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Abstract

Developing methods to segment the liver in medical images, study and analyze it remains a significant challenge. The shape of
the liver can vary considerably from one patient to another, and adjacent organs are visualized in medical images with similar
intensities, making the boundaries of the liver ambiguous. Consequently, automatic or semi-automatic segmentation of liver is
a difficult task. Moreover, scanning systems and magnetic resonance imaging have different settings and parameters. Thus the
images obtained differ from one machine to another. In this article, we propose an automatic model-based segmentation that allows
building a faithful 3-D representation of the liver, with a mean Dice value equal to 90.3% on CT and MRI datasets. We compare
our algorithm with a semi-automatic method and with other approaches according to the state of the art. Our method works with
different data sources, we use a large quantity of CT and MRI images from machines in various hospitals and multiple DICOM
images available from public challenges. Finally, for evaluation of liver segmentation approaches in state of the art, robustness
is not adequaly addressed with a precise definition. Another originality of this article is the introduction of a novel measure of

robustness, which takes into account the liver variability at different scales.
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1. Introduction

Surgery, oncology, radiotherapy, morphological studies and
anatomy are examples of applications that require image seg-
mentation. In medical images, problems affecting segmenta-
tion methods are noise, overlapping or fuzzy contours, highly
variable shapes and appearances, complex backgrounds (organs
and tissues with similar intensities and shapes) and low con-
trast. Liver segmentation is still a challenging task and attracts
much attention from researchers. There are three main meth-
ods to address segmentation of the liver: classification meth-
ods, active contour detection and model-based methods. Clas-
sification methods consist of grouping individual components
of the image such as pixels or sub-images and exploiting their
similarities as opposed to the contour approach seeking dis-
similarities, while model based methods can be statistical or
supported by an atlas. Region growing methods [1], [2], his-
tograms with thresholds [3], voxel classification algorithms [4],
and graph cuts [5] are widely used as classification methods
to segment the liver, but they often lead to over-segmentation
problems [6]. In the contour approaches, some researchers im-
prove the existing methods, for example Shi et al. [7] and Liu et
al. [8] present improved deformable shape and contour models
respectively. Several researches have improved this active con-
tour based work by adding a signed force function to segment
liver from MRIs [9, 10, 11]. Soler et al. [12] translate anatomi-
cal knowledge into topological and geometrical constraints with
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the use of deformable models. Yang et al. [13] customize a fast
marching level-set method.

Other methods are based on statistical models to deal with
segmentation problems [14]. Massoptier et al. [15] propose
a statistical model-based approach combined with an active
contour technique using a gradient vector flow to obtain an
automatic liver segmentation. Farzaneh et al. [16] propose a
hierarchical method based on probabilistic models of position
and intensity of voxels. Among these statistical models, Active
Appearance Model (AAM) and Active Shape Model (ASM)
have been widely used as high-level techniques in computer
vision and image processing [17], [18]. An AAM allows to
match a statistical model of object shape and appearance to
a new image and ASM is a statistical model of the shape
of objects, which iteratively deforms to fit to an example of
the object in a new image. Dreuw et al. [19] introduce the
use of appearance-based features in hidden Markov model
emission probabilities to recognize dynamic gestures. They use
tangent distance and image distortion to directly model image
variability in videos on the German finger-spelling alphabet.
Merck et al. [20] propose a method to jointly estimate both
the geometric model for any given image and the shape
distribution for the entire population of training images. Their
method iteratively relax geometric constraints in favor of the
converging shape probabilities as the fitted objects converge
to their target segmentations. Rodzik et al. [21] assume a
training set of images in which corresponding “landmark”
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points have been marked in every images. From this data, they
compute a statistical model of the shape variation, a model of
the texture variation and a model of the correlations between
shape and texture. Then, they find the parameters that optimize
the matching operation. Ivekovic et al. [22] use a pyramid of
statistical models to segment the input image on various reso-
lution levels. After that, they apply a coefficient propagation
through the Gaussian image pyramid and use one statistical
model to perform the segmentation. Back in the context of
liver segmentation, He et al. [23] present a three-level ASM.
They first use a voxel classification step and then apply an
ASM-constrained mesh model only on CT scans. Wimmer et
al. [24] present an implicit ASM with a boundary classifier to
guide the model. Linguraru et al. [25] propose a combination
of appearance, enhancement and shape statistics to segment
the liver. Okada et al. [26] present a probabilistic atlas and an
ASM to automatically segment the liver. Moghbel et al. [27]
propose a random walker based framework. Statistical models
based on appearance or shape are parametric, they thus need
to optimize the parameters and a good initialization to obtain
proper convergence. More recently, deep learning has been
used to automatically segment the liver on CT scans [28, 29] or
on MRI [30].

Current automatic segmentation methods focused on the liver
are not applied on a large variety of data acquisition conditions
and they do not provide a 3-D representation. Besides this
limited evaluation of liver segmentation approaches, their
robustness is not properly addressed, with a clear definition of
this important notion, related to the concrete use and repro-
ducibility of image processing algorithms. Finally, it exists
few studies on liver segmentation for both medical imaging
modalities: CT scans and MRI. Gotra et al. [31] and Chartrand
et al. [32] base their method on Laplacian mesh optimization.
Suzuki et al. [33] use a fast marching and geodesic active
contour segmentation coupled with level-set algorithms to
segment on both modalities. Heinrich et al. [34] present
an automatic multi-organ segmentation based on a discrete
registration framework. Christ et al. [35] use a cascaded fully
convolutional neural networks to segment liver and tumors.

Two major contributions compose our article. In the first
one, we propose a robust, generic and efficient automatic
segmentation algorithm using a model based on the liver shape
variability to construct a 3-D representation of any patient’s
liver. Our model is not parametric and does not need any para-
mater optimization scheme. Instead, we accumulate knowledge
about the liver shape and its variability into a single representa-
tion from databases. Researchers develop liver segmentation in
CT, but it exists fewer studies on MRI, while the latter modality
arouses a lot of interest in clinical routine for oncology and
diagnosis. Our method can extract the organ from different
modalities: MRI and CT scan acquired in different places from
different machines with different acquisition settings. Our
second contribution is the introduction of a novel measure
of robustness. Indeed, robustness is not properly and clearly
defined in segmentation evaluations. Our measure is based on
multiple scales of shape variability, as an extension of [36].

The paper is organized as follows: datasets and construction
of the model based on the liver’s variability, are described in
Section 2. Our approach is defined in Section 3 with the 3-D
reconstruction process. Section 4 presents the novel robustness
measurement. Section 5 discusses the numerical results we
obtain, compared with other methods from state of the art, and
in deep with the only other algorithm whose code is freely
available, SmartPaint [37]. We also evaluate the robustness
of both approaches, confirming the efficiency of our method.
This section also provides numerous visual results for CT and
MRI volumes, to appreciate this accuracy. Perspectives and
conclusions are depicted in Section 6.

2. Materials description and shape model construction

Our method is based on a shape variability model of the liver.
In this section, we present patient’s datasets used for the con-
struction of this model, which is explained in Section 2.2.

2.1. Patient datasets

This study was performed from different sources of datasets.
The first one comes from the statistical shape model chal-
lenge, Shape 2015 [38]. Among liver segmentations as bi-
nary Metalmage format images from anonymous patients, we
selected 28 liver masks where X-dimensions are equal to Y-
dimensions, 3-D images are isotropic with 322-500 x 322-
400 x 141-273 mm?>. Medical examinations are not available
in the Shape2015 database. The second one comes from the
Research Institute against Digestive Cancer (IRCAD) [39]. We
have access to medical images in DICOM format from 20 pa-
tients (10 men and 10 women). Image sizes are 512 x 512 x91-
260 mm?, with the following voxel size: 0.56-0.87 x 0.56-
0.87 x 1.25-4 mm?>. The 2007 liver segmentation competition
(SLIVER) [40] provides another dataset. The contest goal was
to compare different algorithms used to segment livers from 3-
D CT scans. Image sizes are 512 x 512 x 64-394 mm?, with the
following voxel size: 0.57-0.87 x 0.57-0.87 x 0.7-5 mm?.

Collaborations with clinicians made possible to obtain 40
MRI volumes directly from patients in two French Hospitals.
MR exams were performed on different machines (General
Electric Healthcare and Siemens) with a phased array coil. Im-
age sizes are 250-512x320-512x56-128 mm?, with the follow-
ing voxel size: 0.82-1.40 x 0.82-1.40 x 1.8-3 mm?>. They have
different sequences taken at different times in DICOM format.
In this study, we use only the delayed phase: 3-5 minutes after
contrast agent injection, because according to the medical ex-
pert, the contour of the liver is the most visible on this phase.
Then, these MRI volumes come from patients with cirrhosis
and cancer such as HCC (Hepatocellular Carcinoma). In case
of liver disease, segmenting liver becomes a challenging task
because the quality decreases considerably with more hetero-
geneous liver tissue density, moreover livers are severely de-
formed by the disease. In conclusion, our method works well
in MRI and CT images of patients from different machines. We
use a very large quantity of data from different sources, some
are open-source from public websites (Shape2015, IRCAD and
SLIVER) and other anonymized private data come from our



hospital departments. This shows the large quantity and the
high variability of our datasets with 68 CT and 40 MRI images.

2.2. Shape models

The first step of our method is the construction of several
shape models based on 68 CT volumes where liver is manu-
ally delineated. Each 3-D segmentation image has its own X, Y
and Z pixel spacing (see Section 2.1). These dimensions have
to be uniformized for all the images to aggregate all of them
in a single model. After a 3-D cubic interpolation, all 68 seg-
mentations have the same spacing dimensions of X, ¥ and Z,
which is one millimeter pixel size. These values allowed imag-
ing the real dimensions of the liver and processing further any
new data. Then, we compute the mean 3-D gravity center of
the liver: GV on these 68 segmentations. We also construct a
bounding box with standard dimensions of the liver (in millime-
ters) certified by an expert and computed by the mean values of
our database. The bounding box, denoted by BB, is used as a
reference on each set of 3-D segmentations noted M je( . It
enables us to organize our liver data, depending on their vari-
ability, in four sets Sy = {M je(1 m}x With k € {1,4}. Liver sets
are defined according to their variability, i.e. the percentage of
pixels that belong to the liver measured outside the BB. We
denote by o, the variability measure of a binary segmentation
MjE[l,m]’ defined by

Card(Ly \ BB)

Card(Lay) % 100 1)

oM =
Ly is the set of pixels that belong to the liver in a binary seg-
mentation M je(1 ,,y and Card(Lyy) is its cardinality. Ly \ BB thus
represents pixels that belong to the liver measured outside the
box BB and Card(Ly \ BB) is the cardinality of this set. We
construct four liver sets thanks to this variability measure:

St ={Mjeqim, 0% < oy < 2%}

So = {Mjciim, 2% < oy < 6%} -
S3 ={Mjejim, 6% < oy < 8%)

S4 = {Mjeimy, o = 8%}

S1 gathers the smallest livers, S, and S3 represents livers
slightly larger than the BB and S 4 livers bigger than the BB. In
each set S, we align the 3-D gravity center of all M ey, with
the 3-D gravity center of the BB (GV). This manipulation per-
mits to center liver segmentations uniformly in space. After this
positioning, we construct on each 2-D slice a probability map
to evaluate the liver’s presence. We obtain one volume for each
S, we note them My = M je(1 s, @ pixel value M(s, 1) € [0,1]
in a j-slice is defined by:

: 1
M0 = - D M(s, 1) 3)

As the images are isotropic, dimensions are different between
each M, therefore for each M, X-dimension, Y-dimension and
Z-dimension correspond to the maximum dimensions in the
group Sy = {Mjc(im, S0 my =max{m, Mjcm € Si}. If
the j-slice does not exist in one of a volume M je(i,m in Sy,

we consider a background instead with M(s, ) = 0. Our mod-
els aggregate knowledge on shapes of the liver and do not need
parameters optimization. Figure 1 shows this probability map
obtained on one slice for each group.

My = Mje(imy M2 = Mje(1m,) 3= Mje(1,mq) My = Mjeq1,m,

Je{tm

Figure 1: Probability map for one slice of M with k € {1, 4}

Shape models were built with 68 manual segmentations. We
obtain a probability map that reflects a standard position of the
liver, we employ a rigid alignment to preserve invariants of pose
that allows to take into account different positions. In the ex-
perimentation, some testing data are part of a shape model, to
avoid bias we remove them in the shape model chosen.

3. Liver segmentation

Our method is composed of two steps based on these shape

models. The following section is organized around these two
points: first, we find the slice with the most significant surface
of the liver thanks to the mean bounding box (BB) to apply a
threshold and select the region of interest on all medical images
of a patient. Then, after using different filters, we use a fast
marching method and an adjustment process to obtain a faithful
3-D reconstruction of the liver of the patient.
Let Pje1,p) be these p medical images of a patient (CT or MRI
modality (an exclusive-or)). Usually, images have anisotropic
dimensions. Therefore we first proceed to a cubic interpolation
to obtain uniform pixel spacing (1 mm).

3.1. Thresholding and area selection

P; with i € {1,p}—
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Figure 2: Intensity histogram evaluated in the BB on 2 patient images

The BB provides an approximate position of the liver within
the volume. We crop this volume on the dataset Pje(; ). Then
we compute the intensity histogram to find the 2-D image P;



with I € {1, p}, where the largest surface of the liver. Thanks
to the BB, lot of pixels belong to the liver and have similar in-
tensities, therefore the slice with the largest liver surface has an
intensity histogram with the highest peak. Figure 2 shows two
intensity histograms at different slices on the slices: P; as an
example and P; with the most substantial liver surface.
Then, by uniformizing pixel spacing, we can observe that the
images of the different shape models of the liver M have an in-
creasing resolution according to the size of the liver (see Figure
1). This allows us to choose the shape model for the segmen-
tatlon of the patient images P, p). Indeed, we find the image
7, with J; € {1,m;} with the maximum binary area of the first
shape model M. We note R(P;) the resolution (number of pix-
els in X is equal to the number of pixels in Y) of the image Py,
and R(M 7,) the resolution of the image M 1,» if the condition (4)
is false it means that the shape model M[;, = M is too small, so
we test the condition on the model with a superior &:

R(P;) < R(M, € Mp). “)

Once k is chosen, we apply M, as a mask on P; by considering
pixels with a probability higher than a fixed percentage called
B1 on the shape model, the image obtained is noted P; (Figure
3). We consider D the pixels intensity distribution of P; with u
the mean and ¢ the standard deviation.

L —

(a) (b) (c) ' (d)

Figure 3: (a) P;: largest surface of the liver, (b) M, : maximum binary area of
the shape model M with a probability higher than i, (c) P;: application of
M J, as amask on Py, (d) Intensity histogram of Pj that allows to determine the
mean intensity of the liver

We threshold pixels intensity distribution thanks to the fol-
lowing normality test:

1= kK(6)5 < D < p + k(5)6, 5)

with «(6) = 34.64 x 57038 k(6) has a descending exponential
form, that allows us to include more pixels in cases with a small
value of ¢ (¢ is the standard deviation of the pixels intensity dis-
tribution of Pj). The step 1) and the step 2) in Figure 4 show
this process.

Finally, we know that the liver is concentrated in the maximum
binary area of the shape model chosen so we focus our seg-
mentation only in this delimited area. The localization step is
presented in Figure 4 at step 3. That allows us to reduce the
influence of the surrounding organs on liver detection.

model: Mje 1 n,

}

Largest liver surface
Py with I € {1,p}

R(Pr) < R(Mj, € My)
no \with I € {1,p},Jx€ {1,ms}

5) Binarization
BP,,

6) Mask BP)., ,, applied &

jet1p) Fast mmlnn;,
on P

fetin
Figure 4: The complete framework to segment volume of liver

3.2. Fast marching method and adjustment process

We next apply a smoothing step with an anisotropic diffu-
sion filter using the modified curvature diffusion equation as
Draoua et al. used in their work [41]. This filter requires three
parameters: the number of iterations to be performed (n;), the
time step (¢) and the conductance parameter (£). Then, we com-
pute the magnitude of the gradient by convolution with the first
derivative of a Gaussian to detect the contours. We denote the
accentuated images contours by P]€ 1) and we binarize these
results. Thanks to the process described in the previous sec-
tion, we know where is the largest area of the patient liver, this
information enables us to align the shape model M je(1,my) With
the patient data, by the correspondence between P; and M}, .
At this step, we can determine the presence of the liver and we
choose pixels with a probability higher than a fixed value called
B2. We denote the results by BP}E{] . (see step 5 in Figure 4).
We apply BP’ c(1p) 8 mask on P ) Finally, we consider
the center of the connected components with pixels having a
probability higher than 3, in the shape model and a fast march-
ing method [42] is initialized on images P’_ 1p At this posi-
tion. The fast marching method solves the Elkonal Equation
(6) where the speed c(x, y) is strictly non-negative and depends
on the position (x, y) only, it means that the front represented by
the function u is always going forward:

Vi)l = ——. ©)
c(x,y)
The implementation comes from the article [42]. Figure 4
shows the results of these different steps in our algorithm. Our
method is implemented with ITK (Insight Segmentation and
Registration Toolkit) [43].

We now have a binary 3-D mask of the liver from the
medical images Pje(1 p); we denote them by MPje . The
last step consists in erasing the segmentation errors. Indeed,
we have calibrated parameters of all the functions used in our
method to make them automatic. Therefore the segmentation
can be perfect for certain patients but it can also include errors.
These errors come from the fast marching method that includes
part of the images that do not belong to the liver. In most cases
the shape of the liver is Z-convex [44], we use this property to
perform the adjustment with MP;, [ € {1, p}, the 2-D mask with
the maximum area. Before this slice with the largest area M P,



of the liver, each surface: Surface(MP;) has to be included in
the next one: Surface(MPj.), so pixels that do not belong to
the liver are set to 0 in MP;. And after [ slices, each surface
Surface(MP)) has to be included in the previous one, errors
on MP; are also solved. Equation (7) and Figure 5 explain this
adjustment process:

Vj<I,Surface(MP;) C Surface(MP )
Vj> 1L Surface(MP;) C Surface(MP;_y).

@)

MP; au MPj4 MP, MP;_, IJ MP;

Figure 5: Adjustment to solve segmentation errors: red regions correspond to
the difference between two adjacent masks due to over-segmentations

Finally, we have used VTK (Visualization Toolkit) [45] to
reconstruct a 3-D representation of the liver. We use the most
widely known method of surface extraction: the Marching
Cubes algorithm [46]. This method has become a reference
in medical imaging processing. Smoothing is also applied on
the surface during the process. Figure 6 presents the results of
examples from MRI and CT datasets. More experiments are
provided at the end of Section 5.

Figure 6: 3-D liver reconstructions on a) MRI and b) CT volumes

4. Measuring robustness

In this article, we also propose to measure the robustness of
our contribution, by employing the definition given in [47] ex-
tending our previous work [36]. The robustness is not prop-
erly and clearly defined in evaluation process of liver segmen-
tation. However, this notion is important because it is related
to the concrete use and reproducibility of image processing al-
gorithms [48]. With similar notations as [36, 47], let X be the
segmentation result of an algorithm, Y° be the ground truth im-
age that should be reached, and Q a quality measure between
them (e.g. Dice coefficient). As in [47], we consider m scales of

increasing liver variabilities to measure the robustness, denoted
by {0} 1<k<m- As a whole, we denote the different outputs of
A for every scale by X = {Xg}¢=1,,. The ground truth is also
denoted by Y° = {Yﬂ}k=1,m~ We now consider the following
definition of (a, o-)-robustness:

Definition 1 ((«, o)-robustness). Algorithm A is considered as
robust if the difference between the output X and ground truth
YO is bounded by a Lipschitz continuity of the Q function:

dy (O(Xx, YY), 0Xia1, Yy,p)) < adx(Tpsr, o), 1 <k <m,

where

dy (X1, YD), 0Xie1, YL, 1)) = 0Xiear, Y, ) — 0K, YY),
dx(Tks1, %) = k41 — Ol

We calculate the robustness measure (a, o) of A as the « value
obtained and the scale oo = o, where this value is reached.

In other words, in this definition, @ measures the worst drop
in quality through the scales of variability {0}, and o keeps
the variability scale leading to this value. The most robust al-
gorithm should have a low @ value, and a very high o value.
Figure 7 illustrates this definition of robustness (compared to
previous contribution only measuring « [36]), applied on a syn-
thetic example of evaluation of two algorithms.

96

E
0.2 0.3 0.4 05 Varla[)bﬁlllty 07 0.8 09 1
‘ a (from [36]) ‘ (a, o) (from [47])
Algorithm 1 16 (16,0.25)
Algorithm 2 10 (10,0.5)

Figure 7: Illustrative example of evaluation of robustness for two algorithms

This example illustrates the better robustness of Algorithm 2,
since its « value is smaller than the one of Algorithm 1. More-
over, we can precise that this robustness is achieved for a larger
value of variability with the (@, o) measurement.

5. Results and discussion

In the first part of the experimentation section, we evaluate
our automatic method on both multiple CT and MRI. Then we
compare our algorithm with a free available semi-automatic
segmentation software, called SmartPaint [37]. As the user
intervention is required in this method, we compare different
times spent by the user to segment the liver with this semi-
automatic method. We also compare our algorithm with sim-
ilar algorithms, from state of the art. Then, as SLIVER and
IRCAD databases are freely available, a lot of studies use them

®)



in their evaluations and are, therefore, directly comparable. Fi-
nally, we compare our method with the few studies that pro-
pose liver segmentation for both modalities. In the second part
of the experimentation section, we compare segmentations ob-
tained with our algorithm and SmartPaint according to the ro-
bustness defined in Section 4. To complete our results, we pro-
vide 3D illustrations of CT and MRI volumes resulting from
our algorithm. We show results on standard and dysmorphic
liver shapes (livers are deformed by diseases such as cirrhosis
and/or tumors).

5.1. Experiments and comparisons

Parameters used for CT and MRI to segment the liver, are
presented in Table 1. Then, quantitative results from applying
our method to segment the liver on the CT and MRI volumes
are presented in Table 2. Our automatic method and experts
manual segmentations of liver segmentation, are compared by
widely, and suitable metrics designed to quantify the accuracy.
We use the True Positive (TP) and False Negative (FN) rates in
range 0 to 1 to evaluate the REcall value (RE), the PREcision
value (PRE), the Jaccard index (J) and the Dice coefficient (D).
For the IRCAD and SLIVER databases, manual segmentations
are available for all CT scans. Our algorithm has been applied
to the forty MRI volumes and currently we have three available
manual segmentations. We obtain a Dice value equals to 88%
for IRCAD dataset, 93% for SLIVER and 90% for MRI images.

Parameters | ny, | 1 | £ | B1 (%) | B2 (%)
Valies | 5 |01 1] 30 | 30

Table 1: Fixed parameters for the fast marching steps and probability used to
segment the liver are listed with their corresponding values

Dataset RE J D
IRCAD | 0.87+0.05 | 0.78+0.06 | 0.88+0.03
SLIVER | 0.92+0.03 | 0.87+0.04 | 0.93+0.02
MRI 0.91+0.08 | 0.82+0.04 | 0.90+0.02
FN TP PRE
IRCAD 0.13+£0.05 | 0.85+0.07 | 0.89+0.04
SLIVER | 0.08+0.03 | 0.92+0.03 | 0.94+0.03
MRI 0.09+0.07 | 0.90+0.10 | 0.88+0.06

Table 2: Evaluation results of liver segmentation accuracy on CT and on MRI

In this section, we compare our model with a semi-automatic
method, where the intervention of the user is essential. This
method, called SmartPaint [37], allows an interactive segmenta-
tion of medical volume images based on region growing. Other
quantitative comparisons are proposed at the end of this sec-
tion. With SmartPaint, the user performs liver and background
localizations and to help in a second step the interactive delin-
eation of the organ of interest by the algorithm. The liver is seg-
mented by “sweeping” with the mouse cursor in the image, and
the user adds or removes details in 2-D or 3-D by the proposed
segmentation tool. For the comparison, an operator, skilled in
biomedical image processing, who had received a short training
on liver anatomy, but was not a radiological expert, performed

liver segmentations on the SLIVER training dataset. We first
begin by a coarse segmentation in 3-D and we refine it in 2-D,
slice by slice to solve some errors caused by region growing.
With SmartPaint, the user can seamlessly adjust the trade-off
between image-content assisted and completely manual seg-
mentation, ensuring the ability to produce any segmentation re-
sult with enough interaction time. In this context, we decided
to evaluate two times of the user interaction: 5 and 15 min. In a
previous evaluation of SmartPaint, where interactive segmenta-
tion was performed by an operator who had received training on
the liver anatomy, but was not a radiological expert, the average
operator time required for liver segmentation was 10 minutes
and 18 seconds [37]. SmartPaint is currently ranked 20/108 in
the SLIVER Challenge. Results are presented in Table 3 on a
set of four CT volumes from SLIVER database. We notice that
SmartPaint gives significant results with 86% for the Dice coef-
ficient and does not consume a lot amount of time, with equiv-
alent results for 5 minutes and 15 minutes. However our au-
tomatic segmentation outperforms the user dependent method
with a Dice coefficient equals to 95%.

SLIVER (N =4) RE J D
SmartPaint (Smin) | 0.80+0.05 | 0.75+0.06 | 0.86+0.04
SmartPaint (15min) | 0.77+£0.02 | 0.76+0.03 | 0.86+0.02
Our method 0.94+0.02 | 0.90+£0.01 | 0.95+0.01
FN TP PRE
SmartPaint (Smin) | 0.24+0.05 | 0.82+0.05 | 0.93+0.02
SmartPaint (15min) | 0.23+£0.02 | 0.86+0.12 | 0.95+0.03
Our method 0.06+0.02 | 0.93+0.01 | 0.96+0.02

Table 3: Comparison with SmartPaint with different times on CT-volumes

SLIVER RE J D
SmartPaint | 0.85+0.07 | 0.82+ 0.06 | 0.90+ 0.04
Our method | 0.92+ 0.03 | 0.87+0.04 | 0.93+0.02

FN TP PRE
SmartPaint | 0.14+ 0.07 | 0.87+0.07 | 0.95+ 0.04
Our method | 0.08+0.03 | 0.92+0.03 | 0.94+0.03

MRI RE J D

SmartPaint | 0.91+0.05 | 0.87+0.06 | 0.91+0.04
Our method | 0.91+0.08 | 0.82+0.04 | 0.90+0.02

FN TP PRE
SmartPaint | 0.08+£0.04 | 0.92+0.09 | 0.94+0.05
Our method | 0.09+0.07 | 0.90+0.10 | 0.88+0.06

Table 4: Comparison of segmentation on the SLIVER datasets and MRI from
our database

(a) (b) ()

Figure 8: Visual results on an MRI with HCC: (a) Medical exam with HCC, (b)
Mask from our algorithm, (c) Application of the mask



As user time interaction is not significant, we compare

segmentations done by SmartPaint and by our method on
the 20 SLIVER training images without considering time of
interaction. We obtain 93% with our algorithm for the Dice
coefficient and 90% with SmartPaint, Table 4 shows the results.
SmartPaint is not time dependent and our automatic method
is better than the semi-automatic method. We also evaluate
our method and SmartPaint on three MRI volumes. Due to the
significant noise, complex inhomogeneous background, partial
volume effects and image resolution, segmentation on MRI is a
challenging task. Moreover, MRI volumes come from patients
with advanced cirrhosis, and the disease severely deforms
their livers (see Figure 8). Despite these difficulties, results
obtained with our method are similar to a method with the user
intervention requiring a mean Dice value equals to 90%.
Now, we compare our method with three automatic algorithms
based on statistical models tested on CT scans different from
the SLIVER dataset. Massoptier et al. [15] obtain 94% for the
Dice coefficient. We get 93% for the whole SLIVER dataset,
we are close to their performance but our method consumes
less time. In their article, an average computational time of
11.4 s is requested for processing a 512 x 512 pixels slice,
while our method requests 5-6 s for same dimensions. A
manual expert segmentation generally requires 3-4 min for one
slice [49]. Okada et al. [26] obtain a Jaccard coefficient equals
to 86% for 8 CT scans; we obtain 87% for the 20 SLIVER
training images. Farzaneh et al. [16] obtain a Dice coefficient
higher than 89% on 11 similar images in pixel spacing. The
mean Dice coefficient in our study is 90.5% for 40 different
datasets and our algorithm also work on MRI images.

Then, the CT databases: SLIVER and IRCAD allow a
direct comparison with other methods. Linguraru et al. [25]
obtain a Dice value equal to 96% on the SLIVER dataset.
However , our computation time, 5-6 seconds, is better than
their Atlas based method which request 3000-3600 seconds per
slice. Then our results are less performant than methods of the
articles [13, 24, 27, 50, 51], however all of them concentrate
their task only on CT scans. These methods are limited in case
of reconstruction accuracy on diseased livers involving large
deformations and lesions. Moreover, process in the article [13]
is user-dependent. The advantage is that our method is fully
automatic, generic and also works on MRI with promising
results whatever the liver disease. Deep learning on CT scans
is more accurate than our method [28, 29] but we also segment
liver on MRI. Then, our results on MRI are similar to those of
Shin et al. [30] who use deep learning on MRI, with a recall
value of 0.91 (see Table 2); however they do not test their
method on CT scans.

As far as we know, it does not exist free available database
with manual segmentation of the liver on MRI except the
database called Visceral [52]. However, data are presented as
part of a Benchmarking which has reached an end in 2017, and
data seem no more accessible. Nonetheless their segmentation
results leaderboard shows a study with a maximum Dice equal
to 90.2% on MRI for the Computer Vision Lab, ETH Zurich
and 95% on CT for Creatis, INSA-LYON. Our results are sim-

ilar but we produce one algorithm for both modalities MRI and
CT. Then, lot of studies use private data that makes comparison
a difficult task, yet we present some results.

Finally, Table 5 presents studies where CTs and MRI are both
used. Few liver segmentation methods for both modalities
have been reported; we compare ours with the most recents
[31, 32,33, 34]. We are close to their performances but methods
of Gotra et al. [31], Chartrand et al. [32] and Suzuki et al. [33]
are user-dependent and ours is automatic. The framework pre-
sented by Gotra et al. [31] has two user tasks, a liver delineation
and a manipulation of surface mesh. Patients are the same for
CT and MRI that limits the variability of the liver shape. The
method presented in [32] needs an initialization of the contours
by the user. Then, in the article [33] some parameters are fixed
by the user.Our results are better than results obtained by Hein-
rich et al. [34] who present an atlas registration for CTs and
MRI data. Finally, our results are better on MRI than recent
automatic method presented by Chris et al. [35].

CT MRI
Method Ref Data D J Data D J
Auto Ours SLIVER 93 87 private | 90 | 87
IRCAD 88 78
Semi-Auto | [33] 2015 private 93 private | 93
Semi-Auto | [31]2017 private 90 private 88
Semi-Auto | [32]2017 | SLIVER 94 private 92
Auto [34] 2015 private 92 private | 80
Auto [35]1 2017 private 91 84 private | 87 | 77
IRCAD | 943 | 89.3

Table 5: Comparison with other semi-automatic and automatic methods on
SLIVER and CT or MRI private datasets

5.2. Robustness

Now, we compare segmentations obtained from CT volumes
(IRCAD and SLIVER) with our algorithm and with SmartPaint,
according to their variabilities defined in Section 2.2.

= ==~ Qur method
80 == SmartPaint

72
LN S N A N s N R S I

o: Liver Variability (%)

Figure 9: Performance of our algorithm according to liver’s shape

SLIVER | Std (%) | @ [36] | (e,0) [47]
SmartPaint 4 194 (19.4,5.49)
Our method 2 735 | (7135471

Table 6: Evaluation of robustness for our approach, compared to SmartPaint



Figure 9 shows the performance of our algorithm according
to this variability o, defined in Equation (1) and Table 6 sum-
marizes quantitative evaluation of robustness (see Section 4).
In this Table 6, the standard deviation of Dice measure over the
whole dataset is 2% for our method and 4% for SmartPaint; our
algorithm is thus more stable than SmartPaint. Moreover, we
show the robustness of our approach compared to SmartPaint,
with the same definitions as [36] (a value) and with measure
(a,0) [47]. These evaluations show that the output of our ap-
proach can be altered with lower damage than for SmartPaint,
and with a more difficult case. As a consequence, we can ob-
serve that our contribution is more robust than SmartPaint, over
a large dataset. The code providing this robustness evalua-
tion, and the synthetic example depicted in Figure 7 is publicly
downloadable !. Our algorithm is thus able to resist the pertur-
bation due to the variability of the liver shape (Figure 6).

5.3. 3-D Representation

In this section, we provide illustrations of the results of our
algorithm on both modalities CT and MRI. Figures 12 and 13
provide results of the 3-D liver segmentation algorithm ob-
tained on CT and MRI volumes. Some livers are more easy to
segment due to images quality, high constrast of images, stan-
dard shape of the liver and homogeneous intensities. For in-
stance, MRI is more difficult to segment than CT scans due to
the quality of the images. Moreover, our MRI volumes corre-
spond to livers with tumors or/and advanced cirrhosis. There-
fore the organ is dysmorphic with irregular contours which
makes the segmentation task more difficult. We decided to show
for each modality (CT and MRI) a segmentation of a standard
patient liver volume and a complicated case with an atypical
liver shape in Figures 12 and 13. For each case, typical and
atypical, we show for one original image of the patient (a), the
liver mask obtained from our algorithm (b) and the segmen-
tation (c). With this segmentation, we can construct the 3-D
volume without intermediary functions, two different views are
presented (d). Then we apply a filter that adjusts point coor-
dinates using Laplacian smoothing [53]. The effect is to "re-
lax” the mesh, making the cells better shaped and the vertices
more evenly distributed [45]. Figures 12 (e) and 13 (e) show
screenshot of an ITK-VTK code that we developed to inter-
actively visualize the result of the liver segmentation with our
method after the application of a triangle mesh decimation and
a smoothing filter. It allows to see the liver in 3-D in different
positions and to define a plane that can be interactively placed in
the image volume. Finally, we show two different views of the
isosurface of the liver in red colour (f). We perform this surface
extraction using an algorithm similar to Marching Cubes [43].
Figures 10 and 11 present ten isosurfaces of CT scans and ten
isosurfaces of MRI volumes respectively, with different diffi-
culty levels as mentioned previously. A video on 3-D smooth
representations of a patient liver (CT scans) is available on the
following website: https://youtu.be/mHPU-cCuTBuw.

"https://github.com/antoinevacavant/
robustimageprocessing
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Figure 10: Isosurfaces of CT scans
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Figure 11: Isosurfaces of MRI volumes

6. Conclusion

In this article, we present an automatic segmentation algo-
rithm of the liver on CT and MRI images from different ma-
chines by using a model based on the variabilities of the liver.
We first normalize all the datasets to treat different images
(1 mm for pixel spacing), then our algorithm is automatically
adapted to the processed image. The model based on the liver
shape variability, constructed thanks to expert segmentations,
enables to locate the liver on medical images, compute a thresh-
old to isolate it and initialize an active contour method. Our
algorithm takes into account the liver shape variability and it
leads to a 3-D reconstruction for CT and MRI volumes. It can
be used to process any medical image by overcoming the para-
metric constraints imposed by the machines. We obtain a mean
Dice equal to 90.5% for CT volumes and 90% for MRI. In our
study we present a generic method with a compromise between
the performance, the computation time, the diversity and the
quantity of the data (MRI and large free available CT-datasets).
Using our definition of robustness, we have also shown that
our contribution can resist to the variability of this so com-
plex organ. We currently work on different MRI acquisition



times (portal, arterial, diffusion, efc.); we employ 3-D recon-
struction of these dynamic MRI volumes to develop a method
to detect tumors automatically as radiologists do with visual
criteria based on the different acquisition times. Moreover our
method can be applied to other solid organs: kidneys or pan-
creas for instance, to do this, we need expert segmentation to
build a multi-variability model. The method can be extended to
other applications to isolate an element, if a priori knowledge
of the shape of the object is available. Thanks to this liver seg-
mentation we are already able to detect hepatic tumor as hep-
atocellular carcinoma [54]. The next step of this article is to
extract the vascular network in 3-D [55] to study the blood flow
and locate the onset of possible dysfunctions, as we already
started in [56]. This investigation will also improve the evalua-
tion of the robustness of image segmentation algorithm [57], as
the simulation becomes a relevant way to assess the quality of
the extraction of regions of interest (liver parenchyma, vessels
and tumors) from medical images.

Figure 12: Visual results on 1) typical and 2) atypical CT volume: (a) Patient
image, (b) Mask of the liver, (c) Final segmentation, (d) 3-D liver representation
with raw data, () Smooth 3-D representations, (f) Isosurface
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Figure 13: Visual results on 1) typical and 2) atypical MRI volume: (a) Patient
image, (b) Mask of the liver, (c) Final segmentation, (d) 3-D liver representation
with raw data, (¢) Smooth 3-D representations, (f) Isosurface
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