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Abstract In this manuscript, we show that the external
Schwarzschild metric can be a good approximation of exact
black hole solutions of entangled relativity. Since entangled
relativity cannot be defined from vacuum, the demonstrations
need to rely on the definition of matter fields. The electromag-
netic field being the easiest (and perhaps the only) existing
matter field with infinite range to consider, we study the case
of a charged black hole – for which the solution of entangled
relativity and a dilaton theory agree – as well as the case of a
pure radiation – for which the solution of entangled relativ-
ity and general relativity seem to agree, despite an apparent
ambiguity in the field equations. Based on these results, we
argue that the external Schwarzschild metric is an appropri-
ate mathematical idealization of a spherical black hole in
entangled relativity. The extension to rotating cases is briefly
discussed.

1 Introduction

Entangled relativity [1–4] is a theory of relativity that ful-
fills Einstein’s original idea that “there can be no G-field
[space-time] without matter” [5],1 while at the same time it
recovers many predictions of general relativity – without any
novel field, see [2] and references therein. Einstein originally
thought that general relativity augmented with a cosmologi-
cal constant λ would possess the wanted property that “phys-
ical qualities of space are completely determined by matter
alone” [6]2; whereas it was obviously not the case with gen-
eral relativity without a cosmological constant since a flat
space-time is obviously solution of vacuum in that case [5].
Indeed, the existence of space-time without matter means

a e-mail: ominazzoli@gmail.com (corresponding author)
b e-mail: edison_cesar@hotmail.com
1 A translation in English of the original paper in German is available
online at https://einsteinpapers.press.princeton.edu/vol7-trans/49.
2 A translation in English of the original paper in German is available
online at https://einsteinpapers.press.princeton.edu/vol7-trans/52.

that inertia can be defined relative to space only, whereas
Einstein had in mind that inertia – and, of course, angular
momentum – could only be defined relatively to surrounding
matter [7–9]. One has to keep in mind that in 1918, accord-
ing to Einstein, the impossibility of the existence of space-
time (hence gravity and inertia) without matter – that fol-
lows from his interpretation of some of the ideas of Mach
[7–10], which he named Mach’s principle [5] – was one of
the three requirements of a satisfying general theory of rela-
tivity, together with the need of covariant equations – which
follow from the principle of relativity – and the fact that the
metric tensor determines the metric properties of space, the
inertial behavior of bodies in this space, as well as the gravi-
tational effects – which follow from the principle of equiva-
lence [5]. Hence, de Sitter’s solution [11] of general relativity
with a cosmological constant – but in vacuum otherwise –
was quite unsatisfactory to Einstein, as it meant that “the λ-
term does not fulfill the purpose [he] intended [...] that no
gμν-field must exist without matter that generates it” [6]. In
other words, Einstein believed in the relativity of inertia [8,9]
that, despite his initial hopes, turned out not to be valid (at
least in general) in the framework of general relativity [8,9].
This is arguably a very serious ontological issue of general
relativity [9,12].

Nevertheless, black hole solutions in vacuum of general
relativity – such as the Schwarzschild and the Kerr metrics
– play an important role in explaining many different phe-
nomena, from the observations of the Event Horizon Tele-
scope [13,14] to the detection of gravitational waves [15,16].
Therefore, it is important to check whether or not the usual
vacuum solutions of general relativity – which are good math-
ematical idealization of astrophysical black holes – are also
good approximations of black holes in entangled relativity.

While vacuum solutions should not exist in entangled rel-
ativity, nothing prevents the density of matter field outside
the event horizon to be arbitrarily small – notably recover-
ing some usual astrophysical conditions. In what follows, we
shall name such a condition a near vacuum situation.
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In the present manuscript, we shall present an exact spher-
ical solution of entangled relativity that can be approximated
by the Schwarzschild metric in a near vacuum situation. We
shall then argue that this result could actually come from a
general property that makes that vacuum solutions of general
relativity good approximations of near vacuum solutions of
entangled relativity. It is therefore argued that astrophysical
black holes of entangled relativity are likely indistinguish-
able from the ones of general relativity in many cases.

2 Action and field equation

The action of entangled relativity is given by [2]

S = − ξ

2c

∫
d4x

√−g
L2
m

R
, (1)

where the constant ξ has the dimension of the usual coupling
constant of general relativity κ ≡ 8πG/c4 – where G is the
Newtonian constant and c the speed of light. R is the usual
Ricci scalar constructed upon the space-time metric gαβ , with
determinant g; while Lm is a scalar Lagrangian representing
the matter fields. ξ defines a novel fundamental scale that is
relevant at the quantum level only, and therefore is notably not
related to the size of black holes; whereas the Planck scale –
defined from κ and which is related to the size of black holes –
no longer is fundamental, nor constant, in entangled relativity
[2].3 The impossible existence of gravity without matter, and
vice versa, is obvious from the action. It comes from the fact
that one has replaced the usual additive coupling between
matter and geometry by a pure multiplicative coupling. For
Lm �= 0, the metric field equation reads

Rμν − 1

2
gμνR = − R

Lm
Tμν + R2

L2
m

(∇μ∇ν − gμν�
) L2

m

R2 ,

(2)

with

Tμν ≡ − 2√−g

δ
(√−gLm

)
δgμν

. (3)

Note that the trace of Eq. (2) reads

3
R2

L2
m

�L2
m

R2 = − R

Lm
(T − Lm) . (4)

3 As also discussed in [4,17], this might be a way out of the ontologi-
cal paradox of conventional quantum gravity that, in Freeman Dyson’s
words [18], “nature conspires to forbid any measurement [through the
creation of black holes] of distance with error smaller than the Planck
length”, because the effective Planck scale [2] – which fixes the size
of a black hole’s event horizon for a given mass – depends on the field
equations in entangled relativity.

Also note that the stress-energy tensor is no longer conserved
in general, as one has

∇σ

(Lm

R
T ασ

)
= Lm∇α

(Lm

R

)
. (5)

But entangled relativity is more easily understood in its
dilaton equivalent4 form that reads [1,2]

S = 1

c

ξ

κ̃

∫
d4x

√−g

[
φR

2κ̃
+ √

φLm

]
, (6)

where κ̃ is a positive effective coupling constant between
matter and geometry, with the dimension of κ . κ̃ takes its
value from the asymptotic behavior of the effective scalar
degree of freedom in Eq. (1) [1,2], as well as the consid-
ered normalisation of φ. κ̃/

√
φ, which defines an effective

Planck scale, notably fixes the size of black holes with a given
mass. The equivalence between the two actions is similar to
the equivalence between f (R) theories and the correspond-
ing specific scalar-tensor theories [19]. From this alternative
action, one can easily see why entangled relativity reduces to
general relativity when the variation of the scalar-field degree
of freedom vanishes. The dilaton field equations read

Gαβ = κ̃
Tαβ√

φ
+ 1

φ

[∇α∇β − gαβ�
]
φ, (7)

√
φ = −κ̃Lm/R, (8)

where Gαβ is the Einstein tensor and the conservation equa-
tion reads

∇σ

(√
φT ασ

)
= Lm∇α

√
φ. (9)

The trace of the metric field equation can therefore be rewrit-
ten as follows

3

φ
�φ = κ̃√

φ
(T − Lm) . (10)

The equivalence between Eqs. (7)–(10) and (2)–(5) is pretty
straightforward to check. This simply means that, indeed, the
action (1) possesses an additional gravitational scalar degree
of freedom with respect to general relativity.

The good thing with this extra degree of freedom is that
it is not excited in all situations where Lm ∼ T . This leads
to a phenomenology that closely resembles the one of gen-
eral relativity [2,4,20–22]; whereas it is expected to differ
from the one of general relativity in all other situations – see

4 This dilaton theory is equivalent, at least at the classical level, as long
as Lm/R < 0. Notably, it seems that one must always consider cases
such that (R,Lm) �= 0 when one uses the dilaton form of entangled
relativity, although R and Lm can be arbitrarily small in principle. We
shall come back on this point in the manuscript.
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e.g. [3] or [17]. As a consequence, the theory seems to be
viable from an observational perspective, while at the same
time it offers potential interesting new avenues – as we will
see, notably in Sect. 3.1. The electromagnetic field being the
easiest (and perhaps the only) matter field with infinite range
to consider, we will only study the case of the electromag-
netic Lagrangian Lm = −F2/(2μ0) in what follows, where
μ0 is the magnetic permeability.5 With this Lagrangian, the
electromagnetic field equation reads

∇σ

(√
φFμσ

)
= ∇σ

(Lm

R
Fμσ

)
= 0. (11)

Let us note that the equivalence of the original action of
entangled relativity in Eq. (1) with an Einstein–Maxwell-
dilaton theory – see Eqs. (6) and (12) – seems to indi-
cate that the theory is well-behaved with respect to various
aspects, such as the Ostrogradsky instability [24,25] or the
well-posedness of the initial value problem [26–29]. Indeed,
Einstein–Maxwell-dilaton theories are second-order theories
that are notably known to have a well-posed initial-value
problem [30,31]. This is similar to what happens with fourth-
order f (R) theories [24,27,28].

3 Charged black hole

In its scalar-tensor form (6), entangled relativity is just a
specific case of a dilaton theory, for which the solution for
charged black hole has been investigated by many authors
during the first superstring revolution [32,33]. Indeed, defin-
ing the Einstein frame metric by g̃αβ = e−2ϕ/

√
3gαβ , with

φ = e−2ϕ/
√

3, the action in the Einstein frame reads

S = 1

c

ξ

κ

∫
d4x

√−g̃

×
[

1

2κ

(
R̃ − 2g̃αβ∂αϕ∂βϕ

)
− e−ϕ/

√
3 F̃2

2μ0

]
, (12)

where F̃2 = g̃ασ g̃βε F̃σε F̃αβ , where F̃αβ := Fαβ . One has
used the conformal invariance of the electromagnetic action.
From now on, in order to follow the literature, we use natural
units. This action corresponds exactly to the one considered
in [23,34–36] with a = (2

√
3)−1. The spherical solution

therefore reads [23,34–36]

ds̃2 = −λ̃2dt2 + λ̃−2dr2 + ρ̃2
(

dθ2 + sin2 θdψ2
)

, (13)

5 In natural units, we consider Lm = −F2/2 instead of Lm = −F2/4,
in order to follow the definition used in the literature [23]. In particular,
it means that the electromagnetic stress-energy tensor reads Tμν =
2

(
FμαFν

α − 1
4 g

μνFαβFαβ
)

in natural units.

with

λ̃2 =
(

1 − r+
r

) (
1 − r−

r

)(
1−a2

)
/
(
1+a2

)
, (14)

and

ρ̃2 = r2
(

1 − r−
r

)2a2/
(
1+a2

)
, (15)

whereas the field solutions read

F̃ = −Qe2aϕ

ρ̃2 dt ∧ dr = − Q

r2 dt ∧ dr, (16)

for an electric charge, and

e2aϕ =
(

1 − r−
r

)2a2/
(
1+a2

)
, (17)

where we normalized the scalar-field such that its background
value ϕ0 corresponds ϕ0 = 0. r+ is an event horizon, whereas
r− is a curvature singularity for a �= 0. They are related to
the mass and charge, M and Q, by

2M = r+ +
(

1 − a2

1 + a2

)
r−, (18)

and

Q2 = r−r+
1 + a2 . (19)

Performing the inverse conformal transformation
gαβ = e2ϕ/

√
3g̃αβ in order to have the solution of the action

Eq. (6), one gets

ds2 = −λ2
0dt2 + λ−2

r dr2 + ρ2
(

dθ2 + sin2 θdϕ2
)

, (20)

with

λ2
0 =

(
1 − r+

r

) (
1 − r−

r

)15/13
, (21)

λ2
r =

(
1 − r+

r

) (
1 − r−

r

)7/13
, (22)

ρ2 = r2
(

1 − r−
r

)6/13
. (23)

The scalar-field solution on the other hands reads

φ =
(

1 − r−
r

)−4/13
. (24)

The solution (20)–(24) has been verified via Mathematica,
the code is accessible on GitHub [37]. It is therefore the first
known black hole solution of entangled relativity.

r− → 0 corresponds to a near vacuum situation described
in the introduction. In this limit, the scalar-field tends to
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a constant field and the metric in Eq. (20) tends to the
Schwarzschild solution in a near vacuum situation.

This represents the first example for which an exact solu-
tion of entangled relativity is shown to be well approximated
in a near vacuum situation by the usual Schwarzschild solu-
tion in vacuum. This is an indication that the outside metric
of the Schwarzschild solution can be an accurate mathemat-
ical idealisation of a non-rotating astrophysical black hole in
entangled relativity.

3.1 Discussion on the validity of the solution beyond the
event horizon

While the solution (20)–(24) seems perfectly well behaved
within the event horizon at a mathematical level, we would
like to argue that this region might not correspond to the solu-
tion after the collapse of an astrophysical object, therefore
only the region outside the event horizon might be relevant
at the physical level. The reason being that nothing guar-
antees that singularities occur after the collapse of compact
objects in entangled relativity.

Indeed, the effective coupling 8πGef f /c4 := −R/Lm

between matter and curvature in the metric field equation
(2) is not necessarily positive everywhere since it notably
depends on the on-shell value of matter fields Lm . As a con-
sequence, gravity is potentially not attractive everywhere in
entangled relativity, but also repulsive in some places. In par-
ticular, if one assumes that Lm = K −V , where K and V are
the kinetic and potential energy densities, it seems plausible
that Lm flips its sign at high enough energy, when kinetic
energy should dominate matter dynamics. If, in the mean-
time, the Ricci scalar keeps its sign, the effective constant of
NewtonGef f becomes negative and gravity becomes a repul-
sive phenomenon. Hence, one can genuinely assume that, in
that case, the solution will not look like (20)–(24) within the
event horizon. Unfortunately, investigating this issue seems
to require an accurate description of matter fields at (arbitrar-
ily) high energy; while it is believed that the standard model
of particles is not accurate at (arbitrarily) high energy.

The transition between the attractive and repulsive cases
seems to be singular, or at least ambiguous, in the metric field
equation (2), since one has to go through Lm = 0. However,
this is likely not the case for the following reason. One can
see that the metric field equation that derives from the action
(1) actually originally reads for all Lm as follows

L2
m

R2

(
Rμν − 1

2
gμνR

)
= −Lm

R
Tμν + (∇μ∇ν − gμν�

) L2
m

R2 ,

(25)

instead of Eq. (2), as it usually appears in the literature for its
resemblance with the usual form of the equation of Einstein.
Therefore, one can see that any metric that leads to a non-null

Ricci scalar is likely consistent with Lm = 0 on-shell. As a
consequence, the transition between Lm < 0 and Lm > 0
is likely not singular if one has R �= 0 at the transition.6 If
that happens, not only the transition would be regular, but
it would also correspond to a transition from attractive to
repulsive gravity – that is, from Lm/R < 0 to Lm/R > 0
in Eq. (2) – given that the effective coupling between matter
and curvature can be written as 8πGef f /c4 := −R/Lm . This
very interesting topic is left for further studies.

4 Pure electromagnetic radiation

The case of pure electromagnetic radiation is of interest
because radiating solutions of general relativity seems to sat-
isfy entangled relativity as well, despite an apparent ambi-
guity in the field equations.

Indeed, from the trace of Einstein’s equation of general
relativity, and from the conformal invariance of electromag-
netism, one deduces that any purely radiative solution of gen-
eral relativity must be such that R = T = 0. Also, even
though one has Tμν �= 0, the electromagnetic Lagrangian
Lm = B2 − E2 vanishes on-shell in entangled relativity as
well, since E2 = B2 for pure radiation. Therefore, assuming
any purely radiative solution of general relativity, one has
Lm = R = T = 0.

Nevertheless, φ = κ̃2L2
m/R2 = φ0, where φ0 is a con-

stant, is consistent with all the field equations of entangled
relativity, because in that case, they reduce exactly to the one
of the Einstein–Maxwell theory. Hence, any purely radiative
solution of general relativity seems likely to be solution in
entangled relativity as well. The division L2

m/R2, however,
is ambiguous, despite it being a constant.

At this stage, we do not conclude that purely radiative solu-
tions of general relativity are also solutions of entangled rela-
tivity, but that it seems that it might very well be. In any case,
these solutions, such as Vaidya’s radiating Schwarzschild
solution [38,39], may be used in order to study the behav-
ior of entangled relativity in the limit (Lm, T, R) → 0.
Another possibility to study such cases might be achieved
by analysing a solution that is both charged and radiating,
and then taking the limit when its charge goes to zero. This
issue is left for further studies.

Nevertheless, note that even if it turns out that a pure
radiative field cannot be solution in entangled relativity (1),
this might not be a fundamental issue for the theory, as the
quantum trace anomaly of self-interacting fields in a curved
background should induce small, but non-null, values of the
Ricci scalar, the trace of the stress-energy tensor and the
Lagrangian that appears in the field equations [4,40]. Quan-

6 Note that havingLm = R = 0 would not be singular either ifLm ∝ R
– that is Lm/R is a constant – while reaching 0.
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tum trace anomalies may therefore imply that the theory is
well behaved everywhere. Investigation of this aspect is left
for further studies.

5 Discussion

Now we argue that, in general, vacuum solutions of gen-
eral relativity can be good approximations of some near vac-
uum black hole solutions of entangled relativity. Indeed, in
a near vacuum situation – that is Tμν ∼ 0 – the scalar-field
in Eq. (10) can be approximated as being sourceless. As a
consequence, a constant scalar-field is a good approximation
as well, and the metric field equation becomes itself well
approximated by the one of general relativity without a cos-
mological constant.7

This means that while black holes in entangled relativity
are not entirely the same as in general relativity, their dif-
ferences might be insignificant in situations that correspond
to a scalar-field which equation is mostly sourceless. In par-
ticular, this argument seems to indicate that an astrophysi-
cal rotating black hole in entangled relativity could be well
approximated by the external Kerr metric of general relativ-
ity.

Otherwise, it is known that black holes might grow some
hair due to a variation (either temporal or spatial) of the
background value of the scalar-field in scalar-tensor theories
[41]. Let us note that, whether or not this may be true in
entangled relativity as well, the scalar-field is not expected
to vary significantly neither temporally nor spatially. Indeed,
with respect to the former, the scalar-field is attracted toward
a constant in entangled relativity during the expansion of
the universe [4,21,22]; whereas, because the scalar-field is
also not sourced by pressureless matter fields in the weak
field regime [20], one does not expect a significant spatial
variation of the scalar-field either. Both cases follow from
the intrinsic decoupling of the scalar-field at the level of the
scalar-field equation for Lm ∼ T [4,20–22,42].

Before concluding, we would like to stress again that one
should not take seriously the exact solutions presented in
this manuscript within the event horizon. Indeed, in order
to describe any compact object inside the black hole in this
model, one must have a high energy description of matter
fields in order to tell what happens there in entangled relativ-
ity. The reason being that gravity becomes repulsive in entan-
gled relativity for matter fields that are such that Lm/R > 0

7 Given the small value of the inferred cosmological constant in gen-
eral relativity from the apparent acceleration of the expansion of the
universe, black hole solutions of general relativity with and without a
cosmological constant are alike on scales well below the Hubble scale.
Hence, we will not enter into such details.

[17],8 and one cannot exclude the possibility that this situa-
tion could happen after a phase transition of matter fields at
high energy. In particular, this may be a way to avoid black
hole singularities [43] without the absolute need of a quantum
field description of gravity [17].

6 Conclusion

Black holes in entangled relativity are somewhat more com-
plex to study than in general relativity, given that vacuum
does not seem to be allowed by the theory. Therefore one has
to study solutions that involve matter fields, before contin-
gently taking the limit toward vacuum in order to have a more
realistic representation of astrophysical black holes – which
are usually thought to evolve in a near vacuum environment.
In this manuscript, using previous results developed in the
framework of string theory, we presented an exact spherically
charged solution of entangled relativity in Eqs. (20)–(24). As
one would expect, the solution tends to the Schwarzschild’s
solution in a near vacuum limit – that is, when the charge of
the black hole goes to zero.

Additionally, we argued that any solution of pure radia-
tion in general relativity, such as Vaidya’s solution, might
also be solution of entangled relativity, although more care-
ful analyses are required to pin the argument on a more firm
mathematical ground.

In any case, both Vaidya’s and the solutions in Eqs. (20)–
(24) are well approximated by the external solution of the
Schwarzschild metric in a near vacuum situation, providing
evidence that an astrophysical spherical black hole in entan-
gled relativity can be approximated by a Schwarzschild black
hole.

Otherwise, we have argued that this result is likely generic
in near vacuum situations, such that an astrophysical rotating
black hole in entangled relativity can also likely be approxi-
mated by a Kerr black hole.
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