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Abstract

A relativistic density-functional theory based on a Fock-space effective quantum-
electrodynamics (QED) Hamiltonian using the Coulomb or Coulomb-Breit
two-particle interaction is developed. This effective QED theory properly in-
cludes the effects of vacuum polarization through the creation of electron-
positron pairs but does not include explicitly the photon degrees of freedom.
It is thus a more tractable alternative to full QED for atomic and molecular
calculations. Using the constrained-search formalism, a Kohn-Sham scheme
is formulated in a quite similar way to non-relativistic density-functional the-
ory, and some exact properties of the involved density functionals are studied,
namely charge-conjugation symmetry and uniform coordinate scaling. The
usual no-pair Kohn-Sham scheme is obtained as a well-defined approximation
to this relativistic density-functional theory.
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1 Introduction

The basic formulation of the relativistic extension of density-functional theory (DFT) was
first laid down by generalizing the Hohenberg-Kohn theorem [1] to a Hamiltonian based
on quantum electrodynamics (QED) with the internal quantized electromagnetic field and
an external classical electromagnetic field [2–5]. These early works did not address the
subtle issues of QED renormalization. These issues were studied by Engel, Dreizler, and
coworkers [6–10] who put relativistic (current) density-functional theory (RDFT) on more
rigorous grounds. In their works, they confirmed the validity of the relativistic extension
of the Hohenberg-Kohn theorem using a charge-conjugation-symmetric form of the QED
Hamiltonian written with commutators of field operators and appropriate renormalization
counterterms. Eschrig et al. [11, 12] took another approach to RDFT based on Lieb’s
Legendre transformation using a normal-ordered QED Hamiltonian. Ohsaku et al. [13]
proposed a local-density-matrix functional theory based on a QED Hamiltonian with an
one-photon-propagator fermion-fermion interaction. Despite these formal foundations of
RDFT based on QED, in practice four-component RDFT is invariably applied in the
Kohn-Sham (KS) scheme with a non-quantized electromagnetic field and in the no-pair
approximation (i.e., neglecting contributions from electron-positron pairs) [14–21], most
of the time using non-relativistic exchange-correlation density functionals.

In this work, we examine an alternative RDFT based on a Fock-space effective QED
Hamiltonian using the Coulomb or Coulomb-Breit two-particle interaction (see, e.g., Refs. [22–
25]). This effective QED theory properly includes the effects of vacuum polarization
through the creation of electron-positron pairs but does not include explicitly the photon
degrees of freedom. It is thus a more tractable alternative to full QED for atomic and
molecular calculations. This so-called no-photon QED has been the subject of a number
of detailed mathematical studies [26–31], which in particular established the soundness
of this approach at the Hartree-Fock (HF) level. This is thus a good QED level to base
a RDFT on. We show that we can develop indeed a RDFT formalism based on this ef-
fective QED theory using the constrained-search formalism [32,33] in a quite similar way
to non-relativistic DFT. The usual no-pair KS scheme is then obtained as a well-defined
approximation to this RDFT.

The paper is organized as follows. In Section 2, we expose the effective QED theory
considered in this work. We define the normal-ordered electron-positron Hamiltonian,
we discuss how to define the polarized vacuum state and N -negative-charge states by a
minimization formulation, and we introduce the no-pair approximation in this approach.
In Section 3, we develop a RDFT based on this effective QED theory. We describe the
KS scheme in this approach, we give the expression of the Hartree, exchange, and cor-
relation density functionals, we study some exact properties of these functionals, and we
discuss the local-density approximation (LDA). Section 4 contains conclusions and per-
spectives. In the appendices, we prove some important and, to the best of our knowledge,
seemingly unknown aspects of the effective QED theory. First, in Appendix A, we show
that the electron-positron Hamiltonian expressed in terms of the normal ordering with
respect to the free vacuum state has the correct charge-conjugation symmetry. Second,
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in Appendix B, we show that the electron-positron Hamiltonian based on normal order-
ing with respect to the free vacuum state is essentially equivalent to an electron-positron
Hamiltonian based on commutators and anticommutators of Dirac field operators.

In contrast to the quantum chemistry literature where often everything is formulated
in a basis, here we prefer to use a real-space second-quantized formalism which is more
adapted to DFT. Hartree atomic units (a.u.) are used throughout the paper.

2 Effective quantum electrodynamics

2.1 Free Dirac equation and quantized Dirac field

We consider the time-independent free Dirac equation

D(~r)ψp(~r) = εpψp(~r), (1)

with the usual first-quantized 4× 4 Dirac kinetic + rest mass operator

D(~r) = c (~α · ~p) + β mc2, (2)

where ~p = −i~∇ is the momentum operator, c = 137.036 a.u. is the speed of light, m = 1
a.u. is the electron mass, and ~α and β are the 4× 4 Dirac matrices

~α =

(

02 ~σ
~σ 02

)

and β =

(

I2 02
02 −I2

)

, (3)

where ~σ = (σx,σy ,σz) is the 3-dimensional vector of the 2×2 Pauli matrices, and 02 and
I2 are the 2× 2 zero and identity matrices, respectively.

The eigenfunctions form a set of orthonormal 4-component-spinor orbitals {ψp} that
we will assume as being discretized (by putting the system in a box with periodic boundary
conditions). This set can be partitioned into a set of positive-energy orbitals (εp > 0) and
a set of negative-energy orbitals (εp < 0), i.e. {ψp} = {ψp}p∈PS ∪ {ψp}p∈NS, where PS
and NS designate the sets of “positive states” and “negative states”, respectively. The
Dirac field is then quantized as

ψ̂(~r) =
∑

p∈PS∪NS

âpψp(~r) =
∑

p∈PS

b̂pψp(~r) +
∑

p∈NS

d̂†pψp(~r), (4)

where the sum has been decomposed in a contribution involving electron annihilation op-
erators b̂p ≡ âp for p ∈ PS and a second contribution involving positron creation operators

d̂†p ≡ âp for p ∈ NS. The annihilation and creation operators obey the usual fermionic
anticommutation rules

{âp, â
†
q} = δpq and {âp, âq} = {â†p, â

†
q} = 0 for p, q ∈ PS ∪NS, (5)

and the corresponding free vacuum state |0〉 is defined such that

b̂p|0〉 = 0 for p ∈ PS and d̂p|0〉 = 0 for p ∈ NS. (6)

2.2 Electron-positron Hamiltonian

We then consider the normal-ordered electron-positron Hamiltonian in Fock space written
with this quantized Dirac field introduced in Refs. [22,34] (see, also, Ref. [23]) that we can
write as

Ĥ = T̂D + Ŵ + V̂ , (7)
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where the Dirac kinetic + rest mass operator T̂D, the two-particle interaction operator Ŵ ,
and the external potential-energy interaction operator V̂ are expressed as (using σ, ρ, τ ,
υ as spinor indices ranging from 1 to 4)

T̂D =

∫

Tr[D(~r)n̂1(~r,~r
′)]~r ′=~r d~r ≡

∑

σρ

∫

[Dσρ(~r)n̂1,ρσ(~r,~r
′)]~r ′=~r d~r, (8)

and

Ŵ =
1

2

∫∫

Tr[w(~r1, ~r2)n̂2(~r1, ~r2)]d~r1d~r2

≡
1

2

∑

σρτυ

∫∫

wστρυ(~r1, ~r2)n̂2,ρυστ (~r1, ~r2) d~r1d~r2, (9)

and

V̂ =

∫

v(~r)n̂(~r) d~r, (10)

where the one-particle density-matrix operator n̂1(~r,~r
′) and the pair density-matrix op-

erator n̂2(~r1, ~r2) are defined using creation and annihilation Dirac field operators with

normal ordering N [...] of the elementary creation and annihilation operators b̂†p, b̂p, d̂
†
p, d̂p

with respect to the free vacuum state |0〉

n̂1,ρσ(~r,~r
′) = N [ψ̂†

σ(~r
′)ψ̂ρ(~r)], (11)

n̂2,ρυστ (~r1, ~r2) = N [ψ̂†
τ (~r2)ψ̂

†
σ(~r1)ψ̂ρ(~r1)ψ̂υ(~r2)], (12)

and the opposite charge density operator is

n̂(~r) = Tr[n̂(~r)] ≡
∑

σ

n̂σσ(~r), (13)

where n̂(~r) = n̂1(~r,~r). Note that, in the non-relativistic theory, the opposite charge
density operator reduces to the usual one-electron density operator, which is why we prefer
to use the opposite charge density operator n̂(~r) and not the charge density operator
ρ̂(~r) = −n̂(~r). The normal ordering in the definition of the Dirac kinetic + rest mass
operator T̂D in Eq. (8) ensures that this operator is bounded from below with a nonnegative
spectrum. In Eq. (9) w(~r1, ~r2) is a two-particle interaction matrix potential which could
be for example the Coulomb (C) + Breit (B) interaction

wστρυ(~r1, ~r2) = wC
στρυ(r12) + wB

στρυ(~r12), (14)

with ~r12 = ~r1 − ~r2 and r12 = |~r12|, and

wC
στρυ(r12) = w(r12)δσρδτυ, (15)

wB
στρυ(~r12) = −

1

2
w(r12)

(

~ασρ · ~ατυ +
(~ασρ · ~r12) (~ατυ · ~r12)

r212

)

, (16)

where w(r12) = 1/r12. The Coulomb-Breit interaction corresponds to the single-photon
exchange electron-electron scattering amplitude in QED evaluated with the zero-frequency
limit of the photon propagator in the Coulomb electromagnetic gauge. More specifically,
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the instantaneous Coulomb interaction corresponds to the longitudinal component of the
photon propagator, whereas the Breit interaction is obtained from the zero-frequency
transverse component of the photon propagator. The Breit interaction comprises the
instantaneous magnetic Gaunt interaction, −w(r12)~ασρ · ~ατυ, and the remaining lowest-
order retardation correction (see, e.g., Ref. [35]). In Eq. (10) v(~r) is an external scalar
potential, e.g. the Coulomb potential generated by the nuclei. For simplicity and following
the most common framework used for molecular calculations, we do not consider the case
of an external vector potential. Due to the external potential [Eq. (10)] and Coulomb-
Breit two-particle interaction [Eq. (9)], the present theory is not Lorentz invariant, which
is in the spirit in which relativistic molecular calculations are carried out presently.

The electron-positron Hamiltonian Ĥ does not commute separately with the electron
and positron number operators,

N̂e =
∑

p∈PS

b̂†pb̂p and N̂p =
∑

p∈NS

d̂†pd̂p, (17)

i.e., it does not conserve electron or positron numbers. However, the Hamiltonian Ĥ
commutes with the opposite charge operator (or electron-excess number operator)

N̂ = N̂e − N̂p, (18)

i.e., it conserves charge. As a consequence, the eigenstates of the Hamiltonian Ĥ belongs
to the Fock space gathering together different particle-number sectors

F =

(∞,∞)
⊕

(Ne,Np)=(0,0)

H(Ne,Np), (19)

where H(Ne,Np) is the Hilbert space for Ne electrons and Np positrons, and ⊕ designates
the direct sum. The Fock space can also be decomposed into charge sectors

F =

∞
⊕

q=−∞

Hq, (20)

where Hq is the Hilbert space for opposite charge q. For q ≥ 0, we have Hq = H(q,0) ⊕
H(q+1,1) ⊕ H(q+2,2) ⊕ · · · ⊕ H(q+∞,∞), and for q ≤ 0, we have Hq = H(0,|q|) ⊕ H(1,|q|+1) ⊕
H(2,|q|+2) ⊕ · · · ⊕ H(∞,|q|+∞).

Importantly, due to the fact that the electron-positron Hamiltonian in Eq. (7) is ex-
pressed with normal ordering with respect to the free vacuum state, it has the correct
charge-conjugation symmetry, i.e. ĈĤ[v]Ĉ† = Ĥ[−v] where Ĥ[v] is the Hamiltonian in
Eq. (7) with an arbitrary external potential v and Ĉ is the charge-conjugation operator
in Fock space (see Appendix A).

2.3 No-particle vacuum states

By construction of the Hamiltonian Ĥ, the free vacuum state |0〉 has a zero energy, i.e.
Efree

0 = 〈0|Ĥ |0〉 = 0. However, this is generally not the lowest-energy vacuum state. We
can consider other no-particle vacuum states |0̃〉 (often referred to as polarized vacuum or
dressed vacuum) parametrized as [23,36] (see, also, Refs. [22, 34,37,38])

|0̃〉 = eκ̂|0〉, (21)
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where eκ̂ performs an orbital rotation in Fock space (corresponding to a Bogoliubov
transformation mixing electron annihilation operators b̂p and positron creation operators

d̂†p [22]) with the anti-Hermitian operator κ̂

κ̂ =
∑

p,q∈PS∪NS

κpqâ
†
pâq =

∑

p,q∈PS

κpq b̂
†
pb̂q +

∑

p∈PS

∑

q∈NS

κpq b̂
†
pd̂

†
q

+
∑

p∈NS

∑

q∈PS

κpqd̂pb̂q +
∑

p,q∈NS

κpqd̂pd̂
†
q, (22)

with the orbital rotation parameters κpq ∈ C being the elements of an anti-Hermitian
matrix κ. Note that the second term in the last expression of Eq. (22) creates electron-
positron pairs. This generates new creation and annihilation operators related to the
original ones via the unitary matrix U = eκ

ˆ̃a†p = eκ̂â†pe
−κ̂ =

∑

q∈PS∪NS

â†qUqp and ˆ̃ap = eκ̂âpe
−κ̂ =

∑

q∈PS∪NS

âqU
∗
qp for p ∈ PS ∪NS, (23)

and corresponding new orbitals

ψ̃p(~r) =
∑

q∈PS∪NS

ψq(~r)Uqp for p ∈ PS ∪NS, (24)

such that the Dirac field operator in Eq. (4) can be rewritten as

ψ̂(~r) =
∑

p∈PS∪NS

ˆ̃apψ̃p(~r) =
∑

p∈PS

ˆ̃bpψ̃p(~r) +
∑

p∈NS

ˆ̃d†pψ̃p(~r), (25)

with again
ˆ̃
bp ≡ ˆ̃ap for p ∈ PS and

ˆ̃
d†p ≡ ˆ̃ap for p ∈ NS. The new creation and annihilation

operators still obey the fermionic anticommutation rules in Eq. (5). Moreover, even though
this orbital rotation does not necessarily preserve the sign of the orbital energies, it does

preserve the charge, i.e. we have [N̂ ,
ˆ̃
b†p] =

ˆ̃
b†p and [N̂ ,

ˆ̃
d†p] = − ˆ̃

d†p. So the new creation

operators ˆ̃b†p and
ˆ̃d†p can still be interpreted as creating electrons and positrons, respectively,

and the partition into PS and NS sets should now be understood as a partition into
positive and negative opposite charge states. As expected, the new electron and positron
annihilation operators satisfy

ˆ̃
bp|0̃〉 = 0 for p ∈ PS and

ˆ̃
dp|0̃〉 = 0 for p ∈ NS. (26)

The new vacuum state |0̃〉 contains electron-positron pairs associated with the original

operators b̂†p and d̂†p but does not contain any particle associated with the new operators
ˆ̃b†p and ˆ̃d†p.

We can then introduce a new one-particle density-matrix operator ˆ̃n1(~r,~r
′) and a new

pair density-matrix operator ˆ̃n2(~r1, ~r2) defined using normal ordering Ñ [...] of the new

elementary creation and annihilation operators
ˆ̃
b†p,

ˆ̃
bp,

ˆ̃
d†p,

ˆ̃
dp with respect to the new

vacuum state |0̃〉

ˆ̃n1,ρσ(~r,~r
′) = Ñ [ψ̂†

σ(~r
′)ψ̂ρ(~r)], (27)

and

ˆ̃n2,ρυστ (~r1, ~r2) = Ñ [ψ̂†
τ (~r2)ψ̂

†
σ(~r1)ψ̂ρ(~r1)ψ̂υ(~r2)]. (28)
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Using Wick’s theorem, the original one-particle density-matrix and pair density-matrix
operators in Eq. (11) and (12) can be rewritten as [22]

n̂1,ρσ(~r,~r
′) = ˆ̃n1,ρσ(~r,~r

′) + ñvp1,ρσ(~r,~r
′), (29)

and

n̂2,ρυστ (~r1, ~r2) = ˆ̃n2,ρυστ (~r1, ~r2) + ñvp1,υτ (~r2, ~r2)
ˆ̃n1,ρσ(~r1, ~r1) + ñvp1,ρσ(~r1, ~r1)

ˆ̃n1,υτ (~r2, ~r2)

−ñvp1,υσ(~r2, ~r1)
ˆ̃n1,ρτ (~r1, ~r2)− ñvp1,ρτ (~r1, ~r2)

ˆ̃n1,υσ(~r2, ~r1) + ñvp2,ρυστ (~r1, ~r2),

(30)

where ñvp
1 (~r,~r ′) is the vacuum-polarization (vp) one-particle density matrix

ñvp1,ρσ(~r,~r
′) = 〈0̃|n̂1,ρσ(~r,~r

′)|0̃〉

= 〈0̃|ψ̂†
σ(~r

′)ψ̂ρ(~r)|0̃〉 − 〈0|ψ̂†
σ(~r

′)ψ̂ρ(~r)|0〉

=
∑

p∈NS

ψ̃∗
p,σ(~r

′)ψ̃p,ρ(~r)−
∑

p∈NS

ψ∗
p,σ(~r

′)ψp,ρ(~r), (31)

and ñvp
2 (~r1, ~r2) is the vacuum-polarization pair-density matrix

ñvp2,ρυστ (~r1, ~r2) = ñvp1,υτ (~r2, ~r2)ñ
vp
1,ρσ(~r1, ~r1)− ñvp1,ρτ (~r1, ~r2)ñ

vp
1,υσ(~r2, ~r1). (32)

The electron-positron Hamiltonian in Eq. (7) can then be rewritten as [22]

Ĥ = ˆ̃TD + ˆ̃W + ˆ̃V + ˆ̃V vp + Ẽ0, (33)

with

ˆ̃TD =

∫

Tr[D(~r)ˆ̃n1(~r,~r
′)]~r ′=~r d~r, (34)

and

ˆ̃W =
1

2

∫∫

Tr[w(~r1, ~r2)ˆ̃n2(~r1, ~r2)]d~r1d~r2, (35)

and

ˆ̃V =

∫

v(~r)ˆ̃n(~r) d~r, (36)

with the new opposite charge density operator

ˆ̃n(~r) = Tr[ˆ̃n(~r)], (37)

where ˆ̃n(~r) = ˆ̃n1(~r,~r). In Eq. (33), the normal reordering with respect to the new vacuum
state |0̃〉 [Eqs. (29) and (30)] has generated two new terms: the vacuum-polarization

potential operator ˆ̃V vp and the new vacuum energy Ẽ0. The vacuum-polarization potential
operator [22] can be written as

ˆ̃V vp = ˆ̃V vp
H + ˆ̃V vp

x , (38)

with a Hartree (or direct) contribution

ˆ̃V vp
H =

∫

Tr[ṽvp
H (~r)ˆ̃n(~r)]d~r ≡

∑

ρσ

∫

ṽvpH,σρ(~r)
ˆ̃nρσ(~r)d~r, (39)

7
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where ṽvpH,σρ(~r1) =
∑

τυ

∫

wστρυ(~r1, ~r2)ñ
vp
υτ (~r2)d~r2 and ñvpυτ (~r2) = ñvp1,υτ (~r2, ~r2), and an ex-

change contribution

ˆ̃V vp
x =

∫∫

Tr[ṽvp
x (~r1, ~r2)ˆ̃n1(~r1, ~r2)]d~r1d~r2, (40)

where ṽvpx,τρ(~r1, ~r2) = −
∑

συ wστρυ(~r1, ~r2)ñ
vp
1,υσ(~r2, ~r1). Note that in the literature the

name “vacuum polarization” is often restricted to the direct term in Eq. (39) whereas the
exchange term in Eq. (40) is often designated as “self-energy” (see, e.g., Ref. [25]). Here,
we adopt the terminology of Ref. [22] where vacuum polarization designates both terms.
Finally, the new no-particle vacuum energy [22] can be written as

Ẽ0 = 〈0̃|Ĥ|0̃〉 =

∫

Tr[D(~r)ñvp
1 (~r,~r ′)]~r ′=~r d~r +

∫

v(~r)ñvp(~r) d~r

+
1

2

∫∫

Tr[w(~r1, ~r2)ñ
vp
2 (~r1, ~r2)]d~r1d~r2. (41)

Throughout the paper, |0̃〉 will refer to an arbitrary vacuum state, often referred to as
floating vacuum, and {ψ̃p} and Ẽ0 will refer to its associated orbitals and vacuum energy.
The optimal HF vacuum state is defined as the vacuum state minimizing Ẽ0 with respect
to the orbital rotation parameters κ

EHF
0 = min

κ

Ẽ0. (42)

Clearly, if nvp
1 (~r,~r ′) = 0 then Ẽ0 = 0, and thus EHF

0 is necessarily negative. It can
in fact diverges to −∞ due to infrared (IR) and ultraviolet (UV) divergences. The IR
divergences appear when taking the continuum limit of the sums in Eq. (31), but can
simply be avoided by putting the system in a box with periodic boundary conditions and
taking the thermodynamic limit of quantities per volume unit (see, e.g., Refs. [11,29,30]),
similarly to what is done for the homogeneous electron gas. The UV divergences come
from the unbound large-energy (or large index p) limit of each sum in Eq. (31), even if we
expect a cancellation of these UV divergences to some extent between the two sums. A
standard way of dealing with these UV divergences is to introduce a fixed UV momentum
cutoff and to remove the cutoff dependence via renormalization of the electron charge and
mass in the Hamiltonian [26–31, 39] (see also Ref. [40]). We leave for future work these
subtle issues and simply assume in the rest of this work that a proper renormalization
scheme is applied in order to keep everything finite.

Finally, in Appendix B, we provide an alternative definition of the electron-positron
Hamiltonian based on commutators and anticommutators of Dirac field operators and
we show that, after removing the vacuum energy, both Hamiltonians are equivalent to
each other and also identical to the effective QED Hamiltonian of Refs. [25, 41–45] [see
Eq. (176)].

2.4 Correlated vacuum state

More generally, the vacuum state can be defined beyond the HF approximation as the
lowest-energy state with zero charge, which will refer to as the correlated vacuum state
|Ψ0〉 ∈ H0. In a full configuration-interaction approach, the correlated vacuum state can be
parametrized as a linear combination of states with arbitrary numbers of electron-positron
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pairs

|Ψ0〉 =

(

c0 +
∑

p1∈PS

∑

q1∈NS

cp1q1 b̂
†
p1 d̂

†
q1 +

∑

p1,p2∈PS

∑

q1,q2∈NS

cp1q1p2q2 b̂
†
p1 d̂

†
q1 b̂

†
p2 d̂

†
q2

+
∑

p1,p2,p3∈PS

∑

q1,q2,q3∈NS

cp1q1p2q2p3q3 b̂
†
p1 d̂

†
q1 b̂

†
p2 d̂

†
q2 b̂

†
p3 d̂

†
q3 + · · ·

)

|0〉, (43)

and minimizing the energy with respect to the coefficients leads to the correlated vacuum
energy E0 = 〈Ψ0|Ĥ|Ψ0〉. Note that the particles inside this vacuum state cannot generally
be absorbed into an orbital rotation because of the two-particle interaction in the Hamil-
tonian. Therefore, the correlated vacuum state generally contains electron-positron pairs,
in the same way as the non-relativistic ground state contains excited Slater determinants
that cannot be absorbed into a redefinition of the orbitals. With the parametrization of
the vacuum state in Eq. (43), there is no need to perform orbital rotations (i.e., orbital
rotation parameters are redundant). The correlated vacuum state |Ψ0〉 and correlated
vacuum energy E0 include all vacuum contributions (i.e., contributions from orbitals in
the set NS) to all orders in the two-particle interaction.

2.5 N-negative-charge states

The ground-state energy for a net total amount of q = N negative charges (the equivalent
of N electrons for the non-relativistic theory) is found as

EN = min
|Ψ〉∈HN

〈Ψ|T̂D + Ŵ + V̂ |Ψ〉, (44)

where |Ψ〉 is constrained to have a net total amount ofN negative charges, i.e.
∫

〈Ψ|n̂(~r)|Ψ〉d~r =
N . Note that we will always tacitly assume that |Ψ〉 is constrained to be normalized to 1,
i.e. 〈Ψ|Ψ〉 = 1. A state |Ψ〉 ∈ HN has the form

|Ψ〉 =

(

∑

p1,...,pN∈PS

cp1...pN b̂
†
p1 · · · b̂

†
pN

+
∑

p1,...,pN ,pN+1∈PS

∑

q1∈NS

cp1...pNpN+1q1 b̂
†
p1 · · · b̂

†
pN
b̂†pN+1

d̂†q1

+
∑

p1,...,pN ,pN+1,pN+2∈PS

∑

q1,q2∈NS

cp1...pNpN+1q1pN+2q2 b̂
†
p1 · · · b̂

†
pN
b̂†pN+1

d̂†q1 b̂
†
pN+2

d̂†q2 + · · ·

)

|0〉.

(45)

Again, vacuum contributions to all orders are included in the presence of N negative
charges, and there is no need to perform orbital rotations. Obviously, in the special case
N = 0, this reduces to the correlated vacuum state in Eq. (43).

Since the number of particles is not fixed for the Fock state |Ψ〉 in Eq. (45), there is
no concept of N -particle wave function (depending on N space coordinates) associated
with the state |Ψ〉. Thus, one cannot study for example the wave function at electron-
electron coalescence. However, one could study the small interparticle behavior of the
pair-density matrix n2(~r1, ~r2) = 〈Ψ|n̂2(~r1, ~r2)|Ψ〉, which should ultimately control the
convergence rate of the energy with respect to the one-particle basis used to expand the
orbitals. So far, as far as we know, the electron-electron coalescence has been studied only
for more approximate configuration-space-based relativistic theories where the concept of
wave function is retained [46, 47]. How to extend in practice these studies to Fock-space
approaches such as the one of the present work is an open question.

Finally, let us mention that we can allow for negative N to describe the case of N -
positive-charge states, i.e. states with a majority of positrons. We will however normally
think of N as being positive and write the equations accordingly.

9
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2.6 No-pair approximation

Finally, we consider the no-pair (np) approximation [48,49]. In the context of the present
theory, it is natural to first define what we will call here a “no-pair with vacuum-polarization”
(npvp) approximation (see Ref. [22]) in which the ground-state energy for N electrons is
expressed as

Enpvp
N = min

|Ψ+〉∈H̃(N,0)
〈Ψ+|T̂D + Ŵ + V̂ |Ψ+〉, (46)

where the minimization is over normalized states in the set that we designate by H̃(N,0) ≡
eκ̂H(N,0) which is the set of states generated by all orbital rotations of N -electron states.
A state |Ψ+〉 ∈ H̃(N,0) has the form

|Ψ+〉 = eκ̂
∑

p1,...,pN∈PS

cp1...pN b̂
†
p1 · · · b̂

†
pN |0〉 =

∑

p1,...,pN∈PS

cp1...pN
ˆ̃
b†p1 · · ·

ˆ̃
b†pN |0̃〉. (47)

We can also write this state as

|Ψ+〉 =
ˆ̃P+|Ψ〉, (48)

where |Ψ〉 is an arbitrary state constrained to have a net total amount of N negative

charges, i.e. |Ψ〉 ∈ HN , and ˆ̃P+ is the projector onto the N -electron Hilbert space con-

structed from the set of electron creation operators {ˆ̃b†p} associated with a floating vacuum
state |0̃〉. The energy is not only minimized with respect to |Ψ〉 but also with respect to the

projector ˆ̃P+ by performing orbital rotations between PS and NS orbitals. The optimal
floating vacuum state |0̃〉 will of course depend on the number of electrons N considered.
This npvp approximation thus restores the concept of the N -electron (4N -component
spinor) wave function, i.e.

Ψ+(~r1, ~r2, ..., ~rN ) =
∑

p1,...,pN∈PS

cp1...pN ψ̃p1(~r1) ∧ · · · ∧ ψ̃pN (~rN ), (49)

where ψ̃p1(~r1)∧ · · · ∧ ψ̃pN (~rN ) designates the normalized antisymmetrized tensor product
of N orbitals, i.e. a Slater determinant. In this approximation, the vacuum contributions
are taken into account at the mean-field level. Indeed, using the rewriting of the electron-
positron Hamiltonian in Eq. (33), we have

Enpvp
N = 〈Ψ+|

ˆ̃TD + ˆ̃W + ˆ̃V + ˆ̃V vp|Ψ+〉+ Ẽ0, (50)

which includes the vacuum-polarization potential operator [Eq. (38)] and the vacuum
energy [Eq. (41)].

The common no-pair (np) approximation corresponds to additionally neglecting all
vacuum contributions

Enp
N = min

|Ψ+〉∈H̃(N,0)
〈Ψ+|

ˆ̃TD + ˆ̃W + ˆ̃V |Ψ+〉, (51)

where we use now the Hamiltonian written with normal ordering with respect to a floating
vacuum state |0̃〉. The no-pair approximation with optimized orbitals is analogous to
the complete-active-space self-consistent-field method of quantum chemistry in which the
wave function is expanded in the Hilbert space spanned by only a subset of orbitals (the
equivalent of the PS set) and the orbitals are optimized by performing rotations with the
complementary subset of orbitals (the equivalent of the NS set).

10
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Note that in Eq. (46) or (51) one can minimize with respect to the projector ˆ̃P+ thanks
to the use of the Fock-space normal-ordered electron-positron Hamiltonian. If one starts
instead with the configuration-space Dirac-Coulomb or Dirac-Coulomb-Breit Hamiltonian,
the same Enp

N can be obtained but using instead a minmax principle in which the energy
is maximized with respect to the projector (see Refs. [23, 50–52]).

3 Density-functional theory based on effective quantum elec-

trodynamics

We now formulate a RDFT based on the electron-positron Hamiltonian in Eq. (7). We
will consider the simplest case of functionals of only the opposite charge density n(~r) =
〈Ψ|n̂(~r)|Ψ〉, which is appropriate for closed-shell systems. More generally, one could con-

sider functionals depending also on the opposite charge current ~j(~r) = 〈Ψ|~̂j(~r)|Ψ〉 with

~̂j(~r) = Tr[c~α n̂(~r)]. Even more generally, one could consider functionals of the local
density matrix n(~r) = 〈Ψ|n̂(~r)|Ψ〉, as proposed in Ref. [13]. For simplicity, in the follow-
ing, the opposite charge density and opposite charge current will be referred to as charge
density and charge current.

3.1 Kohn-Sham scheme

Using the constrained-search formalism [32,33], we define the universal density functional
F [n] for N -representable charge densities n ∈ DN , i.e. charge densities that come from a
state |Ψ〉 ∈ HN ,

F [n] = min
|Ψ〉∈HN (n)

〈Ψ|T̂D + Ŵ |Ψ〉 = 〈Ψ[n]|T̂D + Ŵ |Ψ[n]〉, (52)

where HN (n) is the set of states |Ψ〉 ∈ HN constrained to yield the charge density n, and
|Ψ[n]〉 designates a minimizing state. A N -representable charge density must of course
contain a net total amount of N negative charges, i.e.

∫

n(~r)d~r = N , but other than
that the set of N -representable charge densities DN is a priori unknown. This is unlike
the non-relativistic case for which the mathematical set of N -representable densities is
explicitly known [33]. The N -negative-charge ground-state energy can then be written as

EN = min
n∈DN

[

F [n] +

∫

v(~r) n(~r) d~r

]

. (53)

Note that, in the special case N = 0 we obtain the correlated vacuum energy of Sec. 2.4.
Also, as already indicated, we can allow for negative N to describe the case of N positive
charges.

To setup a KS scheme [53], we decompose F [n] as

F [n] = Ts[n] + EHxc[n], (54)

where Ts[n] is the non-interacting kinetic + rest-mass density functional

Ts[n] = min
|Φ〉∈S̃(N,0)(n)

〈Φ|T̂D|Φ〉 = 〈Φ[n]|T̂D|Φ[n]〉, (55)

where the minimization is over the set S̃(N,0)(n) of single-determinant states |Φ〉 = ˆ̃
b†1
ˆ̃
b†2 · · ·

ˆ̃
b†N |0̃〉

with a fixed number of electrons N with respect to a floating vacuum state and yielding the

11
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charge density n, and EHxc[n] is the Hartree-exchange-correlation density functional. The
minimizing state (that we will assume unique up to a phase factor for simplicity) is the KS
single-determinant state |Φ[n]〉. Note that in Eq. (55) we have tacitly assumed that any
N -representable charge density n can be represented by a single-determinant state |Φ〉.
For the non-relativistic theory, this can be proved to be true by explicitly constructing
a single determinant yielding any given N -representable density [33, 54, 55]. This proof
does not apply to the present relativistic theory due to the more complicated form of the
charge density n(~r) which includes the vacuum-polarization contribution [see Eqs. (62)
and (63)]. In fact, due to the vacuum-polarization contribution, the charge density n(~r)
may not generally have the same sign at all spatial points. This is particularly obvious for
the case N = 0: the charge density integrates to zero

∫

n(~r)d~r = 0 and thus necessarily
changes sign. Whether the proofs of Refs. [33,54,55] can be generalized to the relativistic
case is an open question. We can then write the ground-state energy as

EN = min
|Φ〉∈S̃(N,0)

[

〈Φ|T̂D + V̂ |Φ〉+ EHxc[n|Φ〉]
]

, (56)

where S̃(N,0) is the set of single-determinant states with a fixed number of electrons N
with respect to a floating vacuum state. Note that, contrary to a general N -negative-
charge state in Eq. (45), we can associate a wave function to a single-determinant state,
i.e. Φ(~r1, ~r2, ..., ~rN ) = ψ̃1(~r1) ∧ · · · ∧ ψ̃N (~rN ).

More explicitly, the expression of the energy in terms of the orbitals {ψ̃p} is

EN [{ψ̃p}] =

∫

Tr[D(~r)nKS
1 (~r,~r ′)]~r ′=~r d~r +

∫

v(~r) n(~r) d~r + EHxc[n], (57)

with the KS one-particle density matrix

nKS
1 (~r,~r ′) = ñKS

1 (~r,~r ′) + ñvp
1 (~r,~r ′), (58)

which includes the contribution from the electronic occupied orbitals

ñKS
1 (~r,~r ′) =

N
∑

i=1

ψ̃i(~r)ψ̃
†
i (~r

′), (59)

and from the vacuum polarization [see Eq. (31)]

ñvp
1 (~r,~r ′) =

∑

p∈NS

ψ̃p(~r)ψ̃
†
p(~r

′)−
∑

p∈NS

ψp(~r)ψ
†
p(~r

′), (60)

and with the corresponding charge density n(r) = Tr[nKS
1 (~r,~r)]. Taking the functional

derivative of EN [{ψp}] with respect to ψ̃†
p(~r) with the orbital orthonormalization con-

straints, we arrive at the KS equations

(D(~r) + v(~r) + vHxc(~r)) ψ̃p(~r) = ε̃pψ̃p(~r), (61)

where vHxc(~r) = δEHxc[n]/δn(~r) is the Hartree-exchange-correlation potential (assuming
a form of differentiability of the functional EHxc[n]) and ε̃p are the KS orbital energies.
The KS equations must be solved self-consistently with the density

n(~r) =
N
∑

i=1

ψ̃
†
i (~r)ψ̃i(~r) + ñvp(~r), (62)

12
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where the vacuum-polarization density is

ñvp(~r) =
∑

p∈NS

ψ̃†
p(~r)ψ̃p(~r)−

∑

p∈NS

ψ†
p(~r)ψp(~r)

=
1

2

(

∑

p∈NS

ψ̃†
p(~r)ψ̃p(~r)−

∑

p∈PS

ψ̃†
p(~r)ψ̃p(~r)

)

, (63)

where the last equality follows from Eqs. (168) and (172) (see also Ref. [56]). Equa-
tions (61)-(63) have a similar form as for the KS scheme based on renormalized QED [7–10]
except that we did not take into account any renormalization counterterms and that the
present functional EHxc[n] is associated with the effective Coulomb or Coulomb+Breit
two-particle interaction. The fact that EHxc[n] is a functional of the density makes the
potential vHxc(~r) local in space and diagonal in terms of spinor indices. This is unlike
in HF theory where the corresponding potential would be both nonlocal in space and
non-diagonal in terms of spinor indices.

3.2 Hartree-exchange-correlation density functional

The Hartree-exchange-correlation density functional EHxc[n] can be decomposed as

EHxc[n] = EHx[n] + Ec[n], (64)

where EHx[n] is the Hartree-exchange energy encompassing all first-order terms in the
two-particle interaction

EHx[n] = 〈Φ[n]|Ŵ |Φ[n]〉 =
1

2

∫∫

Tr[w(~r1, ~r2)n
KS
2 (~r1, ~r2)]d~r1d~r2, (65)

with the KS pair-density matrix nKS
2 (~r1, ~r2) = 〈Φ[n]|n̂2(~r1, ~r2)|Φ[n]〉, and Ec[n] is the

correlation energy. The Hartree-exchange energy can be written more explicitly as

EHx[n] = ẼHx[n] + Ẽvp
Hx[n], (66)

where ẼHx[n] is the main contribution

ẼHx[n] =
1

2

∫∫

Tr[w(~r1, ~r2)ñ
KS
2 (~r1, ~r2)]d~r1d~r2, (67)

depending on the part of the KS pair-density matrix coming from the electronic occupied
orbitals

ñKS
2,ρυστ (~r1, ~r2) = ñKS

1,υτ (~r2, ~r2)ñ
KS
1,ρσ(~r1, ~r1)− ñKS

1,ρτ (~r1, ~r2)ñ
KS
1,υσ(~r2, ~r1), (68)

and Ẽvp
Hx[n] is the vacuum-polarization contribution

Ẽvp
Hx[n] =

∫

Tr[ṽvp
H (~r)ñKS

1 (~r,~r)]d~r +

∫∫

Tr[ṽvp
x (~r1, ~r2)ñ

KS
1 (~r1, ~r2)]d~r1d~r2

+
1

2

∫∫

Tr[w(~r1, ~r2)ñ
vp
2 (~r1, ~r2)]d~r1d~r2, (69)

where the vacuum-polarization potentials ṽvp
H (~r) and ṽvp

x (~r1, ~r2) were defined after Eqs. (39)
and (40), respectively, and the vacuum-polarization pair-density matrix ñvp

2 (~r1, ~r2) was de-
fined in Eq. (32).
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We can further decompose the functional EHx[n] as

EHx[n] = EH[n] + Ex[n]. (70)

where the Hartree functional EH[n] collects all direct terms and the exchange functional
Ex[n] collects all exchange terms. The expression of the Hartree functional is

EH[n] = ẼH[n] + Ẽvp
H [n], (71)

with

ẼH[n] =
1

2

∫∫

Tr[w(~r1, ~r2)ñ
KS
2,H(~r1, ~r2)]d~r1d~r2, (72)

where ñKS
2,H(~r1, ~r2) is the Hartree contribution to ñKS

2 (~r1, ~r2) [the first term in the right-
hand side of Eq. (68)], and

Ẽvp
H [n] =

∫

Tr[ṽvp
H (~r)ñKS

1 (~r,~r)]d~r +
1

2

∫∫

Tr[w(~r1, ~r2)ñ
vp
2,H(~r1, ~r2)]d~r1d~r2, (73)

where ñvp
2,H(~r1, ~r2) is the Hartree contribution to ñvp

2 (~r1, ~r2) [the first term in the right-hand
side of Eq. (32)]. Similarly, the expression of the exchange functional is

Ex[n] = Ẽx[n] + Ẽvp
x [n], (74)

with

Ẽx[n] =
1

2

∫∫

Tr[w(~r1, ~r2)ñ
KS
2,x(~r1, ~r2)]d~r1d~r2, (75)

where ñKS
2,x(~r1, ~r2) is the exchange contribution to ñKS

2 (~r1, ~r2) [the second term in the right-
hand side of Eq. (68)], and

Ẽvp
x [n] =

∫∫

Tr[ṽvp
x (~r1, ~r2)ñ

KS
1 (~r1, ~r2)]d~r1d~r2 +

1

2

∫∫

Tr[w(~r1, ~r2)ñ
vp
2,x(~r1, ~r2)]d~r1d~r2,

(76)

where ñvp
2,x(~r1, ~r2) is the exchange contribution to ñvp

2 (~r1, ~r2) [the second term in the right-
hand side of Eq. (32)].

The Hartree energy can also be more compactly written as a sum of Coulomb and
Breit contributions

EH[n] = EC
H [n] + EB

H[n], (77)

where the Coulomb contribution has the same form as in non-relativistic DFT

EC
H[n] =

1

2

∫∫

w(r12)n(~r1)n(~r2)d~r1d~r2, (78)

involving the charge density n(~r) [Eq. (62)], and the Breit contribution has the form

EB
H[n] = −

1

4c2

∫∫

w(r12)

[

~j(~r1) ·~j(~r2) +
~j(~r1) · ~r12 ~j(~r2) · ~r12

r212

]

d~r1d~r2, (79)

involving the KS charge current density ~j(~r)

~j(~r) = Tr[c~α nKS
1 (~r,~r)] = c

N
∑

i=1

ψ̃
†
i (~r)~αψ̃i(~r) +

~̃jvp(~r), (80)
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where ~̃jvp(~r) is the vacuum-polarization current density

~̃jvp(~r) = c





∑

p∈NS

ψ̃†
p(~r)~αψ̃p(~r)−

∑

p∈NS

ψ†
p(~r)~αψp(~r)



 . (81)

Since we did not consider any vector potential in the KS equations [Eq. (61)], the KS
Hamiltonian has time-reversal symmetry and the KS orbitals {ψ̃p} come in degenerate
Kramers pairs (see, e.g., Ref. [23]) with opposite current densities, and similarly for the
orbitals {ψp} of the free Dirac equation. It seems then reasonable to conclude that the

vacuum-polarization current density ~̃jvp(~r) vanishes in the present context, glossing over
the fact that each sum in Eq. (81) is infinite. Moreover, for closed-shell systems, the
contribution to the charge current density ~j(~r) coming from the occupied electronic states
in Eq. (80) vanishes as well, and there is no Breit contribution to the Hartree energy.
For open-shell systems, the charge current density does not vanish and there is a Breit
contribution to the Hartree energy. Since the charge current density ~j(~r) is only an
implicit functional of the charge density via the KS orbitals, the calculation of the Breit
contribution to the Hartree potential would require to use the optimized-effective-potential
method (see, e.g., Ref. [57]). A simpler alternative is to switch to functionals depending
also explicitly on the charge current density ~j(~r).

The correlation functionalEc[n] is conveniently expressed with the adiabatic-connection
approach [58–60] which can be straightforwardly generalized to the present relativistic the-
ory. For this, we define an universal density functional similarly to Eq. (52) but depending
on a coupling constant λ ∈ [0,+∞[

F λ[n] = min
|Ψ〉∈HN (n)

〈Ψ|T̂D + λŴ |Ψ〉 = 〈Ψλ[n]|T̂D + λŴ |Ψλ[n]〉, (82)

where |Ψλ[n]〉 denotes a minimizing state. This functional can be decomposed as

F λ[n] = Ts[n] + λEHx[n] + Eλ
c [n], (83)

where the λ-dependent correlation contribution is

Eλ
c [n] = 〈Ψλ[n]|T̂D + λŴ |Ψλ[n]〉 − 〈Φ[n]|T̂D + λŴ |Φ[n]〉. (84)

We will assume that F λ[n] is of class C1 as a function of λ for λ ∈ [0, 1] and that
F λ=0[ρ] = Ts[ρ] (which should be valid when the KS single-determinant state |Φ[n]〉
is non-degenerate). Taking the derivative of Eq. (84) with respect to λ and using the
Hellmann-Feynman theorem for the state |Ψλ[n]〉, we obtain

∂Eλ
c [n]

∂λ
= 〈Ψλ[n]|Ŵ |Ψλ[n]〉 − 〈Φ[n]|Ŵ |Φ[n]〉. (85)

Integrating over λ from 0 to 1, and using Eλ=1
c [n] = Ec[n] and E

λ=0
c [n] = 0, we arrive at

the adiabatic-connection formula for the correlation functional

Ec[n] =

∫ 1

0
dλ 〈Ψλ[n]|Ŵ |Ψλ[n]〉 − 〈Φ[n]|Ŵ |Φ[n]〉

=
1

2

∫ 1

0
dλ

∫∫

Tr[w(~r1, ~r2)n
λ
2,c(~r1, ~r2)]d~r1d~r2, (86)

with the correlation contribution to the λ-dependent pair-density matrix nλ
2,c(~r1, ~r2) =

〈Ψλ[n]|n̂2(~r1, ~r2)|Ψ
λ[n]〉 − nKS

2 (~r1, ~r2). More explicitly, the correlation functional has the
expression

Ec[n] = Ẽc[n] + Ẽvp
c [n], (87)
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where Ẽc[n] is the main contribution

Ẽc[n] =
1

2

∫ 1

0
dλ

∫∫

Tr[w(~r1, ~r2)ñ
λ
2,c(~r1, ~r2)]d~r1d~r2, (88)

with ñλ
2,c(~r1, ~r2) = 〈Ψλ[n]|ˆ̃n2(~r1, ~r2)|Ψ

λ[n]〉−ñKS
2 (~r1, ~r2), and Ẽ

vp
c [n] is the vacuum-polarization

contribution coming from the variation of the one-particle density matrix with λ

Ẽvp
c [n] =

∫ 1

0
dλ

∫

Tr[ṽvp
H (~r)ñλ

1,c(~r,~r)]d~r +

∫ 1

0
dλ

∫∫

Tr[ṽvp
x (~r1, ~r2)ñ

λ
1,c(~r1, ~r2)]d~r1d~r2,

(89)

with ñλ
1,c(~r1, ~r2) = 〈Ψλ[n]|ˆ̃n1(~r1, ~r2)|Ψ

λ[n]〉 − ñKS
1 (~r1, ~r2). Note that both ñλ

2,c(~r1, ~r2) and

ñλ
1,c(~r1, ~r2) include contributions from orbitals ψ̃p with p ∈ NS, which generate vacuum

contributions to the correlation energy beyond first order in the two-particle interaction.
Mirroring the decomposition of the energy functional EHxc[n] into Hartree, exchange,

and correlation contributions, the associated potential in Eq. (61) has of course a similar
decomposition

vHxc(r) = vH(r) + vx(r) + vc(r), (90)

and each potential is itself a sum of a main contribution and a vacuum-polarization contri-
bution. Note in particular that the vacuum-polarization contributions in the Hartree and
exchange potentials are both local in space and diagonal in terms of spinor indices and
thus are not identical to the vacuum-polarization potentials ṽvp

H (~r) and ṽvp
x (~r1, ~r2) defined

after Eqs. (39) and (40), respectively. The latter potentials are the vacuum-polarization
potentials that would be directly involved in HF theory. We leave for future work the
study of the properties of the potentials in Eq. (90).

3.3 No-pair approximation

In the npvp approximation introduced in Eq. (46), the universal density functional becomes

F npvp[n] = min
|Ψ+〉∈H̃(N,0)(n)

〈Ψ+|T̂D + Ŵ |Ψ+〉 (91)

where H̃(N,0)(n) is the set of states in H̃(N,0) yielding the charge density n. In this
approximation, the definition of Ts[n] in Eq. (55) is left unchanged and consequently the
KS determinant state |Φ[n]〉 and the Hartree and exchange functionals EH[n] and Ex[n]
are also left unchanged. We thus have the decomposition

F npvp[n] = Ts[n] + EHx[n] + Enpvp
c [n], (92)

where Enpvp
c [n] is the new correlation functional in this approximation. In this npvp KS

scheme, the ground-state energy is then obtained as

Enpvp
N = min

|Φ〉∈S̃(N,0)

[

〈Φ|T̂D + V̂ |Φ〉+ EHx[n|Φ〉] + Enpvp
c [n|Φ〉]

]

. (93)

Hence, this approximation affects only the correlation functional, namely Enpvp
c [n] has the

same expression as Ec[n] but in Eqs. (88) and (89) ñλ
2,c(~r1, ~r2) and ñλ

1,c(~r1, ~r2) are now

calculated with a state |Ψλ
+[n]〉 ∈ H̃(N,0)(n) and thus do not contain any contributions

coming from orbitals ψ̃p with p ∈ NS. However, vacuum contributions are still included
at the mean-field level with the potentials ṽvp

H (~r) and ṽvp
x (~r1, ~r2).
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In the more common no-pair approximation of Eq. (51), the universal functional is
defined as

F np[n] = min
|Ψ+〉∈H̃(N,0)(n)

〈Ψ+|
ˆ̃TD + ˆ̃W |Ψ+〉, (94)

where we use now the operators written with normal ordering with respect to a floating
vacuum state |0̃〉, and the non-interacting kinetic + rest-mass density functional is defined
as

T np
s [n] = min

|Φ〉∈S̃(N,0)(n)
〈Φ| ˆ̃TD|Φ〉 = 〈Φnp[n]| ˆ̃TD|Φ

np[n]〉, (95)

where |Φnp[n]〉 is the KS determinant state in this approximation (again, assumed to be
unique up to a phase factor for simplicity). The functional F np[n] can then be decomposed
as

F np[n] = T np
s [n] + Enp

Hx[n] + Enp
c [n], (96)

where Enp
Hx[n] is the no-pair Hartree-exchange functional

Enp
Hx[n] = 〈Φnp[n]| ˆ̃W |Φnp[n]〉 =

1

2

∫∫

Tr[w(~r1, ~r2)ñ
KS,np
2 (~r1, ~r2)]d~r1d~r2, (97)

with the no-pair KS pair-density matrix ñKS,np
2 (~r1, ~r2) = 〈Φnp[n]|ˆ̃n2(~r1, ~r2)|Φ

np[n]〉 (which,
as before, can be trivially separated into Hartree and exchange contributions), and Enp

c [n]
is the no-pair correlation functional

Enp
c [n] =

1

2

∫ 1

0
dλ

∫∫

Tr[w(~r1, ~r2)ñ
λ,np
2,c (~r1, ~r2)]d~r1d~r2, (98)

with ñλ,np
2,c (~r1, ~r2) = 〈Ψλ

+[n]|ˆ̃n2(~r1, ~r2)|Ψ
λ
+[n]〉− ñKS,np

2 (~r1, ~r2) and |Ψλ
+[n]〉 is a λ-dependent

no-pair minimizing state for the charge density n. Finally, the no-pair ground-state energy
is obtained as

Enp
N = min

|Φ〉∈S̃(N,0)

[

〈Φ| ˆ̃TD + ˆ̃V |Φ〉+ Enp
Hx[n|Φ〉] + Enp

c [n|Φ〉]
]

, (99)

and the no-pair charge density is simply n(~r) =
∑N

i=1 ψ̃
†
i (~r)ψ̃i(~r).

This constitutes a no-pair KS RDFT with well-defined universal exchange and correla-
tion functionals Enp

x [n] and Enp
c [n]. This contrasts with the RDFT based on the relativistic

extension of the Hohenberg-Kohn theorem of Refs. [7–10] for which the no-pair approx-
imation is only introduced a posteriori without giving an unambiguous definition of the

involved functionals. Indeed, the no-pair approximation involves the projector ˆ̃P+ onto
the subspace of electronic states [Eq. (48)] which depends on the separation of the or-
bitals into PS and NS sets, and therefore depends on the potential used to generate these
orbitals. If the projector is applied to the Hamiltonian, the whole resulting projected
Hamiltonian is thus dependent on this potential, and one cannot isolate, as normally done
in DFT, an universal part of the Hamiltonian, and one thus cannot define universal den-

sity functionals. In the present work, instead of thinking of the projector ˆ̃P+ as being
applied to the Hamiltonian, we equivalently think of the projector as being applied to the

state, i.e. |Ψ+〉 =
ˆ̃P+|Ψ〉, and optimize the projector simultaneously with the state |Ψ〉.

In this way, we can introduce universal density functionals, similarly to non-relativistic
DFT, defined such that for a given density a constrained-search optimization in Eq. (94)
or (95) of the projected state |Ψ+〉 determines alone the optimal projector without the
need of pre-choosing a particular potential, at least for systems for which orbitals can
be unambiguously separated into PS and NS sets. The same view can be taken in the
configuration-space approach using a minmax principle [52].
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3.4 Exact properties of the density functionals

Charge-conjugation symmetry

A state |Ψ[n]〉 in Eq. (52) yields the charge density n and minimizes 〈Ψ|T̂D + Ŵ |Ψ〉. The
charge-conjugated state Ĉ|Ψ[n]〉, where Ĉ is the charge-conjugation operator in Fock space
(see Appendix A), yields the charge density −n since

〈Ψ[n]|Ĉ†n̂(~r)Ĉ|Ψ[n]〉 = −〈Ψ[n]|n̂(~r)|Ψ[n]〉 = −n(~r), (100)

where we have used the antisymmetry of the density operator under charge conjugation,
Ĉ†n̂(~r)Ĉ = −n̂(~r) [Eq. (144)]. Moreover, the charge-conjugated state Ĉ|Ψ[n]〉 minimizes
〈Ψ|T̂D + Ŵ |Ψ〉 since

〈Ψ[n]|Ĉ†(T̂D + Ŵ )Ĉ|Ψ[n]〉 = 〈Ψ[n]|T̂D + Ŵ |Ψ[n]〉, (101)

since both T̂D and Ŵ are symmetric under charge conjugation [Eqs. (143) and (148)]. We
thus conclude that

Ĉ|Ψ[n]〉 = |Ψ[−n]〉, (102)

and that the universal density functional is symmetric under charge conjugation

F [n] = F [−n]. (103)

Similarly, the KS determinant state in Eq. (55) transforms as

Ĉ|Φ[n]〉 = |Φ[−n]〉, (104)

and the functionals Ts[n], EH[n], Ex[n], and Ec[n] are all symmetric under charge conju-
gation

Ts[n] = Ts[−n], (105)

EH[n] = EH[−n], (106)

Ex[n] = Ex[−n], (107)

Ec[n] = Ec[−n]. (108)

In other words, these functionals must be even functionals of the charge density. Conse-
quently, their functional derivatives with respect to n(~r) must be odd functionals of the
charge density. This is particularly obvious for the Coulomb contribution to the Hartree
energy in Eq. (78).

Uniform coordinate scaling relations

In non-relativistic DFT, the uniform coordinate scaling relations [61–63] are important
constraints on the density functionals. We show how to generalize them for the present
RDFT.

Since there is generally no concept of wave function in the present relativistic theory,
we cannot define coordinate scaling on wave functions, as normally done. Instead, we must
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work in Fock space and we thus define an unitary uniform coordinate scaling operator Ŝγ
which transforms the Dirac field operator as

Ŝ†
γψ̂(~r)Ŝγ = γ3/2ψ̂(γ~r), (109)

where γ ∈]0,+∞[ is a scaling factor, and similarly for the separate electron and positron

field operators in Eq. (137), i.e. Ŝ†
γψ̂+(~r)Ŝγ = γ3/2ψ̂+(γ~r) and Ŝ

†
γψ̂−(~r)Ŝγ = γ3/2ψ̂−(γ~r).

The one-particle density-matrix and density operators transform as

Ŝ†
γ n̂1(~r,~r

′) Ŝγ = γ3n̂1(γ~r, γ~r
′), (110)

and

Ŝ†
γ n̂(~r) Ŝγ = γ3n̂(γ~r), (111)

while the pair density-matrix operator transforms as

Ŝ†
γ n̂2(~r1, ~r2) Ŝγ = γ6n̂2(γ~r1, γ~r2). (112)

Since the scaling relations involve scaling the speed of light c, we will explicitly indicate
in this section the dependence on c. A state |Ψλ,c[n]〉 in Eq. (82) for any coupling constant
λ and speed of light c yields the charge density n and minimizes 〈Ψ|T̂ c

D + λŴ |Ψ〉. The
scaled state

|Ψλ,c
γ [n]〉 = Ŝγ |Ψ

λ,c[n]〉, (113)

yields the scaled charge density [see Eq. (111)]

nγ(~r) = γ3n(γ~r), (114)

and minimizes 〈Ψ|T̂ cγ
D + λγŴ |Ψ〉 since

〈Ψλ,c
γ [n]|T̂ cγ

D + λγŴ |Ψλ,c
γ [n]〉 = γ2〈Ψλ,c[n]|T̂ c

D + λŴ |Ψλ,c[n]〉, (115)

where we have used Eqs. (110) and (112). We thus conclude that the scaled state |Ψλ,c
γ [n]〉

at coupling constant λ and speed of light c corresponds to the state at scaled density nγ ,
scaled coupling constant λγ, and scaled speed of light cγ

|Ψλ,c
γ [n]〉 = |Ψλγ,cγ [nγ ]〉, (116)

or, equivalently,

|Ψλ/γ,c/γ
γ [n]〉 = |Ψλ,c[nγ ]〉, (117)

and that the universal density functional satisfies the scaling relation

F λγ,cγ [nγ ] = γ2F λ,c[n], (118)

or, equivalently,

F λ,c[nγ ] = γ2F λ/γ,c/γ [n]. (119)

At λ = 0, we find the scaling relation of the KS single-determinant state

|Φc/γ
γ [n]〉 = |Φc[nγ ]〉, (120)
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which directly leads to the scaling relation for the non-interacting kinetic density functional

T c
s [nγ ] = γ2T c/γ

s [n], (121)

and for the Hartree and exchange density functionals

Ec
H[nγ ] = γE

c/γ
H [n] and Ec

x[nγ ] = γEc/γ
x [n]. (122)

The correlation density functional has the same scaling as F λ,c[n]

Eλ,c
c [nγ ] = γ2Eλ/γ,c/γ

c [n], (123)

and, in particular, for λ = 1

Ec
c [nγ ] = γ2E1/γ,c/γ

c [n]. (124)

These scaling relations imply that the low-density limit (γ → 0) corresponds to the non-
relativistic limit (c → ∞), while the high-density limit (γ → ∞) corresponds to the
ultra-relativistic limit (m→ 0 where m is the electron mass).

In the low-density limit, we indeed recover the well-known behaviors of the non-
relativistic density functionals. After removing the rest-mass energy of N electrons, Nmc2,
the non-interacting kinetic-energy functional scales quadratically as γ → 0

T c
s [nγ ]−Nmc2 ∼

γ→0
γ2TNR

s [n], (125)

where TNR
s [n] = limc→∞(T c

s [n]−Nmc
2) is the non-relativistic (NR) non-interacting kinetic-

energy functional. The Hartree and exchange functionals scale linearly as γ → 0

Ec
H[nγ ] ∼

γ→0
γENR

H [n] and Ec
x[nγ ] ∼

γ→0
γENR

x [n], (126)

where ENR
H [n] = limc→∞Ec

H[n] = EC
H[n] [Eq. (78)] and ENR

x [n] = limc→∞Ec
x[n] are the

non-relativistic Hartree and exchange functionals. The correlation functional also scales
linearly as γ → 0

Ec
c [nγ ] ∼

γ→0
γWNR,SCE

c [n], (127)

whereWNR,SCE
c [n] = limλ→∞ENR,λ

c [n]/λ is the non-relativistic strictly-correlated-electron
(SCE) correlation functional [64–67] obtained from the non-relativistic correlation func-

tional along the adiabatic connection ENR,λ
c [n] = limc→∞Ec,λ

c [n] [see Eq. (84)] in the limit
of infinite coupling constant λ → ∞. The low-density limit is also called the strong-
interaction limit since in this limit the Hartree, exchange, and correlation energies domi-
nate over the non-interacting kinetic energy.

The high-density limit of the relativistic density functionals is more exotic. In this
limit, the rest-mass term in the Dirac operator becomes negligible in comparison to the
kinetic term, i.e. Dc/γ(~r) = (c/γ)(~α · ~p) + β mc2/γ2 ∼

γ→∞
(c/γ)(~α · ~p), and consequently

the non-interacting kinetic-energy functional scales linearly as γ → ∞

T c
s [nγ ] ∼

γ→∞
γT c,UR

s [n], (128)

where T c,UR
s [n] = limm→0 T

c
s [n] is the ultra-relativistic (UR) non-interacting kinetic-energy

functional obtained by letting the electron mass going to zero in the Dirac operator. This
is in contrast with the quadratic scaling of the non-relativistic kinetic-energy functional,
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i.e. TNR
s [nγ ] = γ2TNR

s [n]. The Hartree and exchange functionals also scale linearly as
γ → ∞

Ec
H[nγ ] ∼

γ→∞
γEc,UR

H [n] and Ec
x[nγ ] ∼

γ→∞
γEc,UR

x [n], (129)

where Ec,UR
H [n] = limm→0E

c
H[n] and Ec,UR

x [n] = limm→0E
c
x[n] are the ultra-relativistic

Hartree and exchange functionals. This is similar to the linear scaling of the non-relativistic
Hartree and exchange functionals ENR

H [nγ ] = γENR
H [n] and ENR

x [nγ ] = γENR
x [n]. Finally,

the correlation functional scales linearly as γ → ∞

Ec
c [nγ ] ∼

γ→∞
γEc,UR

c [n], (130)

where Ec,UR
c [n] = limm→0E

c
c [n] is the ultra-relativistic correlation functional. This is

again in contrast with the non-relativistic case where the correlation functional goes
to a constant as γ → ∞, for a KS Hamiltonian with a non-degenerate ground state,
limγ→∞ENR

c [nγ ] = ENR,GL2
c [n], where ENR,GL2

c [n] is the second-order Görling-Levy (GL2)
correlation energy [68,69]. Hence, in the relativistic case, the high-density limit is no longer
a weak-interaction or weak-correlation limit since T c

s [nγ ], E
c
H[nγ ], E

c
x[nγ ], and E

c
c [nγ ] all

scale linearly in γ. In particular, the divergence of the relativistic correlation functional in
the high-density limit has important implications for relativistic functional development.
Indeed, many non-relativistic correlation functionals, such as the Perdew-Burke-Ernzerhof
(PBE) one [70], have been designed to saturate in the high-density limit. Hence, these
non-relativistic correlation functionals should be rethought so as to satisfy Eq. (130).

The same scaling relations apply in the no-pair approximation, as well as in the npvp
variant of Eq. (91). In the configuration-space approach of the no-pair approximation,
these scaling relations could be obtained using the minmax principle (see Ref. [52]).

In the non-relativistic theory, the high-density limit is realized in atomic ions in the
limit of large nuclear charge, Z → ∞, at fixed electron number N (see Refs. [71,72]). In a
relativistic setting, the relation between the high-density limit and the large nuclear-charge
limit is more complicated due to the scaling of the speed of light [50]. However, we note that
numerical studies show that relativistic no-pair and beyond-no-pair correlation energies
(calculated with respect to HF) of two-electron atoms diverge as Z increases [50,73], which
is in line with the divergence of Ec

c [nγ ] as γ → ∞ [Eq. (130)].
Finally, for γ = λ, the scaling relation in Eq. (123) gives an expression for the corre-

lation functional along the adiabatic connection at coupling constant λ

Eλ,c
c [n] = λ2Ec/λ

c [n1/λ], (131)

which could be useful for analyzing approximate correlation functionals and for developing
a relativistic extension of the multideterminant KS scheme of Refs. [74, 75].

3.5 Local-density approximation

The LDA is usually the first approximation considered in DFT. In the present relativistic
theory, the LDA exchange-correlation functional may be written as

ELDA
xc [n] =

∫

|n(~r)|ǫRHEG
xc (|n(~r)|)d~r, (132)

where ǫRHEG
xc (n) is the exchange-correlation energy per particle of the relativistic homo-

geneous electron gas (RHEG) of constant charge density n ∈ [0,+∞[. To deal with the
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possibility of having negative charge densities n(~r) at some points of space in the inhomo-
geneous system [see discussion in the paragraph after Eq. (55)], we have used the absolute
value of the charge density. On the one hand, this permits to satisfy charge-conjugation
symmetry [Eqs. (107) and (108)], but, on the other hand, it introduces discontinuities in
the corresponding potential at the points of space where n(~r) changes sign. Whether using
the absolute value of the charge density is the right thing to do is thus unsure and should
be further studied.

Since the RHEG has a spatially constant charge density, its KS potential v + vHxc

in Eq. (61) must necessarily be a spatial constant as well. Since the KS potential does
not depend on spinor indices either (contrary to the HF potential), the KS orbitals of
the RHEG are thus simply the eigenfunctions of the free Dirac equation. In other words,
due to translational symmetry, the KS vacuum state |0̃〉 of the RHEG is equal to the free
vacuum state |0〉. Consequently, the vacuum-polarization one-particle density matrix in
Eq. (60) vanishes for the RHEG and the LDA exchange functional does not contain any
vacuum-polarization contribution, i.e. ELDA

x [n] = ẼLDA
x [n] [Eq. (75)] or Ẽvp,LDA

x [n] = 0
[Eq. (76)]. Similarly, for the LDA correlation functional, we have ELDA

c [n] = ẼLDA
c [n]

[Eq. (88)] or Ẽvp,LDA
c [n] = 0 [Eq. (89)], but ELDA

c [n] still contains vacuum contributions
via the correlation pair-density matrix ñλ

2,c(~r1, ~r2) of the RHEG.
Moreover, for the same reason, the KS orbitals of the RHEG obtained in the no-pair

approximation [Eq. (95)] are also necessarily the eigenfunctions of the free Dirac equa-
tion, and thus the no-pair approximation has no impact on the LDA exchange functional,
i.e. ELDA

x [n] = Enp,LDA
x [n]. By contrast, the no-pair approximation or its npvp vari-

ant [Eq. (92)] do have an impact of the LDA correlation functional, i.e. ELDA
c [n] 6=

Enpvp,LDA
c [n] = Enp,LDA

c [n], since the vacuum contributions are now suppressed from
ñλ
2,c(~r1, ~r2).
The exchange energy per particle of the RHEG for the Coulomb interaction of Eq. (15)

is [4, 76] (see, also, Ref. [51])

ǫRHEG,C
x (n) = −

3 kF
4π

[

5

6
+

1

3
c̃2 +

2

3

√

1 + c̃2 arcsinh

(

1

c̃

)

−
1

3

(

1 + c̃2

)2

ln

(

1 +
1

c̃2

)

−
1

2

(

√

1 + c̃2 − c̃2arcsinh

(

1

c̃

))2
]

, (133)

where kF = (3π2n)1/3 is the Fermi wave vector and c̃ = mc/kF is a relativistic parameter.
The exchange energy per particle for the Breit interaction of Eq. (16) has a similar form [77]
(see, also, Ref. [51])

ǫRHEG,B
x (n) =

3 kF
4π

[

1− 2
(

1 + c̃2
)

(

1− c̃2

(

− 2 ln (c̃) + ln
(

1 + c̃2
)

))

+2

(

√

1 + c̃2 − c̃2arcsinh

(

1

c̃

))2
]

. (134)

Note that these expressions are valid for an arbitrary speed of light c. The dependence
on c via the adimensional parameter c̃ is necessary for the LDA exchange functional to
satisfy the scaling relation of Eq. (122). Note that the Breit exchange energy per particle
is an approximation to the exchange energy per particle obtained with the transverse
component of the full QED photon propagator [3,4,76]. The exchange energy per particle
obtained with the full QED photon propagator has in fact a simpler expression than the
Coulomb-Breit one, thanks to the cancellation of many terms between the Coulomb and
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transverse components,

ǫQED
x (n) = −

3 kF
4π

[

1−
3

2

(

√

1 + c̃2 − c̃2arcsinh

(

1

c̃

))2
]

. (135)

The Coulomb-Breit exchange energy per particle is a good approximation to the exchange
energy per particle obtained with the full QED photon propagator for kF . c [51]. In
any case, the LDA exchange functional corresponding to the present RDFT is given by
Eqs. (133) and (134), and not by Eq. (135).

Contrary to the case of exchange, the correlation energy per particle of the RHEG
cannot be calculated analytically. It has been estimated numerically at the level of the
relativistic random-phase approximation, using either the no-sea approximation (which
includes parts of the vacuum contributions) or the no-pair approximation, and the full
QED photon propagator or the Coulomb-Breit interaction [78,79] (see also Refs. [7–9,14,
80–82]). However, to the best of our knowledge, these calculations were done for the fixed
physical value of the speed of light. Therefore, we do not have the dependence on c and
we cannot apply the scaling relation of Eq. (124) or (131). More work seems necessary to
construct the LDA correlation functional including the dependence on c with or without
the no-pair approximation.

4 Conclusions

In this work, we have examined a RDFT based on an effective QED without the photon
degrees of freedom. The formalism is appealing since it is simpler than RDFT based on
full QED. We have used this formalism to unambiguously define density functionals in the
no-pair approximation, thus making a closer contact with calculations done in practice,
and to study some exact properties of the involved functionals, namely charge-conjugation
symmetry and uniform coordinate scaling. The formalism has also the advantage to be
easily extended to multideterminant KS schemes which combine wave-function methods
with density functionals based on a decomposition the electron-electron interaction (see,
e.g., Refs. [74, 83,84]).

In possible future works on the present RDFT, one may study whether this approach
can be made mathematically rigorous, one may develop density-functional approximations
for this approach, one may examine the extension to functionals of the charge current
density or of the one-particle density matrix, and one may implement this approach for
example for calculations of vacuum-polarization effects in heavy atoms. This last goal
would require the development of practical regularization/renormalization procedures.
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A Charge-conjugation symmetry of the electron-positron

Hamiltonian

Under charge conjugation, the Dirac field operator transforms as (see, e.g., Refs. [9,43,45,
85])

Ĉψ̂(~r)Ĉ† = Cψ̂†T(~r), (136)

with the unitary charge-conjugation symmetry operator in Fock space Ĉ, the unitary
matrix C = −iαyβ defined up to an unimportant phase factor, and T designating the
matrix transposition. If we decompose the Dirac field operator into free electron and
positron field contributions

ψ̂(~r) = ψ̂+(~r) + ψ̂−(~r), (137)

with ψ̂+(~r) =
∑

p∈PS b̂pψp(~r) and ψ̂−(~r) =
∑

p∈NS d̂
†
pψp(~r) in which {ψp} is the set

of eigenfunctions of the free Dirac equation, then charge conjugation interchanges these
contributions as

Ĉψ̂+(~r)Ĉ
† = Cψ̂†T

− (~r), (138)

Ĉψ̂−(~r)Ĉ
† = Cψ̂†T

+ (~r), (139)

or, writing explicitly the spinor components, Ĉψ̂+,σ(~r)Ĉ
† =

∑

σ′ Cσσ′ψ̂
†
−,σ′(~r) and

Ĉψ̂−,σ(~r)Ĉ
† =

∑

σ′ Cσσ′ψ̂
†
+,σ′(~r). Let us stress that Eqs. (138) and (139) are only valid

when using the orbitals of the free Dirac equation {ψp} and not arbitrary orbitals {ψ̃p}.
These equations allow us to find the transformation under charge conjugation of the
electron-positron Hamiltonian in Eq. (7) expressed with normal ordering with respect
to the free vacuum state.

In terms of the free electron and positron field operators, the one-particle density-
matrix operator in Eq. (11) has the expression

n̂1,ρσ(~r,~r
′) = ψ̂†

+,σ(~r
′)ψ̂+,ρ(~r) + ψ̂†

+,σ(~r
′)ψ̂−,ρ(~r) + ψ̂†

−,σ(~r
′)ψ̂+,ρ(~r)− ψ̂−,ρ(~r)ψ̂

†
−,σ(~r

′),

(140)

which becomes under charge conjugation

Ĉn̂1,ρσ(~r,~r
′)Ĉ† =

∑

ρ′σ′

Cρρ′ [ψ̂−,σ′(~r ′)ψ̂†
−,ρ′(~r) + ψ̂−,σ′(~r ′)ψ̂†

+,ρ′(~r)

+ψ̂+,σ′(~r ′)ψ̂†
−,ρ′(~r)− ψ̂†

+,ρ′(~r)ψ̂+,σ′(~r ′)]C†
σ′σ

= −
∑

ρ′σ′

Cρρ′ n̂1,σ′ρ′(~r
′, ~r)C†

σ′σ, (141)

or, in matrix form,

Ĉn̂1(~r,~r
′)Ĉ† = −Cn̂T

1 (~r
′, ~r)C†. (142)
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From this, we deduce that the Dirac kinetic + rest mass operator T̂D in Eq. (8) is symmetric
under charge conjugation

ĈT̂DĈ
† = −

∫

Tr[D(~r)Cn̂T
1 (~r

′, ~r)C†]~r ′=~r d~r

= −

∫

Tr[C†D(~r)Cn̂T
1 (~r

′, ~r)]~r ′=~r d~r

=

∫

Tr[D(~r)n̂1(~r,~r
′)]~r ′=~r d~r

= T̂D, (143)

where we have used C†D(~r)C = −D∗(~r) = −c (~α∗ · ~p ∗) − β mc2 and the third equality
in Eq. (143) comes from the hermiticity of ~α, i.e. ~α∗ = ~αT, and the self-adjointness of
~p. Moreover, from Eq. (142), we find the expected antisymmetry of the opposite charge
density operator under charge conjugation

Ĉn̂(~r)Ĉ† = −n̂(~r), (144)

which immediately shows that the external potential operator V̂ in Eq. (10) is also anti-
symmetric

ĈV̂ Ĉ† = −V̂ . (145)

A similar calculation gives the transformation of the pair density-matrix operator in
Eq. (12) under charge conjugation

Ĉn̂2,ρυστ (~r1, ~r2)Ĉ
† =

∑

ρ′υ′τ ′σ′

Cρρ′Cυυ′ n̂2,τ ′σ′υ′ρ′(~r2, ~r1)C
†
τ ′τC

†
σ′σ, (146)

or, in matrix notation,

Ĉn̂2(~r1, ~r2)Ĉ
† = (C⊗C)n̂T

2 (~r2, ~r1)(C⊗C)†, (147)

where ⊗ is the matrix tensor product. This shows that the two-particle interaction oper-
ator Ŵ in Eq. (10) is symmetric under charge conjugation

ĈŴ Ĉ† =
1

2

∫∫

Tr[w(~r1, ~r2)(C⊗C)n̂T
2 (~r2, ~r1)(C⊗C)†]d~r1d~r2

=
1

2

∫∫

Tr[(C⊗C)†w(~r1, ~r2)(C⊗C)n̂T
2 (~r2, ~r1)]d~r1d~r2

=
1

2

∫∫

Tr[w(~r1, ~r2)n̂2(~r2, ~r1)]d~r1d~r2

= Ŵ , (148)

where we have used (C ⊗C)†w(~r1, ~r2)(C ⊗C) = w(~r1, ~r2) = wT(~r1, ~r2) and w(~r1, ~r2) =
w(~r2, ~r1).

In conclusion, we thus have found the expected transformation of the electron-positron
Hamiltonian under charge conjugation

ĈĤ[v]Ĉ† = Ĥ[−v]. (149)
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B Alternative definition of the electron-positron Hamilto-

nian

As an alternative to the definition of the electron-positron Hamiltonian based on normal
ordering with respect to the free vacuum state in Eq. (7), an electron-positron Hamiltonian
based on commutators and anticommutators (which we indicate by using the superscript
c) of Dirac field operators can be defined as

Ĥc = T̂ c
D + Ŵ c + V̂ c, (150)

with

T̂ c
D =

∫

Tr[D(~r)n̂c
1(~r,~r

′)]~r ′=~r d~r, (151)

and

Ŵ c =
1

2

∫∫

Tr[w(~r1, ~r2)n̂
c
2(~r1, ~r2)]d~r1d~r2, (152)

and

V̂ c =

∫

v(~r)n̂c(~r) d~r. (153)

In these expressions, n̂c
1(~r,~r

′) is an one-particle density matrix operator defined as a
commutator of Dirac field operators

n̂c1,ρσ(~r,~r
′) =

1

2

[

ψ̂†
σ(~r

′) , ψ̂ρ(~r)
]

, (154)

n̂c(~r) = Tr[n̂c
1(~r,~r)] is the associated opposite charge density operator, and similarly

n̂c
2(~r1, ~r2) is a pair density-matrix operator defined as an anticommutator of products

of Dirac field operators

n̂c2,ρυστ (~r1, ~r2) =
1

2

{

ψ̂†
τ (~r2)ψ̂

†
σ(~r1) , ψ̂ρ(~r1)ψ̂υ(~r2)

}

. (155)

Whereas the commutator form in Eq. (154) is well known in the literature (see, e.g.,
Refs. [9,25]), the anticommutator form in Eq. (155) is, to the best of our knowledge, original
to the present work. The commutator and the anticommutator in these definitions impose
the correct transformation under charge conjugation without having to use normal ordering
with respect to the free vacuum state. Indeed, using Eq. (136), it is straightforward to see
that n̂c

1(~r,~r
′) correctly transforms as in Eq. (142)

Ĉn̂c
1(~r,~r

′)Ĉ† = −Cn̂cT
1 (~r ′, ~r)C†, (156)

and, similarly, n̂c
2(~r1, ~r2) correctly transforms as in Eq. (147)

Ĉn̂c
2(~r1, ~r2)Ĉ

† = (C⊗C)n̂cT
2 (~r2, ~r1)(C ⊗C)†. (157)

Using Wick’s theorem, we can express n̂c
1(~r,~r

′) in terms of the one-particle density-matrix
operator ˆ̃n1(~r,~r

′) defined with normal ordering with respect to the alternative no-particle
vacuum state |0̃〉 in Eq. (27)

n̂c1,ρσ(~r,~r
′) = ˆ̃n1,ρσ(~r,~r

′) + ñc,vp1,ρσ(~r,~r
′), (158)
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with the associated vacuum-polarization one-particle density matrix

ñc,vp1,ρσ(~r,~r
′) = 〈0̃|n̂c1,ρσ(~r,~r

′)|0̃〉

=
1

2

(

〈0̃|ψ̂†
σ(~r

′)ψ̂ρ(~r)|0̃〉 − 〈0̃|ψ̂ρ(~r)ψ̂
†
σ(~r

′)|0̃〉
)

=
1

2

(

∑

p∈NS

ψ̃∗
p,σ(~r

′)ψ̃p,ρ(~r)−
∑

p∈PS

ψ̃∗
p,σ(~r

′)ψ̃p,ρ(~r)

)

. (159)

Similarly, we can express n̂c
2(~r1, ~r2) in terms of the pair density-matrix operator ˆ̃n2(~r1, ~r2)

defined with normal ordering with respect to the vacuum state |0̃〉 in Eq. (28)

n̂c2,ρυστ (~r1, ~r2) = ˆ̃n2,ρυστ (~r1, ~r2) + ñc,vp1,υτ (~r2, ~r2)
ˆ̃n1,ρσ(~r1, ~r1) + ñc,vp1,ρσ(~r1, ~r1)

ˆ̃n1,υτ (~r2, ~r2)

−ñc,vp1,υσ(~r2, ~r1)
ˆ̃n1,ρτ (~r1, ~r2)− ñc,vp1,ρτ (~r1, ~r2)

ˆ̃n1,υσ(~r2, ~r1) + ñc,vp2,ρυστ (~r1, ~r2),

(160)

with the associated vacuum-polarization pair density matrix

ñc,vp2,ρυστ (~r1, ~r2) = 〈0̃|n̂c2,ρυστ (~r1, ~r2)|0̃〉

=
1

2

(

〈0̃|ψ̂†
τ (~r2)ψ̂υ(~r2)|0̃〉〈0̃|ψ̂

†
σ(~r1)ψ̂ρ(~r1)|0̃〉 − 〈0̃|ψ̂†

τ (~r2)ψ̂ρ(~r1)|0̃〉〈0̃|ψ̂
†
σ(~r1)ψ̂υ(~r2)|0̃〉

+ 〈0̃|ψ̂υ(~r2)ψ̂
†
τ (~r2)|0̃〉〈0̃|ψ̂ρ(~r1)ψ̂

†
σ(~r1)|0̃〉 − 〈0̃|ψ̂ρ(~r1)ψ̂

†
τ (~r2)|0̃〉〈0̃|ψ̂υ(~r2)ψ̂

†
σ(~r1)|0̃〉

)

=
1

2

(

∑

p,q∈NS

ψ̃∗
p,τ (~r2)ψ̃p,υ(~r2)ψ̃

∗
q,σ(~r1)ψ̃q,ρ(~r1)−

∑

p,q∈NS

ψ̃∗
p,τ (~r2)ψ̃p,ρ(~r1)ψ̃

∗
q,σ(~r1)ψ̃q,υ(~r2)

+
∑

p,q∈PS

ψ̃∗
p,τ (~r2)ψ̃p,υ(~r2)ψ̃

∗
q,σ(~r1)ψ̃q,ρ(~r1)−

∑

p,q∈PS

ψ̃∗
p,τ (~r2)ψ̃p,ρ(~r1)ψ̃

∗
q,σ(~r1)ψ̃q,υ(~r2)

)

.

(161)

Similarly to what was done in Eq. (33), the electron-positron Hamiltonian in Eq. (150)
can then be rewritten as

Ĥc = ˆ̃TD + ˆ̃W + ˆ̃V + ˆ̃V vp + Ẽc
0, (162)

where ˆ̃TD,
ˆ̃W , and ˆ̃V have been already defined in Eqs. (34)-(36), and ˆ̃V vp and Ẽc

0 are
the vacuum-polarization potential and no-particle vacuum energy associated with this
Hamiltonian. Similarly to Eq. (38), the vacuum-polarization potential can be written as

ˆ̃V vp = ˆ̃V vp
d + ˆ̃V vp

x , (163)

with a direct contribution

ˆ̃V vp
d =

∫

Tr[ṽc,vp
d (~r1)ˆ̃n(~r1)]d~r1, (164)

where ṽc,vpd,σρ(~r1) =
∑

τυ

∫

wστρυ(~r1, ~r2)ñ
c,vp
υτ (~r2)d~r2 and ñc,vpυτ (~r2) = ñc,vp1,υτ (~r2, ~r2), and an

exchange contribution

ˆ̃V vp
x =

∫∫

Tr[ṽc,vp
x (~r1, ~r2)ˆ̃n1(~r1, ~r2)]d~r1d~r2, (165)
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where ṽc,vpx,τρ(~r1, ~r2) = −
∑

συ wστρυ(~r1, ~r2)ñ
c,vp
1,υσ(~r2, ~r1). Finally, the associated no-particle

vacuum energy can be written as

Ẽc
0 = 〈0̃|Ĥc|0̃〉

=

∫

Tr[D(~r)ñc,vp
1 (~r,~r ′)]~r ′=~r d~r +

∫

v(~r)ñc,vp(~r) d~r

+
1

2

∫∫

Tr[w(~r1, ~r2)ñ
c,vp
2 (~r1, ~r2)]d~r1d~r2. (166)

As suggested by the fact that we used the same notation, it turns out that both the
direct and exchange contributions to the vacuum-polarization potential in Eq. (163) are
identical to the ones introduced in Eq. (38). This can be shown as follows. First, using the
fact that the orbital rotation in Eq. (24) leaves invariant the following sum over orbitals

∑

p∈PS

ψ̃∗
p,σ(~r

′)ψ̃p,ρ(~r) +
∑

p∈NS

ψ̃∗
p,σ(~r

′)ψ̃p,ρ(~r) =
∑

p∈PS

ψ∗
p,σ(~r

′)ψp,ρ(~r) +
∑

p∈NS

ψ∗
p,σ(~r

′)ψp,ρ(~r),

(167)

the vacuum-polarization one-particle density matrix in Eq. (159) can be expressed in terms
of the vacuum-polarization one-particle density matrix introduced in Eq. (31) as

ñc,vp1,ρσ(~r,~r
′) = ñvp1,ρσ(~r,~r

′) + nc,vp1,ρσ(~r,~r
′), (168)

where we have introduced

nc,vp1,ρσ(~r,~r
′) =

1

2

(

∑

p∈NS

ψ∗
p,σ(~r

′)ψp,ρ(~r)−
∑

p∈PS

ψ∗
p,σ(~r

′)ψp,ρ(~r)

)

, (169)

which is the vacuum-polarization one-particle density matrix associated with the operator
in Eq. (154) but over the free vacuum state, i.e. nc,vp

1 (~r,~r ′) = 〈0|n̂c
1(~r,~r

′)|0〉. Using
charge-conjugation symmetry on the set of eigenfunctions {ψp} of the free Dirac equation,
we have

nc,vp1,ρσ(~r,~r
′) =

1

2

(

∑

p∈NS

ψ∗
p,σ(~r

′)ψp,ρ(~r)−
∑

p∈NS

∑

ρ′σ′

Cρρ′ψp,σ′(~r ′)ψ∗
p,ρ′(~r)C

†
σ′σ

)

, (170)

or, in matrix form,

nc,vp
1 (~r,~r ′) = nc,vp

1,− (~r,~r ′)−Cnc,vpT
1,− (~r ′, ~r)C†, (171)

where nc,vp1,−,ρσ(~r,~r
′) = (1/2)

∑

p∈NS ψ
∗
p,σ(~r

′)ψp,ρ(~r). We then immediately see that the
density associated with nc,vp

1 (~r,~r ′) vanishes

nc,vp(~r) = Tr[nc,vp
1 (~r,~r)] = 0, (172)

i.e., the free electron vacuum density and the free positron vacuum density are identical,
as already known [25,56]. Now, using C†αC = αT, it can be checked that

∑

τυ

wστρυ(~r1, ~r2)n
c,vp
υτ (~r2) = 0, (173)

and therefore the contribution of nc,vp
1 (~r,~r ′) to the direct vacuum-polarization potential

in Eq. (164) vanishes. Finally, even tough ˆ̃n1(~r1, ~r2) does not satisfy charge-conjugation
symmetry in the sense of Eq. (142), it does satisfy the following relation

ˆ̃n1(~r1, ~r2) = Cˆ̃nT
1 (~r2, ~r1)C

†, (174)
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and, together with the symmetry properties of wστρυ(~r1, ~r2), it can be used to check that

∫∫

∑

τρσυ

wστρυ(~r1, ~r2)n
c,vp
1,υσ(~r2, ~r1)

ˆ̃n1,ρτ (~r1, ~r2)d~r1d~r2 = 0, (175)

and therefore the contribution of nc,vp
1 (~r,~r ′) to the exchange vacuum-polarization potential

in Eq. (165) vanishes as well. This establishes the equivalence between the vacuum-
polarization potential in Eq. (38) and in Eq. (163).

The no-particle vacuum energies Ẽ0 in Eq. (41) and Ẽc
0 in Eq. (166) are different

however. In particular, in comparison to the situation for Ẽ0 discussed after Eq. (41),
the UV divergences are more serious for Ẽc

0 since the sums in Eq. (166) tend to give
cumulative negative energies rather than cancelling energies. For this reason, it might
be preferable to work with the electron-positron Hamiltonian Ĥ in Eq. (7). The form
of the electron-positron Hamiltonian Ĥc in Eq. (150) remains useful however to establish
links with the literature. In particular, by writing explicitly Ĥc in Eq. (162) in terms of
elementary creation and annihilation operators corresponding to the orbital basis {ψ̃p},
and after removing the vacuum energy Ẽc

0, it can be checked that one exactly recovers the
effective QED (eQED) Hamiltonian of Refs. [25, 41–45]. So we have

ĤeQED = Ĥc − Ẽc
0 = Ĥ − Ẽ0, (176)

where ĤeQED is the Hamiltonian in Eq. (46) of Ref. [25]. Whereas this eQED Hamiltonian
was obtained in Ref. [25] via a “charge-conjugated contraction” of the fermion operators,
here it is obtained via the commutator and anticommutator in Eqs. (154) and (155), or
equivalently via the normal ordering with respect to the free vacuum state in Eqs. (11)
and (12).
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[20] S. Komorovský, Michal Repiský, O. L. Malkina, V. G. Malkin, I. Malkin Ondik,
and M. Kaupp, A fully relativistic method for calculation of nuclear magnetic
shielding tensors with a restricted magnetically balanced basis in the framework
of the matrix Dirac–Kohn–Sham equation, J. Chem. Phys. 128, 104101 (2008),
doi:10.1063/1.2837472.

30

https://doi.org/10.1007/BFb0016642
https://doi.org/https://doi.org/10.1016/S1380-7323(02)80036-X
https://doi.org/10.1007/978-3-642-14090-7
https://doi.org/10.1007/978-3-322-97620-8
https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1%3C23::AID-JCC5%3E3.0.CO;2-N
https://doi.org/10.1002/qua.940
https://doi.org/10.1103/PhysRevA.52.2750
https://doi.org/10.1007/s002140050207
https://doi.org/10.1063/1.480934
https://doi.org/10.1063/1.1412252
https://doi.org/10.1002/jcc.10066
https://doi.org/10.1063/1.1502245
https://doi.org/10.1063/1.2837472


SciPost

[21] L. Belpassi, L. Storchi, H. M. Quiney and F. Tarantelli, Recent advances and perspec-
tives in four-component Dirac–Kohn–Sham calculations, Phys. Chem. Chem. Phys.
13, 12368 (2011), doi:10.1039/C1CP20569B.

[22] P. Chaix and D. Iracane, From quantum electrodynamics to mean-field the-
ory. I. The Bogoliubov-Dirac-Fock formalism, J. Phys. B 22, 3791 (1989),
doi:10.1088/0953-4075/22/23/004.

[23] T. Saue and L. Visscher, Four-component electronic structure methods for molecules,
In S. Wilson and U. Kaldor, eds., Theoretical Chemistry and Physics of Heavy and Su-
perheavy Elements, pp. 211–267. Kluwer, Dordrecht, doi:10.1007/978-94-017-0105-1 6
(2003).

[24] W. Kutzelnigg, Solved and unsolved problems in relativistic quantum chemistry,
Chem. Phys. 395, 16 (2012), doi:10.1016/j.chemphys.2011.06.001.

[25] W. Liu and I. Lindgren, Going beyond “no-pair relativistic quantum chemistry”, J.
Chem. Phys. 139, 014108 (2013), doi:10.1063/1.4811795.

[26] E. H. Lieb and H. Siedentop, Renormalization of the regularized relativistic electron-
positron field, Commun. Math. Phys. 213, 673 (2000), doi:10.1007/s002200000265.
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