
HAL Id: hal-03164754
https://hal.science/hal-03164754v1

Preprint submitted on 10 Mar 2021 (v1), last revised 14 Dec 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulating a random vector conditionally to a
subvariety: a generic dichotomous approach

Frédéric Dambreville

To cite this version:
Frédéric Dambreville. Simulating a random vector conditionally to a subvariety: a generic dichotomous
approach. 2021. �hal-03164754v1�

https://hal.science/hal-03164754v1
https://hal.archives-ouvertes.fr

Simulating a random vector conditionally to a subvariety:
a generic dichotomous approach

Frédéric Dambreville1 a

1Office national d’études et de recherches aérospatiales, 6 Chemin de la Vauve aux Granges, 91120 Palaiseau, France

Keywords: Rare event simulation, subvariety, interval analysis, black-box optimization

Abstract: The problem of sampling a random vector conditionnaly to a subvariety within a box (actually, a small volume
around the subvariety) is addressed. The approach is generic, in the sense that the subvariety may be defined
by an isosurface related to any (computable) continuous function. Our approach is based on a dichotomous
method. As a result, the sampling process is straightforward, accurate and avoids the use of MCMC methods.
Our implementation relies on the evaluation of the matching with the subvariety at each dichotomy step.
By using interval analysis techniques for evaluating the matching, our method has been applied up to the
dimension 11. Perspectives are evoked for improving the sampling efficiency on higher dimensions. A concept
and an example of application of this simulation technique to black-box function optimization are detailed.

1 INTRODUCTION

The paper addresses the issue of sampling a given law
defined on a n-dimension box conditionally to a sub-
variety of this box. Given a random vector XXX of den-
sity fXXX defined on Rn, a box:

[b],
n

∏
k=1

[b−k ,b
+
k], [b−1 ,b

+
1]×·· ·× [b−n ,b

+
n]⊂ Rn ,

a small box around 0:

[εεε],
m

∏
k=1

[ε−k ,ε
+
k]⊂Rm with −1� ε

−
k < 0< ε

+
k � 1 ,

and a map g : [b]→ Rm, our objective is to sample
the conditional vector [XXX |g(XXX) ∈ [εεε]] .1 When the
space dimension n and the constraint dimension p in-
crease, the event [g(XXX) ∈ [εεε]] has very low probabil-
ity. As a consequence, we are dealing here with a
particular case of rare event simulation. Moreover,
as [g(XXX) ∈ [εεε]] approximates a subvariety, it is fore-
seeable that the conditional vector [XXX |g(XXX) ∈ [εεε]] is
essentially and “continuously” multimodal.

In the survey (Morio et al., 2014), Morio, Balesdent
et al. have evaluated the advantages and drawbacks of
various rare event sampling methods. At this point, a
comment may be done. In the litteracy, rare events are
generally modelled by a function of risk being above
an acceptable threshold: a rare event is of the form

a https://orcid.org/0000-0002-1460-4126
1In this paper, [XXX |g(XXX) ∈ [εεε]] is used as an abbreviation

for [XXX |XXX ∈ [b] & g(XXX) ∈ [εεε]] , knowing that g : [b]→ Rm .

[h(XXX)> γ], where h maps to R and P(h(XXX)> γ) is a
very small probability to be evaluated. This formal-
ism is quite general, and it is easy to rewrite event
[g(XXX) ∈ [εεε]] under this form. However. . . The formal-
ism [h(XXX) > γ] suggests that the simulation of a rare
event is tightly related the the maximization of a func-
tion (function h). In practice, the maximizing set of a
function is unimodal or somewhat multimodal. It is
uncommon that this maximizing set is a subvariety.

Not surprizingly, many methods evaluated in (Morio
et al., 2014) are working well when the rare event
is unimodal or moderately multimodal. In the case
of the cross-entropy method (Rubinstein and Kroese,
2004) for example, the multimodality has to be man-
aged by the sampling law family. It is then possible,
for example by a combination of EM algorithms and
cross entropy minimization, to sample a moderately
multimodal rare event (Dambreville, 2015). In the
case of conditional vector [XXX |g(XXX) ∈ [εεε]], these ap-
proaches do not work properly.

Good candidates for our sampling problem are some
non parametric rare event simulation methods (Morio
et al., 2014)(Cérou et al., 2012). Adaptive splitting
techniques, as described in (Morio et al., 2014), are
well suited for high dimensions and non linear sys-
tems. And although the method is designed for events
of the form [h[XXX]> γ], it seems applicable to “sub-
variety” events of the form [g(XXX) ∈ [εεε]] . However,
as mentioned in (Morio et al., 2014), the approach
needs an important simulation budget. In particular,
the Markov transition kernel must be iterated several

times during the resampling steps in order to get inde-
pendent samples; the choice of the Markov transition
kernel is crucial in design of the sampler. In our case,
moreover, additional studies to take into account the
subvariety structure can be benificial.

These arguments make the splitting technique promis-
ing for large-dimensional problems, but not neces-
sarily for medium-dimensional problems. This arti-
cle promotes an alternative approach based on a di-
chotomous exploration in order to sample condition-
ally to a subvariety characterized by a known func-
tion. By design, this approach produces independent
samples and avoids the phenomenon of sample im-
poverishement. These properties make it particularly
well suited for an accurate approximation of a law
conditionally to the subvariety. However, the method
must fight the curse of dimensionality. In practice, we
will be faced with two orthogonal dimensional prob-
lems: the potential exponential increase in sampling
exploration and the potential degeneracy of particle
weights. This paper presents an approach and its per-
spectives, as well as a generic and weakly parame-
terized algorithm, allowing a good sampling perfor-
mance for moderate dimensions (up to dimension 11
for now) and a balanced management of the dimen-
sional issues.

Before completing this introduction, we should also
mention a work, which addresses an issue which is
connex to our concern. In (Bui Quang et al., 2016),
Musso, Bui Quang and Le Gland proposed to com-
bine Laplace method and particle filtering in order
to dynamically estimate a state from partial measures
with small observation noise. Actually, a partial mea-
sure with small observation noise implies a condition-
ning of the law by an approximated constraint. This is
more or less the kind of problem we are dealing with.
However, the approach proposed in (Bui Quang et al.,
2016) is essentially unimodal, although it is possible
to address some level of multimodality by a mixture
of law (Musso et al., 2016). But for the moment this
extension is far from meeting our requirements.

The paper is divided in four parts including the intro-
duction. Section 2 introduces some concepts of inter-
val analysis and derive some first ideas for a generic
subvariety conditional sampler. Section 3 deepens the
intuitions introduced in section 2 and presents an ac-
tually working generic algorithm. Few discussions
about performance and perpectives follow. Section
4 presents tests and analyses. An example of applica-
tion to black-box optimization is presented. Section 5
concludes.

2 A NAIVE DICHOTOMOUS
APPROACH FOR SAMPLING

Interval analysis is a performing and accurate tool
for dealing with constraints. Moreover, the approach
provide a precise control on the approximation er-
rors. Another interesting point is that intervals and
boxes are relatively simple domains when dealing
with probability distributions. For example, it is
rather easy to evaluate the probability of a box being
given the multivariate cumulative distribution func-
tion, especially for independent random variables.
Boxes and intervals are also a good way to cope with
poorly mastered random parameters. Thereby, Abdal-
lah, Gning and Bonnifait proposed the box particle fil-
ter, mixing boxes into a particle filter, which resulted
in better performance when dealing with non-white
and biased measurement (Abdallah et al., 2008). Our
work addresses a quite different issue. Essentially,
boxes are not part of our data model, but we use the
interval analysis as a tool and a guide for a dichoto-
mous sampling on the subvariety.

2.1 Some words about interval analysis

It is not the purpose of this section to perform a good
introduction on interval analysis (Alefeld and Mayer,
2000; Jaulin et al., 2001), and neither do we intro-
duce properly the notion of paver for set inversion.
Nevertheless, we refer to some key concepts of inter-
val analysis, which are inspiring ideas for this paper.
On the other hand, we absolutely do not introduce the
technics of contractors (Chabert and Jaulin, 2009), but
mention it as a possibility for improvement.

2.1.1 Operators & functions applied on intervals

First at all, let us introduce some notations:

• R is the set of reals and x,y,z are real variables.

• [x] , [x−,x+], [y], [z] are notations for intervals.
Bold notations [x],∏

n
k=1[xk] =∏

n
k=1[x

−
k ,x

+
k] and

[xxx[, ∏
n
k=1[x

−
k ,x

+
k [are used for boxes and half-

open boxes respectively.

• [R], {[x−,x+] : [x−,x+]⊂ R} is the set of inter-
val subsets of R .
[Rn] , {∏n

k=1[xk] : ∀k, [xk] ∈ [R]} is the set of
box subsets of Rn .

• ρ([x]) = x+− x− is the length of [x] ∈ [R].
ρ([x]) = max

1≤k≤n
ρ([xk]) is the length of [x] ∈ [Rn].

• g : R→R, g j : Rk→R, h : Rk→R j are notations
for (multivariate) real functions,

• [g] : [R]→ [R], [g j] :
[
Rk
]
→ [R], [h] :

[
Rk
]
→
[
R j
]

are notations for interval functions,
At this point, one should not confuse x and [x], nor
should be confused g and [g], nor should be confused
the notations [g]([x]) and g([x]):
• x ∈ [x] is equivalent to x ∈∏

n
k=1[x

−
k ,x

+
k] .

• g([x]) = {g(x) : x ∈ [x]} is not the same as
[g]([x]) and is not even necessarily a box.

Nevertheless, we assume in this paper, that g and [g]
are related by the following properties:
• g([x])⊂ [g]([x]) for any [x] ∈ [Rn].

In particular, [g] is minimal when [g]([x]) is the
minimal box supset of g([x]) for all [x] ∈ [Rn].

• [g]([x])⊂ [g]([y]) when [x]⊂ [y].
• If ρ([x]) vanishes, then ρ([g]([x])) vanishes:

ρ(g([x]))−−−−−→
ρ([x])→0

0 (1)

These properties expresses that [g] implies a bound
on the error propagated by g, and this bound has good
convergence behavior in regards to the error.

Before going further, let us consider how to build the
interval functions on some common examples:
1. Reference functions, g ∈ {ln,exp,sin,cos, .n, . . .},

are continuous onto R, so that g([x]) ∈ [R] for all
[x]∈ [R]. Then, it is optimal to set [g]([x]) = g([x])
for all [x] ∈ [R] . As a consequence, the interval
functions are easily optimaly implementable for
most reference functions. Here are some incom-
plete examples of definitions:

[ln]([x]), [ln(x−), ln(x+)] , [1/][x], 1
[x] =

[1
x+ ,

1
x−
]
,

[x][n], [x]n =

{
[xn
−,x

n
+] for n > 0 ,

[xn
+,x

n
−] for n < 0 ,

[cos][x],

[cos(x−),cos(x+)] for [x]⊂ [−π,0]

[cos(x+),cos(x−)] for [x]⊂ [0,π]

[min(cos(x−),cos(x+)),1]
for 0 ∈ [x]⊂ [−π,π]

etc.

2. Minimal interval functions for classical operators
+, ·, −, / are also easily defined. For example:

[x] [+] [y], [x] + [y] = [x−+ y−,x++ y+]

3. Function g defined by g(θ) = (cos(θ),sin(θ)) , is
an example where g([θ]) 6∈

[
R2
]

. One would
rather define [g]([θ]) = [cos]([θ]) × [sin]([θ])
which is a strict supset of g([θ]) in general. By the
way, this construction is an illustration on how the
interval functions of reference are used to define
complex interval functions straightforwardly.

There is no unicity in the construction of [g]. Let us
consider the case of function g : θ 7→ cos2 θ+ sin2

θ .
Then, there are two obvious definitions for [g].
1. By using the reference functions cos, sin, .2 and

+ one may derive:
[g]([θ]) = ([cos]([θ]))2 +([sin]([θ]))2 .

For example, we compute: [g]
([

0, π

2

])
= [0,2]

which is a bad error bound on theoretical
value 1. Now, we also compute: [g]

([
− 1

10 ,
1

10

])
'

[0.99,1.01] which is a tight error bound on 1 . This
example hold confirmation that [g]([θ]) has a good
behavior for small boxes [θ].

2. By noticing that cos2 θ+ sin2
θ = 1, it is optimal

to define [g]([θ]) = [1,1].
Although approach 2 gives the best solution, in prac-
tice approach 1 is prefered since it is generic, it is
based on already implemented functions of reference,
and it provides a way to construct automatically [g]
without any specific knowledge.

2.1.2 Subpaving

As [g] implies a bound on the error propagated by f
with good convergence behavior, it may be used com-
bined with a dichotomous process to produce a sub-
paving which efficiently approximate a set inversion
g−1([y]) . The example of figure 1 is kindly given
by professor Jaulin. It shows a resulting subpaving
which approximates a set inversion. The dichotomous

Figure 1: Example of set inversion

nature of the decomposition is clear. A bisection pro-
cess is iterated starting from the main box; at each it-
eration, sub-boxes [x] are tested against the constraint
g([x])⊂ [y] . Then three cases arise:
case a: g([x]) ⊂ [y], then [x] is among red boxes,

which constitute a subpaving of g−1([y]) .
case b: g([x])∩ [y] = /0, then [x] is among blue boxes,

which constitute a subpaving of Rn \g−1([y]) .
case c: Otherwise, bisection has to be repeated on [x]

until sufficient convergence (yellow color).

Property (1) plays a key role in the decomposition
process, ensuring that case a or case b are finally
achieved when sub-boxes [x] are sufficiently small
and sufficiently far from the frontier of set g−1([y]) .

2.2 Toward a generic sampling method
based on a dichotomous approach

Now, we settle the hypotheses mentioned in introduc-
tion. Let µ be Borel measure on Rn. It is given:

• a random vector XXX defined on Rn characterized
by a bounded density fXXX . The cumulative distri-
bution function FXXX of XXX defined for all x ∈Rn by:

FXXX (x) = P(XXX ≤ x) =
∫

y≤x
fXXX (y)µ(dy) ,

is assumed to be easily computable,

• a box [b] ∈ [Rn],

• a small box [εεε] ∈ [Rm],

• a continuous map g : [b]→ Rp defined by com-
posing functions and operators of reference,

• [g] derived from g by composing the related inter-
val functions and operators of reference.

2.2.1 Cumulative functions and boxes

We point out that it is easy to compute P(XXX ∈ [yyy]) or
to sample [XXX |XXX ∈ [yyy]] when FXXX is available. Thus,
these features are taken for granted in this paper.

First, it is well known that P(XXX ∈ [yyy]) is litteraly com-
putable from FXXX :

P(XXX ∈ [yyy]) = ∑
σ∈{−1,+1}n

FXXX

((
ysgn(σk)

k

)
1≤k≤n

) n

∏
k=1

σk ,

where sgn(1),+ and sgn(−1),− . When the com-
ponents of XXX are jointly independent, the computation
is dramatically accelerated by factoring FXXX and com-
puting time becomes linear with the dimension.
Sampling [XXX |XXX ∈ [yyy]] is easily done by means of FXXX :

1 for i← 1 to n do
2 Fi← FXXX (x1, · · · ,xi−1, ·,∞, · · · ,∞)

3 θ← RandUniform([Fi(y−i),Fi(y+i)])
4 xi← F−1

i (θ)

5 end
6 return x1:n

The principle is to iteratively apply the inverse trans-
form sampling method to Fi, the marginal in xi of the
cumulative function conditionally to the already sam-
pled components x1, · · · ,xi−1.

2.2.2 Subpaving based sampling

Now assume that set g−1([εεε]) has been approximated
(by default) by a subpaving as shown in figure 1. In
other words, there is P⊂ [Rn] such that:

• For all [xxx], [yyy] ∈ [Rn], boxes [xxx] and [yyy] are disjoint
except possibly on the edges,

• g−1([εεε])' tP ⊆ g−1([εεε]) , where tP ,
⊔

[xxx]∈P
[xxx[.

Considering Borel measure µ on Rn, the quality of the
approximation may be quantified by set measures:

αP = µ
(

g−1([εεε])\tP
)
= µ

(
g−1([εεε])

)
−∑
[xxx]∈P

µ([xxx[) .

Smaller is αP, better is the approximation. Interval
based set inversion algorithms are able to reach an ar-
bitrary precision, at least for small dimensions (2 or 3
are reasonable).

Now, for all yyy ∈ Rn, it happens that:

fXXX |XXX∈tP (yyy) =
fXXX (yyy)δyyy∈tP
P(XXX ∈ tP)

(2)

=

fXXX (yyy) ∑
[xxx]∈P

δyyy∈[xxx[

∑
[xxx]∈P

P(X ∈ [xxx[)
=

∑
[xxx]∈P

P(X ∈ [xxx[) fXXX |XXX∈[xxx[(yyy)

∑
[xxx]∈P

P(X ∈ [xxx[)

= ∑
[xxx]∈P

P(X ∈ [xxx])
∑

[xxx]∈P
P(X ∈ [xxx])

fXXX |XXX∈[xxx[(y) , (3)

where δtrue = 1 and δfalse = 0 else.
Since fXXX is bounded, it is easily derived from (2):

fXXX |XXX∈tP (yyy)−−−→
αP→0

fXXX|XXX∈g−1([εεε] (yyy) (4)

On the other hand, equation (3) shows clearly that
fXXX |XXX∈tP may be sampled by applying two steps: first
sample a box [xxx] ∈ P according to the discrete prob-
ability P(X∈[xxx])

∑
[xxx]∈P

P(X∈[xxx]) , then sample yyy by the conditional

law fXXX |XXX∈[xxx[. At last, we have here an efficient method
for sampling [XXX |g(XXX) ∈ [εεε]] (algorithm 1) :

1 Function Sampling [XXX |g(XXX) ∈ [εεε]] (subpaving)
input : α,g,N output: yyy1:N

2 Build subpaving P such that αP < α

3 for k← 1 to N do
4 Select [xxx] ∈ P with proba. P(X∈[xxx])

∑
[xxx]∈P

P(X∈[xxx])

5 Build yyyk by sampling [XXX |XXX ∈ [xxx]]
6 end
7 end

Algorithm 1: Based on a subpaving

The approach is efficient on rare events of the form

[XXX |g(XXX) ∈ [εεε]]. However, this immediate application
of the interval-based inversion is only applicable to
rather small dimensions, since the size of the sub-
paving should increase exponentially. Taking inspi-
ration of this preliminary approach, we address now
the sampling problem in higher dimensions.

2.2.3 Naive dichotomous sampling

A key point of algorithm 1 is to be able to sample a
box [xxx] of a subpaving of g−1([εεε]). It is noticeable
that we do not need to build the full subpaving; if we
were able to construct a box [xxx] of the subpaving on
demand, together with its relative weight within the
subpaving, then we would be able to build sample yyy.
To begin with, we define the notion of cut:

• A cut of box [xxx] ∈ [Rn] is a pair ([lll], [rrr]) ∈ [Rn]2

such that [lll[∩[rrr[= /0 and [lll[t[rrr[= [xxx[.

• A bisection is a cut ([lll], [rrr]) such that [lll] and [rrr]
are same-sized.

In general, bisections are often used in dichotomous
processes, as there is a garanty of exponential volume
decrease of the search area.2 Here, we speak in terms
of cuts, which are more general, being implied that an
appropriate management of the box length is made in
order to ensure the convergence.
We assume here that a weighting function is available:

ω[xxx] ' P(XXX ∈ [xxx]&g(XXX) ∈ [εεε]) .

Algorithm 2 implicitly builds a partial subpaving, and
actually produces a weighted particle cloud as a result
of the sampling of [XXX |g(XXX) ∈ [εεε]] :

1 Function Sampling [XXX |g(XXX) ∈ [εεε]] (ω-based)
input : r,g, ω, N output: (yyyk,wk)1:N

2 for k← 1 to N do
3 ([xxx0],πk, j)← ([bbb],1,0)
4 while ρ([xxx j])> r and [g]([xxx j]) 6⊂ [εεε] do
5 ([lll j+1], [rrr j+1])← Cut([xxx j])

6 j← j+1
7 [xxx j]← Bern(([lll j],ω[lll j]),([rrr j],ω[rrr j]))

8 πk←
ω[xxx j]

ω[lll j]
+ω[rrr j]

πk

9 end
10 wk← P(X ∈ [xxx j])δ[g]([xxx j])⊂[εεε]

/
πk

11 Build yyyk by sampling
[
XXX
∣∣XXX ∈ [xxx j]

]
12 end
13 end

Algorithm 2: Based on a weighting function

2Though, bisections do not guarantee a decrease in
length ρ unless the cuts are managed in all directions.

The algorithm iterates in a for loop the same sampling
process. It iterates the following successive steps until
[xxx j] is sufficiently small (ie. ρ([xxx j]) ≤ r) or is inside
an implied suppaving (ie. [g]([xxx j])⊂ [εεε]):3

• Cut [xxx j] by means of Cut([xxx j]). This function is
designed so as to ensure that ρ([xxx j]) vanishes,

• Select randomly one of the cut ([lll j], [rrr j]) in pro-
portion to their weight, by mean of Bernoulli pro-
cess Bern(([lll j],ω[lll j]),([rrr j],ω[rrr j])),

• Update πk which computes the processed proba-
bility of [xxx j] in regards to the Bernoulli sequence.

Assume that J is the last value reached by parame-
ter j after the while loop. Then, the corrected weight
wk = 1

πk
P(X ∈ [xxxJ])δ[g]([xxxJ])⊂[εεε] is computed for [xxxJ]

and for yyyk , and yyyk is sampled from [xxxJ] .
Notice that wk is zeroed when [g]([xxxJ]) 6⊂ [εεε], which
implies that only the boxes [xxxJ] of a subpaving of
g−1([εεε]) are actually considered. Combined with loop
constraint ρ([xxxJ]) > r and [g]([xxx j]) 6⊂ [εεε], it follows
that a subpaving of g−1([εεε]) is implicitely and par-
tially built during the sampling process.

When [g]([xxxJ]) ⊂ [εεε], we have wk =
P(X∈[xxxJ])

πk
where

πk evaluates the processed probability for [xxxJ]. As
a result, the weighted particles (yyyk,wk) provide an
unbiased estimation of fXXX |g(XXX)∈[εεε] in a subpaving of
g−1([εεε]) . It is not the same at the border of g−1([εεε]) ,
but this case is neglected. However, the sampler is not
at all efficient when considering its variance.
First, let us consider a case which works perfectly.
Assume ω[xxx] = P(XXX ∈ [xxx]&g(XXX) ∈ [εεε]). In this ideal
case, the weight along a while loop is computed by:

ω[xxx j]

ω[lll j]+ω[rrr j]
=

P(XXX ∈ [xxx j]&g(XXX) ∈ [εεε])

P(XXX ∈ [lll j]∪ [rrr j]&g(XXX) ∈ [εεε])

=
P(XXX ∈ [xxx j]&g(XXX) ∈ [εεε])

P(XXX ∈ [xxx j−1]&g(XXX) ∈ [εεε])
,

and then:

πk =
J

∏
j=1

ω[xxx j]

ω[lll j]+ω[rrr j]
=

P(XXX ∈ [xxxJ]&g(XXX) ∈ [εεε])

P(XXX ∈ [bbb]&g(XXX) ∈ [εεε])
.

Three cases potentially arise:
• [g]([xxxJ])⊂ [εεε], ie. [xxxJ] is in an implied subpaving.

Now P(XXX ∈ [xxxJ]&g(XXX) ∈ [εεε]) = P(XXX ∈ [xxxJ]) , as
a consequence of g([xxxJ])⊂ [g]([xxxJ])⊂ [εεε]. Then:

wk =
P(X ∈ [xxxJ])δ[g]([xxxJ])⊂[εεε]

P(XXX∈[xxxJ]&g(XXX)∈[εεε])
P(XXX∈[bbb]&g(XXX)∈[εεε])

=
P(X ∈ [xxxJ])

P(XXX∈[xxxJ])
P(XXX∈[bbb]&g(XXX)∈[εεε])

= P(XXX ∈ [bbb]&g(XXX) ∈ [εεε]), P(g(XXX) ∈ [εεε])
(5)

3Recall that [g]([xxx j]) is computable while g([xxx j]) is not.

• [g]([xxxJ])∩ [εεε] 6= /0 but [g]([xxxJ]) 6⊂ [εεε] , ie. [xxxJ] is
within the border of the implied subpaving. Then
wk = 0. Since we are at the border, these lost cases
are negligible for small precision r.

• [g]([xxxJ])∩ [εεε] = /0 , ie. [xxxJ] is ouside the implied
subpaving and its border. Then g([xxxJ])∩ [εεε] = /0

and ω[xxxJ] = P(XXX ∈ [xxxJ]&g(XXX) ∈ [εεε]) = 0 . Case
is simply impossible from the Bernoulli process.

Equation (5) shows that the sampling process re-
sults in a cloud of same-weight particles over the im-
plied subpaving. Other cases (rejections) are neg-
ligeable. Here we have a sampler of [XXX |g(XXX) ∈ [εεε]]
with the best variance performance in regards to the
number of particles. But this is achieved only when
ω[xxx] = P(XXX ∈ [xxx]&g(XXX) ∈ [εεε]) , and of course such
exact weighting function is almost never available.

Why it does not work in general cases? In the
cases where ω[xxx] 6= P(XXX ∈ [xxx]&g(XXX) ∈ [εεε]) , the ac-
cumulated error will explode with the dimension,
which will result in dramatically uneven weights on
the particles. The resulting weighted particles cloud
is then useless for practical applications.

3 A DICHOTOMOUS APPROACH
FOR SAMPLING

Algorithms 1 and 2 illustrate the two main dimen-
sional issues, that we have to deal with. And these
approaches are complementary:

• By building a complete subpaving of g−1([εεε]), al-
gorithm 1 makes possible a direct sampling of
[XXX |g(XXX) ∈ [εεε]], and incidently an accurate com-
putation of P(XXX ∈ [xxx]&g(XXX) ∈ [εεε]) . However,
this construction of a complete subpaving is only
possible for small dimensions.

• Algorithm 2 avoids the construction of a complete
subpaving. Instead, it builds the boxes of an im-
plied subpaving on demand throughout the sam-
pling iteration. However, the algorithm is ineffi-
cient unless the weighting function ω[xxx] is a good
approximation of P(XXX ∈ [xxx]&g(XXX) ∈ [εεε]) . This
condition is not accessible in general.

We propose now an intermediate approach which:

• keeps history of the subpaving construction
throughout the sampling process,

• use this history to build an improved estimate of
P(XXX ∈ [xxx]&g(XXX) ∈ [εεε]) .

By these tricks, it is expected that the sampling pre-
cision will increase with the number of samples. In

order to avoid useless exploration, we also truncate
the dichotomous process on the basis of some predic-
tive assessment of final weight yk. Thus, the algorithm
tends to favor breadth search instead of depth search
at the early stages of the sampling process.

3.1 Implementing some containment of
the curse of dimension

From now on, it is assumed that:

0≤ ω[xxx] ≤ P(X ∈ [xxx]) , (6)

and that:

ω[xxx] =

{
0 if [g]([xxx])∩ [εεε] = /0 ,

P(X ∈ [xxx]) if [g]([xxx])⊂ [εεε] .
(7)

Algorithm 3 is an evolution of algorithm 2. In ad-
dition, it builds an history of the cuts, stored in map
cuts, and computes dynamically from this history an
improved weighting function, stored in map omg :

1 Function Sampling [XXX |g(XXX) ∈ [εεε]] (cut history)
input : σ,r,g, ω, N output: (yyyk,wk)1:N

2 (cuts,omg,k)← (/0, /0,0)
3 omg ([bbb])← ω[bbb]
4 while k < N do
5 ([xxx0],πk, j)← ([bbb],1,0)
6 while ρ([xxx j])> r and [g]([xxx j]) 6⊂ [εεε] do

7 if
∣∣∣log2

(omg ([bbb])
omg ([xxx j])

πk

)∣∣∣> σ goto 20

8 ifundef cuts ([xxx j])← Cut([xxx j])

9 ([lll j+1], [rrr j+1])← cuts ([xxx j])
10 j← j+1
11 ifundef omg ([rrr j])← ω[rrr j]

12 ifundef omg ([lll j])← ω[lll j]

13 (ν[lll j],ν[rrr j])← (omg ([lll j]),omg ([rrr j]))

14 [xxx j]← Bern(([lll j],ν[lll j]),([rrr j],ν[rrr j]))

15 πk←
ν[xxx j]

ν[lll j]
+ν[rrr j]

πk

16 end
17 wk← P(X ∈ [xxx j])δ[g]([xxx j])⊂[εεε]

/
πk

18 Build yyyk by sampling
[
XXX
∣∣XXX ∈ [xxx j]

]
19 k← k+1
20 for i← j to 1 do
21 omg ([xxxi−1])← omg ([llli])+omg ([rrri])
22 end
23 end
24 end

Algorithm 3: Based on cuts history

The lines of this algorithm are colored in black, in
blue or in dark blue. Black lines are directly inherited
from algorithm 2. Blue lines are new additions to the

previous algorithm. Dark blue lines (4,19,23 and 2
partially) correspond to the inside while loop:

k← 0 while k < N do · · · k← k+1 · · · end

Essentially, it is a detailed rewrite of for loop in al-
gorithm 2, which allows a better control on the incre-
mentation of variable k.
Variable cuts is a dictionary which is used to register
the history of computed cuts. At start, cuts is defined
empty (line 2). For a given box [xxx j], the cut on [xxx j] is
computed only once, if it is computed, by line 8 :

ifundef cuts ([xxx j])← Cut([xxx j])

Keyword ifundef tests if cuts ([xxx j]) is defined. If it is
still undefined, then cuts ([xxx j]) is set to Cut([xxx j]).
Variable omg is a dictionary which records the
weighting function and its possible updates, when
needed. At start, omg is only defined for [bbb] and is
set to ω[bbb] (lines 1 and 3). Variable omg ([rrr j]) is set to
ω[rrr j], if it has not been initialized yet (line 11). The
same is done for variable omg ([lll j]) at line 12. When
the cuts sequence is done (second while), then the
weighting function is updated by the for loop (lines
20,21,22). This ensures that omg ([xxx]) is computed
as the sum of the weights omg ([zzz]) of the leaves [zzz] of
the cuts tree rooted on [xxx]. Then, property (7) ensures
that omg ([xxx]) gets closer to P(XXX ∈ [xxx]&g(XXX) ∈ [εεε])
when the cuts tree rooted on [xxx] gets more refined.
Algorithm 3 is similar to algorithm 2, except that:

• the cut ([lll j+1], [rrr j+1]) is recovered from the his-
tory, when it is possible (line 9),

• the cut choice is done by means of updated
weights (ν[lll j],ν[rrr j]), (omg ([lll j]),omg ([rrr j])) .

There is an interesting property here. Assume that J
is the last value reached by j and that J′ < J is such
that omg ([lll j]) and omg ([rrr j]) are already defined for
all 1 ≤ j ≤ J′ . The weighting functions are updated
in these cases. Then, it comes for all 1≤ j ≤ J′ that:

omg([xxx j−1]) = omg([lll j])+omg([rrr j]) .

The computation of πk is then simplified:

πk =
J′

∏
j=1

ν[xxx j]

ν[lll j]+ν[rrr j]

J

∏
j=J′+1

ν[xxx j]

ν[lll j]+ν[rrr j]

=
J′

∏
j=1

ν[xxx j]

ν[xxx j−1]

J

∏
j=J′+1

ν[xxx j]

ν[lll j]+ν[rrr j]

=
ν[xxxJ′]

ν[bbb]

J

∏
j=J′+1

ν[xxx j]

ν[lll j]+ν[rrr j]
.

Thus, the error on πk grows exponentially only within
the newly explored cuts, that is here from J′+ 1 to
J. This is a reason for setting a certain restriction

on the depth-oriented aspect of this sampling process.
Another good reason is to prevent degenerate particle
weights, wk, which are actually useless. Algorithm 3
thus implements some code (line 7) for testing the de-
generacy of πk and eventually restarting the sampling
loop (second while):

if
∣∣∣log2

(omg ([bbb])
omg ([xxx j])

πk

)∣∣∣> σ goto 20

This code tests the logarithmic distance between the
weight of [xxx j], omg ([xxx j]), and the weight resulting
from the sampling process, omg ([bbb]) πk. If this dis-
tance is higher than σ, then the loop is stopped by
going to line 20. By doing that, the incrementation
of k is skipped, so that the sampling loop is restarted
for the same indice k. However, the update of vari-
able omg is done, and of course, the history of cuts
stays incremented. So, although the sampling loop
has been interrupted in this case, the sampling struc-
ture has been upgraded. This results in an adaptive
process which will balance depth and breadth explo-
rations when running the sampling. Breadth explo-
ration is favored on the first sampling iterations, but
the tendency becomes inverted after several samples.

3.2 Practical implementation

Algorithm 3 draws the main principles of our sam-
pling method. Of course, some details are not de-
scribed there, although they are necessary for a practi-
cal implementation. Some points may be mentioned:

• We implement the following definition of ω :

ω[xxx] =
µ
(
[g]([xxx])∩ [εεε]

)
µ([εεε])

P(X ∈ [xxx]) , (8)

where µ is Borel measure on Rp . This definition
checks properties (6) and (7). It also tries a rough
approximation for P(XXX ∈ [xxx]&g(XXX) ∈ [εεε]) .

• The definition of Cut is an important choice.
There are n possible bisections of [xxx] ∈ [Rn]. Our
algorithm selects a bisection ([yyy], [zzz]) randomly in
regards to the following criterions:

– Favor cuts such that ω[yyy]� ω[zzz] or ω[yyy]� ω[zzz],

– Avoid overly elongated [xxx], ie. maxi(x+i −x−i)

mini(x+i −x−i)
�1,

In addition, this cut process interacts with some
cuts history simplifications (next point).

• Our implementation tries to optimize the struc-
ture of the cuts history. For example, assume that
([yyy], [zzz]) is a cut of [xxx], ([ttt], [uuu]) is a cut of [zzz] and
[g]([uuu])∩ [εεε] = /0 , ie. [uuu] is outside the subpaving
and its border. Then, boxes [zzz] and [uuu] should be

removed from the structure, since they convey no
useful information:

[xxx]
[yyy]

[zzz]
[ttt]

[uuu]

=⇒ [xxx]
[yyy]

[ttt]

• M first samples are discarded before sampling, so
as to initialize the structure of the sampler. After
that, N samples are sampled and returned.

Whatever, the algorithm is rather simple to parameter.
Except for the choice of ω, which is structural, r,M
and σ are the only parameters to be defined.

3.3 Some ideas for improvements

As will be shown in the tests, our method has been
applied up to a space of dimension n = 11 (for a sub-
variety of dimension ν = 10). This is much more than
what is possible through a complete subpaving con-
struction. But somehow, it is a reprieve in regards to
the curse of the dimension.

Using contractors. Contractors are used along with
bisection process in order to speedup the subpaving
construction (Chabert and Jaulin, 2009). Contractors
are especially available when function g is expressed
through some constraints. Such tool may be usefull
in our algorithm, in terms of improving the speed and
reducing the complexity of the cuts history.

Better weighting function. Definition (8) is rather
cheap. Defining ω as a better approximations of
P(XXX ∈ [xxx]&g(XXX) ∈ [εεε]) may be possible by means of
local linear approximations (or highr order) of g.

Relaxing the constraint. Many rare event simula-
tion methods work by starting from a relaxed con-
straint, e.g. h(xxx)≥ γ0 where γ0� γmax, then by grad-
ually tensing this constraint, e.g. up to h(xxx) ≥ γk
where γk ' γmax. Our algorithm totally discarded such
approaches. However, it may be profitable to mix
both points of view in order to improve the behav-
ior of our approach for higher dimensions. We have
especially in mind a way for an incrementally better
definition of the weighting function ω.

Parallelization. Our implementation is single-
threaded. But the process is clearly parallelizable by
generating groups of samples in parallel. However,
updates to cuts and omg need synchronization.

4 EXAMPLES AND TESTS

This section is parted in two subsections. First sub-
section presents simulation tests. Second section
presents a small application in black-box function op-
timization. Such applications were actually a great
motivation for this work.

4.1 Simulation tests

The tests presented here are performed for our sam-
pling algorithm 3. The algorithm has been im-
plemented in rust language (www.rust-lang.org)
and, for now, is single-threaded. In order to illus-
trate the performance of this algorithm, our choice
was to consider a mathematically simple simulation
problem, in order to make the statistics of the results
clear enough to analyze.

4.1.1 Test cases

Thorough the section, it is assumed that XXX follows the
uniform law on bbb = [−2,2]n with n ∈ {2,3, · · · ,11} .
Three simulation cases are investigated:

Case (a): Are defined ga(xxx) = ||xxx||2 =
√

∑
n
j=1 x2

j and

[εεεa] = [0.95,1.05] . Then g−1
a ([εεεa]) is a hyper-

annulus, which approximates the unit hypersphere
of dimension n−1.

Case (b): For n = 11 and 0≤ k ≤ 9, it is considered:

gb(xxx) =

||xxx||2
|x3|

...
|x2+k|

 and [εεεb] = [εεεa]× [zzz]k ,

with [zzz] = [−0.05,0.05] . This case is similar
to (a), but with additional constraints, so that
g−1

b (εεεb) approximates an hypersphere of dimen-
sion n− 1− k. When k = 0, there is no addi-
tional constraints and we are back to case (a) with
n = 11. When k = 9, then g−1

b (εεεb) approximates
the unit circle C within the first two dimensions.

Case (c): For n = 11, it is considered:

gc(xxx) =

||xxx||2
|x3|

...
|x11|

min(|x1|, |x2|)

 ,

and [εεεc] = [εεεa]× [zzz]9× [ααα] with [ααα] = [−0.5,0.5] . It is
noticed that this case is obtained by adding contraint
−0.5≤min(|x1|, |x2|)≤ 0.5 to last subcase of (b). In
other words, we are approximately sampling on the

(disjoint) union of the 4 subsegments A1, . . . ,A4 of
the unit circle C , defined by:

A j =

{[
x1
x2

]
∈C
/

arg
([

x1
x2

])
∈ j

π

2
+
[
−π

6
,

π

6

]
mod 2π

}
.

These 4 subsegments have exactly the same size so
that their (infinitesimal) probabilities are the same in
regards to X .

Purpose of the test cases: Subsequently, case (a)
is used in order to evaluate the performance of the
sampling process both in accuracy and in efficiency
for different dimensions. Case (b) is used in order to
evaluate the efficiency of the sampling when the num-
ber of constaints increases. Case (c) is used in order to
evaluate the accuracy of the sampling in case of com-
plex constaints which introduce disjoint modalities.

4.1.2 Results and analysis

The cases considered here are mathematically easy to
predict. Case (a) especially is rather easy to sample by
ad hoc methods. In (Dezert and Musso, 2001), Dezert
and Musso proposed a method, which may be used for
uniformly sampling on an annulus of ellipsoid. But
the problem is not trivial however, since one have to
take into account the variation of the local probability
with the radius. Whatever, one must keep in mind
that our approach is generic and can be applied to an
infinite number of configurations.
All the subsequent tests have been achieved with the
following parameters:

• r = 0.002 is the radius bound for second while
stop condition,

• M = 5000 is the number of first samples, which
are discarded in order to initialize the sampler,

• N = 50000 is the number of sampled particles.

• σ = 10 on all tests.

Case (a):

Histograms: For each subcase n ∈ {3,7,11},
we have computed the radius of all samples xxx and
built the associated histograms (figures 2, 3 and 4) .

For each n ∈ {3,7,11} and for all 1 ≤ i < j ≤ n, we
have computed the angle of all samples (xi,x j) and
built the associated histograms. From these n(n−1)

2
histograms of each subcase, we have computed the
minimal, mean and maximal histogram. By symme-
try, the theoretical histograms are uniform.
The results are shown respectively in blue, green and

Figure 2: (a):Radius histogram (20 divisions); n = 3

Figure 3: (a): Radius histogram (20 divisions); n = 7

Figure 4: (a): Radius histogram (20 divisions); n = 11

red (figures 5, 6 and 7) , and provide an hint on the
error of the estimation.

Figure 5: (a):Angle histogram (20 divisions); n = 3

Figure 6: (a): Angle histogram (20 divisions); n = 7

The error on the histograms should be of the order of√
20

50000 ' 0,02 . In comparaison, the errors figured in
the angular histograms are quite acceptable, even for
the highest dimension. The most interesting point is
that there is no rupture in the histogram, which shows
that the sampler does manage the subvariety structure.

Figure 7: (a): Angle histogram (20 divisions); n = 11

We do not have an error estimation for the radius his-
tograms. Actually, the local probability should theo-
retically increase with the radius, this property being
accentuated with the dimension. This is what is ob-
tained on the histograms. It is noteworthy however
that the sides of these histogram are subject to addi-
tional errors implied by the border of the subvariety.

Process statistics: We present some elements of
measurement on the behavior of the algorithm accord-
ing to the number of generated samples (0 to 55000).
Each figure presents the result for cases n = 3,7,11
with respective colors, blue, green and red.

Figure 8: (a): omg ([bbb]) versus P(ga(XXX) ∈ [εεε]); n = 3,7,11

Figure 8 presents how value log2(omg([bbb])) evolves
as an approximation of log2(P(ga(XXX) ∈ [εεε])) . While
all curves are increasing to this theoretical value (line
of the same color), the performance decreases with
the dimension.

Figure 9: (a): Cumulative cpu time; n = 3,7,11

Figures 9 and 10 present the cumulative cpu-time (ex-
pressed in second) and the evolution of the cpu-time
(per sample) consumed by the process. We notice
clearly that the sampling efficiency increases with the
number of generated samples. However, the cumu-
lative cpu time still increases dramatically with the
dimension (the memory use evolves similarly). Al-
though the curse of dimension has been delayed by

Figure 10: (a): Evolution of cpu time; n = 3,7,11

our approach, it is still there.

Figure 11: (a): Evolution of loop retry; n = 3,7,11

The number of loop retries during the sampling is an
interesting indication of the achievement of the sam-
pling structure (figure 11). It decreases with the num-
ber of samples, and moreover becomes rather small,
even for the highest dimension (around 30 for n= 11).
This result should be compared the probability of the
subvariety (around 10−6 for n = 11).

Case b: We present now some synthetic curves
on the sampler efficiency, when the number of con-
straints increases. All curves are function of k, the
number of additional constraints. The values are com-
puted as the mean on the 100 last samples (thus, from
49901 to 50000).

Figure 12: (b): Evolution of cpu time; k = 0 : 9

Figure 13: (b): Evolution of cumulative cpu time; k = 0 : 9

Figures 12 and 13 present the evolution of respec-

tively the cpu time (per sample) and cumulative cpu
time in function of k. The curves are decreasing and
are nearing to zero. Figure 14 presents the evolution

Figure 14: (b): Evolution of loop retry; k = 0 : 9

of the number of loop retries in function of k. Again,
the curve is decreasing and is nearing to zero.
As a conclusion here, the performance of the sampler
tends to increase with the number of constraints, and
this is a quite useful quality.

Case c: On this last test, we computed the radial
histogram and angular histogram (there is only one)
for the samples. These histograms are presented re-
spectively in figures 15 and 16. The quality of the his-
tograms is comparable to what have been seen in the
previous cases. Due to the constraint configuration,
the theoretical radius histogram is uniform, and the
theoretical angular histogram is uniform around each
subsegment, A1, . . . ,A4 with a gradual decrease on
the borders. The generated histograms actually com-
ply with these properties.

Figure 15: (c): Radius histogram (20 divisions)

Figure 16: (c): Angle histogram (100 divisions)

As a preliminary conclusion, we consider that our
sampling method is globally performant in sampling
conditionally to subvarieties. A future issue will be to
increase the dimension of the sampling space.

4.2 Optimizing a black-box function

Assume that one needs to optimize a function which
is not well known, and which may be computed by a
highly costy process (a heavy simulation, tests made
by human teams on the grounds, etc.). Of course the
optimization should be made by sparing at best the
number of calls to the costy evaluation. Is it possible
to solve that? At first sight, it is tempting to say no!
In (Jones et al., 1998), Jones, Schonlau and Welch
proposed an elegent method (EGO) for addressing
such kind of problem. The idea is to use a surro-
gate function under the form of a functional random
variable. This functional random variable is described
by means of a Gaussian process with correlation de-
pending on spatial distance (kriging). Based on such
modelling, the construction of an optimal parameter
sequence to be evaluated is obtained by iterating:

• Compute the posterior law of the functional ran-
dom variable, according to the past evaluations,

• Compute the expected improvement function, in
regards to the posterior law and the already best
computed value,

• Choose the parameter optimizing this expected
improvement function and evaluate it.

It is beyond the scope of this paper to detail this sem-
inal work, but we describe subsequently a non-linear
reinterpretation of the method. Whatever, the ap-
proach relies on deep simplifications obtained from
the Gaussian modelling, and it tends to be less effi-
cient when the dimension of the optimization space
increases. Works have been made in order to deal with
this dimentional issue; eg. (Bouhlel et al., 2016).

4.2.1 A non-linear formalisation

We intend to solve this simple geometric problem:
how to find the isobarycenter γ = (a,b) ∈ [−5,5]2

of 4 unknown points Mi = (xo
i ,y

o
i) ∈ [−5,5]2 with

i∈{1,4} ? The only approach that is possible for us is
to test some solutions by requesting for a costly mea-
surement; this measurement evaluates function:

g(γ,xxxo) = ||γ−h(γ,xxxo)||2 with h(γ,xxxo) =
1
4

4

∑
i=1

Mi ,

where xxxo = (xo
1,y

o
1, . . . ,x

o
4,y

o
4). Our purpose is then

to optimize (a,b) by doing a minimum request to the
costly evaluation g(γ,xxxo).
In (Dambreville, 2015), we proposed a reinterpre-
tation of EGO by considering the non-linear func-
tion g(γ,XXX) depending on noise model XXX instead of a
kriging-based surrogate function. Then, the optimiza-
tion of measure sequence (γk) is obtained by iterating:

1 Function Process next measure
input : (γ j,g(γ j,xxxo)) j=1:k
output: (γk+1,g(γk+1,xxxo))

2 Make samples of
[
XXX
∣∣∀ j,g(γ j,xxxo) = γ j

]
3 Compute mγ = min1≤ j≤k g(γ j,xxxo) and:

EI(γ)' EXXX|∀ j,g(γ j ,xxxo)=γ j
min{g(γ,XXX),mγ}

// EI(γ) is approximated from the samples
Compute γk+1 ∈ argminγ EI(γ) and g(γk+1,xxxo)

4 end

We did not have an efficient method for sampling[
XXX
∣∣∀ j,g(γ j,xxxo) = γ j

]
at the time of (Dambreville,

2015). Now, we propose to apply algorithm 3 com-
bined with a discretized method (we actually enumer-
ated on 106 discretized points of [−5,5]2) for mini-
mizing the expected improvement EI(γ) in order to
process minimizing sequence (γk) . This sequence
converge to an isobarycenter for M1:4 .

4.2.2 Tests and results

The points are M1:4 = (2,−1),(3,2),(− 3
2 ,4),(

1
2 ,3).

Their barycenter is (1,2). We used a sampler with
M = 500, N = 1000 and [εεε] = [− 1

100 ,
1

100]
k . Variable

XXX is considered uniform on [−5,5]8. The optimiza-
tion is done on 13 evaluations. If the optimum is ob-
tained at step ko, then the process is stopped. The fol-
lowing table summarizes the results of 100 runs. mo
and γo are respectively the best computed evaluation
and solution. cpu is the mean computation time:

ko 3 4 5 9 10 13
% 14 52 31 1 1 1
mo 0 0 0 0 0 0.01
γo (1,2) (1,2) (1,2) (1,2) (1,2) (0.99,2)

cpu(s) 973 125 42 62 67 84

Barycenter is mainly found after 3 to 5 evaluations.
This is close to the geometric method, which gives
the solution equiprobably after 3 or 4 evaluations.4

5 CONCLUSIONS

We proposed an original dichotomous method for
sampling a random vector conditionnaly to a subva-
riety. This generic approach, inspired from interval
analysis, is accurate and efficient up to a space of di-
mension 11. We have shown how it could be applied
efficiently to the optimization of expensive black-box
function. The work is promizing from an applica-
tive point of view and offers several improvement per-

4Each measure restricts the solution to a circle. After
2 measures, we usualy have to choose between two points,
and the solution is found at step 3 or 4.

spectives. We will particullarly investigate some par-
allelization issues and relaxations techniques applied
to the subvariety in order to enhance the efficency of
the approach in regards to higher dimensions.

REFERENCES

Abdallah, F., Gning, A., and Bonnifait, P. (2008). Box par-
ticle filtering for nonlinear state estimation using in-
terval analysis. Automatica, 44(3):807–815.

Alefeld, G. and Mayer, G. (2000). Interval analysis: the-
ory and applications. Journal of Computational and
Applied Mathematics, 121(1):421–464.

Bouhlel, M., Bartoli, N., Morlier, J., and Otsmane,
A. (2016). Improving kriging surrogates of high-
dimensional design models by partial least squares di-
mension reduction. Structural and Multidisciplinary
Optimization, 53:935–.

Bui Quang, P., Musso, C., and Le Gland, F. (2016). Particle
filtering and the Laplace method for target tracking.
IEEE Transactions on Aerospace and Electronic Sys-
tems, 52(1):350–366.

Cérou, F., Del Moral, P., Furon, T., and Guyader, A.
(2012). Sequential Monte Carlo for rare event esti-
mation. Statistics and Computing, 22(3):795–908.

Chabert, G. and Jaulin, L. (2009). Contractor Programming.
Artificial Intelligence, 173:1079–1100.

Dambreville, F. (2015). Optimizing a sensor deployment
with network constraints computable by costly re-
quests. In Thi, H. A. L., Dinh, T. P., and Nguyen,
N. T., editors, Modelling, Computation and Optimiza-
tion in Information Systems and Management Sci-
ences, volume 360 of Advances in Intelligent Systems
and Computing, pages 247–259. Springer.

Dezert, J. and Musso, C. (2001). An efficient method for
generating points uniformly distributed in hyperellip-
soids. In Workshop on Estimation, Tracking and Fu-
sion: A Tribute to Bar-Shalom, Monterey, California.

Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001).
Applied Interval Analysis with Examples in Parameter
and State Estimation, Robust Control and Robotics.
Springer London Ltd.

Jones, D., Schonlau, M., and Welch, W. (1998). Efficient
global optimization of expensive black-box functions.
Journal of Global Optimization, 13:455–492.

Morio, J., Balesdent, M., Jacquemart, D., and Vergé, C.
(2014). A survey of rare event simulation methods
for static input–output models. Simulation Modelling
Practice and Theory, 49:287–304.

Musso, C., Champagnat, F., and Rabaste, O. (2016). Im-
provement of the laplace-based particle filter for track-
before-detect. In 2016 19th International Conference
on Information Fusion (FUSION), pages 1095–1102.

Rubinstein, R. Y. and Kroese, D. P. (2004). The Cross En-
tropy Method: A Unified Approach To Combinatorial
Optimization, Monte-Carlo Simulation (Information
Science and Statistics). Springer-Verlag.

