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ABSTRACT
Our recent Newtonian treatment of the smooth-averaged mutual-friction force acting on the neutron superfluid and locally
induced by the pinning of quantized neutron vortices to proton fluxoids in the outer core of superfluid neutron stars is here
adapted to the general-relativistic framework. We show how the local non-relativistic motion of individual vortices can be
matched to the global dynamics of the star using the fully 4D covariant Newtonian formalism of Carter & Chamel. We derive
all the necessary dynamical equations for carrying out realistic simulations of superfluid rotating neutron stars in full general
relativity, as required for the interpretation of pulsar frequency glitches. The role of vortex pinning on the global dynamics
appears to be non-trivial.

Key words: stars: interiors – stars: neutron – pulsars: general.

1 IN T RO D U C T I O N

Pulsar frequency glitches (Manchester 2017) are peculiar astrophys-
ical phenomena that are thought to reveal the existence of super-
fluidity (Chamel 2017a) in the interior of neutron stars (NSs), the
cold and dense remnants of gravitational (core-collapse) supernova
explosions. The sudden spins up and the subsequent long relaxations,
as observed in the emblematic Vela pulsar, were originally explained
by the unpinning and creep of neutron quantized vortices in the NS
crust (Anderson & Itoh 1975; Alpar et al. 1984a; Alpar, Langer &
Sauls 1984b). However, the details of the vortex dynamics and the
stellar regions involved during glitches still remain uncertain (see
e.g. Haskell & Melatos 2015; Graber, Andersson & Hogg 2017;
Haskell & Sedrakian 2018 for recent reviews). Indeed, it has been
found that the presence of inhomogeneities in the crust tends to
supress superfluidity (Watanabe & Pethick 2017; Chamel 2017b;
Sauls, Chamel & Alpar 2020), which may thus play a less important
role than initially thought (Andersson et al. 2012; Chamel 2013;
Delsate et al. 2016). On the other hand, angular momentum can also
be stored in the superfluid core and different alternative astrophysical
scenarios have been proposed (Sedrakian & Cordes 1999; Jahan-
Miri 2002; Peralta et al. 2006; Pizzochero 2011; Ho et al. 2015;
Pizzochero, Montoli & Antonelli 2020).

In particular, neutron vortices may pin to proton fluxoids in the
core of NSs (Muslimov & Tsygan 1985; Sauls 1989; see also Alpar
2017, for a recent review), considering protons form a type−II
superconductor, as first argued by Baym, Pethick & Pines (1969).
Because a toroidal magnetic field is expected to be present in the
outer core of an NS, in the region beneath the crust (see e.g. Sur,
Haskell & Kuhn 2020 and references therein), vortex pinning is
unavoidable. Therefore, that region of the core also contributes to
glitches and their relaxation (Gügercinoğlu & Alpar 2014, 2020;
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Gügercinoğlu 2017). Although vortices may cut through fluxoids
depending on their velocity and on the pinning strength, Ruderman,
Zhu & Chen (1998) estimated that this does not occur in Vela-like
pulsars. The pinning of vortices to fluxoids may also drive crustal
plate tectonics and play a key role in the evolution of the magnetic
field (Srinivasan et al. 1990; Ruderman et al. 1998). Alternatively,
Sedrakian & Sedrakian (1995) argued that fluxoids could actually
be naturally nucleated in the vicinity of each vortex, thus forming
‘vortex clusters’. In either case, we have shown (Sourie & Chamel
2020b) that the rigid motion of vortices and fluxoids could explain
specific timing features that have been recently observed in the Crab
and Vela pulsars (Palfreyman et al. 2018; Shaw et al. 2018; Ashton
et al. 2019).

Our analysis was carried out in the framework of Newtonian
theory. Although the motions of individual vortices are locally
non-relativistic, their typical velocities in the core are of order
of 1 cm s−1 (Gügercinoğlu & Alpar 2016), the smooth-averaged
hydrodynamics of the superfluid at the global scale of the star is
prone to general-relativistic effects, especially in the most massive
NSs (see e.g. Sourie et al. 2017; Gavassino et al. 2020 in the context
of glitches). In particular, frame dragging in rotating NSs induces
additional couplings between the superfluid and the rest of star, as
first discussed by Carter (1975). We have shown that the ensuing
coupling coefficients may be of comparable magnitude (although of
opposite sign) as those due to the mutual entrainment induced by
nuclear interactions (Sourie et al. 2017).

In this paper, we adapt our recent model of superfluid NSs (Sourie
& Chamel 2020a,b) to the general-relativistic framework. To this
end, we extend the analysis of Langlois, Sedrakian & Carter (1998) to
allow for the pinning of vortices to fluxoids or the formation of vortex
clusters in the outer core of NSs, based on the general formalism
of dissipative superfluid mixtures developed by Carter & Chamel
(2005b) in the Newtonian context. Using the fully 4D covariance of
this formalism, we also show how the local non-relativistic vortex
dynamics can be matched to the global hydrodynamic description of
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1408 A. Sourie and N. Chamel

the star. Our model of superfluid NS is presented in Section 2. Ap-
plications to quasi-stationary rotating NSs, including the calculation
of the mutual-friction force, are discussed in Section 3. Unless stated
otherwise, we shall set the speed of light c = 1.

2 C OVA R I A N T T WO - C O N S T I T U E N T
S U P E R F L U I D H Y D RO DY NA M I C S

2.1 Carter–Langlois–Sedrakian two-fluid model

In this section, we shall briefly review the mean features of the
two-fluid model of Langlois et al. (1998; for a general description
of superfluid NS, see e.g. Glampedakis, Andersson & Samuelsson
2011; Gusakov & Dommes 2016, and references therein).

Since electrically charged particles inside NSs are strongly cou-
pled and essentially corotate with the crust and the magnetosphere,
the outer core of a cold mature NS can be reasonably well described
in terms of just two dynamically distinct fluids, namely (i) an inviscid
neutron superfluid with 4-current nμ

n = nn uμ
n and (ii) a fluid made of

protons and electrons with 4-current nμ
p = np uμ

p , uμ
n and uμ

p denoting
the corresponding 4-velocities. This latter component will be referred
to as the ‘normal’ fluid throughout the paper. In what follows, not
only will the total baryon 4-current

n
μ
b = nμ

n + nμ
p (1)

be conserved, i.e.

∇μn
μ
b = 0, (2)

but we will also neglect any kind of transfusive processes whereby
one constituent is converted into the other. Each 4-current is therefore
assumed to be separately conserved:1

∇μnμ
n = 0 and ∇μnμ

p = 0. (3)

Following Langlois et al. (1998), the entropy current sμ is not treated
as an independent fluid, but is assumed to be expressible as

sμ = s uμ
p , (4)

where s is the entropy density in the rest frame of the charged
particles.

The local thermodynamic state of the system under consideration
can be described by a Lagrangian density �, commonly referred
to as the master function, which depends on both particle 4-current
vectors nμ

n and nμ
p and on the entropy density s,

�
(
nμ

n , nμ
p , s

)
. (5)

Variations of this quantity (keeping fixed the space–time metric2)
lead to

δ� = −� δs + pn
μ δnμ

n + pp
μ δnμ

p , (6)

where � is interpretable as the thermodynamic temperature of the
system as measured in the rest frame of the normal fluid, and pn

μ (resp.
pp

μ) denotes the canonical 4-momentum per baryon of the neutron
superfluid (resp. the normal fluid). Let us remark that, due to non-
dissipative entrainment effects arising from the nuclear interactions

1Although such processes could be readily incorporated to the present
model (Langlois et al. 1998), their impact on the superfluid dynamics of
NSs is expected to be very weak (see e.g. Sourie et al. 2017).
2Variations of the total Lagrangian density (including the Einstein–Hilbert
contribution) with respect to the space–time metric yield Einstein’s equations.

between neutrons and protons, the 4-momentum of a given fluid is
not simply aligned with its corresponding 4-velocity but also depends
on the 4-velocity of the second fluid (see e.g. Gusakov, Haensel &
Kantor 2014; Sourie, Oertel & Novak 2016; Leinson 2018; Chamel
& Allard 2019 for recent calculations of the coupling coefficients).

Carter and collaborators have developed an elegant action principle
to derive the fluid equations of motion from the Lagrangian density �

by considering variations of the fluid particle trajectories (see e.g.
Carter 1989; Langlois et al. 1998; Carter & Langlois 1998 for details;
see also Andersson & Comer 2020 for a review). Applied to the
two-fluid model under consideration here, this procedure yields
the following expression for the energy–momentum tensor of the
system:

T μ
ν = �δμ

ν + sμ�ν + nμ
p pp

ν + nμ
n pn

ν , (7)

where � denotes the generalized pressure of the fluids, and �ν is the
thermal 4-momentum per ‘entropon’ as referred to by Carter, i.e. the
4-momentum per one unit of entropy dynamically conjugate to the
entropy current, see e.g. equation (18) of Langlois et al. (1998). Note
that the temperature can be alternatively interpreted as the chemical
potential of entropons in the thermal rest frame (Carter 1989):

� = −uμ
p �μ. (8)

This approach also leads to the following force laws [see equations
(20) and (21) of Langlois et al. 1998]

f p
μ = nν

p�
p
νμ (9)

and

f n
μ = nν

n�
n
νμ, (10)

where (square brackets denoting antisymmetrization)

� x
νμ = 2 ∇[νp

x
μ] = ∇νp

x
μ − ∇μpx

ν (11)

stands for the vorticity 2-form averaged over scales larger than
the intervortex separation (see below). The 4-covectors f p

μ and f n
μ

involved in equations (9) and (10) are to be interpreted as the mean
force densities acting on the normal fluid and the neutron superfluid,
respectively.

At sufficiently small scale (but large enough for the hydrodynamic
description to remain valid), the 4-momentum pn

μ of the neutron
superfluid is given by the gradient of the phase φ of the quantum
condensate (see e.g. Carter & Langlois 1998):

pn
μ = mnκn

2π
∇μφ, (12)

where κn = h/(2mn), h being the Planck constant and mn the neutron
rest mass. This relation implies that the superflow is irrotational,
as characterized by the vanishing of the corresponding vorticity
2-form (11). Nevertheless, it is well known from laboratory ex-
periments (see e.g. Yarmchuk, Gordon & Packard 1979) that the
condition (12) can be locally violated through the formation of
quantized vortices, each carrying a quantum of circulation κn.

The existence of such vortex filaments leads to the non-vanishing
of the macroscopically averaged (i.e. averaged on scales much larger
than the mean intervortex separation) vorticity 2-form � n

μν . However,
the underlying presence of quantized vortices implies that � n

μν must
be of rank 2 instead of 4 (see e.g. Carter 1989; Langlois et al. 1998;
Carter 2001; Andersson, Wells & Vickers 2016; Gavassino et al.
2020 for further discussions).
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Vortex pinning in relativistic neutron stars 1409

2.2 Interactions between vortices and the surrounding fluids

Having recalled the main features of the Carter–Langlois–Sedrakian
two-fluid model, as well as the conditions imposed by superfluidity,
the second law of thermodynamics can now be invoked to constrain
the expression for the force density f n

μ (10) exerted on the neutron
superfluid by the vortex lines. A seminal work towards this direction
was initiated by Langlois et al. (1998; see also Andersson et al.
2016; Gavassino et al. 2020 for similar studies). We shall extend the
treatment of Langlois et al. (1998) by following the more general
approach of dissipation in superfluid mixtures developed by Carter
& Chamel (2005b) in a fully 4D covariant Newtonian framework.

Let us first introduce the thermal 4-force density defined by

f ∅
μ = 2 sν ∇[ν �μ] + �μ ∇νs

ν . (13)

In the strictly conservative case, as characterized by the absence
of any force other than those already included in the Lagrangian
description, the separate force densities fp μ, fn μ, and f ∅

μ must all
vanish. However, in the more general (dissipative) context under
interest here, the force densities will be subject to the following
relation (Carter & Chamel 2005b):

f n
μ + f p

μ + f ∅
μ = fext μ, (14)

where fext μ = ∇νT
ν
μ denotes the total external force density acting

on the system, which arises from the loss of rotational energy through
the emission of electromagnetic radiation and from internal heating.
It can thus be decomposed into two forces acting separately on the
charged and on the entropy components,

fext μ = f
p
ext μ + f ∅

ext μ, (15)

considering that the neutron superfluid is not directly subject to any
external force.

Without any loss of generality, the neutron force density f n
μ can

be decomposed as

f n
μ = f n

d μ + f n
c μ, (16)

where f n
d μ (resp. f n

c μ) is a dissipative (resp. conservative) force term,
usually referred to as ‘drag’ (resp. ‘transverse’) force in the literature.
Using this decomposition, equation (10) now reads

nν
n�

n
νμ = f n

d μ + f n
c μ. (17)

The conservative force term f n
c μ was ignored by Langlois et al.

(1998), as can be seen from their equation (41). The simplest
prescription to ensure that equation (17) is compatible with the
existence of two null eigenvectors, say w

μ
1 and w

μ
2 , for the neutron

vorticity 2-form � n
μν (as implied by the presence of quantized

vortices), is to require that each force density covector is orthogonal
to both w

μ
1 and w

μ
2 :

w
μ
1 f n

d μ = 0 = w
μ
2 f n

d μ and w
μ
1 f n

c μ = 0 = w
μ
2 f n

c μ, (18)

where by definition

w
μ
1 � n

μν = 0 = w
μ
2 � n

μν. (19)

In other words, f n
d μ and f n

c μ must be orthogonal to the 2D vortex
worldsheet swept by the vectors w

μ
1 and w

μ
2 . Introducing the

corresponding (orthogonal) projector ⊥ν
μ, we must have

⊥ν
μ f n

d ν = f n
d μ and ⊥ν

μ f n
c ν = f n

c μ. (20)

By definition,

⊥ν
μ � n

νρ = � n
μρ. (21)

Contracting equation (21) again by the projector leads to

⊥μ
ν ⊥ν

ρ =⊥μ
ρ . (22)

In view of equation (19), we also have

⊥μ
ν wν

1 = 0 =⊥μ
ν wν

2 . (23)

The explicit form of the projector will be given in the next subsection,
see equation (35). Since the vorticity is carried by vortex lines, one
of the null eigenvectors w

μ
1 or w

μ
2 must be timelike, see Appendix C

for further discussions. The orthogonality conditions (18) thus imply
that f n

d μ and f n
c μ are spacelike.

The actual forms of f n
d μ and f n

c μ can be deduced from the second
law of thermodynamics, which can be locally expressed as (see e.g.
equation 23 of Carter & Chamel 2005b)

�∇μsμ + Q ≥ 0, (24)

where Q = uμ
p f ∅

ext μ denotes the heat loss rate per unit volume in the
thermal rest frame. In the following, we shall adopt the weak closure
condition according to which the external force density acting on
the normal fluid does not vanish but is restricted by the following
relation (Carter & Chamel 2005b):

uμ
p f

p
ext μ = 0. (25)

In view of equations (9) and (10), we find the similar relations:

uμ
n f n

μ = 0 and uμ
p f p

μ = 0. (26)

Contracting equation (15) with uμ
p using equations (8), (13), (14),

(25), and (26) yields

�∇μsμ + Q = uμ
p f n

μ. (27)

Since the force density f n
c μ does not lead to any dissipation, the

following relation should hold:

uμ
p f n

c μ = 0, (28)

so that equation (27) reduces to

�∇μsμ + Q = uμ
p f n

d μ. (29)

An obvious way to make sure that f n
c μ satisfies both equations (18)

and (28) is to write

f n
c μ = A� n

μνn
ν
p, (30)

with some unknown coefficient A. On the other hand, the second law
of thermodynamics (24) requires that uμ

p f n
d μ be positive definite, or

equivalently u
μ
p⊥f n

d μ > 0 with u
μ
p⊥ ≡⊥μ

ν uν
p in view of equation (20).

This condition can be fulfilled by expressing the dissipative force as

f n
d μ = Cr up⊥μ, (31)

(recalling that f n
d μ hence also u

μ
p⊥ are spacelike), where Cr is a

positive coefficient. For later convenience, we introduce the (positive)
resistivity coefficient R = Cr/Nn, where Nn is the average surface
density of vortex lines. The force balance equation (17) can finally
be expressed as

nν
n�

n
νμ = Nn R up⊥μ + A� n

μνn
ν
p, (32)

where, up to this point, R and A are left unspecified. Equation (32)
represents the mutual-friction force, i.e. the effective force density
exerted by the normal fluid on the neutron superfluid due to the
average forces acting on individual vortices. This expression is very
general since we have made no assumption on the spatial arrangement
of vortex lines. Langlois et al. (1998) implicitly assumed that A = 0.
However, as we shall show in the next section, this coefficient is
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1410 A. Sourie and N. Chamel

non-zero whenever proton fluxoids are pinned to vortices or vortex
clusters of the kind proposed by Sedrakian & Sedrakian (1995) are
formed.

2.3 Matching between the local and global dynamics

The coefficients R and A appearing in equation (32) should be
provided by an analysis of the local perturbations of the fluid
flows induced by the motion of individual vortices. At such small
scales, the space–time curvature is negligible (see e.g. the discussion
in section 3.4 of Glendenning 1997) and the fluid dynamics is
essentially non-relativistic. We have recently derived the Newtonian
expression for the force per unit length exerted on a single vortex
line in a mixture of superfluid neutrons, superconducting protons,
and degenerate electrons, as can be typically found in the outer
core of NSs (Sourie & Chamel 2020a). Allowing for the possible
presence of vortex pinning on to proton fluxoids or vortex clusters of
the kind proposed by Sedrakian & Sedrakian (1995), we considered
the force acting on a vortex line to which a given number Np of
fluxoids are anchored.3 This number could be huge, of order ∼1013

(Sourie & Chamel 2020b). The resulting expression for the force
acting in a vortex involves an unspecified positive dimensionless
coefficient ξ , the so-called drag-to-lift ratio, which measures the
amplitude of the microscopic drag force acting on each vortex line
(which is thought to arise from the scattering of electrons off the
magnetic field carried by the quantized lines). Although the drag-
to-lift ratio associated with a vortex line pinned to Np fluxoids is
essentially unknown (see Sourie & Chamel 2020b), this parameter
is expected to depend on Np. The smooth-averaged force per unit
volume exerted on the neutron superfluid at the macroscopic scale, as
induced by the drag forces acting on individual vortices, was derived
in Sourie & Chamel (2020b) within the Newtonian framework
considering straight and infinitely rigid vortices, assumptions that
remain applicable in general relativity (Gavassino et al. 2020). One
can now use these results to determine the expressions for R and A.

To find the Newtonian limit of the force balance equation (32),
we rely on the fully 4D-covariant Newtonian formulation developed
by Carter & Chamel (2004, 2005a,b), based on the Milne–Cartan
structure of the space–time. This approach allows for a more direct
comparison with the general relativistic results (see e.g. Carter,
Chachoua & Chamel 2006; Chamel 2008) than the Newtonian
expressions from classical mechanics and hydrodynamics within the
traditional ‘3+1’ space–time decomposition, as developed, e.g. by
Prix (2004). As shown in Appendix A, the comparison between the
Newtonian limit of equation (32) and results from Sourie & Chamel
(2020b) leads to the following identification:

R = mnnnκn ξ and A = Np, (33)

from which we deduce that R corresponds to the microscopic drag
coefficient usually introduced in the literature (see e.g. Andersson,
Sidery & Comer 2006). Using equation (33), the mutual-friction
force (32) finally reads

f mf
μ = nν

n�
n
νμ = nnw

nξ ⊥μν uν
p − Np nν

p�
n
νμ, (34)

which generalizes equation (76) from Langlois et al. (1998) to the
case in which each neutron vortex line is pinned to Np proton fluxoids.
Introducing the space–time metric gμν with signature (−, +, +, +),

3The Np fluxoids are not superimposed but lie in the vicinity of the vortex,
within distances much smaller than the intervortex spacing.

the projector to the surface orthogonal to the vortex worldsheet is
explicitly given by (Langlois et al. 1998)

⊥μ
ν = 1

(wn)2 gμσ gρτ� n
στ � n

νρ = 1

(wn)2 � n μρ � n
νρ, (35)

where the scalar

wn =
√

gρμgσν� n
μν�

n
ρσ /2 (36)

is related to the average surface density of vortex lines by

Nn = wn

mnκn
. (37)

Let us remark that the microscopic expression of the drag-to-
lift ratio ξ is likely to depend on various physical parameters, for
which suitable relativistic definition must be used. For instance, the
temperature in the covariant formulation must be understood as the
scalar given by equation (8).

3 MU T UA L FR I C T I O N IN A
(QUA SI- )STATIONA RY AND AXISYMMETRIC
SPAC E–TIME

3.1 Space-time symmetries and fluid 4-velocities

We now restrict our study to (quasi-)stationary and axisymmetric
space-times, as would be relevant for the modelling of rotating
NSs (see e.g. Paschalidis & Stergioulas 2017 for a recent review).
The validity of these assumptions is discussed at the beginning of
section 3 of Langlois et al. (1998). In what follows, we thus assume
that there exist two Killing vectors: kμ for stationarity and hμ for
axisymmetry.4The axisymmetry (resp. quasi-stationarity) of the fluid
flows translates into the exact (resp. approximate) vanishing of the
Lie derivative along hμ (resp. kμ) of any tensor field q associated
with matter, i.e.

L	h q = 0 and L	k q 
 0, (39)

where L	u q denotes the Lie derivative of q along the vector uμ.
Furthermore, the normal fluid is assumed to be rigidly rotating, so

that its corresponding 4-velocity reads

uμ
p = γp

(
kμ + �ph

μ
)
, (40)

where γp is a Lorentz-type factor and �p is the (uniform) angular
velocity of the normal fluid. Because charged particles are essentially
locked to the pulsar’s magnetosphere, �p coincides with the observed
angular velocity of the pulsar. The 4-velocity of the neutron superfluid
is taken as5

uμ
n = γn

(
kμ + �nh

μ + ṽμ
n

)
, (41)

where γn is the relevant Lorentz-type factor and �n is the (a priori
non-uniform) angular velocity of the neutron superfluid. The last
term allows for the possibility of a non-circular motion (expected to

4While hμ is an exact Killing vector, kμ is only an approximate Killing vector
because of the small non-circular motion considered in the following. This
means that kμ satisfies the following condition:

∇μkν + ∇νkμ = O
(

1

L

)
, (38)

where L is a length-scale very large with respect to the stellar radius (see
equation 49 of Langlois et al. 1998).
5Note that equations (40) and (41) are not orthogonal decompositions.
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Vortex pinning in relativistic neutron stars 1411

be very small, see Langlois et al. 1998). The factors γp and γn are
fixed by the normalization conditions

gμνu
μ
n uν

n = −1 and gμνu
μ
p uν

p = −1. (42)

Further details on the decompositions (40) and (41) are given in
Appendix B.

3.2 Evolution equations

Let us now express the mutual-friction force (34) in terms of �p, �n,
and ṽμ

n . We follow here the same approach as Langlois et al. (1998).
Let us start by contracting equation (34) with � n μν . This leads to

wn ⊥ν
μ

(
nμ

n + Np nμ
p

)
= nn ξ � n νμ up μ, (43)

where we have used equation (35) and the orthogonality property
⊥ρ

μ � n μν = � n ρν . Introducing

αn = hνpn
ν , (44)

which can be interpreted as the angular momentum per neutron (see
Section 3.4), a first dynamical equation is obtained by contracting
equation (43) with hν , i.e.

wn h
μ
⊥
(
nn μ + Np np μ

) = −nn ξ uμ
p ∇μαn, (45)

where ∇μαn = wn
μνh

ν , as deduced from L	hp
n
μ = 0, and we have

introduced the short-hand notation h
μ
⊥ = ⊥μ

ν hν . A second dynamical
equation is derived by contracting equation (43) with wn

νρh
ρ , which

yields(
nμ

n + Np nμ
p

)
∇μαn = nn wn ξ h

μ
⊥up μ. (46)

Using equations (40) and (41), the dynamical equations (45) and
(46) lead to

(1 + X) kμh
μ
⊥ + ξ̃

wn
α̇n = −h

μ
⊥ṽn μ − (

�n + X�p

)
h2

⊥, (47)

− wn ξ̃ kμh
μ
⊥ + (1 + X) α̇n = −ṽμ

n ∇μαn + wn ξ̃ �ph
2
⊥, (48)

where

h2
⊥ = h

μ
⊥ h⊥μ = h

μ
⊥ hμ, (49)

and

α̇n = kμ∇μαn, (50)

which is small but non-zero since kμ is not an exact Killing vector.
Note that we have used here the fact that L	h αn = hμ∇μαn = 0. The
quantities ξ̃ and X appearing in equations (47) and (48) are defined
as

ξ̃ = γp

γn
ξ 
 ξ, (51)

and

X = γp

γn

np

nn
Np 
 np

nn
Np, (52)

where γp 
 γn to a very good approximation, since the neutron
superfluid and the normal fluid are expected to be very close
to corotation at any time, as suggested by the very small glitch
amplitudes.

The determinant of the system (47)−(48) being non-zero, i.e.
(1 + X)2 + ξ̃ 2 > 0, this system of equations can be inverted, which
leads to

− h−2
⊥ kμh

μ
⊥ = (

1 − B′)(�n + �p
B′

1 − B′ + �−

)
, (53)

(
wn

)−1
h−2

⊥ α̇n = B
(
�p − �n − �+

)
, (54)

where we have introduced the following mutual-friction coefficients

B = ξ̃

ξ̃ 2 + (1 + X)2 and 1 − B′ = 1 + X

ξ̃ 2 + (1 + X)2 , (55)

in a similar manner to what has been done in the Newtonian
framework (see equation 57 of Sourie & Chamel 2020a) and the
(small) non-circular contributions read

�− = h−2
⊥ ṽμ

n

(
h⊥μ − ξ̃

(
wn

)−1
(1 + X)−1 ∇μαn

)
, (56)

�+ = h−2
⊥ ṽμ

n

(
h⊥μ + ξ̃−1

(
wn

)−1
(1 + X) ∇μαn

)
. (57)

The previous equations generalize those derived by Langlois et al.
(1998) to allow for vortex pinning in the outer core of NSs. Indeed,
taking Np = 0 (or equivalently X = 0) in these equations leads to
equations (84)–(87) of Langlois et al. (1998), ξ̃ reducing in this
case to the drag-to-lift ratio in the absence of pinning, denoted by cr

in Langlois et al. (1998).
As shown in Appendix C, the terms on the left-hand side of

equations (53) and (54) can be respectively interpreted as the
mean angular velocity of vortices (modulo a small non-circular
contribution) and the (inwards) ‘radial’ velocity of the vortex lines,
i.e. along the unit vector −r̂μ, where r̂μ is defined by

r̂μ = (
wn

)−1
h−1

⊥ � n μνhν and r̂μr̂μ = 1. (58)

Note that r̂μh⊥μ = 0 and ⊥μ
ν r̂ν = r̂μ, from which we deduce that

the unit vectors r̂μ and ĥ
μ
⊥ = h

μ
⊥/h⊥ form an orthonormal basis of

the 2D surface orthogonal to the vortex worldsheet. We thus have

⊥μ
ν = ĥ

μ
⊥ĥ⊥ν + r̂μr̂ν . (59)

The projector tangential to the vortex worldsheet is thus given by

ημ
ν ≡ δμ

ν − ⊥μ
ν = δμ

ν − ĥ
μ
⊥ĥ⊥ν − r̂μr̂ν . (60)

The non-vanishing of the radial component of the mean vortex veloc-
ity (albeit very small) actually highlights the non-exact stationarity
of the space–time considered here.

Finally, the Newtonian limit of equations (53) and (54) is found to
match perfectly with results obtained from Sourie & Chamel (2020a),
as shown in Appendix D.

3.3 Mutual-friction force in stationary rotating neutron stars

Since ημ
ν f mf

μ = 0, see equations (17) and (20), the only non-zero
components of the mutual-friction force (34) are those along the
unit vectors ĥ

μ
⊥ and r̂μ. Substituting equations (41) in (34) recalling

∇μαn = wn
μνh

ν and using equations (53) and (54) leads to

ĥ
μ
⊥f mf

μ = hμf mf
μ /h⊥

= γnnn

(
kμ + �nh

μ + ṽμ
n

)∇μαn/h⊥

= γnnn

(
α̇n + ṽμ

n ∇μαn

)
/h⊥

= γnnnw
nh⊥B

[
�p − �n + X�+ − (1 + X) �−

]
, (61)
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and

r̂μf mf
μ = −γnnnw

n
(
kμ + �nh

μ + ṽμ
n

)
h⊥μ/h⊥

= −γnnnw
nh⊥

(
h−2

⊥ kμh
μ
⊥ + �n + h−2

⊥ ṽμ
n h⊥μ

)

= γnnnw
nh⊥B′

[
�p − �n − ξ̃ 2 �+ + X (1 + X) �−

ξ̃ 2 + X (1 + X)

]
.

(62)

Equations (61) and (62) establish the expression for the mutual-
friction force as a function of the fluid velocities only. In the limit
X = 0, equation (61) coincides with equation (89) from Langlois
et al. (1998). The Newtonian limit of equations (61) and (62) are also
found to be in perfect agreement with the expression (5) from Sourie
& Chamel (2020b), as shown in Appendix D.

3.4 Fluid angular momenta

In order to illustrate the impact of mutual-friction forces on the
superfluid dynamics of NSs, let us now focus on the angular
momentum transfer that takes place during the spin-up stage of pulsar
glitches.

The existence of an (exact) Killing vector associated with axisym-
metry allows for a gauge-invariant definition of the stellar angular
momentum using the so-called Komar definition. In the usual ‘3+1’
decomposition of the space–time, in which the space–time is foliated
by a family (�t )t∈R of space-like hypersurfaces, the total angular
momentum is thus defined as (see e.g. Gourgoulhon 2012)

J = −
∫

�t

[
Tμνn

μhν − 1

2
gμνTμνnρh

ρ

]
d�, (63)

where Tμν is the energy–momentum tensor of the two-fluid sys-
tem (7), nμ is the unit (future-oriented) vector normal to �t and
d� is the volume element on the hypersurface �t. In a coordinate
system adapted to the foliation (of the kind x0 = t, x1, x2, x3), we
have d� = √

γ dx1dx2dx3, where γ is the determinant of the spatial
metric γ ij (using Latin letters for space indices i, j = 1, 2, 3), defined
from the 4-metric γ μν induced by gμν on �t (i.e. γ ij = gij). The
second term in equation (63) can be dropped if the hypersurface is
further required to be axisymmetric, i.e. if the Killing vector hμ is
tangent to �t such that hμnμ = 0. The angular momentum of the star
thus simplifies as

J =
∫

�t

jμd�μ, (64)

where d�μ = −nμd� and jμ = T μ
ν hν is the local angular momen-

tum current. In the presence of external forces (f ext
μ �= 0), the time

variation of the stellar angular momentum (as given from the time-
translation generator kμ) is non-zero and reads

dJ

dt
= �ext, �ext =

∫
�t

hμf ext
μ kνd�ν, (65)

where �ext denotes the torque associated with the external force
f ext

μ (Langlois et al. 1998).
Using equation (7), the local angular momentum current can be

decomposed into

jμ = jμ
n + jμ

p + j̃ μ, (66)

where we have introduced the following notations

jμ
n = nμ

n pn
νh

ν = αnn
μ
n , (67)

jμ
p =

(
nμ

p pp
ν + s�uμ

p up ν

)
hν, (68)

and

j̃ μ = �hμ. (69)

Although the pressure term j̃ μ does not allow for an unambiguous
decomposition of the total angular momentum current in terms of
separate fluid contributions, the total angular momentum of the star
can still be unambiguously decomposed into a neutron and a normal
parts since j̃ μnμ = 0, yielding (Langlois et al. 1998; Sourie et al.
2016)

J = Jn + Jp, (70)

where

Jn =
∫

�t

jμ
n d�μ, and Jp =

∫
�t

jμ
p d�μ. (71)

3.5 Angular momentum transfer induced by mutual-friction
forces

Due to mutual-friction forces, angular momentum is redistributed
between the initially decoupled neutron superfluid and the rest of the
star during the rise of pulsar glitches. The corresponding dynamical
equations read (Langlois et al. 1998)

dJn

dt
= �mf and

dJp

dt
= �ext − �mf, (72)

where

�mf =
∫

�t

hμfn μ kνd�ν =
∫

�t

hμf mf
μ kνd�ν. (73)

Using Equation (61), the mutual-friction torque is found to be given
by

�mf =
∫

�t

B γnnnw
nh2

⊥
[
�p − �n + X�+ − (1 + X) �−

]
kνd�ν.

(74)

The pinning of proton fluxoids to neutron vortices does not only lead
to a rescaling of the mutual-friction coefficient B, but also introduces
additional terms in the mutual-friction torque through the parameter
X, which in turn is proportional to the number Np of fluxoids attached
to each vortex. These terms are still present in the Newtonian limit
but were not taken into account in our previous analysis (Sourie &
Chamel 2020b), see also Appendix D.

4 C O N C L U S I O N S

Following the seminal work of Langlois et al. (1998), we have
adapted to the general-relativistic framework our recent Newtonian
treatment (Sourie & Chamel 2020a) of the smooth-averaged mutual-
friction force acting on the neutron superfluid and locally induced
by the pinning of quantized neutron vortices to proton fluxoids in
the outer core of superfluid NSs (or alternatively by the formation of
vortex clusters of the kind proposed by Sedrakian & Sedrakian 1995).
Quite generally, the force can be written as f mf

μ = Nn R up⊥μ +
A nν

p�
n
μν . The apparent simplicity of this expression is deceptive

because the microscopic coefficientsR andAmay depend on various
physical parameters, such as the temperature (8), the currents through
the scalars nμ

n nn μ, nμ
p np μ, nμ

n np μ, or the vorticity (36). Langlois et al.
(1998) implicitly assumed A = 0. However, this assumption turns
out to be unrealistic whenever vortices interact with fluxoids.
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Vortex pinning in relativistic neutron stars 1413

Using the fully 4D covariant formulation of Newtonian dynamics
of Carter & Chamel (2004, 2005a,b), we have shown how to relate
the global general-relativistic dynamics of superfluid NSs to the local
non-relativistic dynamics of individual vortices. Comparing with our
study of the non-relativistic motion of a single vortex (Sourie &
Chamel 2020a), we have thus been able to identify R with the drag
coefficient and A with the mean number Np of fluxoids pinned to
each vortex.

According to our recent Newtonian study (Sourie & Chamel
2020b), vortex pinning may have important implications for the
dynamics of superfluid NSs. Considering quasi-stationary and ax-
isymmetric rotating NSs, we have derived the general-relativistic
dynamical equations describing the mean motion of vortices, equa-
tions (53) and (54), as well as the transfer of angular momentum
between the different stellar components, equations (72) and (74).
This set of equations generalizes the one that was obtained earlier by
Langlois et al. (1998). The role of the pinning of fluxoids to vortices
or the formation of vortex clusters on the global dynamics of NSs, as
embedded in the new parameter X defined by equation (52), appears
to be rather non-trivial.

This work provides all the necessary equations for carrying out
realistic simulations of cold superfluid NSs in full general relativity
allowing for vortices and fluxoids, as required for the detailed
interpretation of pulsar frequency glitches.
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A P P E N D I X A : N E W TO N I A N L I M I T O F T H E
F O R C E BA L A N C E EQUATI O N (3 2 )

In this appendix, we use the covariant Newtonian formulation
developed by Carter and Chamel (Carter & Chamel 2004, 2005a,b)
to match the global general-relativistic description with the local
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non-relativistic dynamics of individual vortices discussed in Sourie
& Chamel (2020a). We will write the speed of light c explicitly since
we are interested in the limit c → +∞.

A1 Covariant Newtonian formulation for superfluid neutron
stars

Let tμ ≡ ∂μt be the gradient of the preferred Newtonian time
coordinate t associated with the foliation of the space–time into
flat 3D spaces with coordinates Xi (we shall use Latin letters for
spatial indices). Introducing the 4D symmetric covariant tensor γ μν ,
as obtained from pulling back the Euclidean spatial metric γ ij, the
(locally flat) Lorentzian metric of the relativistic description can be
expressed as (Carter et al. 2006)

gμν = γμν − c2tμtν . (A1)

The factor c2 is introduced here because in an ‘Aristotelian’ coordi-
nate system corresponding to the usual space–time decomposition,
x0 coincides with the Newtonian time t (not ct), and xi with the space
coordinates Xi. The tensor γ μν is not a space–time metric since it is
degenerate

γμνe
ν = 0, (A2)

thus defining the so-called ether-frame flow vector eμ, normalized
as

eμtμ = 1. (A3)

Similarly, the contravariant metric tensor can be expressed as (Carter
et al. 2006)

gμν = γ μν − 1

c2
eμeν, (A4)

where the symmetric contravariant tensor γ μν is obtained from a
pushforward of the 3D Euclidean spatial metric γ ij. Note that γ μν

and γ μν satisfy the following relation:

γ μνγνρ ≡ γ μ
ρ = δμ

ρ − eμtρ, (A5)

where δμ
ρ denotes the Kronecker symbol. Like γ μν , the tensor γ μν is

also degenerate

γ μνtν = 0. (A6)

Therefore, the Newtonian space–time is characterized by the absence
of any metric. This means that indices cannot be lowered or raised. In
other words, covariant and contravariant indices of any space–time
tensor are intrinsic. A special care is therefore needed when taking
the Newtonian limit of relativistic expressions.

The fully antisymmetric 4D contravariant spatial measure tensor
εμνρ is obtained by pushforward of the Euclidean measure tensor
εijk. The covariant spatial measure tensor is given by

εμνρ = γμα γνβ γργ εαβγ . (A7)

The fully covariant space–time measure tensor εμνρσ is defined by
the relation

tμ = 1

3!
εμνρσ ενρσ . (A8)

The contravariant counterpart εμνρσ is obtained by the normalization
condition

εμνρσ εμνρσ = −4!. (A9)

Note that we have

εμνρtρ = 0, εμνρe
ρ = 0, and εμνρσ tσ = εμνρ. (A10)

A2 Force balance equation

Using equation (A1), the relativistic dissipative force (31) can be
written as

f n
d μ = Cr (γμν − c2tμtν) ⊥ν

ρ uρ
p . (A11)

Substituting equation (35) in equation (A11) using equation (A4)
yields

f n
d μ = Cr

(wn)2

(
γμν − c2tμtν

)(
γ νλγ στ� n

τλ�
n
σρ

− γ νλ eσ eτ

c2
� n

τλ�
n
σρ − γ στ eνeλ

c2
� n

τλ�
n
σρ

)
uρ

p . (A12)

In the Newtonian limit c → +∞, this becomes

f n
d μ = Cr

(wn)2

(
γ λ

μγ στ� n
τλ�

n
σρ + tμeλγ στ� n

τλ�
n
σρ

)
uρ

p . (A13)

Let wμ
n be the neutron vorticity vector, defined as (Carter & Chamel

2005b)

wμ
n = 1

2
εμνρσ � n

νρ tσ = 1

2
εμνρ� n

νρ . (A14)

It follows from equation (A10) that

wμ
n tμ = 0, (A15)

meaning that the vorticity vector wμ
n is purely spatial. Its norm is

given by

γμνw
μ
n wν

n = 1

2
γ μνγ ρσ � n

μρ�
n
νσ = (

wn
)2

, (A16)

where the vorticity scalar wn is the Newtonian limit (c → +∞) of
equation (36).

From the degeneracy of the vorticity 2-form wn
μν , we have

� n
μνw

ν
n = 0, (A17)

see e.g. equation (75) from Carter & Chamel (2005b) or equation (41)
from Chamel & Carter (2006). The unit spatial vector κ̂μ, defined
as

κ̂μ = wμ
n

wn
, γμν κ̂

μκ̂ν = 1, (A18)

can thus be seen as the unit vector along the vortex line. Since wn
μν

is of rank 2, we can introduce a vector u
μ
L satisfying (see equation 89

of Carter & Chamel 2005b)

� n
μνu

ν
L = 0, uν

Ltν = 1, and γμν u
μ
L κ̂ν = 0. (A19)

The vorticity surface-generating 4-vector u
μ
L can be interpreted as the

local average 4-velocity of the vortices (in the sense that the vorticity
2-form wn

μν is Lie transported by u
μ
L ) in a direction orthogonal to κ̂μ,

as illustrated in Fig. A1. We now define the spatial part of the vortex
4-velocity as

v
μ
L = u

μ
L − eμ. (A20)

Indeed, the normalization condition u
μ
L tμ = 1, in combination with

equation (A3), leads to

v
μ
L tμ = 0. (A21)

Besides, inserting equation (A20) into the last relation in (A19)
yields

γμν v
μ
L κ̂ν = 0. (A22)
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Vortex pinning in relativistic neutron stars 1415

Figure A1. The 4-vectors u
μ
L and κ̂μ form an orthogonal basis of the 2D

surface swept by the quantized vortex. See the text for details.

From the previous considerations, the neutron vorticity 2-form � n
μν

is found to be expressible as (Carter & Chamel 2005b)

� n
μν = (

εμνρ + 2vσ
L t[ν ε μ]ρσ

)
wnκ̂ρ . (A23)

Defining the spatial part of the fluid 4-velocities by

vμ
n = uμ

n − eμ, vμ
n tμ = 0, (A24)

and

vμ
p = uμ

p − eμ, vμ
p tμ = 0, (A25)

the force balance equation (32) can be finally recast as

0 = nnw
nεμνρ

(
vν

n − vν
L

)
κ̂ρ + nnw

ntμενρσ vν
nv

ρ
L κ̂σ

+Nn R γμν

(
vν

p − κ̂ν κ̂ρv
ρ
p − vν

L

)

+Nn R tμ γνρv
ν
L

(
v

ρ
L − vρ

p

)

+A npw
nεμνρ

(
vν

p − vν
L

)
κ̂ρ

+A npw
ntμενρσ vν

pv
ρ
L κ̂σ , (A26)

where we have used equations (A2), (A3), (A5), (A10), (A13), and
(A23). Contracting this last relation with the space projection tensor,
defined as

P
μ
λ = δ

μ
λ − eμtλ = γ

μ
λ , (A27)

yields (only space indices i, j, k appear here)

0 = −Nn ρn κn εijkκ̂
j
(
vk

n − vk
L

) − Nn A ρp κp εijkκ̂
j
(
vk

p − vk
L

)

+Nn R γij

(
vj

p − κ̂j κ̂kv
k
p − v

j

L

)
, (A28)

where ρn = mn nn, ρp = mp np, κp = h/(2mp) and we have used
equation (37). This last expression coincides with the sum6 of
equations (1), (2) and (3) from Sourie & Chamel (2020b) multiplied
by the mean vortex surface density Nn, as expected from the
vanishing of the total force acting on individual vortex lines, provided
that

R = ρnκn ξ and A = Np, (A29)

where ξ is the (microscopic) ‘drag-to-lift’ ratio and Np is the number
of proton fluxoids pinned to each vortex line. Note that the time

6Let us remark that only velocities orthogonal to the direction κ̂ i of the vortex
lines were considered in Sourie & Chamel (2020a,b), leading to κ̂kv

k
p = 0.

component of the force balance equation (A26), as obtained by
contracting with eμ, yields the same equation as equation (A28;
projected along vi

L).

APPENDI X B: FLUI D 4 -VELOCI TI ES

Without any loss of generality, the fluid 4-velocities can be expressed
as

uμ
n = u1

n kμ + u2
n hμ + u1

n V μ
n and uμ

p = u1
p kμ + u2

p hμ + u1
p V μ

p ,

(B1)

where each vector V μ
X

satisfies V μ
X

kμ = V μ
X

hμ = 0.
Assuming quasi-circular motion, one has V

X
� 1 (recalling we

set c = 1), where V
X

= √
V

XμV μ
X

. Therefore, the strain-rate tensors
of the fluids satisfy

∇μV
Xν + ∇νVXμ � 1

R
, (B2)

i.e. ∇(μ V
X ν) = O

(
L−1

)
, where L � R (R being the radius of the

star). Since the quasi-Killing vector kμ is also subject to a similar
condition, see equation (38), one can now define k̃μ = kμ + V μ

p ,
which in turn satisfies

∇μk̃ν + ∇ν k̃μ = O
(

1

L

)
, (B3)

and k̃μk̃μ 
 kμkμ at lowest order in V
X

. The 4-vector k̃μ can
thus be interpreted as another quasi-Killing vector associated with
stationarity (this reflects the gauge freedom in the definition of kμ as
a ‘quasi’-Killing vector). The fluid 4-velocities can thus be rewritten
as

uμ
p = γp

(
k̃μ + �ph

μ
)

and uμ
n = γn

(
k̃μ + �nh

μ + ṽμ
n

)
, (B4)

where γp = u1
p, �p = u2

p/u
1
p, γn = u1

n, �n = u2
n/u

1
n, and ṽμ

n = V μ
n −

V μ
p . The expression considered for the normal 4-velocity can be seen

as a gauge fixing condition for the quasi-Killing vector associated
with stationarity (absence of non-circular motion for the normal
fluid). Considering cylindrical coordinates (t, r, θ , z) adapted to the
space–time symmetries, i.e.

k̃μ = ∂μ
t and hμ = ∂

μ
θ , (B5)

we have �p = uθ
p/u

t
p and �n = uθ

n/u
t
n, from which we deduce that

�p and �n are to be interpreted as the angular velocities of the normal
fluid and neutron superfluid as seen by a static observer located at
spatial infinity.

APPENDI X C : MEAN VORTEX V ELOCI TY

The definition of a mean 4-velocity of vortices is not devoid of
ambiguities, referring either to some given observers (as e.g. in
Gavassino et al. 2020) or to the structure of the space–time under
consideration (as in Appendix A, see equation A19). In either case,
such a velocity should be so defined as to leave the vorticity 2-form
wn

μν invariant by Lie-transport.
In what follows, the mean 4-velocity of the vortices is expressed

in a similar form to that of the neutron superfluid (41), i.e.

u
μ
L = γL

(
kμ + �Lhμ + ṽ

μ
L

)
, (C1)

where ṽ
μ
L is a small non-circular contribution satisfying ṽL μkμ =

ṽL μhμ = 0, �L is the mean (non-uniform) angular velocity of the
vortices and γL is some Lorentz-type factor obtained using the
normalization condition u

μ
LuL μ = −1.
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1416 A. Sourie and N. Chamel

Requiring7 � n
μνu

ν
L = 0 (thus ensuring that the vorticity 2-form is

Lie transported along the vortex 4-velocity) leads to

kμ� n
μν + �Lhμ� n

μν + ṽ
μ
L � n

μν = 0. (C2)

Contracting this relation with wn νρhρ now yields

− h−2
⊥ kμh

μ
⊥ = �L + ṽ

μ
L h⊥μh−2

⊥ , (C3)

where we have used equations (35) and (49), from which we deduce
that the term on the left-hand side of equation (53) is to be interpreted
as the mean angular velocity of the vortices (plus a small non-circular
contribution). On the other hand, contracting equation (C2) with hν

yields

α̇n = −ṽ
μ
L wn

μνh
ν. (C4)

Introducing the unit space-like vector r̂μ = w−1
n h−1

⊥ � n μνhν (58),
which is both orthogonal to the vortex worldsheet and to the vector
h

μ
⊥, we get

w−1
n h−2

⊥ α̇n = −h−1
⊥ ṽ

μ
L r̂μ. (C5)

The left-hand side of equation (54) thus corresponds to the opposite
of the vortex velocity along the unit vector r̂μ (i.e. to the ‘inwards
radial’ velocity of the vortices), as divided by h⊥.

APPENDIX D : N EWTO NIAN LIMITS OF THE
M E A N VO RT E X V E L O C I T Y A N D T H E
M U T UA L - F R I C T I O N FO R C E

In this appendix, we will write the speed of light c explicitly since
we will take the Newtonian limit c → +∞.

D1 Mean vortex velocity and equation of motion

The concept of Killing vectors remains relevant in the Newtonian
space–time (Carter & Chamel 2005a; Chamel 2015). In this case, the
(quasi-)Killing vector kμ = ∂

μ
t associated with stationarity coincides

with the ether flow vector eμ. In cylindrical coordinates (r, θ , z)
adapted to the space–time symmetries, we have

hμ = ∂
μ
θ = re

μ
θ and κ̂μ = eμ

z , (D1)

where κ̂μ introduced in equation (A18) is the unit vector along the
vortex direction and (eμ

r , e
μ
θ , eμ

z ) is the right-handed orthonormal
spatial vector basis associated with the cylindrical coordinates. Note
that hμtμ = 0 = κ̂μtμ.

Using equation (C1), the mean 4-velocity of the vortices reads

u
μ
L = γL

(
eμ + �Lhμ + ṽ

μ
L

)
. (D2)

The condition ṽ
μ
L kμ = 0 translates into tμṽ

μ
L = 0, as demonstrated

below:

0 = gμνṽ
μ
L kν = (γμν − c2tμtν)ṽμ

L eν = −c2tμṽ
μ
L , (D3)

where we have used equations (A1) and (A2). The normalization
condition u

μ
L tμ = 1 together with equation (A3) imply that γL = 1.

Since ṽ
μ
L is purely spatial, the orthogonality condition ṽL μhμ = 0

becomes γμνṽ
μ
L hν = 0. By definition, ṽμ

L is also orthogonal to κ̂μ, see
equation (A19), therefore ṽi

L = ṽr
Lei

r (using Latin letters for spatial
indices). Finally, the spatial part (A20) of the mean 4-velocity of the
vortices reads

vi
L = r�Lei

θ + ṽr
Lei

r . (D4)

7This condition can always be imposed since � n
μν is of rank 2.

We shall now derive the Newtonian limit of equations (53) and (54)
describing the average motion of vortices. Using equations (35),
(A1), (A2), and (A4), we have

h2
⊥ = gμνh

μ
⊥hν

= gμν ⊥μ
ρ hρhν

= gμν

1

(wn)2 gμλgστ� n
τλ � n

σρh
νhρ

= γμν

1

(wn)2

(
γ μλ − eμeλ

c2

)(
γ στ − eσ eτ

c2

)
� n

τλ � n
σρh

νhρ

= γμν

1

(wn)2 γ μλ

(
γ στ − eσ eτ

c2

)
� n

τλ � n
σρh

νhρ

= 1

(wn)2

(
γ στ − eσ eτ

c2

)
� n

τλh
λ � n

σρh
ρ. (D5)

Taking the Newtonian limit c → +∞ using equation (A23) yields

h2
⊥ = 1

(wn)2 γ στ� n
τλh

λ � n
σρh

ρ

= γ στ ετλδκ̂
δ εσρμκ̂μhλhρ

= κ̂δ κ̂μhλhρεσ
λδ εσρμ

= κ̂δ κ̂μhλhρ
(
γλργδμ − γλμγδρ

)

= γμνh
μhν − (

γμνh
μκ̂ν

)2
. (D6)

It follows from equation (D1) that

h2
⊥ = γμνh

μhν = r2. (D7)

Similarly,

kμh
μ
⊥ = gμνk

νh
μ
⊥

= gμνe
ν ⊥μ

ρ hρ

= (γμν − c2tμtν) eν ⊥μ
ρ hρ

= −c2tμ ⊥μ
ρ hρ

= 1

(wn)2
eνγ σμ� n

νμ� n
ρσ hρ

= γ σμεμνλv
ν
Lκ̂λερσδκ̂

δhρ

= εσ
νλερσδv

ν
Lκ̂λκ̂δhρ

= −εσ
νλεσρδv

ν
Lκ̂λκ̂δhρ

= − (
γρνγλδ − γνδγρλ

)
vν

Lκ̂λκ̂δhρ

= −γρνv
ν
Lhρ. (D8)

Collecting equations (D7) and (D8), the left-hand side of equa-
tion (53) thus reduces in the Newtonian limit to

− h−2
⊥ kμh

μ
⊥ = vθ

L

r
= �L. (D9)

Using equations (A10), (A23), (C4), and (D1), we find

α̇n = −ṽ
μ
L wn

μνh
ν

= −ṽ
μ
L wnεμνρh

νκ̂ρ

= −ṽ r
Lwnr. (D10)
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Therefore, the left-hand side of equation (54) is given by

w−1
n h−2

⊥ α̇n = − ṽ r
L

r
, (D11)

where we have used equation (D7).
To find the Newtonian limit of equations (56) and (57), we need

to evaluate the scalars ṽμ
n h⊥μ and ṽμ

n ∇μαn. Using equation (A1) and
the fact that ṽμ

n tμ = 0, we have

ṽμ
n h⊥μ = ṽμ

n gμν ⊥ν
ρ hρ

= ṽμ
n (γμν − c2tμtν) ⊥ν

ρ hρ

= ṽμ
n γμν ⊥ν

ρ hρ. (D12)

Using equations (35) and (A23), and taking the limit c → +∞, yield

ṽμ
n h⊥μ = ṽμ

n γμν

1

(wn)2
γ νλγ σδ� n

δλ�
n
σρh

ρ

= ṽμ
n γ λ

μγ σδεδλν κ̂
νεσργ κ̂γ hρ

= ṽλ
n γ σδεδλν κ̂

νεσργ κ̂γ hρ

= ṽλ
n εσ

λνεσργ κ̂γ κ̂νhρ

= ṽλ
n

(
γρλγνγ − γλγ γρν

)
κ̂γ κ̂νhρ

= 0, (D13)

where the last equality follows from γμνṽ
μ
n hν = 0 and γμνκ̂

μhν = 0.
Similarly, using equations (A10), (A23), and (D1), we find

ṽμ
n ∇μαn = ṽμ

n wn
μνh

ν = ṽ r
n wnr. (D14)

Equations (56) and (57) thus become in the Newtonian limit

�− = − ξ̃

1 + X

ṽr
n

r
, (D15)

�+ = 1 + X

ξ̃

ṽr
n

r
. (D16)

The Newtonian expressions for the dynamical equations (53)
and (54) finally read

vθ
L

r
= �L = (

1 − B′)(�n + �p
B′

1 − B′ − ξ̃

1 + X

ṽr
n

r

)
, (D17)

− vr
L

r
= − ṽr

L

r
= B

(
�p − �n − 1 + X

ξ̃

ṽr
n

r

)
, (D18)

in perfect agreement with the expressions obtained from equa-
tion (56) of Sourie & Chamel (2020a) using

vi
n = r�ne

i
θ + ṽr

ne
i
r , and vi

p = r�pe
i
θ . (D19)

D2 Mutual-friction force and torque

Let us first show that the unit vector r̂μ reduces to eμ
r in the Newtonian

limit. Starting from the definition (58) and substituting equation (A4),
we find

r̂μ = w−1
n h−1

⊥ gμρgνσ � n
ρσ hν

= w−1
n h−1

⊥

(
γ μρ − eμeρ

c2

)(
γ νσ − eνeσ

c2

)
� n

ρσ hν. (D20)

Taking the limit c → +∞ leads to

r̂μ = w−1
n h−1

⊥ γ μρ� n
ρσ hσ

= w−1
n h−1

⊥ γ μρερσδw
nκ̂δhσ

= eμ
r . (D21)

We have used equation (D1) for the last equality. Using equation (37),
the Newtonian limit of equations (61) and (62) thus reduces to

f mf θ = ρn κn Nn

[
Br

(
�p − �n

) + B′ṽr
n

]
, (D22)

f mf r = ρn κn Nn

[
B′r

(
�p − �n

) − Bṽr
n

]
. (D23)

Equations (D22) and (D23) agree perfectly with the radial and
orthoradial components of the mutual-friction force obtained from
equation (5) of Sourie & Chamel (2020b) with the prescription (D19).
Using equation (74), the mutual-friction torque is given by the
integral over the volume of the star

�mf =
∫

nnw
nr2

[
B(�p − �n) + B′ ṽ

r
n

r

]
dV . (D24)

recalling that kμ = eμ and eμtμ = 1, and using the fact that d�μ =
tμdV.

Assuming circular motion (ṽr
n = 0), neglecting entrainment effects

between the fluids (wn = 2 mn �n), and considering uniform mutual-
friction coefficients and fluid angular velocities, equation (D24)
reduces to (In is the moment of inertia of the neutron superfluid)

�mf = 2B In �n (�p − �n), (D25)

in perfect agreement with equations (10) and (11) of Sourie & Chamel
(2020b).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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