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A MATHEMATICAL STUDY OF A HYPERBOLIC METAMATERIAL IN FREE
SPACE

PATRICK CIARLET, JR. ∗ AND MARYNA KACHANOVSKA ∗

Abstract. Wave propagation in hyperbolic metamaterials is described by the Maxwell equations with a frequency-
dependent tensor of dielectric permittivity, whose eigenvalues are of different signs. In this case the problem becomes
hyperbolic (Klein-Gordon equation) for a certain range of frequencies. The principal theoretical and numerical difficulty
comes from the fact that this hyperbolic equation is posed in a free space, without initial conditions provided. The
subject of the work is the theoretical justification of this problem. In particular, this includes the construction of a
radiation condition, a well-posedness result, a limiting absorption principle and regularity estimates on the solution.

1 Introduction and problem setting. Metamaterials are novel artificial materials [30] which
exhibit properties that are important for applications, such as negative refraction and artificial mag-
netisation. The possibility of their physical realization was predicted in the seminal article by V. Vese-
lago [32]. Typically they are fabricated as periodic structures of metals immersed into dielectrics,
and thus electromagnetic wave propagation is modelled with the help of the heterogeneous Max-
well equations. Because the properties of the metamaterials are often revealed in the low-frequency
regime, when the wavelength is much larger than the characteristic size of the inclusions, the re-
spective heterogeneous Maxwell equations are further transformed using the homogenization process
into homogeneous Maxwell equations with frequency-dependent tensors of dielectric permittivity and
magnetic permeability. Numerous works have been devoted to different aspects of the mathematical
and numerical analysis of isotropic models, when the dielectric permittivity and magnetic perme-
ability are frequency-dependent scalars [11, 27, 9, 10, 13, 14, 22, 8]. However, up to our knowledge,
there exist very few recent articles dedicated to the mathematical analysis of the anisotropic models,
especially in the case when the tensors of the dielectric permittivity and/or magnetic permeability are
no longer sign definite (so-called hyperbolic metamaterials [29]), with the only exception being the
work by E. Bonnetier and H.-M. Nguyen [12]. Let us remark that real materials are always dissipative
(which mathematically leads to elliptic models). But, first of all, the dissipation can be small (and
much effort is dedicated to its minimization [33, 26, 18]), and, second, the qualitative behaviour of
the solutions to the dissipative models approaches the behaviour in models without dissipation. This
is especially important for the numerical simulations.

The goal of this work is to perform mathematical analysis of frequency domain wave propagation
in the simplest 2D hyperbolic metamaterial, where the frequency-dependent tensor of the dielectric
permittivity is diagonal, with eigenvalues of different signs for a range of frequencies, and the magnetic
permeability is a positive constant. In this case the respective problem reduces to the Klein-Gordon
equation (compare this to the classical case, when the wave propagation is modelled by the Helmholtz
equation). In this work we are interested in the well-posedness of the respective model in the free
space (in particular, existence, uniqueness, limiting absorption principle, regularity of the solution,
especially in view of the further numerical analysis applications). The underlying operator is a so-
called principal type operator. Some regularity results have been shown by S. Agmon in the classical
work [2]. We refine these results to take into account the propagation of singularities along the
characteristics. In the context of the limiting absorption principle and the radiation condition, the
principal type operators were considered by S. Agmon and L. Hörmander in [4], but, first of all, in
our case, the absorption is in the principal symbol of the operator, and, moreover, their proposed
radiation condition is provided in the implicit form and does not seem to be suited for the problem
we consider.

We present the model under scrutiny in the next section, and provide an outline of the work in
Section 1.2.

1.1 The model. One of the simplest models that incorporates distinctive features of the wave
propagation phenomena in hyperbolic metamaterials comes from plasma physics and describes wave
propagation in a strongly magnetized cold plasma [29]. Mathematically, the corresponding model
reduces to the Maxwell’s equations supplemented with ODEs. In the case when the electromagnetic
field does not depend on the z-coordinate, the model further decouples into the 2D transverse-electric
and the transverse-magnetic systems. In this work we will concentrate on the latter system. Its
derivation can be found e.g. in [6]; for convenience of the reader, we present it in Appendix A. In the
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time domain, it reads

ε0∂tEx − ∂yHz = 0,

ε0∂tEy + ∂xHz + j = 0, ∂tj − ε0ω
2
pEy = 0,

µ0∂tHz + ∂xEy − ∂yEx = 0, (x, t) ≡ (x, y, t) ∈ R2 × R.

(1.1)

The vector unknown E = (Ex, Ey)T is the electric field, the scalar unknown Hz is the magnetic
induction, while j plays the role of a current. The coefficients ε0, µ0 are the dielectric permittivity and
the magnetic permeability of vacuum, and ωp is the plasma frequency. In what follows we will perform
a change of coordinates and rescaling of unknowns in (1.1), chosen so that the coefficients ε0 and µ0

disappear from the formulation. This, in particular, implies that the speed of light c = (ε0µ0)−
1
2 is

rescaled to 1. In these new coordinates (1.1) becomes (where we keep the old notation for simplicity)

∂tEx − ∂yHz = 0,

∂tEy + ∂xHz + j = 0, ∂tj − ω2
pEy = 0,

∂tHz + ∂xEy − ∂yEx = 0, (x, t) ≡ (x, y, t) ∈ R2 × R.

(1.2)

We denote by (., .) the L2-scalar hermitian product, and by ‖.‖ the respective norm:

(u, v) =

∫
R2

uvdx, ‖u‖ =

∫
R2

|u|2dx

 1
2

.

Testing the equations of (1.2) by correspondingly Ex, Ey, ω−2
p j and Hz, and then summing up the

result shows that the energy of (1.2) is conserved:

d

dt
E(t) = 0, E(t) :=

1

2

(
‖Ex(t)‖2 + ‖Ey(t)‖2 + ‖Hz(t)‖2 + ω−2

p ‖j(t)‖2
)
.

It is thus classical to conclude about the well-posedness and stability of the initial-value problem for
(1.2). However the well-posedness of the problem (1.2) in the frequency domain is not as trivial. To
see this, let us apply the Fourier-Laplace transform, defined for causal functions of polynomial growth
by

û(ω) =

∞∫
0

eiωtu(t)dt, ω ∈ C+ := {z ∈ C : Im z > 0},(1.3)

to (1.2). Re-expressing the current ĵ via Êx, we obtain the following system:

− iωε(ω)Ê− curlĤz = 0,(1.4)

− iωĤz + curl Ê = 0,(1.5)

where we denote curl = (∂y,−∂x)T , curlv = ∂xvy − ∂yvx. The 2-by-2 tensor ε(ω) = diag(1, ε(ω)) is

the relative electric permittivity, with ε(ω) defined by

ε(ω) = 1−
ω2
p

ω2
.(1.6)

As we see, the above model defines a hyperbolic metamaterial [29], since ε(ω) < 0 for 0 < ω < ωp.

We will simplify it further, by expressing Ê via Ĥz, which results in the following problem for Ĥz:

ω2Ĥz + ε(ω)−1∂2
xĤz + ∂2

yĤz = 0, (x, y) ∈ R2.(1.7)

More generally, we consider the following problem: given f , find uω, s.t.

Lωuω = f, in D′(R2),(1.8)

where

Lωu := ω2u+ ε(ω)−1∂2
xu+ ∂2

yu.(1.9)
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The spaces to which uω, f belong will be specified later.
For 0 < ω < ωp, the above problems reduce to the (hyperbolic) Klein-Gordon equation. Because

the theory of hyperbolic problems posed in the free space is much less developed than for elliptic
problems, the phenomena of wave propagation governed by (1.2) is not fully understood from the
qualitative and quantitative points of view. Our goal is thus to fill some gaps in the mathematical
justification of (1.2).

Let us first of all introduce some notations. We define, for u ∈ L1(R2), s.t. û ∈ L1(R2), its partial
and full Fourier transforms:

Fxu(ξx, y) =
1√
2π

∫
R

eiξxx
′
u(x′, y)dx′, Fyu(x, ξy) =

1√
2π

∫
R

eiξyy
′
u(x, y′)dy′,

Fu(ξx, ξy) =
1

2π

∫
R2

eiξ·xu(x, y)dxdy, F−1û(x, y) =
1

2π

∫
R2

e−iξ·xû(ξx, ξy)dξx dξy.

At various points of this work, it will be of more convenience to work with weighted Sobolev spaces.
In particular, let us define

L2
s,⊥(R2) ≡ L2

s,⊥ := {v ∈ L2
loc(R

2) :

∫
R2

(1 + y2)s|v(x, y)|2dx dy <∞},

with the norm

‖v‖2L2
s,⊥
≡ ‖v‖2s,⊥ :=

∫
R2

(1 + y2)s|v(x, y)|2dx dy.

The corresponding Sobolev spaces Hµ
s,⊥ are then defined with the help of the Bessel-like potential

Jµv = F−1 ((1 + |ξx|µ + |ξy|µ)Fv(ξx, ξy)) , µ ∈ R+,

namely

Hµ
s,⊥(R2) ≡ Hµ

s,⊥ := {v ∈ L2
s,⊥(R2) : Jµv ∈ L2

s,⊥(R2)}, ‖v‖2s,⊥ = ‖Jµv‖2s,⊥.

It will be useful to work with the partial x−directed Fourier transforms of functions on the above
spaces. Remark that for any v ∈ L2

s,⊥(R2), v(., y) ∈ L2(R). Therefore, equivalent norms on

L2
s,⊥(R2), H1

s,⊥(R2) can be rewritten using the Plancherel theorem in the following form:

‖v‖2s,⊥ = ‖Fxv‖2s,⊥ =

∫
R2

(1 + y2)s|Fxv(ξx, y)|2dξxdy,(1.10)

‖v‖2H1
s,⊥

=

∫
R2

(1 + y2)s(1 + ξ2
x)|Fxv(ξx, y)|2dξxdy

+

∫
R2

(1 + y2)s|∂yFxv(ξx, y)|2dξxdy.
(1.11)

We will use the notation a . b (resp. a & b) to indicate that there exists C > 0 that may depend on
ωp and ω, s.t. a ≤ Cb (resp. a ≥ Cb).

1.2 Outline. The rest of the article is organized as follows. Section 2 is dedicated to the
well-posedness and regularity results related to the problem (1.7) in the hyperbolic regime, that is for
0 < ω < ωp. Section 3 is dedicated to the in-depth analysis of the regularity of the solution to (1.7).
We demonstrate the optimality of the regularity estimates of Section 2 in the framework of Sobolev
spaces, and show how the respective results can be improved when considering spaces adjusted to the
way singularities propagate in (1.7). Section 4 is dedicated to the proof of the limiting absorption
principle for 0 < ω < ωp.



4 P. CIARLET, M. KACHANOVSKA

2 Well-posedness of (1.8) in the hyperbolic regime. This section is organized as follows:
• in Section 2.1 we show that (1.8) is well-posed in L2(R2) when ω ∈ C \ R;
• in Section 2.2 we prove the existence of the solution to (1.8) by a limiting absorption principle;
• in Section 2.4 we derive the radiation condition;
• Section 2.5 is dedicated to the statement of the main result of this section.

Remark 1. Evidently, when ω ∈ R, it suffices to consider the well-posedness of the problem for
ω ≥ 0. We are interested in the case when ω ∈ [0, ωp], since for ω ∈ R \ [0, ωp], the model reduces
to the Helmholtz equation. In the limiting case ω = ωp, it can be shown that the limiting absorption
principle holds for the Maxwell’s equations (1.4), and the resulting solution vanishes for a sufficiently
regular right-hand side. On the other hand, for ω = 0, the application of the limiting absorption to
(1.4) yields a non-vanishing solution. More details can be found in [21].

2.1 Well-posedness for complex frequencies. Let us define the sesquilinear form associ-
ated to (1.8):

aω(., .) : H1(R2)×H1(R2)→ C,

aω(u, v) = ω2(u, v)− ε(ω)−1(∂xu, ∂xv)− (∂yu, ∂yv).

It is possible to show that, whenever ω ∈ C \ R, the above form is coercive on H1(R2), thanks to
non-vanishing Im(ωε(ω)) 6= 0. This result is summarized in the following lemma, which follows from
the proof of Proposition 3.12 and Theorem 5.4 of [7].

Lemma 2.1. For all ω ∈ C \ R, ω = ωr + iωi, ωr, ωi ∈ R, it holds

|aω(u, v)| . |ω|2 max(1, ω−2
i )‖u‖H1‖v‖H1 ,

|Im aω(u, ωu)| & |ωi|min(ω2
i , 1)‖u‖2H1 .

Thus, for all f ∈ H−1(R2), there exists a unique uω ∈ H1(R2) that satisfies (1.8). Moreover,
‖uω‖H1 . |ωi|−1 max(ω−2

i , 1)|ω|‖f‖H−1 .

We leave the proof of the above result to the reader. The unique solution to (1.8) is given by the
convolution of the source f with the fundamental solution Gω:

uω = Nωf := Gω ∗ f =

∫
R2

Gω(· − x′)f(x′)dx′.(2.1)

A derivation of an explicit form of Gω, ω ∈ C \ R, is given in Appendix B. Before presenting it, let us
make the following remark.

Remark 2. All over the article, we use the following convention: for a complex number z ∈ C,√
z denotes the principal branch of the square root, i.e. Re

√
z > 0 for all z ∈ C\(−∞, 0]; respectively,

log z = log |z|+ iArg z, Arg z ∈ (−π, π).

Then the fundamental solution for (1.8) is given by

Gω(x) =
−i
√
ε(ω)

4


H

(1)
0 (ω

√
ε(ω)x2 + y2), Reω > 0, Imω > 0,

H
(2)
0 (ω

√
ε(ω)x2 + y2), Reω > 0, Imω < 0,

(2.2)

where H
(1)
0 , H

(2)
0 are Hankel functions of the first and second kind.

2.2 Existence of solutions Because the solution to (1.8) is well-defined when ω ∈ C \ R,
to prove the existence, for now we will make use of the limiting absorption principle in a pointwise
topology. A justification of the limiting absorption principle in an H1

loc-topology will be given in
Section 4.

We proceed as follows. For ω ∈ (0, ωp), we define the pointwise limit

G+
ω (x) := lim

δ→0+
Gω+iδ(x), x ∈ R2,(2.3)

and, correspondingly u+
ω := G+

ω ∗ f , with a sufficiently smooth data f . We then prove that u+
ω solves

(1.8).
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θα
Cp
Cδp
Ce
Cδe

Fig. 2.1. The domains Cδp, Cδe , Cp, Ce, with θα = atanα−1.

Similarly, let G−ω (x) := lim
δ→0+

Gω−iδ, (it holds that G−ω 6= G+
ω ). The corresponding solution u−ω

also solves (1.8). We will refer to the solution u+
ω as to the outgoing solution, and u−ω as to the

incoming one (in analogy with the Helmholtz equation). We will concentrate on the construction of
the outgoing solutions.

2.2.1 The outgoing fundamental solution and its properties. Let us fix ω ∈ (0, ωp) and
introduce the following notation (recall that ε(ω) < 0)

α := (−ε(ω))
− 1

2 > 0.(2.4)

With this notation, (1.8) becomes

ω2u− α2∂2
xu+ ∂2

yu = f in D′(R2),(2.5)

and the outgoing fundamental solution (2.3) reads

G+
ω (x, y) =

1

4α


H

(1)
0 (ω

√
y2 − α−2x2), (x, y) ∈ Cp,

H
(1)
0 (iω

√
α−2x2 − y2), (x, y) ∈ Ce,

(FS)

where {
Cp = {(x, y) ∈ R2 \ {0} : |y| > α−1|x|},
Ce = {(x, y) ∈ R2 \ {0} : |y| < α−1|x|}.(C)

The notations Cp, Ce will be clarified later, in Lemma 2.2.
It is well-known that the fundamental solution for the initial-value problems for hyperbolic opera-

tors is causal and vanishes outside of the space-time cone, see e.g. [20, Chapter XII, Theorems 12.5.4,
12.5.1]. This latter property reflects the finite velocity of the wave propagation. The fundamental
solution G+

ω possesses none of these features. This is one of the corollaries of Lemma 2.2, which we
state in polar coordinates (r, φ): x = r cosφ, y = r sinφ. Let us introduce some auxiliary notations.
Let γφ = tan2 φ− α−2 ∈ R. With this definition,

Cp = {(r, φ) : γφ > 0}, Ce = {(r, φ) : γφ < 0}.

Let us also define, for all δ s.t. 0 < δ < α−2,

Cδp = {(r, φ) : γφ > δ}, Cδe = {(r, φ) : γφ < −δ},

see Figure 2.1 for illustration. We then have the following result.

Lemma 2.2 (Asymptotics of G+
ω at infinity). Let 0 < δ < α−2. Then

• inside Cδp, as r → +∞,

G+
ω (r cosφ, r sinφ) =

e−i
π
4

2α
√

2πω
r−

1
2 (γφ cos2 φ)−

1
4 eiωr

√
γφ cos2 φ (1 + o(1)) .

• inside Cδe , as r → +∞,

G+
ω (r cosφ, r sinφ) = − i

2α
√

2πω
r−

1
2 (−γφ cos2 φ)−

1
4 e−ωr

√
−γφ cos2 φ (1 + o(1)) .



6 P. CIARLET, M. KACHANOVSKA

Fig. 2.2. The real (left) and imaginary (right) parts of the fundamental solution G+ω (x), with ωp = 10 and
ω = 7.05 (chosen so that ε(ω) ≈ −1).

The error terms in the asymptotic expansions depend on δ.

Proof. The proof is based on the following asymptotic expansion from [28, pp. 266-267]. Let
z ∈ C be s.t. 0 ≤ Arg z ≤ π

2 . Then, as |z| → +∞,

H
(1)
0 (z) =

√
2

πz
eiz−i

π
4 (1 + η(z)) , |η(z)| . |z|−1, C > 0.(2.6)

It remains to apply the above to G+
ω (x), with

z = ωr
√
γφ cos2 φ, in Cδp , and z = iωr

√
−γφ cos2 φ, in Cδe .

The only statement that needs to be proven is that η(z) = o(1), as r → +∞. From the expression
for η (2.6), this amounts to showing that

√
γφ cos2 φ (resp.

√
−γφ cos2 φ) is uniformly bounded from

below away from zero when (r, φ) ∈ Cδp (resp. Cδe ).

Let us consider the case Cδp . By evenness and periodicity, it suffices to study the case φ ∈(
atan

√
α−2 + δ, π2

]
. The function φ 7→ γφ cos2 φ ≡ sin2 φ − α−2 cos2 φ is non-negative and strictly

monotonically increasing on
(
atanα−1, π2

]
; hence γφ cos2 φ ≥ cδ > 0, with cδ > 0, for all (r, φ) ∈ Cδp .

The case Cδe can be studied similarly.

The above lemma justifies the notation Cp and Ce: inside Cp, the fundamental solution oscillates and

decays at best as O(r−
1
2 ) (thus the index ’p’ stands for ’propagative’), while inside Ce, it decays

exponentially fast (thus ’e’ stands for ’evanescent’).
An illustration to this result is shown in Figure 2.2.

2.2.2 Existence of classical solutions to (1.8). We start with proving the existence of
classical solutions to (1.8). The results of this section will serve as a basis to prove the existence of
the weak solutions.

Theorem 2.3 (Existence of classical solutions to (1.8)). Let ω ∈ (0, ωp) and f ∈ C2
0 (R2). Then

u+
ω = G+

ω ∗ f ∈ C2(R2) and satisfies (1.8) in a strong sense.

The proof of this theorem relies on the following auxiliary proposition.

Proposition 2.4. Let 0 < ω < ωp. Then
1. Gω+iδ ∈ L1

loc(R
2) for all δ > 0.

2. lim
δ→0+

Gω+iδ = G+
ω in L1

loc(R
2).

Proof. Proof of the statement 1. To understand the behaviour of Gω+iδ, let us make use of

the following expression for H
(1)
0 (z) stemming from [1, §9.1.3, §9.1.13]:

H
(1)
0 (z) = J0(z) + iY0(z),

J0(z) = 1 + gJ(z2), Y0(z) =
2

π
J0(z) log

z

2
+ gY (z2),

(2.7)
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where gJ , gY are entire1 functions; moreover, gJ(0) = 0, g′J(0) 6= 0.
With zδ = (ω + iδ)2(ε(ω + iδ)x2 + y2) and (2.7), we get

Gω+iδ(x) = Gregω+iδ(x) +

√
ε(ω + iδ)

2π
log
√
zδ, where(2.8)

Gregω+iδ = −i
√
ε(ω + iδ)

4

(
1− 2i

π
log 2 + gJ(zδ)

(
1 +

2i

π
log

√
zδ
2

)
+ igY (zδ)

)
.

The fact that Gω+iδ ∈ L1
loc(R

2) follows from the above: indeed, as zδ 6= 0 on R2 \ {0}, Gω+iδ is
continuous on R2 \ {0}, and its only singularity is the logarithmic (thus, integrable) singularity in the
origin.
Proof of the statement 2. See Appendix D.

With the above result, the proof of Theorem 2.3 is almost immediate.

Proof of Theorem 2.3. Let us fix ω ∈ (0, ωp), δ > 0. Let uω+iδ = Gω+iδ ∗ f . Because f ∈ C2(R2),
by Proposition 2.4, Statement 1, uω+iδ ∈ C2(R2). It satisfies, cf. Section 2.1, in the strong sense:
Lω+iδuω+iδ = f. Proving that Lωu+

ω = f amounts to proving that following holds in the topology of
pointwise convergence:

|Lω+iδuω+iδ − Lωu+
ω | → 0, as δ → 0.(2.9)

The above rewrites as

Lω+iδuω+iδ − Lωu+
ω = Lω+iδGω+iδ ∗ f − LωG+

ω ∗ f = Gω+iδ ∗ Lω+iδf − G+
ω ∗ Lωf

= (Gω+iδ − G+
ω ) ∗ Lω+iδf − G+

ω ∗ (Lω − Lω+iδ)f.

Let us assume that supp f ⊂ BR(0), R > 0. Then the above yields

|
(
Lω+iδuω+iδ − Lωu+

ω

)
(x)| ≤ ‖Lω+iδf‖L∞(BR(0))‖

(
Gω+iδ − G+

ω

)
(x− .)‖L1(BR(0))

+ ‖Lω+iδf − Lωf‖L∞(BR(0))‖G+
ω (x− .)‖L1(BR(0)).

The analyticity of the coefficients of Lω, and Proposition 2.4, Statement 2, yield (2.9). This shows
that u+

ω satisfies (1.8) in a strong sense. The fact that u+ ∈ C2(R2) follows from G+
ω ∈ L1

loc(R
2), cf.

Proposition 2.4, Statement 2, and f ∈ C2
0 (R2).

2.2.3 Existence and regularity of weak solutions. Let us extend the statement of Theorem
2.3 to more general data, as well as quantify the behavior of u+

ω at infinity. This will be of importance,
in particular, when constructing an appropriate radiation condition. All over this section we assume
that 0 < ω < ωp.

We start by defining the domain and the range of the solution operator, defined for f ∈ C∞0 (R2)
as the following Lebesgue’s integral:

(N+
ω f)(x) := (G+

ω ∗ f)(x) =

∫
R2

G+
ω (x′)f(x− x′)dx′.(2.10)

For this we will use an appropriate Sobolev space framework. To do so, let us motivate the definitions
that follow by describing an asymptotic behaviour of N+

ω f .
2.2.3.1 Behaviour of N+

ω f at infinity. The asymptotic expansions of Lemma 2.2 yield G+
ω /∈

L2(R2). However, this lack of decay at infinity concerns only one coordinate direction, namely y; it
is possible to show that for fixed y ∈ R, Gω(x, y) decays exponentially fast in x, see the result below.

Lemma 2.5 (Decay in x-direction). For all δ > 0, there exists Cα,δ > 0, s.t. for all (x, y) ∈ R2

with |x| > α|y|+ δ, G+
ω (x, y) ≤ Cα,δe−ω

√
α−2x2−y2 .

Proof. See Appendix E.

For a fixed x > 0, as y → +∞, as seen from Lemma 2.2,∣∣G+
ω (x, y)

∣∣ =
C

(y2 − α2x2)
1
4

+ o(|y|− 1
2 ), C > 0.(2.11)

From Lemma 2.5 and (2.11) we can expect that, for f ∈ C∞0 (R2), N+
ω f(x, y) decays exponentially

fast in the direction x and at most as O(|y|− 1
2 ) in the y-direction.

1The fact that the series in [1, §9.1.10, §9.1.13] define entire functions can be validated by studying their radius of
convergence
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2.2.3.2 Definition of N+
ω . The main result of this section provides the extension by density of

the operator N+
ω .

Proposition 2.6. Let s, s′ > 1
2 . The operator N+

ω defined in (2.10) can be extended by density
to a bounded linear operator N+

ω : L2
s,⊥ → H1

−s′,⊥.

Before proving the above proposition, let us recall several useful facts. First, the partial Fourier
transform of G+

ω is given by, see Appendix C,

(
FxG+

ω (x, y)
)

(ξx, y) =
eiκ(ξx,ω)|y|

2i
√

2πκ(ξx, ω)
, with(2.12)

κ(ξx, ω) =
√
α2ξ2

x + ω2 > 0.(2.13)

In particular, it holds that

Fxu+
ω = Fx

(
N+
ω f
)

(ξx, y) =

∫
R

eiκ(ξx,ω)|y−y′|

2i
√

2πκ(ξx, ω)
Fxf(ξx, y

′)dy′.(2.14)

Remark 3. The motivation to work with the Fourier transform comes from the following obser-
vation: a formal application of Fx to (1.8) results in the 1D Helmholtz equation for almost all Fourier
variables ξx ∈ R:(

ω2 + ξ2
xα

2
)
Fxuω(ξx, y) + ∂2

yFxuω(ξx, y) = Fxf(ξx, y) in D′(R).(2.15)

Thus, H`-bounds for the solution of (1.8) by considering the dependence on the frequency of the
bounds on the solution to the 1D Helmholtz equation.

In particular, from the definition of κ(ξx, ω) (2.13), it follows that

1

2
(α|ξx|+ ω) ≤ κ(ξx, ω) =

√
α2ξ2

x + ω2 ≤ α|ξx|+ ω.

Therefore, by (1.10), (1.11), an equivalent norm in H1
p,⊥ is given by

‖v‖2H1
p,⊥
∼ ‖κ(ξx, ω)Fxv‖2L2

p,⊥
+ ‖∂yFxv‖2L2

p,⊥
.(2.16)

The constants in norm-equivalence inequalities depend on ω only.

Proof of Proposition 2.6. Let s, s′ > 1
2 be fixed. To prove the statement, it suffices to show that

there exists Cs,s′ > 0, s.t. for any φ ∈ C∞0 (R2),

‖N+
ω φ‖H1

−s′,⊥
≤ Cs,s′(ω)‖φ‖L2

s,⊥
.(2.17)

We will use the equivalent norm (2.16) in the derivation of the above bound. For this let us remark
that, cf. (2.14) and (2.12),

κ(ξx, ω)FxN+
ω φ(ξx, y) =

1

2i
√

2π

∫
R

eiκ(ξx,ω)|y−y′|Fxφ(ξx, y
′)dy′,

∂yFxN+
ω φ(ξx, y) =

1

2
√

2π

∫
R

eiκ(ξx,ω)|y−y′| sign(y − y′)Fxφ(ξx, y
′)dy′.

Therefore, with (2.16), using |eiκ(ξx,ω)|y−y′|| = 1, and defining

v(ξx, y) :=

∫
R

|Fxφ(ξx, y
′)| dy′,(2.18)

we have

‖N+
ω φ‖2H1

−s′,⊥
. ‖v‖2L2

−s′,⊥
.(2.19)
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To bound the right hand side of (2.19), we start with the following L∞-bound. An application of the
Cauchy-Schwarz inequality yields: for all (ξx, y) ∈ R2,

|v(ξx, y)| ≤
∫
R

(1 + y′2)−sdy′
∫
R

(1 + y′2)s|Fxφ(ξx, y
′)|2dy′

= cs

∫
R

(1 + y′2)s|Fxφ(ξx, y
′)|2dy′, cs =

∫
R

(1 + y′2)−sdy′ <∞,(2.20)

where we used s > 1
2 . The above bound implies, with cs′ defined like above,

‖v‖2L2
−s′,⊥

≤ cs
∫
R2

(1 + y2)−s
′

∫
R

(1 + y′2)s|Fxφ(ξx, y
′)|2dy′

 dydξx

= cscs′‖Fxφ‖2L2
s,⊥

(1.10)
= cscs′‖φ‖2L2

s,⊥
.

In the above cs′ is finite because s′ > 1
2 . Inserting the above bound into (2.19), cf. (2.18), yields

‖N+
ω φ‖H1

−s′,⊥
≤ Cs,s′‖φ‖L2

s,⊥
, i.e. (2.17).

2.3 On the optimality of Proposition 2.6. The regularity result of Proposition 2.6 is not
surprising, and had been shown for the so-called operators of the principal type (modulo the weights
in the weighted spaces) by Agmon in [3, Appendix A]. Let us show that the result of Proposition 2.6
is in some sense optimal. For this we will need the following observation about the norm in Hµ

s,⊥
space. By the Parseval’s identity, ‖v‖2

Hµs,⊥
can be expressed as follows:

‖v‖2Hµs,⊥ =

∫
R2

(1 + y2)s
(
|Fxv|2

(
1 + |ξx|2µ

)
+ |F−1

y (|ξy|µFyv) |2
)
dξxdy.(2.21)

We then have the following result.

Proposition 2.7. Let s, s′ > 1
2 . Then N+

ω ∈ B
(
L2
s,⊥, H

1+σ
−s′,⊥

)
iff σ ≤ 0.

Proof. By Proposition 2.6, we know already that N+
ω ∈ B

(
L2
s,⊥, H

1+σ
−s′,⊥

)
for σ ≤ 0. It thus

remains to show that N+
ω /∈ B

(
L2
s,⊥, H

1+σ
−s′,⊥

)
for all σ > 0.

Let s, s′ > 1
2 be fixed. We will prove the result by showing that for every σ > 0, there exists

φ ∈ L2
s,⊥ (that depends on σ), such that v = N+

ω φ /∈ H1+σ
−s,⊥.

Let us take φ ∈ L2(R2), s.t. for all x ∈ R, suppφ(x, .) ⊆ [−a, a], for some a > 0. This in particular
guarantees that φ ∈ L2

s,⊥(R2) for any s. For y < −a, cf. (2.14),

Fxv(ξx, y) =
ie−iκ(ξx,ω)y

2
√

2πκ

a∫
−a

eiκ(ξx,ω)y′Fxφ(ξx, y
′)dy′.

Since for all ξx ∈ R, suppFxφ(ξx, .) ⊆ [−a, a], the right-hand side of the above expression is nothing
else than the Fourier transform of φ (where we used the Fubini theorem (FyFxφ = Fφ)):

Fxv(ξx, y) =
ie−iκ(ξx,ω)y

2
√

2πκ
(FyFxφ) (ξx, κ(ξx, ω))

=
ie−iκ(ξx,ω)y

2κ(ξx, ω)
Fφ(ξx, κ(ξx, ω)), for all y < −a.(2.22)

Let us now bound from below the norm ‖v‖H1+σ

−s′,⊥
. By (2.21):

‖v‖2
H1+σ

−s′,⊥
≥
∞∫
−∞

(1 + y2)−s
′
∞∫
−∞

(1 + ξ2
x)1+σ |Fxv(ξx, y)|2 dξxdy

≥ Cω,α

−a∫
−∞

(1 + y2)−s
′
∞∫
−∞

(ω2 + α2ξ2
x)1+σ |Fxv(ξx, y)|2 dξxdy,(2.23)
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for some constant Cω,α > 0. From (2.22) it follows that for any σ ≥ 0, cf. the definition of κ(ξx, ω)
in (2.13), it holds:

(ω2 + α2ξ2
x)1+σ |Fxv(ξx, y)|2 =

1

2
(ω2 + α2ξ2

x)σ |Fφ(ξx, κ(ξx, ω))|2 .(2.24)

Using the above expression in (2.23) yields the lower bound on ‖v‖H1+σ

−s′,⊥
in terms of the right-hand

side φ:

‖v‖2
H1+σ

−s′,⊥

(2.24)

≥ Cω,α
2

−a∫
−∞

(1 + y2)−s
′
∞∫
−∞

(ω2 + α2ξ2
x)σ |Fφ(ξx, κ(ξx, ω))|2 dξxdy

= C0(ω, α, s′, a)Iσ(φ), with C0(ω, α, s′, a) = Cω,α

−a∫
−∞

(1 + y2)−s
′
dy > 0,(2.25)

and Iσ(φ) :=

∞∫
−∞

(ω2 + α2ξ2
x)σ |Fφ(ξx, κ(ξx, ω))|2 dξx.

Let us now fix σ > 0. Let us show that we can choose φ = φσ ∈ L2
s,⊥(R2), s.t. suppφσ(x, .) ⊂ (−a, a),

for which Iσ(φσ) defined in (2.25) is not finite. The main idea is to choose φσ, so that Fφσ is supported
in the vicinity of the line (ξx, κ(ξx)), however grows in ξx fast enough to ensure that Iσ(φσ) blows up.

Step 1. Let us define

ĝσ(ξx, ξy) := (ω2 + α2ξ2
x)−

1
4−δ1{|ξy−α|ξx||<ω}, with some 0 < δ ≤ σ

2
.(2.26)

This function is in L2(R2); to see this we apply the Fubini theorem to compute

‖ĝσ‖2 =

∫
R2

(ω2 + α2ξ2
x)−

1
2−2δ1{|ξy−α|ξx||<ω}dξxdξy = 2ω

∞∫
−∞

(ω2 + α2ξ2
x)−

1
2−2δdξx,

which is finite because δ > 0. Therefore, F−1ĝσ ∈ L2(R2). The function ĝσ has the following
important property:

Iσ(F−1ĝσ) =

∞∫
−∞

(ω2 + α2ξ2
x)σ−

1
2−2δ1{|

√
ω2+α2ξ2x−α|ξx||<ω}

dξx

=

∞∫
−∞

(ω2 + α2ξ2
x)σ−

1
2−2δdξx = +∞,

because 2δ ≤ σ. Therefore, we could have chosen φ as F−1gσ, had we not imposed that a.e. in x ∈ R,
φ(x, .) is supported in (−a, a), a > 0.

Step 2. To respect the constraint of the finiteness of the support in one of the directions, let us
define

φσ := 1{y∈(−a,a)}F−1ĝσ ∈ L2(R2).(2.27)

Step 3. Let us show that Iσ(φσ) =∞. For this we will examine the behaviour of Fφσ(ξ,
√
ω2 + α2ξ2)

for large ξ. First of all,

Fφσ(ξx, .) = Fy1{y∈(−a,a)} ∗ ĝσ(ξx, .), for all ξx ∈ R,

and because Fy1y∈(−a,a)(ξy) =
√

2
π

sin(aξy)
ξy

,

Fφσ(ξx, ξy) =

√
2

π

∞∫
−∞

sin(a(ξy − ξ′y))

ξy − ξ′y
ĝσ(ξx, ξ

′
y)dξ′y

(2.26)
=

√
2

π

α|ξx|+ω∫
α|ξx|−ω

sin(a(ξy − ξ′y))

ξy − ξ′y
(ω2 + α2ξ2

x)−
1
4−δdξ′y.
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Next, to estimate Iσ(φσ), cf. (2.25), let us consider the above expression evaluated on the curve

(ξx, κ(ξx)) = (ξx,
√
ω2 + α2ξ2

x),

namely

Fφσ(ξx, κ(ξx, ω)) =

√
2

π
(ω2 + α2ξ2

x)−
1
4−δ

α|ξx|+ω∫
α|ξx|−ω

sin(a(κ(ξx, ω)− ξ′y))

κ(ξx, ω)− ξ′y
dξ′y

=

√
2

π
(ω2 + α2ξ2

x)−
1
4−δ

ω∫
−ω

sin(a(κ(ξx, ω)− α|ξx| − ξ′y))

κ(ξx, ω)− α|ξx| − ξ′y
dξ′y.(2.28)

The goal is to show that, for sufficiently large |ξx|, thanks to a properly chosen a > 0, the quantity

|Fφσ(ξx, κ(ξx, ω))| is bounded from below by |ξx|−
1
2−δ, so that I(φσ) = ∞. Let us choose a so that

the integral in the right-hand side is strictly positive and bounded from below. For this let us remark
the following: there exists a sufficiently large R > 0 and corresponding hR > 0, s.t. for all |ξx| > R,

κ(ξx, ω)− α|ξx| = α|ξx|

((
1 +

ω2

ξ2
xα

2

) 1
2

− 1

)
∈ (−hR, hR).

The value R in the above depends on ω, α only, and, evidently, hR = O
(
R−1

)
. Therefore, for all

ξ′y ∈ (−ω, ω),

κ(ξx, ω)− α|ξx| − ξ′y ∈ (−ω − hR, ω + hR).

Then, if we fix 0 < a < π
2|ω+hR| , we have, for all |ξx| > R and ξ′y ∈ (−ω, ω),∣∣a (κ(ξx, ω)− α|ξx| − ξ′y

)∣∣ < π

2
,

and so, as x−1 sinx > 2
π on

(
−π2 ,

π
2

)
,

sin(a(κ(ξx, ω)− α|ξx| − ξ′y))

κ(ξx, ω)− α|ξx| − ξ′y
>

2a

π
.

Combining the above with (2.28), we conclude that there exists c > 0, s.t. for all |ξx| > R,

Fφσ(ξx, κ(ξx, ω)) > c|ξx|−
1
2−2δ.

This implies that

Iσ (φσ) ≥
∞∫
R

(ω2 + α2ξ2
x)σξ−1−4δ

x dξx = +∞,(2.29)

because 2σ − 4δ ≥ 0, see (2.26).
Summary. For arbitrary σ > 0, with the choice of φ = φσ, by (2.25) and (2.29) yields v = vσ =

N+
ω φσ /∈ H1+σ

−s′,⊥, and hence the conclusion.

In Section 3.4 we refine the above result to show that N+
ω ∈ B

(
L2
comp, H

1+σ
loc

)
(where L2

comp = {v ∈
L2(R2) : supp v is bounded}) if and only if σ ≤ 0.

2.4 Radiation condition for 0 < ω < ωp. Similarly to the Helmholtz equation, the solutions
to (1.8) are, in general, not unique, see the discussion in the beginning of Section 2.2. The main idea
in the derivation of the radiation condition to impose the uniqueness of the solution to (1.8) comes
from Remark 3: the partial Fourier transform of uω, namely Fxuω, solves the Helmholtz equation
(2.15). The outgoing solutions to (2.15) are given by (2.14), with the fundamental solution defined in
(2.12). The uniqueness of the outgoing solutions is then assured by the classical Sommerfeld radiation
condition. Hence, it remains to justify the application of the Fourier transform to (1.8), which enabled
us to work with Fxu(ξx, .) defined for almost all ξx ∈ R. For this it is sufficient that u(., y) ∈ L2(R)
for all y. Combining all these reasonings, we formulate the following radiation condition.
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Definition 2.8 (Outgoing Fourier-domain radiation condition). A function φ ∈ L2
loc(R

2) satis-
fies an outgoing Fourier-domain radiation condition if
(RC1) a.e. in y ∈ R, φ(., y) ∈ L2(R).
(RC2) the partial Fourier transform of φ satisfies (recall that α is given by (2.4))

lim
|y|→+∞

∣∣∣∂|y|Fxφ(ξx, y)− i
√
α2ξ2

x + ω2Fxφ(ξx, y)
∣∣∣ = 0 a.e. in ξx ∈ R.

Let us remark that this radiation condition resembles the radiation condition provided by the angular
spectrum representation for the rough surface scattering [5]. Next we show that it indeed ensures the
uniqueness of solutions to (2.5).

Proposition 2.9 (Uniqueness). Let 0 < ω < ωp. Let uω satisfy (1.8) with f = 0 and the
outgoing Fourier-domain radiation condition from Definition 2.8. Then uω = 0.

Proof. Because of (RC1) from Definition 2.8, Fxuω(ξx, y) is defined a.e. in ξx, y ∈ R, and thus
Fxuω satisfies (2.15) with f = 0 a.e. in ξx ∈ R:

κ2(ξx, ω)Fxu(ξx, y) + ∂2
yFxu(ξx, y) = 0, in D′(R).(2.30)

From (RC2), which is the radiation condition for the above 1D Helmholtz equation, it follows that
Fxu(ξx, y) = 0 a.e. in ξx ∈ R.

2.5 Existence and uniqueness of solutions in the hyperbolic regime 0 < ω < ωp. The
principal result of Section 2 is summarized below.

Theorem 2.10 (Existence and uniqueness). Let 0 < ω < ωp and s, s′ > 1
2 . For all f ∈ L2

s,⊥(R2),

there exists a unique solution uω ∈ L2
loc(R

2) to (2.5) that satisfies the radiation condition (RC1),
(RC2). Moreover, uω = u+

ω = N+
ω f , uω ∈ H1

−s′,⊥, and, with some Cs,s′(ω) > 0,

‖uω‖H1
−s′,⊥

≤ Cs,s′(ω)‖f‖L2
s,⊥
.(2.31)

Proof. The uniqueness of uω follows from Proposition 2.9.
By Theorem 2.3 and a classical density argument uω := u+

ω = N+
ω f solves (2.5); the stability

bound is from Proposition 2.6. It remains to show that u+
ω satisfies the radiation condition.

Obviously, u+
ω ∈ L2

loc by the stability bound (2.31). Then, (RC1) follows from the fact that
u+
ω ∈ H1

−s′,⊥. The condition (RC2) follows from (2.14) by direct computation, using the partial
Fourier transform (2.14) and the explicit form of the partial Fourier transform of the fundamental
solution (2.12). Indeed, we have, for y > 0,

∂yFxu+
ω (ξx, y) =

∞∫
−∞

eiκ(ξx,ω)|y−y′|

2
√

2π
sgn(y − y′)Fxf(ξx, y

′)dy′

= iκ(ξx, ω)Fxu+
ω (ξx, y)−

+∞∫
y

eiκ(ξx,ω)|y−y′|
√

2π
Fxf(ξx, y

′)dy′.

It remains to use the Cauchy-Schwarz inequality to estimate∣∣∣∣∣∣
+∞∫
y

eiκ(ξx,ω)|y−y′|
√

2π
Fxf(ξx, y

′)dy′

∣∣∣∣∣∣ .
+∞∫
y

(1 + y′2)−sdy′
∞∫
y

|Fxf(ξx, y
′)| (1 + y′2)sdy′

. y−2s+1‖Fxf(ξx, .)‖2L2
s(R) → 0, y → +∞.

A similar computation shows the validity of (RC2) for u+
ω when y → −∞.

3 Regularity analysis in the hyperbolic regime. This section is dedicated to finer regular-
ity estimates of the solution in the hyperbolic regime. We first provide a motivation to the regularity
analysis, which takes the form of the numerical experiments: they indicate that the regularity of
the solution depends on a certain directional regularity of the data. Then we provide a theoretical
justification of the results of those numerical experiments: we demonstrate that if the singularities of
the data f are not ’aligned’ with characteristics, the solution is more regular than in the case when
they are.
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Recall that the result of Proposition 2.6 is somehow disappointing: it shows that, provided an
L2
s,⊥-right hand side data, we cannot expect the solution regularity to be better than H1

−s′,⊥. To
discuss the numerical experiments, we need the following corollary of Proposition 2.6.

Proposition 3.1. N+
ω ∈ B(Hλ

s,⊥, H
1+λ
−s′,⊥), for all λ ≥ 0, s, s′ > 1

2 .

Proof. It is straightforward to extend the proof of Proposition 2.6 to show thatN+
ω ∈ B(Hm

s,⊥, H
m+1
−s′,⊥),

m ∈ N. The desired result than follows by the standard interpolation argument [24, p. 320, Theorem
B.2] and the interpolation results for weighted Sobolev spaces obtained by Löfström [23, Theorem 4
and (5.3)].

Let us consider the following numerical experiment. We compute2the solution to the problem (2.5)
with α = 1 in the free space R2, using the perfectly matched layer method of [7] adapted to the
frequency domain.3 We take two right-hand side data f = fj = 1Oj , j = 1, 2, with either

O1 = (−a, a)× (−a, a), or O2 =
{
|x− y| <

√
2a, |x+ y| <

√
2a
}
, a = 0.5.

In both cases, fj ∈
⋂
ε>0

H
1
2−ε
comp(R2), j = 1, 2, the only difference being that the singularities of f2

(jumps) are aligned with the characteristics of the equation (2.5). In both cases, according to Propo-

sition 3.1, we expect the corresponding solution uj , j = 1, 2, to belong to
⋂

s′> 1
2 ,ε>0

H
3
2−ε
−s′,⊥(R2). Vis-

ually, cf. Figure 3.1, the solution u1 seems to be smoother than the solution u2. It appears that

O1

x− y = const

x

y

Γ
O2

x− y = const

x

y

Fig. 3.1. Top: the open sets Oj and one of the characteristic lines passing through their boundary. Bottom: the
imaginary part of the solution to the problem (2.5) with parameters described in the beginning of Section 3, restricted
to the square (−2, 2)× (−2, 2). Left: f = f1. Right: f = f2.

this phenomenon is not only numerical, but occurs also at the continuous level: indeed, when the
singularities of the source term are aligned with characteristics (we will give a precise mathematical
definition of the ’alignment’ in further sections), the solution is less regular than otherwise.

Another interesting phenomenon illustrated in Figure 3.1, left, is that unlike in the elliptic case,
the singularities of the solution are no longer concentrated at the singularities of the data, but

2For these simulations we used the XLife++ library [25].
3While for the moment we do not have a rigorous proof of the convergence of this perfectly matched layer method,

neither in the frequency nor in time domain, our numerical experiments indicate that it does indeed converge.



14 P. CIARLET, M. KACHANOVSKA

propagate along the characteristics, see [19, Theorem 4.4.1 and discussion afterwards] for the elliptic
case and [19, Theorem 8.3.1] for the hyperbolic case.

In order to present the essential difficulties, rather than technicalities, in this section we examine
the behavior of the solution in a particular case when the data f is s.t. supp f = O, for a bounded
convex open set O of R2, and f ∈ C0,α(O). In other words, the continuation of f outside of O by zero
may have discontinuities only on ∂O. We will show that in this case the derivatives of the solution
may have jump and logarithmic singularities, and show how these singularities are related to the
characteristics passing through O. The estimates in the Sobolev spaces, which are in general better
suited for the numerical analysis, are provided in Appendix F.

For convenience, we rewrite (2.5) by performing a rotational change of coordinates which trans-
forms the characteristics of (1.8) governed by y±α−1x = const into the lines ξ = const and η = const,
where

ξ = y + α−1x, η = y − α−1x.(3.1)

An open set O will be denoted by Ω in the coordinates (ξ, η). Given a function v(x, y), we denote by
ṽ(ξ, η) := v

(
1
2α(ξ − η), 1

2 (ξ + η)
)
. It is readily checked that (2.5) transforms into

4∂2
ξηũω + ω2ũω = f̃ in D′(R2).(3.2)

The solution that satisfies the outgoing Fourier-domain radiation condition, cf. (RC1), (RC2), is

transformed to (with an abuse of notation in the definition of G̃+
ω ):

ũ+
ω = Ñ+

ω f̃ = G̃+
ω ∗ f̃ ,

G̃+
ω (ξ, η) :=

1

8

{
H

(1)
0 (ω

√
ξη), ξη > 0,

H
(1)
0 (iω

√
−ξη), ξη < 0.

(3.3)

Remark 4. In this section we use the following notation: ũ := ũ+
ω and G̃ := G̃+

ω .

3.1 Regularity results. In the beginning of this section we will summarize the regularity
results, while most of their proofs will be postponed to the later sections.

We start with the following proposition that states that the singularities of the solution to (3.2)

lie inside the set of characteristics passing through the support of f̃ . To formulate this result, let us
define two regions, given a+ > a− and b+ > b−,

Ωξa := {(ξ, η) : a− < ξ < a+}, Ωηb := {(ξ, η) : b− < η < b+}.

Then the region Ωa,b := Ωξa∪Ωηb contains all the characteristics of (3.2) passing through the rectangle
[a−, a+]× [b−, b+], see also Figure 3.2, left.

Theorem 3.2 (Smoothness regions). Let f̃ ∈ L2(R2) s.t. supp f̃ ⊆ [a−, a+]× [b−, b+]. Then the

function ũ = G̃ ∗ f̃ ∈ C∞(R2 \ Ωa,b).

a− a+

b−

b+

Ω

Ωξa
Ωηb

a− a+

b−
A0

+

A1
+

b+
Γb+

Γa+ΩΓa−

Γb−

Fig. 3.2. An illustration to the geometric configuration of Section 3. Left: open sets Ωξa and Ωηb. Right:

illustration to the notations of Assumption 1. In particular, in this case A0
− = A1

− and B0
− = B1

−.

The next result shows that, even if f̃ has jump singularities, the solution has continuous derivatives,
if the jumps are not aligned with characteristics. In order to formulate the desired result, let us
introduce the following assumption.
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Assumption 1 (Assumption on the data). Let Ω be a bounded convex (thus, Lipschitz, cf. [17,
Corollary 1.2.2.3]) open set of R2. We define

a− := inf{ξ : (ξ, η) ∈ Ω}, a+ := sup{ξ : (ξ, η) ∈ Ω},
b− := inf{η : (ξ, η) ∈ Ω}, b+ := sup{η : (ξ, η) ∈ Ω},

so that the smallest rectangle containing Ω is given by (a−, a+)× (b−, b+). Let

Γa± := {(a±, η), η ∈ R} ∩ ∂Ω, Γb± := {(ξ, b±), ξ ∈ R} ∩ ∂Ω,

so that, with some A0
± ≤ A1

±, B0
± ≤ B1

±,

Γa± = {(a±, η) : A0
± ≤ η ≤ A1

±}, Γb± = {(ξ, b±) : B0
± ≤ ξ ≤ B1

±}.

Let f̃ be defined as follows:

f̃ =

{
F̃ in Ω,
0 otherwise,

with F̃ ∈ C0,α(Ω).

An illustration to the above geometric configuration is given in Figure 3.2, right. As a matter of
fact, the requirement of the convexity of Ω simplifies the presentation of the results. This condition
ensures that the boundary is Lipschitz, and, moreover, that Γa± and Γb± are connected sets (intervals
or points). For non-convex sets, the requirement that Ω is Lipschitz can be weakened to require that
∂Ω is C0,β , for some β > 0. It appears naturally in the proof of the estimates, and it does not seem
that it can be weakened to C0.

In what follows, we will denote by |Γ| the length of the curve Γ.

Theorem 3.3 (Propagation of singularities). Let f̃ satisfy Assumption 1. Then the function

ũ = G̃ ∗ f̃ satisfies ũ ∈ C1
(
R2 \ (∂Ωξa ∪ ∂Ωηb)

)
. Moreover,

1. if |Γa± | = |Γb± | = 0, then ũ ∈ C1(R2);

2. if |Γa± | = 0 (resp. |Γb± | = 0), then ∂ξũ ∈ C0(R2) (resp. ∂ηũ ∈ C0(R2));

3. if |Γa+ | 6= 0 (and/or |Γa− | 6= 0), ∂ξũ ∈ C0(R2 \ ∂Ωξa). Moreover, the following identities hold
true:

∂ξũ(ξ, η) =
i

8π

(
Fa− log |ξ − a−| − Fa+ log |ξ − a+|

)
+

1

8
Λa(ξ, η)1

Ω
ξ
a
(ξ, η) + g(ξ, η),

(3.4)

where

(a) the constants Fa± are given by:

Fa± :=

∫
Γa±

F̃ (a±, η
′)dη′,

(b) the function Λa ∈ C0
(
Ω
ξ

a

)
is defined as

Λa(ξ, η) =
ξ − a+

a− − a+
fa−(η) +

ξ − a−
a+ − a−

fa+(η),

where

fa±(η) =


Fa± , η ≤ A0

±,

Fa± − 2
η∫

A0
±

F̃ (a±, η
′)dη′, A0

± < η < A1
±,

−Fa± , η > A1
±.

(c) g ∈ C0(R2).
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Similar expressions hold for ∂ηũ(ξ, η), which, in general, has a logarithmic and jump singu-
larities across the lines η = b+ (resp. η = b−) when |Γb+ | 6= 0 (resp. |Γb− | 6= 0).

Remark 5. Theorem 3.3 concerns the data that has jump singularities, and shows the following.
If the intersection of the support of the singularity with one of the characteristics {ξ = const} or {η =
const} is of non-zero Lebesgue measure, the solution has discontinuous derivatives in general, with
discontinuities aligned along the respective characteristics. Otherwise, the solution has continuous
derivatives.

The above theorem leads to the following corollary. When the ’mean value’ of the jump vanishes
(i.e. Fa± = 0, Fb± = 0), the singularities no longer propagate along the characteristics but are
concentrated along the jumps of the data lying on the characteristics, i.e. on Γa± (Γb±).

Corollary 3.4 (Concentration of singularities). Let f̃ satisfy Assumption 1. Let additionally
the following quantities vanish:

Fa± =

∫
Γa±

F̃ (a±, η
′)dη′ = 0 =

∫
Γb±

F̃ (ξ′, b±)dξ′ = Fb± .

Then ũ ∈ C1(R2 \ (Γa+ ∪ Γa− ∪ Γb+ ∪ Γb−)).

Proof. We will show the reasoning for ∂ξũ only. According to (3.4), the discontinuities of ∂ξũ are
concentrated along the lines ξ = a±. Additionally, it is clear that ∂ξũ − 1

8Λa(ξ, η)1
Ω
ξ
a

is continuous

on R2. On the other hand,

Λa(a±, η) = 0, for η > A1
± and for η < A0

±.

Therefore, Λa(ξ, η)1Ω̄ξa
(ξ, η) is continuous on R2 \ (Γa+ ∪ Γa−), and so is ∂ξũ.

Remark 6. The results of Theorem 3.3 and Corollary 3.4 can of course be improved to show that
ũ ∈ C1,α(R2 \ (∂Ωξa ∪ ∂Ωηb)).

The following sections are dedicated to the proofs of Theorems 3.2, 3.3.

3.2 Proof of Theorem 3.2 Consider the explicit expression for ũ:

ũ(ξ, η) =
1

8

a+∫
a−

b+∫
b−

(K1(ξ − ξ′, η − η′) +K2(ξ − ξ′, η − η′))f̃(ξ′, η′)dξ′ dη′,

K1(ξ, η) := 1{ξη > 0}H0(ω
√
ξη), K2(ξ, η) := 1{ξη < 0}H0(iω

√
−ξη).

It is then easy to verify that the function (ξ, η) 7→ K1(ξ − ξ′, η − η′), provided arbitrary (ξ′, η′) ∈
[a−, a+]× [b−, b+], is C∞ in the following open set:

{(ξ, η) : ξ > a+ or ξ < a−, and η > b+ or η < b−} = R2 \ Ωa,b.

In the same way, (ξ, η) 7→ K2(ξ − ξ′, η − η′) ∈ C∞
(
R2 \ Ωa,b

)
. The result follows by the Lebesgue’s

dominated convergence theorem.

3.3 Proof of Theorem 3.3. Before proving Theorem 3.3, we start with the following obser-
vation.

Lemma 3.5. The fundamental solution can be split as G̃ = G̃sing + G̃reg, where

G̃sing(ξ, η) =
i

8π
log |ξ|+ i

8π
log |η| − 1

8
1{ξη < 0},(3.5)

G̃reg(ξ, η) =
1

8π
gJ(ω2ξη) (log |ξη|+ iπ1{ξη < 0}) + gH(ω2ξη),(3.6)

with gJ , gH being entire functions, gJ(0) = 0, g′J(0) 6= 0.

Proof. The proof relies on the explicit decomposition of the fundamental solution (3.3), given
by (2.7), (2.8). It remains to rewrite it in a form suggested by the statement of the lemma. In the
notations of (2.7),

gH(z) :=
1

8

((
1 + i

2

π
log

ω

2

)
(1 + gJ(z)) + igY (z)

)
.

We leave the remaining details to the reader.
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a− a+

b−
A0

+

A1
+

b+
γ+(ξ)

Γa+ΩΓa−

γ−(ξ)

Fig. 3.3. An illustration to the notations of the proof of Theorem 3.3.

We then split accordingly

ũ = ũsing + ũreg, ũsing = G̃sing ∗ f̃ , ũreg = G̃reg ∗ f̃ .(3.7)

The proof of Theorem 3.3 then relies on the simple observation that ũreg ∈ C1(R2), while the
singularities of the derivatives of ũsing can be computed explicitly.

Lemma 3.6. Let f̃ satisfy Assumption 1. Then ũreg ∈ C1(R2).

Proof. Using the explicit expression of G̃reg (3.6), we introduce

ũ1
reg := gJ(ω2ξη) log |ξ| ∗ f̃ , ũ2

reg := gJ(ω2ξη) log |η| ∗ f̃ ,

ũ3
reg := gJ(ω2ξη)1{ξη < 0} ∗ f̃ , ũ4

reg := gH(ω2ξη) ∗ f̃ ,

so that ũreg = 1
8π (ũ1

reg + ũ2
reg)+ i

8 ũ
3
reg + ũ4

reg. Evidently ũ4
reg ∈ C∞(R2), and the rest of the functions

are continuous in R2, by continuity of the respective convolution kernels and because f̃ ∈ L∞(R2).
Let us examine their derivatives.
Step 1. Proof that ũ1

reg, ũ
2
reg ∈ C1(R2). By symmetry, it suffices to study only one of these functions.

We first consider

∂ξũ
1
reg =

gJ(ω2ξη)

ξ
∗ f̃ + ω2ηg′J(ω2ξη) log |ξ| ∗ f̃ .

Because gJ ∈ C∞(R) and vanishes in zero, ξ−1gJ(ω2ξη) is continuous and thus the first term in
the above expression is continuous in R2. The remaining term is continuous as a convolution of an
L1
loc(R

2) function with f̃ ∈ L∞comp(R2).
Step 2. Proof that ũ3

reg ∈ C1(R2). Again by symmetry, it is sufficient to study ∂ξũ
3
reg:

∂ξũ
3
reg = ω2 η g′J(ω2ξη) 1{ξη < 0} ∗ f̃ ,

where we used gJ(0) = 0. The above is again continuous as a convolution of an L1
loc(R

2) function

with f̃ ∈ L∞comp(R2).

We now have the necessary ingredients to prove Theorem 3.3. Before proving this result, let us
remark the following. Because Ω is convex, the part of the boundary that lies between the vertical
lines ξ = a± can be parametrized as follows:

∂Ω \ Γa± = Γ+ ∪ Γ−, Γ± = {(ξ, η) : ξ ∈ (a−, a+) : η = γ±(ξ)},(3.8)

and γ± : (a−, a+) → R Lipschitz functions, s.t. γ+ > γ−. Moreover, they can be extended by
continuity to [a−, a+], with γ+(a±) = A1

± and γ−(a±) = A0
±. We then have |Γa± | = γ+(a±)−γ−(a±).

This is illustrated in Figure 3.3.

Proof of Theorem 3.3. We start with the decomposition (3.7). By Lemma 3.6, it suffices to
consider only the derivatives of ũsing. Based on (3.5), we split

ũsing =
i

8π

(
ũ1
sing + ũ2

sing

)
− 1

8
ũ3
sing,(3.9)

ũ1
sing = log |ξ| ∗ f̃ , ũ2

sing = log |η| ∗ f̃ , ũ3
sing = 1{ξη < 0} ∗ f̃ .
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Let us examine the derivatives of the above expressions.
Step 1. Derivatives of ũ1

sing, ũ2
sing. By symmetry it suffices to study only ∂ξũ

1
sing and ∂ξũ

2
sing.

Evidently,

∂ξũ
2
sing = 0.(3.10)

To study ∂ξũ
1
sing, let us introduce F̃2(ξ) :=

∫
R
f̃(ξ, η′)dη′ =

γ+(ξ)∫
γ−(ξ)

f̃(ξ, η′)dη′ (the notation indicates

that we integrate in the second variable η). This function has the following properties:

• when ξ /∈ [a−, a+], F̃2(ξ) = 0, because supp f̃ ⊂ Ω
ξ

a;

• F̃2 ∈ C0,α([a−, a+]), because f̃ ∈ C0,α(Ω) and γ± are Lipschitz.

By definition, ũ1
sing(ξ, η) =

∫
R

log |ξ − ξ′|F̃2(ξ′)dξ′, and does not depend on η. We consider two cases.

Step 1.1. ∂ξũ
1
sing for ξ /∈ [a−, a+]. A straightforward computation yields

∂ξũ
1
sing(ξ, η) =

a+∫
a−

F̃2(ξ′)

ξ − ξ′
dξ′ ∈ C∞(R2 \ Ω

ξ

a).(3.11)

Step 1.2. ∂ξũ
1
sing for ξ ∈ (a−, a+). An explicit computation gives

∂ξũ
1
sing(ξ, η) = (P.V.

1

ξ
∗ F̃2)(ξ, η)

=

a+∫
a−

F̃2(ξ′)− F̃2(ξ)

ξ − ξ′︸ ︷︷ ︸
P (ξ,ξ′)

dξ′ + F̃2(ξ)P.V.

a+∫
a−

1

ξ − ξ′
dξ′

=

a+∫
a−

P (ξ, ξ′)dξ′ − F̃2(ξ) (log |ξ − a+| − log |ξ − a−|) .(3.12)

For all ξ, P (ξ, .) ∈ L1((a−, a+)), because F̃2 ∈ C0,α([a−, a+]). The first term above is continuous for
ξ ∈ [a−, a+]. Indeed, given h > 0, one has

a+∫
a−

P (ξ + h, ξ′)dξ′ =

a+−h∫
a−−h

F̃2(ξ′ + h)− F̃2(ξ + h)

ξ − ξ′
dξ′,

and
a+∫
a−

(P (ξ + h, ξ′)− P (ξ, ξ′)) dξ′ → 0 as h→ 0, by the Lebesgue’s convergence theorem, again using

F̃2 ∈ C0,α([a−, a+]). Thus, ∂ξũ
1
sing ∈ C0(Ωξa).

Step 1.3. Behaviour when ξ → a±. Let us define

Fa± =

γ+(a+)∫
γ−(a−)

F̃ (a±, η
′)dη′, so that Fa+ = lim

ξ↑a+
F̃2(ξ), Fa− = lim

ξ↓a−
F̃2(ξ).(3.13)

We claim that (3.12) and (3.11) imply that the following holds true:

G0(ξ, η) := ∂ξũ
1
sing(ξ) + Fa+ log |ξ − a+| − Fa− log |ξ − a−| ∈ C0(R2).(3.14)

The continuity of G0 is evident for (ξ, η) ∈ R2 \ ∂Ωξa, and it remains to prove it in the points (a±, η).
We consider (a+, η). For ξ > a+, from (3.11) we have

G0(ξ, η) =

a+∫
a−

F̃2(ξ′)− Fa+
ξ − ξ′

dξ′ +
(
Fa+ − Fa−

)
log |ξ − a−|.
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Since F̃2 ∈ C0,α([a−, a+]), and using (3.13), the same argument as for
a+∫
a−

P (ξ, ξ′)dξ′ before shows

that the first term in the above expression is continuous in ξ = a+, and

lim
ξ↓a+

G0(ξ, η) =

a+∫
a−

F̃2(ξ′)− Fa+
a+ − ξ′

dξ′ +
(
Fa+ + Fa−

)
log |a+ − a−|.(3.15)

For ξ < a+, (3.12) and left continuity of ξ 7→ P (ξ, ξ′) in a+ yield

lim
ξ↑a+

G0(ξ, η) =

a+∫
a−

F̃2(ξ′)− Fa+
a+ − ξ′

dξ′ +
(
Fa+ − Fa−

)
log |a+ − a−| = lim

ξ↓a+
G0(ξ, η).

This shows that G0 is continuous in ξ = a+; similarly one shows that it is continuous in ξ = a−.
Step 2. Derivatives of ũ3

sing. A straightforward computation yields

∂ξũ
3
sing(ξ, η) =

∞∫
η

f̃(ξ, η′)dη′ −
η∫

−∞

f̃(ξ, η′)dη′.

Because supp f̃ ⊆ Ω,

∂ξũ
3
sing = 0 in R2 \ Ωξa.(3.16)

With (3.8), we have

∂ξũ
3
sing(ξ, η) =



γ+(ξ)∫
γ−(ξ)

F̃ (ξ, η′)dη′, η ≤ γ−(ξ),

γ+(ξ)∫
η

F̃ (ξ, η′)dη′ −
η∫

γ−(ξ)

F̃ (ξ, η′)dη′, γ−(ξ) < η < γ+(ξ),

−
γ+(ξ)∫
γ−(ξ)

F̃ (ξ, η′)dη′, η ≥ γ+(ξ).

(3.17)

Because γ± are continuous and F̃ ∈ C0,α(Ω), the above function is C0(Ω
ξ

a). Let

fa+(η) := lim
ξ↑a+

∂ξũ
3
sing(ξ, η), fa−(η) := lim

ξ↓a−
∂ξũ

3
sing(ξ, η).

In particular, from (3.16), it follows that

lim
ξ↑a+

∂ξũ
3
sing(ξ, η)− lim

ξ↓a+
∂ξũ

3
sing(ξ, η) = fa+(η).

Let us introduce the following function:

Λ(ξ, η) :=
ξ − a−
a+ − a−

fa+(η) +
ξ − a+

a− − a+
fa−(η),

so that Λ(ξ, η)1
Ω
ξ
a

has the same jumps as ∂ξũ
3
sing. Therefore, from (3.16) we have

G1(ξ, η) := ∂ξũ
3
sing − Λ(ξ, η)1

Ω
ξ
a
∈ C0(R2).(3.18)

Similar expressions can be obtained for ∂ηũ
3
sing(ξ, η).

Summary of the results. Combining (3.9), (3.10), Steps 1 and 2, we obtain the desired statement.
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Ω1

ξ = const

ξ

η Ω2 Γ

ξ = const

ξ

η

Fig. 3.4. Open sets Ωj and the characteristics touching their boundaries.

3.4 Revisiting numerical results. Let us consider the problem described in the beginning
of Section 3. We aim to apply Theorem 3.3. The open sets Oj (Ωj in the coordinates ξ, η) are shown

in Figure 3.4. For f̃1, |Γa± | = 0, |Γb± | = 0, and therefore ∂ξũ1, ∂ηũ1 ∈ C0(R2). This is not the case

for f̃2: as seen from Figure 3.4, |Γa± | 6= 0, |Γb± | 6= 0. Moreover, Fa± :=
b+∫
b−

F̃2(a±, η)dη = 2
√

2a > 0.

This shows in particular that across the lines ξ = a±, ∂ξũ2 has jump and logarithmic singularities
(while ∂ηũ2 stays continuous). This example allows to improve the result of Proposition 2.7.

Corollary 3.7. The operator N+
ω ∈ B(L2

comp(R
2), H1+σ

loc (R2)) iff σ ≤ 0.

Proof. Assume that N+
ω ∈ B(L2

comp(R
2), H1+σ

loc (R2)) for some σ > 0. Then, since it is a con-

volution operator, one deduces that N+
ω ∈ B(H1

comp(R
2), H2+σ

loc (R2)). By interpolation, in par-

ticular, N+
ω ∈ B(Hδ

comp(R
2), H1+σ+δ

loc (R2)), for δ ∈ (0, 1). Consider the function f2, defined like

in the beginning of Section 3, which belongs in particular, to H
1
2−σ
comp(R2). This would mean that

u2 := N+
ω f2 ∈ H

3
2 (R2), which is impossible since ∂xu2, ∂yu2 have jump singularities.

4 Limiting absorption and limiting amplitude principles. Finally, let us formulate the
limiting absorption principle in a strong operator topology.

Theorem 4.1. Let s, s′ > 3
2 , 0 < ω < ωp. Let ωn ∈ C+, Reωn > 0, and ωn → ω as n → +∞.

Then, for all f ∈ L2
s,⊥,

Nωnf → N+
ω f in H1

−s′,⊥(R2).

Proof. The proof is quite easy and is based on the explicit representation of the operator Nω. Let
us fix s, s′ > 3

2 . Let us set rn := Nωnf −N+
ω f , κn :=

√
−ε−1(ωn)ξ2

x + ω2
n. Using (2.14), we obtain

κFxrn(ξx, y) =
1

2i
√

2π

∫
R

(
κ

κn
eiκn|y−y

′| − eiκ|y−y
′|
)
Fxf(ξx, y

′)dy′,(4.1)

∂yFxrn(ξx, y) =
1

2i
√

2π

∫
R

(
eiκn|y−y

′| − eiκ|y−y
′|
)
Fxf(ξx, y

′)dy′.(4.2)

Recall the norm equivalence (2.16). We will show that lim
n→+∞

‖κFxrn‖L2
−s′,⊥

= 0; the analogous result

for ∂yFxrn will follow in the same way.
Step 1. A few auxiliary bounds. First, remark that, as Imκn ≥ 0,∣∣∣∣ κκn eiκn|y−y

′| − eiκ|y−y
′|
∣∣∣∣ . ∣∣∣∣ κκn − 1

∣∣∣∣+
∣∣∣eiκn|y−y′| − eiκ|y−y

′|
∣∣∣ .(4.3)

Evidently, we have in particular ∣∣∣∣ κκn eiκn|y−y
′| − eiκ|y−y

′|
∣∣∣∣ . 1.(4.4)
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A finer bound can be obtained by remarking that the function

ω → κ(ω) :=
√
ω2 − ε−1(ω)ξ2

x

is uniformly Lipschitz on all compact subsets of {z : 0 < Re z < ωp}. Let δ > 0 be sufficiently small.
With B+

δ (ω) = C+ ∩Bδ(ω),

|κ− κn| . sup
z∈B+

δ (ω)

∣∣∣∣ ∂κ∂ω (z)

∣∣∣∣ |ω − ωn|, ∣∣∣∣ ∂κ∂ω (z)

∣∣∣∣ =

∣∣∣∣∣ 2z − (ε−1(z))′ξ2
x

2
√
z2 − ε−1(z)ξ2

x

∣∣∣∣∣ .
Therefore,

|κ− κn| . max(|ξx|, 1)|ωn − ω|.(4.5)

Similarly, since for |ωn − ω| → 0, |κn| & |ξx|+ 1, we conclude from the above that∣∣∣∣ κκn − 1

∣∣∣∣ . |ωn − ω|.(4.6)

As for the second term in (4.3), since Imκn > 0, the same argument as above gives∣∣∣eiκn|y−y′| − eiκ|y−y
′|
∣∣∣ . |y − y′||κn − κ| (4.5)

. |ωn − ω||y − y′|max(|ξx|, 1).(4.7)

Combining (4.6) and (4.7), and using the fact that all the quantities in the left-hand-side of (4.3) are
bounded uniformly in y, ξx and for all ωn sufficiently close to ω, we obtain the following bound valid
for all n sufficiently large:∣∣∣κn

κ
eiκn|y−y

′| − eiκ|y−y
′|
∣∣∣ . min(1, |ωn − ω|)|y − y′|max(|ξx|, 1).(4.8)

Step 2. Splitting in high and low frequencies. Next, let us split

Fxrn(ξx, y) = r̂lfn (ξx, y) + r̂hfn (ξx, y),

r̂lfn (ξx, y) = 1|ξx|<Ar̂n(ξx, y), r̂hfn (ξx, y) = 1|ξx|≥Ar̂n(ξx, y),

where A > 1 will be chosen later. We will estimate these two quantities separately.
Step 2.1. Estimating r̂hfn (ξx, y). We use a uniform bound (4.4) in (4.1), which yields

|κr̂hfn (ξx, y)| .
∫
R

|Fx(ξx, y
′)|dy′ .

∫
R

(1 + y′2)s|Fx(ξx, y
′)|2dy′

 1
2

,

where the last bound follows from the Cauchy-Schwarz inequality and s > 1
2 . From the definition of

r̂hfn (ξx, y) and s′ > 1
2 it follows that

‖κr̂hfn ‖2L2
−s,⊥

.
∫

|ξx|>A

∫
R

(1 + y′2)s|Fx(ξx, y
′)|2dy′dξx.(4.9)

Step 2.2. Estimating r̂lfn (ξx, y). To estimate r̂lfn (ξx, y), we use the estimate (4.8) for small |ω − ωn|
in (4.1) which results in∣∣κr̂lfn (ξx, y)

∣∣ . A|ωn − ω|
∫
R

(|y|+ |y′|)|Fxf(ξx, y
′)|dy′,

and using the Cauchy-Schwarz inequality (s > 3
2 ) yields∣∣κr̂lfn (ξx, y)

∣∣ . A|ωn − ω| (|y|+ 1) ‖Fxf(ξx, .)‖L2
s(R).

Finally, we obtain (s′ > 3
2 )

‖κr̂lfn ‖2L2
−s′,⊥

. A2|ωn − ω|2‖Fxf‖2L2
s,⊥
.(4.10)
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Step 2.3. Summary. Combining (4.9), (4.10) yields

‖κr̂n‖2L2
−s′,⊥

. A2|ωn − ω|2‖Fxf‖2L2
s,⊥

+

∫
|ξx|>A

∫
R

(1 + y′2)s|Fx(ξx, y
′)|2dy′dξx.

For any ε > 0, we can choose A := Aε so that the last term of the above expression does not

exceed ε2/2; next we choose n so that A2
ε|ωn − ω|2‖Fxf‖2L2

s,⊥
< ε2

2 , which allows us to conclude that

‖κr̂n‖L2
−s′,⊥

→ 0, as n→ +∞.

It is seen in the above proof that to obtain (4.10), it is necessary to have the constraints on the
weights s, s′ > 3

2 in the scale of the weighted Sobolev spaces with polynomial weights. A finer result
could be obtained by using Hörmander (Fourier transforms of Besov) spaces.

Using the classical techniques of Eidus, cf. [15], it is possible to prove the limiting amplitude
principle. The proof of this result can be found in the technical report [21].

Theorem 4.2. Let s > 3
2 , f ∈ L2

s(R
2), and 0 < ω < ωp. Let (E, Hz, j) solve

∂tEx − ∂yHz = 0,

∂tEy + ∂xHz + j = 0, ∂tj − ω2
pEy = 0,

∂tHz + ∂xEy − ∂yEx = feiωt,

Hz(0) = Ex(0) = Ey(0) = j(0) = 0.

Then, for all s′ > 3
2 , lim

t→+∞
‖Hz(t, .)− hz(.)eiωt‖L2

−s′
= 0, where hz = −iωN+

ω f , cf. (2.10). In other

words, hz ∈ H1
−s′,⊥ is the unique solution to

ω2hz − α2∂2
xhz + ∂2

yhz = −iωf,

equipped with the radiation condition (RC1), (RC2).

5 Conclusions. In this work we have studied a model for wave propagation in a hyperbolic
metamaterial in the free space, described by the Klein-Gordon equation. With the help of a suitable
radiation condition, we have shown its well-posedness; a detailed regularity analysis is presented. Our
future efforts are directed towards the study of a more mathematically involved case of propagation
in the exterior domains, as well as the design of numerical methods for this kind of problems.

Appendix A. Derivation of (1.2). Electromagnetic wave propagation in a three-dimensional
cold collisionless plasma under a background magnetic field B0 = (0, B0, 0) is described by the
Maxwell’s equations

∂tD− curlH = 0, ∂tB + curlE = 0.(A.1)

Here B = µ0H, and the relation between D and E is given in the frequency domain by D̂ = εcp(ω)Ê,

where εcp(ω) is the cold plasma dielectric tensor, see [31, (18), (25)] or [16, Chapter 15.5]. In the

simplest case when the plasma is comprised of a single species particles with mass m and charge q,
and whose number density is N = N(x), this tensor reads

εcp(ω) = ε0


1− ω2

p

ω2−ω2
c

0 −i ω2
pωc

ω(ω2−ω2
c)

0 1− ω2
p

ω2 0

i
ω2
pωc

ω(ω2−ω2
c) 0 1− ω2

p

ω2−ω2
c

 ,(A.2)

where ωp =
√

Nq2

mε0
is the plasma frequency and ωc = qB0

m is the cyclotron frequency. In what follows

we will assume that the density N is uniform in space, i.e. ωp = const.
In the strong magnetic field limit (|B0| → +∞, or |ωc| → +∞), the cold plasma dielectric tensor

reduces to a diagonal matrix

ε(ω) = ε0

1 0 0

0 1− ω2
p

ω2 0
0 0 1

 .(A.3)



A MATHEMATICAL STUDY OF A HYPERBOLIC METAMATERIAL IN FREE SPACE 23

In order to rewrite the Maxwell system in the time domain, we first consider the relation between Dy

and Ey

D̂y = ε0

(
1−

ω2
p

ω2

)
Êy =⇒ −iωD̂y = −iωε0Êy + ε0

ω2
p

(−iω)
Êy.(A.4)

Let us define an auxiliary unknown (a current), so that, in the frequency domain ĵ = ε0
ω2
p

(−iω) Êy, or,

in the time domain,

∂tj − ε0ω
2
pEy = 0.

This allows to express

∂tDy = ε0∂tEy + j.

With this notation (A.1) reads (where ey = (0, 1, 0)T )

ε0∂tE− curlH + jey = 0, ∂tj − ε0ω
2
pEy = 0,

µ0∂tH + curlE = 0.

In the case when the fields do not depend on the space variable z, the above system is decoupled into
the TE system (with respect to Ex, Ey, Hz, j) and the TM system (with respect to Hx, Hy, Ez).
While the TM system is the same as in the vacuum (this is left as an easy exercise to the reader),
the TE system reads

ε0∂tEx − ∂yHz = 0,

ε0∂tEy + ∂xHz + j = 0, ∂tj − ε0ω
2
pEy = 0,

µ0∂tHz + ∂xEy − ∂yEx = 0.

(A.5)

Appendix B. Computation of the fundamental solution Gω. Recall that we choose
√
z

as the branch of the square root, with the branch cut along (−∞, 0]. By Arg z ∈ (−π, π] we denote
the principal argument of z. Before studying the fundamental solution for the equation (1.8), we first
consider the following problem. Let us assume that Imω 6= 0, and a > 0. Consider the fundamental
solution for a scaled Helmholtz equation with the frequency ω, i.e. the unique Gaω ∈ S ′ solving

ω2Gaω(x) + a−1∂2
xG

a
ω(x) + ∂2

yG
a
ω(x) = δ(x).(B.1)

It can be verified that the fundamental solution Gaω is defined by

Gaω(x) = − i
√
a

4

{
H

(1)
0 (ω

√
ax2 + y2), Imω > 0,

H
(2)
0 (ω

√
ax2 + y2), Imω < 0,

(B.2)

where H
(1)
0 (z) (H

(2)
0 (z)) is the Hankel function of the first (second) kind (see [1, Chapter 9]). It is

analytic in C \ R−, where R− = {z : Im z = 0, Re z ≤ 0}.
Performing a partial Fourier transform of (B.1) in x, we can obtain explicitly FxGaω as the

fundamental solution of a 1D Helmholtz equation. After a series of elementary computations, we
obtain

Gaω(x, y) = − 1

4π

∞∫
−∞

e−iξxx
e−
√
a−1ξ2x−ω2|y|√
a−1ξ2

x − ω2
dξx, a > 0.(B.3)

Let us now obtain the fundamental solution for (1.8), i.e. the solution of

ω2Gω(x) + ε(ω)−1∂2
xGω(x) + ∂2

yGω(x) = δ(x).(B.4)

We cannot immediately write Gω using (B.2), because ε(ω) in the above is complex, and, in general,
a slightly stronger argument is needed. For this we will use (B.3), which we will rewrite in an
appropriate form that will allow to use an analytic continuation argument.



24 P. CIARLET, M. KACHANOVSKA

Performing the partial Fourier transform of (B.4) in x yields

∂2
y (FxGω)− (ε(ω)−1ξ2

x − ω2)FxGω =
δ(y)√

2π
.(B.5)

By definition, FxGω is the fundamental solution of a 1D Helmholtz equation with absorption. To see
this we remark that

(ε(ω)−1ξ2
x − ω2) /∈ R−.(B.6)

The justification of the above follows by a direct computation. In particular,

Im(ε(ω)−1ξ2
x − ω2) = Im ε(ω)−1ξ2

x − Imω2, and

sign Im ε(ω)−1 = − sign Im ε(ω) = sign Im
ω2
p

ω2
= − sign Imω2.(B.7)

Therefore, for ω = ωr + iωi, with ωi, ωr 6= 0,

sign Im(ε(ω)−1ξ2
x − ω2) = − signωiωr 6= 0,(B.8)

while when ωr = 0, ε(ω)−1ξ2
x − ω2 > 0. This shows (B.6). Let us define

s(ξx, ω) =
√
ε(ω)−1ξ2

x − ω2.

By the above considerations, the function ω 7→ s(ξx, ω) is analytic for all ω ∈ C+.
Next, the fundamental solution FxGω is defined as follows:

FxGω(ξx, y) = − 1

2
√

2π

e−
√
ε(ω)−1ξ2x−ω2|y|√

ε(ω)−1ξ2
x − ω2

.(B.9)

For y 6= 0, FxGω(., y) ∈ L1(R); we also have

Gω(x, y) = − 1

4π

∞∫
−∞

e−iξxx
e−
√
ε(ω)−1ξ2x−ω2|y|√

ε(ω)−1ξ2
x − ω2

dξx.(B.10)

To compute the inverse Fourier transform, we remark the following:
• for y 6= 0, ω 7→ Gω(x, y) defined as above is analytic in C+. This follows from the analyticity

of ω 7→ e−s(ξx,ω)

s(ξx,ω) in C+ and uniform boundedness of its derivatives by an L1-function of ξx on

compact subsets of C+.
The same can be said about the analyticity of ω 7→ Gω(x, y) in C−.

• for ω ∈ iR∗, we have ε(ω) > 0. We thus reduce to the case (B.3), for which the inverse
Fourier transform is known and given by

Gω(x) = −
i
√
ε(ω)

4

{
H

(1)
0 (ω

√
ε(ω)x2 + y2), Imω > 0,

H
(2)
0 (ω

√
ε(ω)x2 + y2), Imω < 0.

(B.11)

• for (x, y) 6= 0, the function ω 7→ − i
√
ε(ω)

4 H
(1)
0 (ω

√
ε(ω)x2 + y2) is analytic in C+. To verify

this, it suffices to check that ω
√
ε(ω)x2 + y2 /∈ R− (the branch cut of H

(1)
0 (ω

√
ε(ω)x2 + y2)).

This being obvious for ω ∈ iR∗, let us consider the case Reω 6= 0. Then

Im
(
ω
√
ε(ω)x2 + y2

)
= ImωRe

√
ε(ω)x2 + y2 + Reω Im

√
ε(ω)x2 + y2.

For Imω > 0, the first term above is positive; the second term, cf. (B.7), as sign Im ε(ω) =
sign Imω2 = sign Reω is positive as well.

Therefore, ω 7→ − i
√
ε(ω)

4 H
(1)
0 (ω

√
ε(ω)x2 + y2) is analytic in C+.

In the same way we check that ω 7→ − i
√
ε(ω)

4 H
(2)
0 (ω

√
ε(ω)x2 + y2) is analytic in C−.
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Using the analytic continuation argument, (B.10) being equal to (B.11) on iR+, and analyticity of
both functions, we conclude that, for |y| 6= 0, (B.10) coincides with (B.11). For |y| = 0, the result
follows immediately by noticing that FxGω ∈ L2(R2). Thus

Gω(x) = −
i
√
ε(ω)

4

{
H

(1)
0 (ω

√
ε(ω)x2 + y2), Imω > 0,

H
(2)
0 (ω

√
ε(ω)x2 + y2), Imω < 0.

(B.12)

Appendix C. Proof of (2.12). By definition, G+
ω = lim

Imω→0+
Gω.

Let us assume that Imω > 0. Starting with (B.9), let us consider the case when ω = ωr+ iε, with
0 < ωr < ωp, and take ε→ 0+. In this case, cf. (B.8), lim

ε→0+

√
ε(ω)−1ξ2

x − ω2 = −i
√
−ε(ωr)ξ2

x + ω2,

hence the conclusion.

Appendix D. Proof of Statement 2 in Proposition 2.4. In the proof, we will extensively
use the following. Because for all δ > 0, we have

Im
(
(ω + iδ)2(ε(ω + iδ)x2 + y2)

)
> 0, and

Im(ω + iδ)2 > 0, Im(ε(ω + iδ)x2 + y2) > 0,
(D.1)

it follows that √
(ω + iδ)2(ε(ω + iδ)x2 + y2) = (ω + iδ)

√
ε(ω + iδ)x2 + y2,(D.2)

and

log
√

(ω + iδ)2(ε(ω + iδ)x2 + y2) = log(ω + iδ) +
1

2
log
(
ε(ω + iδ)x2 + y2

)
.(D.3)

Let us fix R > 0, and show that Gω+iδ → G+
ω in L1(BR(0)). The pointwise convergence of Gω+iδ → G+

ω

being obvious, one would want to apply the Lebesgue’s dominated convergence theorem. This is
however not possible, because the logarithmic term above cannot be bounded uniformly in δ by an
L1
loc-function. To see this it suffices to notice that Im

(
ε(ω + iδ)x2 + y2

)
= O(δ), and in the points

where
∣∣Re ε(ω + iδ)x2 + y2

∣∣ ≤ δ (this set is of non-zero measure) one has
∣∣log

(
ε(ω + iδ)x2 + y2

)∣∣ &
|log δ|.

Let us thus prove the L1-convergence of the two terms in (2.8) separately. Let

lδ(x) := log(y2 + ε(ω + iδ)x2), so that(D.4)

Gω+iδ = −i
√
ε(ω + iδ)

4π
lδ + Gregω+iδ − i

√
ε(ω + iδ)

2π
log(ω + iδ).(D.5)

Step 1. L1−convergence of lδ. The pointwise limit of lδ(x) is the function l(x) defined by

(recall that α = (−ε(ω))
1
2 , see (2.4)):

l(x) :=

{
log (y2 − α−2x2), |y| > α−1|x|,
log(−y2 − α−2x2) + iπ, |y| < α−1|x|.

We will study the L1-convergence separately on the following two domains:

BR(0) = K+ ∪K−, K+ := {x ∈ BR(0), |y| ≥ α−1|x|},
K− := {x ∈ BR(0), |y| < α−1|x|}.

(D.6)

Step 1.1. Convergence in K−. Our goal is to show that

lim
δ→0+

∫
K−

|lδ(x)− l(x)| dx = 0.

For this we rewrite the above in a more convenient form.
First, we remark that there exists C > 0, s.t.

|ε(ω + iδ)− ε(ω)| ≤ Cδ, for all δ > 0 sufficiently small.(D.7)
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Choosing δ so that the above holds true, we split K− = K−sing,δ ∪ K
−
reg,δ (with the constant C as

above) defined as follows:

K−reg,δ = {x ∈ BR(0) : 0 < y2 ≤ (α−2 − C
√
δ)x2},

K−sing,δ = {x ∈ BR(0) : (α−2 − C
√
δ)x2 < y2 < α−2x2}.

(D.8)

The choice
√
δ in the above will be motivated later, cf. (D.11), (D.12).

Step 1.1.1. Convergence on K−reg,δ. An explicit computation yields

lδ(x, y)− l(x, y) = log

(
−ε(ω + iδ)x2 + y2

ε(ω)x2 + y2

)
− iπ

= log

(
−1− ε(ω + iδ)− ε(ω)

ε(ω)x2 + y2
x2

)
− iπ

= Iabsδ (x, y) + iIargδ (x, y),(D.9)

Iabsδ (x, y) = log

∣∣∣∣1 +
ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

∣∣∣∣ ,
Iargδ (x, y) = Arg

(
−1− ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

)
− π.(D.10)

Let us show that the above converges to zero in L1(K−reg,δ).

Convergence of ‖Iabsδ ‖L1(K−reg,δ)
. Using the bound (D.7) and the definition of K−reg,δ (D.8),

where we have −α−2x2 < y2 − α−2x2 ≤ −C
√
δx2, we obtain∣∣∣∣ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

∣∣∣∣ ≤ √δ, ∀x ∈ K−reg,δ.(D.11)

Therefore, for all δ sufficiently small, we have that ‖Iabsδ 1K−reg,δ‖L1(K−) .
√
δ, thus

lim
δ→0+

‖Iabsδ ‖L1(K−reg,δ)
= 0.(D.12)

Convergence of ‖Iargδ ‖L1(K−reg,δ)
. Let us examine the real and imaginary parts of the argument of

Arg in (D.10). With (D.11) we have that

Re

(
−1− ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

)
= −1 +O(

√
δ).(D.13)

Using the definition of K−reg,δ in (D.8) and the fact that Im ε(ω + iδ) > 0 (this follows by a direct
computation), we obtain the following inequality:

Im

(
−1− ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

)
= Im

ε(ω + iδ)x2

α−2x2 − y2
> 0 in K−reg,δ.(D.14)

With Im ε(ω + iδ) = O(δ) and the definition of K−reg,δ in (D.8), we also have

Im

(
−1− ε(ω + iδ)− ε(ω)

y2 − α−2x2
x2

)
= O(

√
δ).(D.15)

Combining (D.13), (D.14), (D.15), we conclude that inside K−reg,δ, it holds that:

lim
δ→0

Iargδ (x) = 0, ∀x ∈ K−reg,δ, thus

lim
δ→0
‖Iargδ ‖L1(K−reg,δ)

= 0.(D.16)

Summary. Combination of (D.12), (D.16) and (D.9) yields

lim
δ→0
‖lδ − l‖L1(K−reg,δ)

= 0.(D.17)
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Step 1.1.2. Convergence on K−sing,δ. We will prove the following:

lim
δ→0
‖lδ‖L1(K−sing,δ)

= lim
δ→0
‖l‖L1(K−sing,δ)

= 0.(D.18)

The result is obvious for l ∈ L1(BR(0)), by the Lebesgue’s dominated convergence theorem. Let us
prove it for lδ by a direct computation. First of all, we remark that

‖lδ‖L1(K−sing,δ)
≤ ‖Re lδ‖L1(K−sing,δ)

+ ‖ Im lδ‖L1(K−sing,δ)
,(D.19)

and from (D.4), because | Im lδ| ≤ π, with the Lebesgue’s dominated convergence theorem it follows
that

lim
δ→0
‖ Im lδ‖L1(K−sing,δ)

= 0.(D.20)

It remains to prove the result for Re lδ = log |ε(ω + iδ)x2 + y2|. We rewrite

ε(ω + iδ)x2 + y2 = (−α−2x2 + y2) + x2 (ε(ω + iδ)− ε(ω)) ,

and by definition of K−sing,δ (applied to estimate the first term above), as well as analyticity of ε, we

conclude that the above quantity is O(
√
δ), and thus

|Re lδ| =
∣∣log |ε(ω + iδ)x2 + y2|

∣∣ . | log δ|.

By definition of K−sing,δ,

‖Re lδ‖L1(K−sing,δ)
.

∫
K−sing,δ

| log δ|dx .
√
δ| log δ|.(D.21)

This, combined with (D.19), proves (D.18).
Step 1.1.3. Convergence in K−. Combining (D.18), (D.17) and (D.8), we conclude that

‖lδ − l‖L1(K−) → 0.(D.22)

Step 1.2. Convergence ‖lδ − l‖L1(K+) → 0. The proof mimics the proof of the analogous result
for K−, hence we omit it here.
Step 1.3. Conclusion. Combination of the results of Steps 1.1 and 1.2, together with (D.8) results
in the desired statement

lim
δ→0
‖lδ − l‖L1(BR(0)) = 0.(D.23)

Step 2. Proof of convergence of Gregω+iδ to its pointwise limit in L1(BR(0)). To prove the
result, we show that the following bound holds for Gregω+iδ and all δ > 0 sufficiently small:∥∥Gregω+iδ

∥∥
L∞(BR(0))

. 1.(D.24)

To show this bound, it suffices to prove two bounds, cf. the explicit expression for Gω+iδ in (2.8),

sup
(x,y,δ)∈BR(0)×(0,1)

|gJ(zδ)|, sup
(x,y,δ)∈BR(0)×(0,1)

|gY (zδ)| . 1,(D.25)

sup
(x,y,δ)∈BR(0)×(0,1)

|gJ(zδ) log zδ| . 1.(D.26)

To prove the above we remark that the application

Zδ : (x, y, δ)→ zδ(D.27)

maps BR(0)× (0, 1) into a bounded subset C of C+. Then
• (D.25) follows from the analyticity of gJ(z), gY (z).
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• (D.26) can be obtained using the following argument. The function z → gJ(z) log z is analytic
in C \ (−∞, 0). Also,

sup
(x,y,δ)∈BR(0)×(0,1)

|gJ(zδ) log zδ| = sup
z∈C
|gJ(z) log z| = sup

z∈C̄
|gJ(z) log z|,

which is bounded because 1) C̄ ⊂ C+ ∪ R and C̄ is bounded; 2) as gJ(0) = 0 and is analytic,
the function z → gJ(z) log z, z ∈ C+, can be defined by continuity up to R, and is bounded
on compact subsets of C+ ∪ R.

With the bound (D.24), and Lebesgue’s dominated convergence theorem, we deduce that as δ → 0,
Gregω+iδ converges to its pointwise limit in L1.

Step 3. Conclusion. Combining the results of Steps 1 and 2, together with the splitting (2.8),
we deduce that Gω+iδ → G+

ω in L1(BR(0)), as δ → 0.

Appendix E. Proof of Lemma 2.5. For |x| > α|y|, by (FS) on page 5, we have

G+
ω (x, y) =

1

4α
H

(1)
0 (iω

√
α−2x2 − y2).(E.1)

By [1, §9.6.4, §9.6.23],

H
(1)
0 (iω

√
α−2x2 − y2) =

2

iπ

∞∫
1

e−ω
√
α−2x2−y2t(t2 − 1)−

1
2 dt

=
2

iπ

∞∫
0

e−ω
√
α−2x2−y2(η+1)

√
η
√
η + 2

dη.

Because |x| > α|y|+ δ,
√
α−2x2 − y2 >

√
α−2(α|y|+ δ)2 − y2 ≥ α−1δ. Therefore,

∣∣∣H(1)
0 (iω

√
α−2x2 − y2)

∣∣∣ . e−ω
√
α−2x2−y2

∞∫
0

e−ωα
−1δη

√
η
√
η + 2

dη

= cα,δe
−ω
√
α−2x2−y2 , cα,δ > 0.

Combining the above bound with (E.1) results in the desired statement of the lemma.

Appendix F. Sobolev style regularity results. Let us introduce the following norm and
function spaces tailored to meet the requirements of Lemma 3.5:

‖φ‖2X0 := ‖φ‖2 +

∥∥∥∥∥∥
∞∫
−∞

φ(., η′)dη′

∥∥∥∥∥∥
2

H1(R)

+

∥∥∥∥∥∥
∞∫
−∞

φ(ξ′, .)dξ′

∥∥∥∥∥∥
2

H1(R)

+

∥∥∥∥∥∥∂ξ
η∫

−∞

φ(ξ, η′)dη′

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∂η
ξ∫

−∞

φ(ξ′, η)dξ′

∥∥∥∥∥∥
2

,

X0(R2) := C∞0 (R2)
X0

,

X0
comp(R

2) := {f ∈ X0(R2) : supp f is bounded}.

We then have the following result.

Theorem F.1. The operator N+
ω ∈ B

(
X0
comp(R

2), H2
loc(R

2)
)
.
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