

Liberté Égalité Fraternité

NORM WASTE MANAGEMENT: IMPACT ON LANDFILL WORKERS

CAPLIN, Helene, REFERENT, CORRESPONDING AUTHOR Institut de radioprotection et sûreté nucléaire, PSE-ENV/SEREN/BERAP, Fontenay aux Roses, France

IRPA15, Seoul (Korea), January 2021

IRSN/FRM-296 ind. 0

Content

Context in France

Type of waste

Considered workers

Exposure pathways

Results

Sensitivity studies

Conclusions

French context

[TRANSPOSITION OF THE EUROPEAN DIRECTIVE 2013/59/EURATOM

Update the regulation of the management of waste from industries involving NORMA graded approach

	Inert waste Iandfill	Non-hazardous waste landfill	Hazardous waste landfill	Radioactive waste storage
NORM < 1 Bq/g	Х	х	х	Х
		Х	Х	
1 Bq/g < NORM < 20 Bq/g		(with radiological	(with radiological	Х
		survey)	survey)	
NORM > 20 Bq/g				Х

Types of waste containing NORM

Choice of term-sources

RICH-URANIUM WASTE	RICH-THORIUM WASTE	MIXED WASTE
Activity concentration: 20 Bq/g U238 0 Bq/g Th232 10 Bq/g K40	Activity concentration: 0 Bq/g U238 20 Bq/g Th232 10 Bq/g K40	Activity concentration: 20 Bq/g U238 20 Bq/g Th232 10 Bq/g K40
Secular equilibrium	Secular equilibrium	Secular equilibrium
Pasty waste (d=1.6)/ powdered waste (d=1)	Pasty waste (d=1.6)/ powdered waste (d=1)	Pasty waste (d=1.6)/ powdered waste (d=1)
Big-bags	Big-bags	Big-bags

Considered workers and realized tasks

IRSN

TRUCK DRIVER LANDFILL WORKER Control of waste before reception on arrival at the landfill Transport Waste unloading Waste unloading De-bagging of waste Mixing of waste (if pasty waste) or conditioning of waste (if powdered waste) Installation of waste in the storage cell Compacting the waste layer in the storage cell

Covering the compacted waste layer

NORM WASTE MANAGEMENT: IMPACT ON LANDFILL WORKERS - IRPA15 - JANUARY 2021

Considered workers and exposure pathways

TRUCK DRIVER

- External exposure (irradiation) during loading, transport and unloading
- Internal exposure by inhalation during loading and unloading
- Internal exposure by inadvertent ingestion during loading and unloading

LANDFILL WORKER

- External exposure (irradiation) during all his tasks
- Internal exposure by inhalation during all his tasks (except the covering of the compacted waste layer)
- Internal exposure by inadvertent ingestion during all his tasks (except the covering of the compacted waste layer)

<u>Radon exposure</u>: In an outdoor atmosphere, it is generally negligible. This exposure pathway is therefore not considered in this study.

Skin exposure: not considered in the effective dose (specific regulatory limit)

Exposure pathways

- [EXTERNAL EXPOSURE (IRRADIATION)
- Identification of each radiation sources
 - Geometry
 - Distance between sources and workers
 - Exposure time to each source
- Calculation tools
 - MicroShield
 - Mercurad

Exposure pathways

INTERNAL EXPOSURE BY INHALATION

Identification of each dust sources

- Exposure time to each source
- Dust levels
- Pasty waste: 0.1 mg/m³
- Powdered waste:
 - 10 mg/m³ (regulatory limit) for waste loading and unloading, control of waste before reception, de-bagging of waste and conditioning of waste
 - -0.1 mg/m³ for installation, compacting and covering in storage cell

Inhalation rate

Dose coefficients for workers (particles diameter: 5 μm)

Exposure pathways

INTERNAL EXPOSURE BY INADVERTENT INGESTION

Identification of each relevant sources

- Contact time to deposits over the hands
- Ingested quantities → model "hand-to-mouth contact"
 - transfer factor by hand-to-mouth contact (%)
 - frequency of hand-to-mouth contact (event/h)
 - Quantity deposited over the hands:
 - Pasty waste: estimated on the basis of hands surface (cm²) and adhesion factor waste-skin (g/cm²)
 - Powdered waste: generic value of 5 g

Dose coefficients for workers

Results for truck driver

RICH-URANIUM WASTE	RICH-THORIUM WASTE	MIXED WASTE
<u>Pasty waste</u>	<u>Pasty waste</u>	<u>Pasty waste</u>
Effective dose: 3.31 mSv/y	Effective dose: 3.68 mSv/y	Effective dose: 6.90 mSv/y
<u>Powdered waste</u>	<u>Powdered waste</u>	<u>Powdered waste</u>
Effective dose: 8.53 mSv/y	Effective dose: 8.22 mSv/y	Effective dose: 16.66 mSv/y

Results for landfill worker

RICH-URANIUM WASTE	RICH-THORIUM WASTE	MIXED WASTE
<u>Pasty waste</u>	<u>Pasty waste</u>	<u>Pasty waste</u>
Effective dose: 5.32 mSv/y	Effective dose: 5.63 mSv/y	Effective dose: 10.82 mSv/y
<u>Powdered waste</u>	<u>Powdered waste</u>	<u>Powdered waste</u>
Effective dose: 8.85 mSv/y	Effective dose: 9.15 mSv/y	Effective dose: 17.87 mSv/y

Results

EXAMPLE FOR RICH-URANIUM WASTE / EFFECTIVE DOSE FOR LANDFILL WORKER

IRSN

The physical nature, the dust level and the ingested quantity are very important hypothesis because their values have a significant impact on the effective dose

Sensitivity studies

DUST LEVEL

Sensitivity studies [INGESTED QUANTITY

Powdered waste - Rich-uranium waste - landfill worker)

Ingested quantity (g/an)

Effective dose (mSv/y)

Sensitivity studies

WASTE CONDITIONING FOR TRANSPORT

Only for powdered waste

- Transportation in tanker rather than in big-bags
- Geometry of sources
- Exposure time during loading and unloading of waste
- Dust levels

RICH-URANIUM WASTE	RICH-THORIUM WASTE	MIXED WASTE
Truck driver	Truck driver	Truck driver
Effective dose: 7.09 mSv/y	Effective dose: 5.86 mSv/y	Effective dose: 12.90 mSv/y
Landfill worker	Landfill worker	Landfill worker
Effective dose: 8.00 mSv/y	Effective dose: 8.03 mSv/y	Effective dose: 15.94 mSv/y

Degraded operating situations

- Considered situations
 - Breakage or fall of a big-bag
 - Sleeve breakage during silo-tank transfer or overflow of powdered waste
- Impacted hypotheses
 - Dust levels
 - Exposure time

Estimate the frequency of the degraded situation Put in place procedures to avoid these situations Define procedures in the event that such situation arises

Conclusions

- Landfill operators
 - Ensure that the radiological characteristics of the waste are respected
 - Optimize ventilation, hygienic requirements
 - Wear mask and gloves, optimize the external exposure
 - Degraded situations:
 - Well identify these situations
 - Put in place procedures to avoid these situations
 - Define procedures in the event that such situation arises
 - Well inform and train the workers
 - Authorities
 - Ensure that the radiological characteristics of the waste are respected
 - Ensure the specific provisions put in place by the landfill operators are relevant

THANK YOU FOR YOUR ATTENTION

