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ON THE EFFECT OF ZERO-FLIPPING ON THE STABILITY OF THE

PHASE RETRIEVAL PROBLEM IN THE PALEY-WIENER CLASS

PHILIPPE JAMING, KARIM KELLAY & ROLANDO PEREZ III

Abstract. In the classical phase retrieval problem in the Paley-Wiener class PWL for
L > 0, i.e. to recover f ∈ PWL from |f |, Akutowicz, Walther, and Hofstetter independently
showed that all such solutions can be obtained by flipping an arbitrary set of complex zeros
across the real line. This operation is called zero-flipping and we denote by Faf the resulting
function. The operator Fa is defined even if a is not a genuine zero of f , that is if we make
an error on the location of the zero. Our main goal is to investigate the effect of Fa. We
show that Faf is no longer bandlimited but is still wide-banded. We then investigate the
effect of Fa on the stability of phase retrieval by estimating the quantity inf|c|=1 ‖cf−Faf‖2.
We show that this quantity is in general not well-suited to investigate stability, and so we
introduce the quantity inf|c|=1 ‖cFbf − Faf‖2. We show that this quantity is dominated by
the distance between a and b.

1. Introduction

The phase retrieval problem refers to the recovery of the phase of a function f from known
data from the magnitude of f and some constraints on f usually expressed in terms of prop-
erties of some transforms of f . A typical example consists in the recovery of f from |f | and
the knowledge that the Fourier transform of f is compactly supported. These problems have
been studied due to their physical applications such as in x-ray crystallography [21], optical
imaging [22], microscopy [10], and astronomy [9]. However, until the turn of the century, little
was known in the mathematics literature. Early work on this problem centered on describing
the set of solutions and finding additional constraints that can lead to significant reductions
of the set of solutions, see e.g. Klibanov et. al. [19] and the first author’s papers [16, 17].
In the last decade, this subject has seen a blooming interest thanks to the discovery of new
algorithms based on convex optimization (see e.g. [6, 7, 8, 24]). This has in turn triggered
interest in the issue of stability, which refers to continuous dependence of the solution from
the given magnitude data. It has been shown that phase retrieval problems situated in finite
dimensions are stable, however, this is not the case for infinite dimensions [3, 5]. More pre-
cisely, the stability deteriorates whenever the dimension increases [4, 5]. For more information
on phase retrieval problems, we refer the reader to the survey articles [7, 11, 12, 20, 21] which
include detailed discussions on both the theoretical (e.g. abstract formulations, additional
constraints, stability) and the numerical aspects (algorithms), and some physical examples.

In order to simply explain how zero-flipping works, we recall a classical Fourier phase
retrieval problem which was solved independently by Akutowicz [1, 2], Walther [25], and
Hofstetter [14]: given f in the Paley-Wiener class, i.e. f ∈ L2(R) with compactly supported

2020 Mathematics Subject Classification. 30D05, 42B10, 94A12.
Key words and phrases. phase retrieval, Paley-Wiener class, zero-flipping, stability.

1



2 PHILIPPE JAMING, KARIM KELLAY & ROLANDO PEREZ III

Fourier transform, the goal is to find all g in the Paley-Wiener class such that

|g(x)| = |f(x)|, x ∈ R.

We summarize the proof of their solution. Recall that the Paley-Wiener theorem extends f
and g to entire functions of finite order 1. Writing |f(x)|2 = |g(x)|2 or

f(x)f(x̄) = g(x)g(x̄), x ∈ R,

we see that their extensions satisfy

g(z)g(z̄) = f(z)f(z̄), z ∈ C. (1)

Since f is of finite order, we can use Hadamard factorization theorem which states that entire
functions of finite order are identified by their zeros. Here, we may write f as

f(z) = ceαzzm
∏

k∈N

(
1− z

zk

)
ez/zk , z ∈ C

where c, α ∈ C, m ∈ N ∪ {0} and {zk}k∈N is the sequence of nonzero zeros of f . Hence if we
denote by Z(g) the zero set of g (counting with multiplicities), by (1) we have

Z(g) \ {0, 0, ..., 0} = {zk : k ∈ J} ∪ {zk : k ∈ N \ J}, J ⊆ N.

This process was called zero-flipping by Walther. With this, it follows that all such g’s have
Hadamard factorization given by

g(z) = c̃e(α+iγ)zzm
∏

k∈J

(
1− z

zk

)
ez/zk

∏

k∈N\J

(
1− z

zk

)
ez/zk , z ∈ C

where |c̃| = |c| and γ ∈ R. The convergence of the infinite product above to an entire function
of order 1 is guaranteed by a result from Titchmarsh [23]. Moreover, we see that g ∈ L2(R)
since |g| = |f |. For a more technical discussion of zero-flipping in this context, we refer the
reader to the book of Hurt [15, Section 3.17].

Now, let a ∈ C\R and f be in the Paley-Wiener class. Define the flipping operator, denoted
by Fa where

Fa : f 7−→ (1− x/ā)

(1− x/a)

ex/ā

ex/a
· f, x ∈ R.

This operator exhibits the zero-flipping of f at a. Indeed, dividing f by the factor (1−x/a)ex/a

cancels the canonical factor associated to a while multiplying the result by (1 − x/ā)ex/ā

completes the flipping process. Whenever f(a) = 0, Faf is still inside the Paley-Wiener
class and is always a solution of the phase retrieval problem. On the other hand, when
f(a) 6= 0, Faf no longer belongs to the Paley-Wiener class. However we will show that Faf is
wide-banded, that is, its Fourier transform statisfies a square-integrability condition with an
exponential weight. It turns out that this problem was solved in our previous work in [18].

The main question we address in this paper is that of stability of zero-flipping. In some
previous work on the stability of phase retrieval problems (see e.g. [3, 13]), stability was
shown by finding (in some cases) a positive constant C such that

inf
|c|=1

||f − cg||B ≤ C
∣∣∣∣|f | − |g|

∣∣∣∣
B′ (2)
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where B,B′ are suitable Banach or Hilbert spaces. Some error terms may eventually be added.
In our case, stability of the phase retrieval problem in some subclass X of the Paley-Wiener
class would mean that

inf
|c|=1

||f − cg||2 ≤ C
∣∣∣∣|f | − |g|

∣∣∣∣
2
+ (error term)

for every f ∈ X and every solution g ∈ X of the phase retrieval problem. In particular, for
g = Faf we should recover the error term only and stability would imply that this error term
be small. Our aim here is to investigate this issue, namely to get an estimate of

inf
|c|=1

||f − cFaf ||2.

It turns out that when a is in some small region near the origin, then this quantity is actually
large (close to 2||f ||2) so that zero-flipping of such a zero leads to instabilities. On the other
hand, we will show that the error term is small when we flip a zero that is large and close to
the real axis so that such a flipping does not lead to instabilities.

In a second stage, we compare the effect of two zero-flipping, that is, we investigate

inf
|c|=1

||Faf − cFbf ||2. (3)

For instance, if a, b ∈ C \ R are such that f(a) 6= 0 and f(b) = 0, then we are comparing
a genuine solution of the phase retrieval problem in the Paley-Wiener class with a solution
obtained after having made a mistake on the location of the zero. Note that Faf , Fbf are
solutions of the phase retrieval problem. Thus, if the phase retrieval problem were stable,
then this quantity should be an error term since it is bounded by

inf
|c|=1

||Faf − cf ||2 + inf
|c|=1

||Fbf − cf ||2

and should thus be an error term. We will indeed obtain an upper bound of (3) of the
form C(f) dist(a, b) where C(f) is a positive constant depending on f , and dist(a, b) is some
distance function depending on a and b.

This paper is organized as follows. Section 2 provides a short summary about the Fourier
transform and its properties relevant to the study. Section 3 is devoted to our stability results.

2. Preliminaries

For f ∈ L1(R), we use the following normalized definition for the Fourier transform f̂ given
by

f̂(w) =
1√
2π

∫

R

f(x)e−iwx dx, w ∈ R.

With this definition, we have Parseval’s identity given by ||f ||2 = ||f̂ ||2 for f ∈ L2(R). Recall
also that for all x,w ∈ R,

(1) if g(x) = eiaxf(x) for some α ∈ R, then ĝ(w) = ταf̂(w) = f̂(w − α)

(2) if g, h ∈ L2(R), then ĝh = ĝ ∗ ĥ where

(ĝ ∗ ĥ)(w) = 1√
2π

∫

R

ĝ(s)ĥ(w − s) ds, w ∈ R.
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Recall that whenever f ∈ L2(R) with supp f̂ ⊆ [−L,L] for some L > 0, f is said to be
bandlimited and is contained in the Paley-Wiener class which we denote by PWL. The space
PWL is a closed linear subspace of L2(R).

We also recall the Paley-Wiener theorem on the strip, that is, whenever f ∈ L2(R) and

λ > 0, f̂ ∈ L2(R, e2λ|x|dx) where

L2(R, e2λ|x|dx) =

{
F is measurable :

∫

R

|F (x)|2e2λ|x|dx < +∞
}

if and only if f belongs to the Hardy space on the strip H2
τ (Sλ) (see [18] and references

therein). Here, H2
τ (Sλ) is the collection of all holomorphic functions on the strip Sλ = {z ∈

C : | Im z| < λ} such that

||f ||2H2
τ (Sλ)

= sup
|y|<λ

∫

R

|f(x+ iy)|2 dx < +∞.

Note also that if f ∈ H2
τ (Sλ), then f̂ has to be concentrated near the origin so that f is

wide-banded.
For any function f , we denote its reflection with respect to the y-axis by Rf given by

Rf(x) = f(−x), x ∈ R.

Finally, recall that the L2-modulus of continuity of F ∈ L2(R), denoted by ω2(F ;h) for
some h > 0, is given by

ω2(F ;h) = sup
|η|≤h

(∫

R

|F (x− η)− F (x)|2 dx
)1/2

= sup
|η|≤h

||τηF − F ||2.

Throughout the paper, we use the notation C(α1, . . . , αn) to denote a positive constant
that depends only on α1, . . . , αn ∈ C. The constant may change from one line to the next.

3. Results

3.1. The operator Fa. Let f belong to PWL and let a ∈ C such that Im a > 0. Define the
flipping operator which we denote by Fa where

(Faf)(x) =
1− x/ā

1− x/a
· e

x/ā

ex/a
f(x), x ∈ R. (4)

It is easy to verify that |Faf | = |f | on R and so ||Faf ||2 = ||f ||2, and thus also ||F̂af ||2 = ||f̂ ||2.
Note that it will suffice to analyze the stability for Fa when Im a > 0 since we can cover the

case Im a < 0 by looking at Fā since for x ∈ R, Fāf(x) = Faf̄(x).
Observe that Faf extends into an meromorphic function and that if f(a) 6= 0, then Faf

has a pole at a and so that Faf /∈ PWL. On the other hand, if f(a) = 0, from the Hadamard
factorization of f we see that Faf has the effect of replacing the zero at z = a by a zero at
z = ā, and that Faf is still holomorphic. From the Paley-Wiener theorem, we conclude that
Faf ∈ PWL. However, when f(a) 6= 0, Fa extends to a holomorphic function on a strip. More
precisely:

Lemma 3.1. Let f ∈ PWL and let a ∈ C such that Im a > 0 and f(a) 6= 0. Then the
operator Fa : PWL −→ H2

τ (Sλ) is bounded with

||Faf ||H2
τ (Sλ) <

[
1 +

2 Im a

Im a− λ

]
e

2(Im a)2

|a|2 eLλ||f ||2
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where λ < Im a. In particular, F̂af ∈ L2(R, e2λ|x|dx).

Proof. For x, y ∈ R with |y| < λ < Im a, observe that if z = x+ iy,
∣∣∣∣
(x+ iy)− ā

(x+ iy)− a

∣∣∣∣ =
∣∣∣∣1−

2i Im a

z − a

∣∣∣∣

≤ 1 +
2 Im a√

(x− Re a)2 + (y − Im a)2

< 1 +
2 Im a

|y − Ima|

< 1 +
2 Im a

Im a− λ

and ∣∣∣∣
e(x+iy)/ā

e(x+iy)/a

∣∣∣∣ = e
− 2 Im a

|a|2
y
< e

2(Im a)2

|a|2 .

Moreover, since τ̂−iyf(ξ) = f̂(ξ)eξy for y ∈ R such that |y| < λ < Im a and for ξ ∈ R,
Parseval’s identity implies that

∫

R

|f(x+ iy)|2 =

∫ L

−L
|f̂(ξ)|2e2ξy dξ ≤ e2Lλ||f ||22.

Thus, if y ∈ R such that |y| < λ < Ima, we have

∫

R

|(Faf)(x+ iy)|2dx =

∫

R

∣∣∣∣
(x+ iy)− ā

(x+ iy)− a
· e

(x+iy)/ā

e(x+iy)/a

∣∣∣∣
2

|f(x+ iy)|2 dx

<

[
1 +

2 Im a

Im a− λ

]2
e

4(Im a)2

|a|2

∫

R

|f(x+ iy)|2 dx

<

[
1 +

2 Im a

Im a− λ

]2
e

4(Im a)2

|a|2 e2Lλ||f ||22 < +∞.

Taking the supremum for all y such that |y| < λ < Ima yields the first result. The second
result then follows from the Paley-Wiener theorem on the strip. �

We now compute the explicit form of the Fourier transform of Faf which we will need for
our results.

Lemma 3.2. Let f ∈ PWL for some L > 0 and let a ∈ C such that Im a > 0. For all x ∈ R,

(F̂af)(x) =
a

ā

[
f̂(x− βa)− (2 Im a)

∫ +∞

0
eiasf̂(x− βa + s) ds

]
(5)

where βa =
2 Im a

|a|2 .

Proof. Consider the function γa defined by

γa(x) = −
√
2πi

2
[1 + sgn(x)] eiax, x ∈ R. (6)
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It is easy to check that γa ∈ L1(R) with ||γa||1 =
√
2π

Im a
. Then, for all w ∈ R,

γ̂a(w) =
1√
2π

∫

R

−
√
2πi

2
[1 + sgn(x)] ei(a−w)x dx

= −i

∫ +∞

0
ei(a−w)x dx

=
1

a− w
.

Now, for all x ∈ R, write (4) as

(Faf)(x) =
1− x/ā

1− x/a
· eiβaxf(x)

=
a

ā

[
1− a− ā

a− x

]
eiβaxf(x)

=
a

ā

[
eiβaxf(x)− (2iIm a)eiβaxf(x)γ̂a(x)

]
.

Then

(F̂af)(x) =
a

ā

[
τβa

f̂(x)− (2iIm a)
(
Rγa ∗ τβa

f̂
)
(x)
]
, x ∈ R. (7)

Expanding this equation, we get

(F̂af)(x) =
a

ā

[
f̂(x− βa)−

2i Im a√
2π

∫

R

γa(−s)f̂(x− βa − s) ds

]

=
a

ā

[
f̂(x− βa)−

2i Im a√
2π

∫

R

γa(s)f̂(x− βa + s) ds

]

=
a

ā

[
f̂(x− βa)− 2 Im a

∫ +∞

0
eiasf̂(x− βa + s) ds

]

as claimed. �

3.2. Stability between Faf and f . In this section, we will give an estimate of

inf
|c|=1

‖f − cFaf‖2.

This is a classical measure of stability for the phase retrieval problem. We are here inves-
tigating how far zero-flipping drives us from the original function (up to the trivial solution
f → cf). Recall that Faf is bandlimited only if f(a) = 0, this will however play no role here,
that is we allow the solution Faf to be wide-banded. This can also be considered as a simpler
case of (3), where b is real so that Fbf = f . Our result here is the following:

Theorem 3.3. Let f ∈ PWL for some L > 0. Let a ∈ C such that Im a > 0 and βa =
2 Im a

|a|2 .

Then ∣∣∣∣ inf|c|=1
||Faf − cf ||22 − 2||f ||22

∣∣∣∣ ≤ 30
(
L Im a

)
||f ||22, if βa > 2L (8)

and

inf
|c|=1

||Faf − cf ||22 ≤ 2ω2(f̂ ;βa)||f ||2 + 8
√
L Ima ||f ||22, if βa ≤ 2L. (9)



STABILITY OF PHASE RETRIEVAL 7

Remark 3.4. The actual bounds are a bit more precise, see (13) and (17) in the proof below.

Note that βa =
2 Im a

|a|2 = 2L is equivalent to (Re a)2 +
(
Ima− 1

2L

)2
= 1

4L2 which represents a

circle, with a hole at the origin, illustrated below (in blue).

a1

a2

a3

1
2L i βa = 2L

Re a

Im a

The stability region

From Theorem 3.3, we have stability when βa ≤ 2L (in red), whereas we have instability when
βa > 2L (in gray). Consider a1, a2, a3 ∈ C which have positive imaginary parts as plotted in
the figure above. Note that the zero-flipping is ‘more stable’ at a1 as it is farther from the
origin and has a smaller imaginary part than of a2, and the zero-flipping at a3 is unstable as
it is very close to the origin.

This result says that zero-flipping becomes unstable (for this criteria) when a approaches
the real axis inside this disc. On the other hand, if a approaches the real line while staying
away from the origin, we have stability. Indeed, if |a| ≥ α > 0 and Im a −→ 0 then βa −→ 0

so that ω2(f̂ ;βa) −→ 0.

Proof of Theorem 3.3. Observe first that for |c| = 1,

||Faf − cf ||22 = ||F̂af − cf̂ ||22
= ||f̂ ||22 − 2c̄Re〈 F̂af, f̂ 〉+ ||F̂af ||22
= 2

[
||f ||22 − c̄Re〈 F̂af, f̂ 〉

]
,

and thus

inf
|c|=1

||Faf − cf ||22 = 2
[
||f ||22 −

∣∣〈 F̂af, f̂ 〉
∣∣
]
. (10)

For our calculations, we notice from (5) that

ā

a
〈 F̂af , f̂ 〉 =

√
2π
(
Rf̂ ∗ f̂

)
(βa)− 2 Im a

∫ L

−L

∫ +∞

0
eiasf̂(x+ s− βa)f̂(x) ds dx (11)

with Rf̂(x) = f̂(−x) for x ∈ R.

Case 1 βa > 2L.

Observe that if βa > 2L, then
(
Rf̂ ∗ f̂

)
(βa) = 0. (12)
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For the second term, if βa > 2L, then x− βa ≤ L− βa < −L for any x ∈ [−L,L], thus
∣∣∣∣∣

∫ +∞

0
eiasf̂(x+ s− βa) ds

∣∣∣∣∣ =
∣∣∣∣∣e

−ia(x−βa)

∫ L

−L
eiatf̂(t) dt

∣∣∣∣∣

≤ eIm a (x−βa+L)||f̂ ||1
≤ eIm a (x−βa+L)

√
2L||f ||2

and so

∣∣〈 F̂af , f̂ 〉
∣∣ =

∣∣∣∣∣2 Im a

∫ L

−L

∫ +∞

0
eiasf̂(x+ s− βa)f̂(x) ds dx

∣∣∣∣∣

≤ 2 Im a

[√
2L||f ||2

∫ L

−L
|f̂(x)|eIm a(x−βa+L) dx

]

≤ 2
√
2L Im a||f ||22

(∫ L

−L
e2 Im a (x−βa+L) dx

)1/2

= 2
√

2L Im a · sinh(2L Im a)eL Im ae−βa Im a||f ||22. (13)

Note that βa Im a =
2(Im a)2

|a|2 ≤ 2 so that e−βa Im a plays no role and we just bound it by 1.

Further, if βa > 2L then L Ima < 1 thus sinh(L Im a) ≤ sinh(1)L Im a. As 2
√

2 sinh(2)e1 ≤ 15
we get

2
√

2L Im a · sinh(2L Im a)eL Im a ≤ 15L Im a

and finaly
∣∣〈 F̂af, f̂ 〉

∣∣ ≤ 15
(
L Im a

)
||f ||22. Together with (12), we see that (10) imples (8).

Case 2 βa ≤ 2L.

Observe first that

||f ||22 −
√
2π
(
Rf̂ ∗ f̂

)
(βa) ≤

∣∣∣
√
2π
(
Rf̂ ∗ f̂

)
(βa)− ||f ||22

∣∣∣

=

∣∣∣∣∣

∫ L

−L
f̂(ξ)

(
f̂(ξ − βa)− f̂(ξ)

)
dξ

∣∣∣∣∣

≤ ||f ||2||f̂ − τβa
f̂ ||2

≤ ||f ||2 ω2(f̂ ;βa). (14)

It remains to bound the second term in (11), that is, to show that

∣∣∣∣2 Im a

∫ L

−L

∫ +∞

0
eiasf̂(x+ s− βa) ds f̂(x) dx

∣∣∣∣ ≤ C(a)||f ||22

with C(a) −→ 0 when Im a −→ 0.
We first want to bound

∫ +∞

0
eiasf̂(x+ s− βa) ds = e−ia(x−βa)

∫ L

x−βa

eiatf̂(t) dt (15)
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when x ∈ [−L,L]. To do so, assume first that −L ≤ x ≤ βa − L. Then
∣∣∣∣∣

∫ +∞

0
eiasf̂(x+ s− βa) ds

∣∣∣∣∣ ≤ eIm a (x−βa)

∣∣∣∣∣

∫ L

−L
eiatf̂(t) dt

∣∣∣∣∣

≤ eIm a (x−βa)

∣∣∣∣∣

∫ L

−L
e− Im at|f̂(t)|dt

∣∣∣∣∣

≤ eIm a (x−βa+L)
√
2L||f ||2.

On the other hand, if βa − L < x ≤ L, then by Cauchy-Schwarz inequality, we obtain
∣∣∣∣∣

∫ +∞

0
eiasf̂(x+ s− βa) ds

∣∣∣∣∣ =
∣∣∣∣∣e

−ia(x−βa)

∫ L

x−βa

eiatf̂(t) dt

∣∣∣∣∣

≤ eIm a (x−βa)||f ||2
[∫ L

x−βa

e−2 Im a t dt

]1/2

=
eIm a (x−βa)||f ||2√

2 Im a

[
−e−2L Im a + e−2 Im a (x−βa)

]1/2

=
||f ||2√
2 Im a

[
1− e2 Im a (x−βa−L)

]1/2
.

Hence, combining these two bounds, we have
∣∣∣∣∣2 Im a

∫ L

−L

∫ +∞

0
eiasf̂(x+ s−βa)f̂(x) ds dx

∣∣∣∣∣

≤ 2 Im a

[
√
2L||f ||2

∫ βa−L

−L
|f̂(x)|eIm a (x−βa+L) dx

+
||f ||2√
2 Im a

∫ L

βa−L
|f̂(x)|

(
1− e2 Im a (x−βa−L)

)1/2
dx

]

≤
√
2 Im a||f ||22

[
2
√
L Im a

(∫ βa−L

−L
e2 Im a (x−βa+L) dx

)1/2

+

(∫ L

βa−L

(
1− e2 Im a (x−βa−L)

)
dx

)1/2
]

=
√
2 Im a||f ||22

[
√
2L
(
1− e−2βa Im a

)1/2

+

(
2L− βa −

e−2βa Im a

2 Im a
(1− e2(βa−2L) Im a)

)1/2
]
. (16)

This gives the desired bound with

C(a) =
√
2 Im a

[
√
2L
(
1− e−2βa Im a

)1/2
+

(
2L− βa −

e−2βa Im a

2 Im a
(1− e2(βa−2L) Im a)

)1/2
]

(17)
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and it is easy to see that 0 < C(a) ≤ 4
√
L Im a. Finally, by (14) and (16), we obtain the

estimate in (9). �

3.3. Stability between Faf and Fbf . In this section, we now compare two nontrivial so-
lutions Faf and cFbf of the phase retrieval problem. To do this, we introduce the following
stability measure given by

inf
|c|=1

||Faf − cFbf ||2.

Note that we also allow these solutions to be either bandlimited or wide-banded. By using a
similar computation we did to obtain (10), note that

inf
|c|=1

||Faf − cFbf ||22 = 2
[
||f ||22 −

∣∣〈 F̂af, F̂bf 〉
∣∣
]
. (18)

Before we look at the next stability result, we first prove some technical lemmas which we
will need.

Lemma 3.5. Let f ∈ L2(R) and let a, b ∈ C with Im a, Im b > 0 and |a − b| ≤ |b|
2
. Let

βa =
2 Im a

|a|2 and βb =
2 Im b

|b|2 . Consider γa, γb ∈ L1(R) as defined in (6). Then

|| Im a (Rγa ∗ τβa
f̂)− Im b (Rγb ∗ τβb

f̂)||2 ≤ C(a, b)||f ||2 +
√
2π ω2(f̂ ;βa − βb)

where C(a, b) ≤ 14
|a− b|
Im b

.

Remark 3.6. The actual value of C(a, b) is a bit more precise and given in (19) below.

Proof. First, observe that for all x ≥ 0,∣∣ sin(a−b
2 x)

∣∣ ≤
∣∣ sin

(
Re(a−b

2 x)
) ∣∣ cosh

(
Im(a−b

2 )x
)
+
∣∣ sinh

(
Im(a−b

2 )x
) ∣∣

≤
∣∣Re(a−b

2 )
∣∣x · e

Im(a−b)
2

x +
∣∣ sinh

(
Im(a−b

2 )x
) ∣∣.

Hence, with this bound, we get

||Rγa −Rγb||1 =
√
2π

∫ +∞

0
|eiax − eibx|dx

=
√
2π

∫ +∞

0
|eia+b

2
x||eia−b

2
x − e−ia−b

2
x|dx

= 2
√
2π

∫ +∞

0
e−

Im(a+b)
2

x
∣∣ sin(a−b

2 x)
∣∣ dx

≤ 2
√
2π

[ ∫ +∞

0

∣∣Re(a−b
2 )
∣∣xe− Im b x dx+

∫ +∞

0
e−

Im(a+b)
2

x
∣∣ sinh

(
Im(a−b

2 )x
) ∣∣dx

]

=
√
2π

[ |Re a− Re b |
(Im b)2

+
∣∣∣ 1

Im a
− 1

Im b

∣∣∣
]
.

Note also that |a−b| ≤ |b|
2

implies that Ima ≤ 3

2
Im b. Using this, the previous norm estimate,

and Young’s convolution inequality, we then have

|| Im a (Rγa ∗ τβa
f̂)− Im b (Rγb ∗ τβb

f̂)||2
≤ | Im a− Im b | · ||Rγb ∗ τβb

f̂ ||2 + Im a ||(Rγa −Rγb) ∗ τβb
f̂ ||2
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+ Im a ||Rγa ∗ (τβa
f̂ − τβb

f̂)||2
≤ | Im a− Im b | · ||Rγb||1||f ||2 + Im a ||Rγa −Rγb||1||f ||2

+ Im a ||Rγa||1 ω2(f̂ ;βa − βb)

=
√
2π

| Im a− Im b |
Im b

||f ||2 + Im a ||Rγa −Rγb||1||f ||2 +
√
2π ω2(f̂ ;βa − βb)

≤
[
√
2π

| Im a− Im b |
Im b

+
3
√
2π

2
Im b

[ |Re a− Re b |
(Im b)2

+
∣∣∣ 1

Im a
− 1

Im b

∣∣∣
]]

||f ||2

+
√
2π ω2(f̂ ;βa − βb).

We thus obtain the lemma with

C(a, b) =
√
2π

| Im a− Im b |
Im b

+
3
√
2π

2
Im b

[ |Re a− Re b |
(Im b)2

+
∣∣∣ 1

Im a
− 1

Im b

∣∣∣
]
. (19)

Note that if |a− b| ≤ |b|
2

then Ima ≥ 1

2
Im b thus

∣∣∣ 1

Ima
− 1

Im b

∣∣∣ ≤ 2
| Im a− Im b |

(Im b)2

from which the bound C(a, b) ≤ 14
|a− b|
Im b

immediately follows. �

Lemma 3.7. Let f ∈ PWL and let b ∈ C with Im b > 0 and βb =
2 Im b

|b|2 . Then

[∫

R

(
eIm b (x−βb)

∫ L

x−βb

e− Im b y|f̂(y)|dy
)2

dx

]1/2
≤ ||f ||2 C(b)

with

C(b) =
1√

2 Im b

[
2L+ 1 +

e−4L Im b − 1

2 Im b

]1/2
.

Proof. Firstly, if x ≥ L+ βb, then∫ L

x−βb

e− Im b y|f̂(y)|dy = 0.

Secondly, if −L+ βb ≤ x ≤ L+ βb, Cauchy-Schwarz inequality implies that

eIm b (x−βb)

∫ L

x−βb

e− Im b y|f̂(y)|dy ≤ eIm b (x−βb)||f ||2
(∫ L

x−βb

e−2 Im b y dy

)1/2

= eIm b (x−βb)||f ||2
(
e−2 Im b (x−βb) − e−2 Im b L

2 Im b

)1/2

=
||f ||2√
2 Im b

(
1− e2 Im b xe−2 Im b (L+βb)

)1/2

and so
∫ L+βb

−L+βb

(
eIm b (x−βb)

∫ L

x−βb

e− Im b y|f̂(y)|dy
)2

dx =
||f ||22
2 Im b

∫ L+βb

−L+βb

(
1− e2 Im b xe−2 Im b (L+βb)

)
dx
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=
||f ||22
2 Im b

[
2L+

e−4L Im b − 1

2 Im b

]
.

Lastly, if x ≤ −L+ βb,

eIm b (x−βb)

∫ L

x−βb

e− Im b y|f̂(y)|dy = eIm b (x−βb)

∫ L

−L
e− Im b y|f̂(y)|dy

≤ e2 Im b (x−βb)e2 Im b L||f ||22
and thus,
∫ −L+βb

−∞

(
eIm b (x−βb)

∫ L

x−βb

e− Im b y|f̂(y)|dy
)2

dx ≤ ||f ||22 e2 Im b (L−βb)

∫ −L+βb

−∞
e2 Im b x dx

=
||f ||22
2 Im b

.

Combining all these cases, we obtain

∫

R

(
eIm b (x−βb)

∫ L

x−βb

e− Im b y|f̂(y)|dy
)2

dx ≤ ||f ||22C(b)2

where

C(b) =
1√

2 Im b

[
2L+ 1 +

e−4L Im b − 1

2 Im b

]1/2

as announced. �

With these lemmas, we now state and prove our next stability result.

Theorem 3.8. Let f ∈ PWL for some L > 0. Let a, b ∈ C such that Ima, Im b > 0, and

|a− b| ≤ |b|
2
. Let βa =

2 Im a

|a|2 and βb =
2 Im b

|b|2 . Then

inf
|c|=1

||Faf − cFbf ||22 ≤ C1(b)ω2(f̂ ;βb − βa)||f ||2 + C2(a, b)||f ||22.

where C2(a, b) −→ 0 as a −→ b.

Remark 3.9. The constants C1(b) and C2(a, b) are given in (21)-(22) and depend on the
quantities C(a, b) and C(b) given in Lemmas 3.5 and 3.7, respectively.

Proof. We use the formula for Faf from (7). Write

āb

ab̄
〈 F̂af, F̂bf 〉 =

∫

R

(Aa,b(x) +Ba,b(x) +Ca,b(x) +Da,b(x)) dx

where

Aa,b(x) = τβb
f̂(x)τβa

f̂(x)

Ba.b(x) = −τβb
f̂(x)(2i Im a)(Rγa ∗ τβa

f̂)(x)

Ca,b(x) = −τβa
f̂(x)(2i Im b)(Rγb ∗ τβb

f̂)(x)

Da,b(x) = (4 Im a Im b)(Rγb ∗ τβb
f̂)(x)(Rγa ∗ τβa

f̂)(x)
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for all x ∈ R. Since
∫
R
Ab,b(x) dx = ||f ||22 and

||f ||22 = 〈 F̂bf , F̂bf 〉 =
∫

R

(Ab,b(x) +Bb,b(x) +Cb,b(x) +Db,b(x)) dx,

we have ∫

R

(Bb,b(x) +Cb,b(x) +Db,b(x)) dx = 0.

Hence,

āb

ab̄
〈 F̂af, F̂bf 〉 =

∫

R

[
Aa,b(x) + (Ba,b −Bb,b) (x) + (Ca,b −Cb,b) (x) + (Da,b −Db,b) (x)

]
dx. (20)

We will show the result by estimating each term of this integral.
We first look at Aa,b. Observe that

||f ||22 −
∫

R

Aa,b(x) dx ≤
∣∣∣∣
∫

R

Aa,b(x) dx− ||f ||22
∣∣∣∣

≤
∫

R

|f̂(x− βb)||τβa
f̂(x)− τβb

f̂(x)|dx

≤ ||f ||2||τβa
f̂ − τβb

f̂ ||2
≤ ||f ||2 ω2(f̂ ;βa − βb).

For Ba,b −Bb,b, we use the bounds from Lemma 3.5 to obtain
∫

R

|(Ba,b −Bb,b)(x)|dx = 2

∫

R

|τβb
f̂(x)|| Im a (Rγa ∗ τβa

f̂)(x) − Im b (Rγb ∗ τβb
f̂)(x)|dx

≤ 2||f ||2|| Im a (Rγa ∗ τβa
f̂)− Im b (Rγb ∗ τβb

f̂)||2
≤ 2C(a, b)||f ||22 + 2

√
2π ω2(f̂ ;βa − βb)||f ||2.

Next, we use the bounds from Lemma 3.7 so that∫

R

|(Ca,b −Cb,b)(x)|dx

= 2 Im a

∫

R

|τβa
f̂(x)− τβb

f̂(x)||(Rγb ∗ τβb
f̂)(x)|dx

= 2 Im a

∫

R

|τβa
f̂(x)− τβb

f̂(x)|
∣∣∣∣
∫ +∞

0
eibsf̂(x− βb + s) ds

∣∣∣∣dx

= 2 Im a

∫

R

|τβa
f̂(x)− τβb

f̂(x)|
∣∣∣∣e−ib(x−βb)

∫ L

x−βb

eiby f̂(y) dy

∣∣∣∣ dx

≤ 2 Im a

∫

R

|τβa
f̂(x)− τβb

f̂(x)|
[
eIm b (x−βb)

∫ L

x−βb

e− Im by|f̂(y)|dy
]
dx

≤ 2 Im bC(b) · ω2(f̂ ;βa − βb)||f ||2.
For the last term, the bounds from Lemmas 3.5 and 3.7 imply that∫

R

|(Da,b −Db,b)(x)|dx

= 4 Im b

∫

R

|(Rγb ∗ τβb
f̂)(x)|| Im a (Rγa ∗ τβa

f̂)(x)− Im b (Rγb ∗ τβb
f̂)(x)|dx
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≤ 4 Im bC(b)||f ||2|| Im a (Rγa ∗ τβa
f̂)− Im b (Rγb ∗ τβb

f̂)||2
≤ 4 Im bC(b)C(a, b)||f ||22 + 4

√
2π Im bC(b) · ω2(f̂ ;βa − βb)||f ||2.

Combining these three estimates from above, we get
∣∣∣∣
∫

R

[
(Ba,b −Bb,b)(x) + (Ca,b −Cb,b) (x) + (Da,b −Db,b) (x)

]
dx

∣∣∣∣

≤
∫

R

[
| (Ba,b −Bb,b) (x)|+ | (Ca,b −Cb,b) (x)|+ | (Da,b −Db,b) (x)|

]
dx

≤
[
2
√
2π + (2 + 4

√
2π) Im bC(b)

]
ω2(f̂ ;βa − βb)||f ||2

+

[
2C(a, b) + 4 Im bC(b)C(a, b)

]
||f ||22.

Finally, from (18), we obtain

inf
|c|=1

||Faf − cFbf ||22 ≤ 2
∣∣∣ āb
ab̄

〈 F̂af, F̂bf 〉 − ||f ||22
∣∣∣

≤
[
2 + 2

√
2π + (2 + 4

√
2π) Im bC(b)

]
ω2(f̂ ;βa − βb)||f ||2

+

[
2C(a, b) + 4 Im bC(b)C(a, b)

]
||f ||22.

Setting

C1(b) = 2 + 2
√
2π + (2 + 4

√
2π) Im bC(b) (21)

and

C2(a, b) = 2C(a, b) + 4 Im bC(b)C(a, b), (22)

so that C2(a, b) −→ 0 as a −→ b, we obtain the theorem. �

In this corollary, we see that if a false complex zero a goes close to a genuine complex
zero, then the corresponding wide-banded solution Faf goes close to a genuine solution in the
Paley-Wiener class.

Corollary 3.10. Let f ∈ PWL for some L > 0. Fix b ∈ C, a simple zero of f with Im b > 0.

Suppose a ∈ C with Im a > 0, f(a) 6= 0 and |a− b| ≤ |b|
2
. Then

inf
|c|=1

||Faf − cFbf ||22 −→ 0 as a −→ b.

Remark 3.11. Since zeros are isolated, f does not vanish on V \{b} where V is a neighborhood

of b. Without loss of generality, V ⊂
{
a ∈ C : |a− b| ≤ |b|

2

}
.
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