΩ� , (3)

where, V =
∫

Ω�
dΩ� is the volume of the microscopic domain Ω�.

2 Enriched Continuum Formulation
In this section, the transient mass diffusion problem is presented briefly, first for a hetero-
geneous domain and then for a homogenized domain, for which the two-scale computational
homogenization and the resulting enriched continuum will be considered.

(a) Direct Numerical Simulation (b) Coupled Two Scales (c) Enriched Continuum
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Figure 2: Schematic representation of the development of the enriched continuum formulation:
by performing computational homogenization: the DNS problem (a) is replaced by the coupled
two-scale problem (b), followed by a model reduction on the micro-scale to obtain an enriched
continuum formulation (c).

2.1 Direct Numerical Simulation

The diffusion of species in solids is governed by the mass balance equation,

∇ · j + ċ = 0 , in Ω , (4)

where, ċ is the rate of change of the concentration field c, j = −M ·∇µ is the mass flux,
µ = Λ(c− c0) is the chemical potential, Λ is the chemical modulus, c0 is the reference concen-
tration of a specie, M is the mobility tensor; Ω is the heterogeneous macro-scale domain, as
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shown in Figure 2(a). The numerical procedure to solve the diffusion equation (4) in Ω, with
corresponding initial and boundary conditions

µ(0) = µ0 , in Ω ,

µ = µ̂ , on ∂Ωµ ,

−j · n = ĵ , on ∂Ωj .

(5)

is referred to as the direct numerical simulation (DNS). In here, ∂Ωµ and ∂Ωj are the Dirichlet
and Neumann sub parts of the boundary ∂Ω, respectively, and its n outward unit-normal
vector.

2.2 Computational Homogenization

Given its exorbitant computational cost, the DNS problem is commonly replaced by a com-
putationally homogenized problem which represents an equivalent homogeneous problem by
solving a coupled two-scale (macro-scale and a micro-scale) problem, as shown in Figure 2(b).
The heterogeneous domain, in Figure 2(a), is replaced by a homogeneous one Ω, to which at
each point, a microscopic domain Ω� is attached. This microscopic domain is a representative
volume element (RVE) or a unit-cell in the case of a periodic medium. In transient computa-
tional homogenization, at the macro-scale a transient mass balance equation is solved which is
complemented by the initial and boundary conditions i.e.

∇ · j + ˙̄c = 0 , in Ω ,

µ̄(0) = µ̄0 , in Ω ,

µ̄ = ˆ̄µ , on ∂Ωµ̄ ,

−j · n = ĵ , on ∂Ωj .

(6)

Where, ∂Ωµ̄ and ∂Ωj are the Dirichlet and Neumann sub parts of macroscopic boundary ∂Ω,

respectively, n its outward unit-normal vector, ĵ is the prescribed mass influx and ˆ̄µ is the
prescribed chemical potential. The constitutive responses for the macroscopic mass flux j and
the macroscopic rate of change of concentration field ˙̄c are obtained by solving a micro-scale
problem for the microscopic chemical potential field µ, which in the first-order computational
homogenization is based on the following ansatz

µ = µ̄+ ∇µ̄ · (x− x) + µ̃ , (7)

where, µ̃ is the fluctuation in the chemical potential at the micro-scale due to the difference
in material properties of the microconstituents properties and transient loading conditions,
imposed through the macroscopic chemical potential µ̄ and its gradient ∇µ̄, see Figure 2(b).
The transient mass diffusion problem which is solved at the micro-scale is accompanied by
specific boundary conditions that satisfy the extended Hill-Mandel condition. In computational
homogenization it is assumed that the average of the microscopic chemical potential equals to
the macroscopic chemical potential and the gradient of the microscopic chemical potential to
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be equal to the gradient of the macroscopic chemical potential.

∇ · j + ċ = 0 , in Ω� ,

〈µ〉 = µ̄ , in Ω� ,

〈∇µ〉 = ∇µ̄ , in Ω� .

(8)

The constitutive response of the microscopic mass flux j = −M ·∇µ and µ = Λ(c− c0) are the
same as used in the DNS. By using the equivalence of virtual power between the micro-scale
and the macroscopic material point x (the extended Hill-Mandel conditions) the macroscopic
flux and concentration can be obtained from the micro-scale fields as

j =
〈
j − ċ(x− x)

〉
, and ˙̄c =

〈
ċ
〉
. (9)

Despite of its robustness, computational homogenization is still very expensive in solving a
transient mass diffusion problem, since it requires the solution of a microscopic problem (8) at
each macroscopic point x at each time instance (increment). For more details on the transient
computational homogenization and its solution schemes, the reader is referred to [18, 19].

2.3 Enriched Continuum

To alleviate the computational cost of the transient computational homogenization scheme, for
linear problems, a model reduction technique was presented for heat conduction in [26], which
provides an enriched continuum at the macro-scale. It replaces the microscopic problem (8)
with a set of uncoupled ordinary differential equations by projecting the weak Galerkin form
of (8) onto an orthogonal set of reduced basis functions Φ˜, here called enrichment functions.
The microscopic chemical potential field is written in terms of the macroscopic quantities and
the enrichment functions as

µ(x) =

Np∑
p=1

S(p)(x)[µ̄+ ∇µ̄ · (x− x)](p) +

Nq∑
k=1

Φ(k)(x)η(k) , (10)

where η(k), called enrichment variables, are the coefficients of the corresponding enrichment
function Φ(k). Nq is the number of enrichment functions used, which is much smaller than the
number of degrees of freedom N used to solve the microscopic problem (8) in computational
homogenization, i.e. Nq � N . S(p) represents the steady-state counter part of the Φ(k) and it
is obtained through static-condensation. Np � N are the prescribed d.o.f. in the discretized
domain Ω�. This reduction in the number of the degrees of freedom at each macroscopic
point x provides a significant reduction in computational time. The effective macroscopic
transient mass balance equation remains consistent with the one used in transient computational
homogenization scheme, i.e.equation (6). However, the expression for the macroscopic mass flux
j and the macroscopic rate of change of concentration field ˙̄c are now written in terms of the
(reduced) enrichment variables η˜ i.e.

j = −a˜T η̇˜−B ·∇µ̄− c ˙̄µ−C ·∇ ˙̄µ , (11)

and
˙̄c = d˜T η̇˜+ e ·∇µ̄+ f ˙̄µ+ f ·∇ ˙̄µ . (12)
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The coefficients in (11) and (12) are computed only once for a given microstructure in an
off-line computation stage and used at the macroscale during the on-line stage where µ and
η˜ are solved for. A concise derivation of the expressions for the coefficients in equation (11)
and (12) are provided in Appendix A. For more details on the enriched continuum formulation
and its derivation the readers are directed to our prior work on heat conduction [26]. Through
model reduction of the micro-scale problem, evolution equations for η˜ emerge, which are a set
of (uncoupled) ordinary differential equations, given by

η̇˜ = −αη˜−
∗
a˜ ·∇ ˙̄µ−

∗
d˜ ˙̄µ , (13)

where α is the diagonal matrix of size (Nq×Nq) containing the eigenvalues which are obtained by
solving a generalized eigenvalue problem at the micro-scale during the off-line stage, expressions

for
∗
a˜ and

∗
d˜ are given in Appendix A. Equations (6), (11), (12) and (13) represent the enriched-

continuum model capturing the diffusion problem in the relaxed separation of scales regime (1).
Next, we discuss the solution methods for the set of equations for the enriched-continuum.

3 Solution Methods
In this section, first the time integration schemes are presented for the macroscopic variable µ̄
and the enrichment variables η˜. Then, the multi-field and the internal-variable solution methods
are derived.

3.1 Time Integration Schemes

The rate of change of the macroscopic chemical potential ˙̄µ is integrated in time using a
backward-Euler time integration scheme. For example, the general equation

˙̄µ = F(t) , (14)

can be discretized as
µ̄n+1 − µ̄n

∆t
= F(tn+1) . (15)

In the enriched-continuum formulation, the microscopic transient effects are captured at the
macro-scale through the enrichment variables η˜. This allows to compute the transient effects,
present at the micro-scale, on a coarse macroscopic mesh. In the internal-variable solution
method, the internal-variables η˜ are condensed out of the final system of equations, therefore
different time integration schemes can be used for equations (6) and (13). Following the litera-
ture on visco-elasticity [27], as recalled in [28], a one-step second-order accurate time integrator
can be obtained by writing equation (13) in a convolution form

η˜ = exp[−αt]
∫ t

0

exp[αs]

[
−
∗
a˜ ·∇ ˙̄µ(s)−

∗
d˜ ˙̄µ(s)

]
ds . (16)

Using the semi-group property of an exponential and the additive property of an integral, the
approximation in (16) can be written as

η˜n+1 = η˜n exp[−α∆t] +

∫ tn+1

tn

exp[−α(t+∆t−s)]
[
−
∗
a˜ ·∇ ˙̄µ(s)−

∗
d˜ ˙̄µ(s)

]
ds . (17)
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A midpoint approximation of the integral in equation (17) provides a one-step second-order
accurate time integration scheme to evaluate η˜n+1,

η˜n+1 = η˜n exp[−α∆t] + exp[−α∆t/2]
[
−
∗
a˜ · (∇µ̄n+1 −∇µ̄n)−

∗
d˜(µ̄n+1 − µ̄n)

]
, (18)

which, as argued in [28], is unconditionally stable. This second-order accurate scheme will be
compared to the first-order accurate backward-Euler scheme for which the approximation for
η˜n+1 is given by

η˜n+1 = (I + ∆tα )−1

[
η˜n −

∗
a˜ · (∇µ̄n+1 −∇µ̄n)−

∗
d˜(µ̄n+1 − µ̄n)

]
. (19)

3.2 Multi-Field Method

In a multi-field approach, the primary field µ̄ as well as the enriched field η˜, are discretized on a
finite element mesh. A combined weak residual Q(µ̄, δµ̄, η˜, δη˜) is formulated by multiplying the
macroscopic mass balance equation (6) and the evolution equation (13) with the appropriate
admissible test functions δµ̄ and δη˜, respectively

Q(µ̄, δµ̄; η˜, δη˜) = R(µ̄, δµ̄) + E(η˜, δη˜) = 0

=

∫
Ω

δµ̄
(
∇ · j + ˙̄c

)
dv +

∫
Ω

δη˜
(
η̇˜+ αη˜+

∗
a˜ ·∇ ˙̄µ+

∗
d˜ ˙̄µ

)
dv = 0 .

(20)

where, R(µ̄, δµ̄) and E(η˜, δη˜) are the individual residuals for equations (6) and (13). Integrating
by parts and applying the divergence theorem on R(µ̄, δµ̄), provides the weak form as follows

Q(µ̄, δµ̄; η˜, δη˜) = −
∫

Ω

∇δµ̄ · j dv +

∫
Ω

δµ̄ ˙̄cdv +

∫
∂Ωj

δµ̄ĵ da

+

∫
Ω

δη˜
(
η̇˜+ αη˜+

∗
a˜ ·∇ ˙̄µ+

∗
d˜ ˙̄µ

)
dv = 0 ,

(21)

where ĵ = −j · n is the mass flux through the macroscopic boundary ∂Ωj, n is the outward
unit normal, dv and da is the small differential volume and area elements associated to the
domain Ω. Substituting the constitutive expressions (11) and (12) for the macroscopic flux j
and the macroscopic chemical concentration rate ˙̄c yields a coupled system in terms of µ̄ and
η˜,

Q(µ̄, δµ̄; η˜, δη˜) =

∫
Ω

∇δµ̄ ·
[
a˜T η̇˜+ B ·∇µ̄+ c ˙̄µ+ C ·∇ ˙̄µ

]
dv

+

∫
Ω

δµ̄
[
d˜T η̇˜+ e ·∇µ̄+ f ˙̄µ+ f ·∇ ˙̄µ

]
dv

+

∫
Ω

δη˜
(
η̇˜+ αη˜+

∗
a˜ ·∇ ˙̄µ+

∗
d˜ ˙̄µ

)
dv +

∫
∂Ωj

δµ̄ĵ da = 0 .

(22)

9



3.2.1 Finite element implementation

In the multi-field solution method, the macroscopic variable µ̄ and the enrichment-variables η˜are interpolated using the finite element nodal shape functions

µ̄ =
M∑
I=1

N I µ̄I = N˜ Tµ̄ µ̄˜, and η˜ =
M∑
I=1

N Iη˜I = N T
η˜ {η} , (23)

where, N I is the shape function value associated to the I-th node of an element and M is
the number of nodes in an element. N˜ µ̄ and N η˜ are the column and matrix, respectively,
containing the respective shape functions and µ̄˜ is the column of the degrees of freedom of µ̄,

while {η} = {η(1)
1 ..η

(1)
Nq
, η

(2)
1 ..η

(2)
Nq
, ..., η

(M)
1 ..η

(M)
Nq
} is the column vector of degrees of freedom of

the vector fields η˜ containing the nodal enriched degree of freedoms. Equation (22), can then
be written in discrete form as

δµ̄˜T (B 1 + E 1)︸ ︷︷ ︸
K

µ̄˜ + δµ̄˜T (C 1 + C 2 + F 1 + F 2)︸ ︷︷ ︸
M

˙̄˜µ+ δµ̄˜T (A +D )︸ ︷︷ ︸
N

˙{η}+

δ{η}TE ˙{η}+ δ{η}TA{η}+ δ{η}T
(
∗
AT +

∗
DT

)
︸ ︷︷ ︸

∗
NT

˙̄˜µ = δµ̄˜TF˜ µ̄ . (24)

The matrices in the above equation are given by

A =
∫

Ω
N T

η˜a˜T ·∇N˜ µ̄dv , B 1 =
∫

Ω
(∇N˜ Tµ̄ ·B) ·∇N˜ µ̄dv , C 1 =

∫
Ω
N˜ Tµ̄c ·∇N˜ µ̄dv ,

C 2 =
∫

Ω
(∇N˜ Tµ̄ ·C) ·∇N˜ µ̄dv , D =

∫
Ω
N T

η˜ d˜TN˜ µ̄dv , E 1 =
∫

Ω
∇N˜ Tµ̄ · eN˜ µ̄dv ,

F 1 =
∫

Ω
N˜ Tµ̄fN˜ µ̄dv , F 2 =

∫
Ω
∇N˜ Tµ̄ · fN˜ µ̄dv , E =

∫
Ω
N T

η˜N η˜dv ,

A =
∫

Ω
N T

η˜αN η˜dv , F˜ µ̄ = −
∫
∂Ω
N˜ Tµ̄ ĵnda ,

∗
D =

∫
Ω
N T

η˜
∗
d˜ TN˜ µ̄dv ,

∗
A =

∫
Ω
N T

η˜
∗
a˜ T ·∇N˜ µ̄dv .

Taking into account that equation (24) should hold for all admissible δµ̄˜ and δ{η} provides

K µ̄˜ + M ˙̄˜µ+ N ˙{η} = F˜ µ̄,∗
NT ˙̄˜µ+ E ˙{η}+A{η} = 0˜.

(25)

In the multi-field method, ˙{η} appears in the final equation together with ˙̄µ, which suggests the
same time integration scheme for both variables. Selecting the backward-Euler time integration
scheme (15) for both ˙̄µ and ˙{η}, we obtain

∆tK µ̄˜n+1 + M(µ̄˜n+1 − µ̄˜n) + N({η}n+1 − {η}n) = −∆tF˜ µ̄, (26)
∗
NT (µ̄˜n+1 − µ̄˜n) + ∆tA{η}n+1 + E ({η}n+1 − {η}n) = 0˜ . (27)
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Rearranging terms to gather all the unknowns at time tn+1 on the left hand side, the coupled
system of equations to be solved at each time step can be written as[

∆tK + M N
∗
NT ∆tA + E

]{
µ̄˜n+1

{η}n+1

}
=

{
−∆tF˜ µ̄ + Mµ̄˜n + N{η}n

∗
NT µ̄˜n + E {η}n

}
. (28)

3.3 Internal-Variable method

In the internal-variable method, the macroscopic chemical potential µ̄ is interpolated using
finite element nodal shape functions, while the evolution equation (13) for η̇˜ is integrated
at the macroscopic Gauss quadrature points. The residual R(µ̄, δµ̄) is built by multiplying
equation (6) with an admissible test function δµ̄

R(µ̄, δµ̄) =

∫
Ω

δµ̄(∇ · j + ˙̄c)dv = 0 , (29)

which, after applying integration by parts and the divergence theorem, takes the following form

R(µ̄, δµ̄) = −
∫

Ω

∇δµ̄ · j dv +

∫
Ω

δµ̄ ˙̄cdv +

∫
∂Ωj

δµ̄ĵ da = 0 . (30)

Substituting the expressions for the macroscopic flux from equation (11) and the concentration
rate from equation (12), the weak form of equation (30) can then be written as

R(µ̄, δµ̄) =

∫
Ω

∇δµ̄ ·
[
a˜T η̇˜+ B ·∇µ̄+ c ˙̄µ+ C ·∇ ˙̄µ

]
dv

+

∫
Ω

δµ̄
[
d˜T η̇˜+ e ·∇µ̄+ f ˙̄µ+ f ·∇ ˙̄µ

]
dv +

∫
∂Ωj

δµ̄ĵ da = 0 .
(31)

3.3.1 Finite element implementation

Here, as an example, the derivation is performed using the backward-Euler time integration
scheme for both µ̄ and η˜; a similar derivation applies to the integral form given by equation
(18). Using the finite element discretization (23) only for µ̄, equation (31) takes the following
form∫

Ω

∇N˜ Tµ̄δµ˜ · (a˜Tη˜n+1)dv +

∫
Ω

N˜ Tµ̄δµ˜(d˜Tη˜n+1)dv + δµ˜T [∆tB + c + C + ∆tE + f + F ] µ̄˜n+1

= −∆t

∫
∂Ωj

N˜ Tµ̄δµ˜ĵn+1da+ δµ˜TA˜n + δµ˜TD˜n + δµ˜T [c + C + f + F ] µ̄˜n, (32)

where the matrices are calculated using

B =
∫

Ω
∇N˜ Tµ̄ ·B ·∇N˜ µ̄dv , c =

∫
Ω
∇N˜ Tµ̄cN˜ µ̄dv , C =

∫
Ω
∇N˜ Tµ̄ ·C ·∇N˜ µ̄dv ,

E =
∫

Ω
N˜ Tµ̄e ·∇N˜ µ̄dv , f =

∫
Ω
N˜ Tµ̄fN˜ µ̄dv , F =

∫
Ω
N˜ Tµ̄f ·∇N˜ µ̄dv ,

A˜n =
∫

Ω
∇N˜ Tµ̄ · ∗a˜ η˜ndv , D˜n =

∫
Ω
N˜ Tµ̄

∗
d˜ η˜ndv .
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Next, substitution of the expression for η˜n+1 from (19) into the above equation leads to

δµ˜T [∆t(B + E) + c + C + f + F + A 1 + A 2 + A 4 + A 5
]︸ ︷︷ ︸

K

µ̄˜n+1

= −∆t

∫
∂Ωj

N˜ Tµ̄˜ δµ˜ ĵn+1da︸ ︷︷ ︸
δµ˜T F˜extn+1

+ δµ˜TA˜n + δµ˜TD˜n + δµ˜TA˜3
n + δµ˜TA˜6

n + δµ˜T [c + C + f + F ] µ̄˜n︸ ︷︷ ︸
δµ˜T F˜intn

,

(33)

where the finite element matrices are recognized as

A 1 =
∫

Ω
∇N˜ Tµ̄ · (a˜TA ∗a˜) ·∇N˜ µ̄dv, A 2 =

∫
Ω
∇N˜ Tµ̄ · (a˜TA

∗
d˜)N˜ µ̄dv, A˜3

n =
∫

Ω
∇N˜ Tµ̄ · (a˜TAη˜n)dv,

A˜4 =
∫

Ω
N˜ Tµ̄ (d˜TA ∗a˜) ·∇N˜ µ̄dv, A˜5 =

∫
Ω
N˜ Tµ̄ (d˜TA

∗
d˜)N˜ µ̄dv, A˜6

n =
∫

Ω
N˜ Tµ̄ (d˜TAη˜n)dv.

here A = (I + ∆tα )−1. Finally, taking into account that equation (33) should hold for all δµ˜,the system of linear equations to be solved at each time step is given by

K µ̄˜n+1 = F˜extn+1 + F˜intn. (34)

Once the solution for the chemical potential field µ̄˜n+1 is known, η˜n+1 is calculated using
equation (19) (or (18) if the second-order accurate scheme is used for η̇˜).By substituting the expression of the time discretized enrichment-variables η˜n+1 in equation
(31), these are condensed out and the resulting finite element system of equations (34) does not
contain η˜ as unknowns. This is the advantage of the internal-variable method, since the number
of unknowns is significantly smaller as compared to the multi-field method. However, the
downside of the internal-variable method is that the internal flux vector F˜intn, which contains
the enrichment-variables η˜n defined at previous time step in the matrices A˜n, D˜ n, A˜3

n and A˜6
n,

has to be evaluated at each time increment, which as compared to the multi-field method, is
not very efficient.

Accordingly, the internal-variable method and the multi-field method are more or less equiv-
alent for moderate problem sizes. The internal-variable method satisfies the evolution equation
for η˜ (19) in an exact manner locally at the Gauss quadrature points, whereas the multi-field
method satisfies equation (19) in an average, global, sense over the whole macroscale domain Ω.
To demonstrate the equivalence, piece-wise constant finite element shape functions N η˜ can be
used for the enrichment-variables and the condensation can be performed to eliminate {η}n+1

from equation (28). Thereafter, the obtained system of equations consists of the same terms as
in (34), with η˜ weakly approximated at the nodes.

4 Numerical Examples
Numerical examples are conducted for species diffusion in a heterogeneous material with high
contrast in properties, with slower diffusion in the inclusion than in the matrix. The microscopic
domain is chosen to be a square unit-cell with a single centered circular inclusion, as shown in

12



ˆ̄µ

ˆ̄µ
λ

Heterogenous Domain

d

ℓ

Unit Cell

(Offline Stage)

Homogenized Domain
(Online Stage)

Lx1

L
x
2

x1

x2

Figure 3: Problem settings: Top: a heterogeneous domain with 1000 unit-cells. 100 in x1-
direction and 10 in x2-direction. Bottom: corresponding homogenized domain for the solution
of the enriched continuum formulation. The unit-cell shown inside is used to obtain the coupling
terms in equations (11) and (12) in the off-line stage. The material properties and geometrical
parameters are provided in Table 1.

Figure 3. A chemical potential ˆ̄µ, harmonically varying in time is prescribed on the left side of
the the domain Ω, that is on macroscopic boundary ∂Ωµ̄, while a zero-flux boundary condition
is applied on the top, right and bottom sides of the domain Ω, on the macroscopic boundary
∂Ωj. The prescribed chemical potential field and the boundary fluxes are given by

ˆ̄µ(t) = µ̄max(1− ax2) sin(ωt) , on ∂Ωµ̄ ,∀x2 ∈ [0, Lx2 ]

ĵ = −j · n = 0 , on ∂Ωj .
(35)

µ̄max are the maximum achievable chemical potential in the matrix, given by µ̄max = Λ(cmax−c0),
where Λ = kbT/c0 is the chemical modulus, cmax and c0 = 0.19cmax is the maximum and ref-
erence concentration values in the matrix, respectively. Using a non-zero parameter ‘a’ in
equation (35) implies that the chemical potential field can be linearly varied along ∂Ωµ̄; in (35)
ω = 2π/T is the angular loading frequency and T is the total loading time. The material proper-
ties, length scales and the loading conditions are such that the relaxed separation of scales (1) is
satisfied. The default parameters for the geometry, material and mesh are given in Table 1. At
the micro-scale, a converged unit-cell mesh consisting of ∼ 4400 linear triangular elements (∼
2200 nodes) was used. The DNS domain was discretized accordingly, with approximately the
same number of linear triangular elements in each unit-cell. The macroscopic homogenized do-
main Ω, replacing the DNS domain, is discretized with rectangular four node bi-linear elements
for both µ̄ and η˜ in the multi-field method, or for µ̄ only in the internal-variable method. The
effect of the macroscopic mesh size on the homogenized results will be discussed in section 4.4.
The smallest and the largest element size in the macroscopic domain are ` and 10`, respectively.
A default time step size of ∆t = 3.6[s] is used in all the simulations unless otherwise stated.

4.1 Enrichment-Functions Selection and Solution Accuracy

To obtain the enrichment-functions and construct the coefficient terms for equations (11),
(12) and (13), according to the expressions given in Appendix A, an eigenvalue problem with
periodic boundary conditions is solved on the unit-cell. The eigenvectors corresponding to the
relatively high values of the coupling terms d˜ and a˜ constitute the reduced basis set. The
selected enrichment-functions Φ(k) for the considered unit-cell are shown in Figure 4. These six
enrichment-functions will be used in the simulations, unless otherwise stated.
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Table 1: Parameters used in the simulation.

Parameter Symbol Value Units
Characteristic unit-cell length ` 1× 10−2 [m]
Inclusion diameter d 0.6× 10−2 [m]
Mobility in matrix Mm 1.1× 10−4 [mol2 J−1 m−1 s−1]
Mobility in inclusion Mi 1.85× 10−9 [mol2 J−1 m−1 s−1]
Reference temperature θ0 298 [K]
Boltzman’s constant kb 8.314 [J K−1 mol−1]
Maximum concentration cmax 24161 [mol m−3]
Minimum concentration c0 0.0547cmax mol m−3]
Chemical modulus Λ = kbT/c0 1.83 J m3 mol−2]
Macroscopic length in x1-direction Lx1 100× 10−2 [m]
Macroscopic length in x2-direction Lx2 10× 10−2 [m]
Parameter in equation (35) a 0.03
Characteristic diffusion time of inclusion τi d2/MiΛ = 36000 [s]
Characteristic diffusion time of matrix τm `2/MmΛ = 1.69 [s]
Total loading time T 0.1τi [s]
Number of nodes in unit-cell mesh ∼ 2.2× 103

Number of nodes in DNS mesh ∼ 2.1× 106

µ =−1.3 0 1.3
×10(3) [Jmol−1]

τ
(1) = 480.69 [s] τ

(6) = 91.01 [s] τ
(15) = 36.87 [s] τ

(30) = 19.73 [s] τ
(51) = 12.21 [s] τ

(74) = 8.25 [s]

Φ(1) Φ(6) Φ(15) Φ(30) Φ(51) Φ(74)

Figure 4: The selected enrichment-functions Φ(k) obtained by solving the generalized eigenvalue
problem (44). An associated decay/rise time τ (k) = 1/α(k), with α(k) the k-th eigenvalue, is also
given for each enrichment function Φ(k).

A detailed discussion on the selection of the reduced basis set and the accuracy of the
micro-scale solution with respect to the increasing size of the reduced basis set can be found in
previous work [26]. Here, the focus will be on the accuracy of the macro-scale solution obtained
with the two methods. The accuracy of the macro-scale chemical potential field with respect
to the number of enrichment-functions is analyzed here. The macroscopic chemical potential
field µ̄˜(Nq) obtained using the complete reduced basis set Φ with Nq = 6, as shown in Figure
4, is considered as the reference solution. Calculations were performed, for both the internal-
variable and multi-field methods, on a mesh of nelx1 × nelx2 = 30 × 3 elements, where nelx1
and nelx2 are the number of elements in x1 and x2 directions, respectively. As shown in Figure
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5, both the internal-variable and multi-field method perform equally well. With the increase of
the number of enrichment-functions the accuracy increases as well. Figure 5(a) shows the time
evolution of the relative L2-error, while Figure 5(b) shows the time averaged relative L2-error.
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Figure 5: The accuracy of the solution µ̄(s), with increasing number (s = 1, 2, 3, 4, 5) of
enrichment-functions in the reduced basis set Φ , as compared to the reference solution µ̄(Nq)

with Nq = 6. The time evolution of relative L2-error (a) and time averaged relative L2-error
(b).

4.2 Accuracy of the Time Integration Schemes for the Internal-Variable
Method

Different time integration schemes and associated convergence analyses have been studied in
the literature for parabolic PDEs [29] and viscoelastic materials [28]. However, the present
emergent enriched-continuum is an unusual description of a macroscopic continuum, since the
enrichment-variables η˜ appear both in the diffusion and (more importantly) in the capacitance
terms as well. Therefore, it is justified to investigate the convergence behavior of different time
integration schemes for this enriched continuum. In the internal-variable method, due to local
condensation of η˜ at the Gauss quadrature points, the time integration for ˙̄µ and η̇˜ can be chosen
independently. In section 3, two different time integration schemes for the approximation of η̇˜were presented, i.e. a second-order accurate approximation in equation (18) and a first-order
accurate approximation in equation (19).

In this regard, simulations were performed using the internal-variable method on a mesh of
nelx1 × nelx2 = 50× 5 elements. For each time integration scheme, a reference solution η˜(1)

ref (t),
which is the column of enrichment variables in time, is taken as the one with a time step size of
∆t = 3.6× 10−2[s]. Then, a relative error for the first enrichment-variable η˜(1)(t) is computed

15



by

err∆t :=
||η˜(1)(t)− η˜(1)

ref (t)||

||η˜(1)
ref (t)||

. (36)

where, || • || is the vector Frobenius norm. The enrichment variable η˜(1)(t) was stored at
the Gauss integration point located at x = (4.2, 4.2) × 10−4[m] in the first element. In this
example, a characteristic element length `e = 1 × 10−2[m] was used and the time step size
∆t was varied resulting in different values of the Fourier number Fo = Deff11

∆t
`2e
, where Deff11

is the first component of the effective macroscopic diffusivity tensor Deff = ΛB, the effective
mobilityB is given in (46). The results are shown in Figure 6. As expected, the backward-Euler
first-order time integration scheme converges with a rate of convergence equal to one, while the
time integration scheme given in equation (18) converges with a rate of convergence of almost
two, providing a more accurate approximation of η̇˜. However, the second-order method changes
towards to first-order accuracy, which due to the backward-Euler time integration scheme used
at the macroscale which limits the overall convergence rate. For example, for the default
time step size of ∆t = 3.6[s], the second-order scheme provides three orders more accurate
result than the backward-Euler time integration method. Since the second-order scheme given
by equation (18) is a one-step time integration scheme, no extra memory or computational
costs are associated with it. Therefore, it is suggested to use the second-order accurate time
integration scheme whenever possible to capture the transient effects more accurately.

10
-2

10
-1

10
0

10
1

10
2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fourier Number, Fo

e
r
r
∆
t

1

1

2

1

Second-order.
First-order.

Figure 6: Error analysis for the local time integration schemes, to be used with the internal-
variable method. The one step second-order accurate time integrator, equation (18) reveals a
higher accuracy than the first-order backward-Euler time integrator, (19). The expression for
err∆t is given in equation (36).

4.3 Homogenized Solution

Next, the results computed using the homogenized enriched continuum formulation are com-
pared to the direct numerical simulations (DNS). To do so, the DNS solution µ(x, t) is averaged
over the heterogeneous unit-cell sized domain λ around the point x = (2.5, 2.5) × 10−2[m], as
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shown in Figure 3 with a small square. In this example, the homogenized domain was dis-
cretized with nelx1 × nelx2 = 10 × 3 elements, with four Gauss quadrature points (ngp) per
element. Figure 7 shows the time evolution of the macroscopic concentration rate ˙̄c(x, t), given
by equation (12), and the averaged DNS solution 〈 µ̇

Λ
〉λ . These results are in perfect agree-

ment with each other, which demonstrates the ability of the enriched-continuum formulation
to capture the transient DNS solution.

0 0.5 1 1.5 2 2.5 3 3.5

10
3

-10

-5

0

5

10

15

t [s]

ċ
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Figure 7: Comparison between the macroscopic concentration rate ˙̄c(x, t), computed with
equation (12), and the DNS solution 〈 µ̇

Λ
〉λ averaged over the unit-cell sized domain λ around a

point x = x = (2.5, 2.5)× 10−2[m]. The homogenized solution is computed using the internal-
variable method and plotted with a blue marker every 25th time step.

4.4 Macroscopic Discretization Effect

In this section, the effect of the macroscopic mesh size (in both x1- and x2- directions), on
the accuracy of the macroscopic solution, µ̄ is examined. The DNS solution is taken as the
reference. The homogenization level ‘h’ is defined as the ratio between the number of unit-
cells ‘nuc’ composing the DNS domain to the number of integration points to be solved in
the homogenized domain. This provides an indicator for the trade-off between the accuracy
and the computational cost. A higher h value indicates more homogenization, and thus lower
computational costs. In a two-dimensional setting, with a quadrilateral discretization, the
homogenization level can be written as

h :=
nuc

nelx1 × nelx2 × ngp
. (37)

In the subsequent simulations, the parameters, nuc = 1000 and ngp = 4 per element are fixed.
The number of elements in x1- and x2-directions, nelx1 and nelx2 , are varied, resulting in a
different value of h.

In figure 8, the heterogeneous chemical potential field µ, calculated with the direct numerical
simulation (DNS) is compared with the homogenized chemical potential field µ, obtained by the
enriched-continuum formulation solved with the multi-field method. The homogenization level
h given in equation (37) is increased by decreasing the number of elements in the macroscopic do-
main, while keeping the ratio nelx2 =

nelx1
10

fixed. Different numbers of elements in x1-direction
nelx1 = 50, 40, 30, 20, 10 imply the following homogenization levels h = 1, 1.56, 2.78, 6.25, 25.
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At h = 1, where the number of unit-cells is the same in both the heterogeneous and homog-
enized domains, the enriched-continuum response captures the DNS almost perfectly. In this
example, due to a non-homogeneous boundary condition on ∂Ωµ, as given in equation (35), the
homogenization problem requires high finite element density in x2-direction in the vicinity of
∂Ωµ, lower element density is needed in x1-direction.

µ =−1.1 0 1.1
×108 [Jmol−1]

Direct
Numerical
Simulation

Homogenized
Solution

h = 1

Homogenized
Solution

h = 1.56

Homogenized
Solution

h = 2.78

Homogenized
Solution

h = 6.25

Homogenized
Solution

h = 25

Figure 8: The chemical potential field µ in the heterogeneous domain (top plot) obtained by
the direct numerical simulation (DNS). The homogenized chemical potential field µ obtained by
enriched continuum formulation solved using multi-field method with increasing homogenization
levels h (from the second plot to the bottom).

4.5 Computational Efficiency

Next, the efficiency of the proposed approach compared to the direct numerical simulations
(DNS) and conventional computational transient homogenization (CTH) scheme is investigated.
All simulations were performed on a computer with a core-i5@3.2GHz processor and 8Gb RAM
using Matlab 2018b. It can be seen in Figure 9, that the CPU time increases for all the
homogenization methods as h → 1. The CTH is the most expensive among the considered
methods, since (when implemented in its standard form) for each time increment at each
macroscopic Gauss quadrature point it requires the solution of a micro-scale finite element
problem (one computation of the effective flux and two sensitivity problems) followed by the
assembly of the internal flux vector. For the complete solution procedure of the CTH see [18]
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Figure 9: Computational effort in CPU time for different solution techniques (internal-variable
and multi-field) for the enriched-continuum formulation, conventional computational transient
homogenization (CTH) and direct numerical simulation (DNS).

and [19]. For low levels of homogenization, it becomes even more expensive than the DNS
problem.

Since the enriched-continuum formulation replaces the microscopic finite element problem
with a set of ordinary differential equations, the computational gains are remarkably high.
The internal-variable solution method is a little more expensive than the multi-field method
because it requires the assembly of the internal flux vector at each time increment using the
data from the previous time step. In the internal-variable method, the enrichment-variables are
computed at the macroscopic Gauss quadrature points entailing higher memory requirements
than the multi-field method, since the total number of integration points in the model is usually
(much) larger than the total number of finite element nodes. The multi-field method is the least
expensive because the finite element assembly is performed only once and it does not require
the assembly of the internal flux vector at each time step. Moreover, if a reordering algorithm
is used, such as Cuthill-McKee [30], the direct linear solvers can be optimized resulting in even
lower computation times. The CPU time comparison has been performed for the same time
integration scheme, i.e. backward-Euler, for all considered methods. The computational gains,
shown in Figure 9, are expected to be even more prominent in a three-dimensional setting,
consistent with the homogenization literature for micro-scale simulations [31, 32] and coupled
two-scale simulations [33].

To further elaborate on the relative computational costs between the multi-field and the
internal-variable method, simulations were performed with an increasing number of enrichment-
variables at a homogenization level h = 2.78 provided by nelx1×nelx2 = 30×3 elements. With
the increase in the number of enrichment-variables, solved at the macro-scale, the computa-
tional cost of the multi-field method increases relative to internal-variable method, see Figure
10. It was also observed that the computational cost of the internal-variable method remained
nearly constant for a changing number of enrichment-variables. This suggests that, in the
internal-variable method, the major cost incurred is due to the element level calculations and
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the assembly of the internal flux vector F˜intn. Notice, however, that as discussed before, the
internal-variable methods allows for more flexibility, e.g. in the choice of different time integra-
tion schemes. In this study, for Nq = 6 the multi-field method still remains less expensive than
the internal-variable method, however, it can be inferred from Figure 10 that it can become
more expensive if Nq increases due to a change in the microstructural morphology or material
properties.
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Figure 10: Computational time for the internal-variable and multi-field method for increasing
number of enrichment-variables η(q).

5 Conclusions
In this work, the enriched continuum formulation, which emerges from model reduction at
the micro-scale, is applied to the solution of a heterogeneous diffusion boundary value problem
with pronounced micro structural transient effects. Different solution methods for the enriched-
continuum transient diffusion problem formulation are discussed. These solution methods make
use of two discrete spatial discretization schemes for the enrichment-variables. The primary
macroscopic field variable is always interpolated using the finite element shape functions, while
the field of enrichment-variables can either be discretized using finite elements, leading to
a multi-field solution method, or evaluated at the Gauss quadrature points, leading to an
internal-variable solution method. To capture the transient effects more accurately, a one-step
second-order accurate time integration scheme is proposed for the internal-variable method.
Results for the enriched-continuum formulation with the proposed solution methods are com-
pared with the conventional computational transient homogenization (CTH) scheme and direct
numerical simulations (DNS). The proposed solution methods provide the same accuracy with
respect to DNS as the expensive CTH with high gains in computational times. The CPU time
and the memory requirements for the multi-field method was the lowest among the proposed
solution methods.
Acknowledgments and Funding: Support for this research was provided by European Com-
mission through an Erasmus Mundus grant in the framework of the Simulation in Engineering

20



and Entrepreneurship Development (SEED) program. SEED program is an initiative of 8 uni-
versities Partners, managed by EACEA and financed by the European Commission with grant
Ref. 2013-0043.
Competing Interests: The authors declare that they have no competing interests.
Author’s Contribution: All authors participated in the definition of the methods. AW im-
plemented the methods, realized all computations. All authors contributed to the writing of
the manuscript.

A Coupling Terms
The derivation of the coefficients appearing in the expressions for the macroscopic flux j in
equation (11) and the macroscopic rate of change of concentration field ˙̄c in equation (12)
briefly summarized here, for the detailed derivation, see [26]. The mass balance equation at the
micro-scale (8), after using the constitutive forms for the microscopic flux j and concentration c
and applying the necessary boundary conditions, which satisfy the extended Hill-Mandel energy
criteria, can be written in its semi-discrete form as,

∗
Kµ˜ +

∗
M µ̇˜ = −jn˜ , (38)

where
∗
K and

∗
M are the so-called stiffness and mass matrices respectively, µ˜ and jn˜ are the

columns of microscopic chemical potential field and the input mass flux at the micro-scale. This
microscopic system of equations is then partitioned into prescribed ‘p’ and free ‘f ’ parts. The
reduced basis is determined using the static condensation and the solution of the corresponding
eigenvalue problem. The discrete system of equations (38), when projected onto the steady
state and transient basis, can be written as,

Kssµ˜p +Mss µ̇˜p + %η̇˜ = −j˜pn , (39)

αη˜+ η̇˜+
1

V
%T µ̇˜p = 0˜ , (40)

where,
Kss =

∗
Kpp +

∗
KpfS , (41)

Mss =
∗
Mpp + 2

∗
MpfS + S T

∗
MffS , (42)

% = S T
∗
Mff

∗
Φ +

∗
Mpf

∗
Φ . (43)

S = (
∗
Kff )−1

∗
Kfp is the Schur complement of the stiffness matrix and

∗
Φ are the enrichment

functions obtained by solving the eigenvalue problem

(
∗
Kff − α

∗
Mff )Φ = 0˜ , (44)

with α is the diagonal matrix of the eigenvalues arranged in the ascending order. The model
reduction is performed by selecting a limited set of enrichment functions

∗
Φ from a full set of
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eigenvectors Φ . The expressions for the macroscopic flux and rate term in equation (9) can be
converted to boundary integrals by using the divergence theorem, which in their discrete form
can be written as

j =
1

V
(∆x˜p)T j˜pn , and ˙̄c = − 1

V
(I˜p)T j˜pn , (45)

where ∆x˜p = (x˜p − x) and I˜p is the column of ones of length (p × 1). By substituting the
expression for j˜pn from (39) into (45) and rearranging the terms, the macroscopic constitutive
form in equations (11) and (12) are obtained. The coefficients in these equations are given as
follows,

a˜ =
1

V
(∆x˜p)T% , (Column of Nq 1st-order tensors)

∗
a˜ = V a˜
B =

1

V

[
(∆x˜p)TKss

]
⊗∆x˜p , (2nd-order tensor)

c =
1

V
(∆x˜p)T [Mss I˜p] , (1st-order tensor)

C =
1

V

[
(∆x˜p)TMss

]
⊗∆x˜p . (2nd-order tensor)

d˜ =
1

V
(I˜p)T% , (Column of Nq scalars)

∗
d˜ = V d˜
e =

1

V
(I˜p)T [(∆x˜p)TKss

]
, (1st-order tensor)

f =
1

V
(I˜p)T [Mss I˜p] , (Scalar)

f =
1

V
(I˜p)T [(∆x˜p)TMss

]
. (1st-order tensor)

(46)

where V is the volume of the microscopic domain Ω as shown in Figure 2(b).
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