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Abstract. This work studies the quantitative stability of the quadratic
optimal transport map between a fixed probability density ρ and a
probability measure µ on Rd, which we denote Tµ. Assuming that
the source density ρ is bounded from above and below on a compact
convex set, we prove that the map µ 7→ Tµ is bi-Hölder continuous on
large families of probability measures, such as the set of probability
measures whose moment of order p > d is bounded by some constant.
These stability estimates show that the linearized optimal transport
metric W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ,Rd) is bi-Hölder equivalent to the
2-Wasserstein distance on such sets, justifiying its use in applications.

1. Introduction

Let P2(Rd) be the set of probability measures with finite second moment
over Rd and ρ, µ ∈ P2(Rd). The optimal transport problem between ρ and
µ with respect to the quadratic cost c(x, y) = ∥x− y∥2 is the following
minimization problem, where the minimum is taken over the set Π(ρ, µ) of
transport plans between ρ and µ, that is the set of probability measures over
Rd × Rd with marginals ρ and µ:

min
γ∈Π(ρ,µ)

∫
Rd×Rd

∥x− y∥2 dγ(x, y).

The square root of the value of this problem is called the 2-Wasserstein
distance between ρ and µ and is denoted W2(ρ, µ). A theorem of Brenier
[9] asserts that if ρ is absolutely continuous with respect to the Lebesgue
measure, the minimizer of the optimal transport problem is unique, and
is induced by a map T = ∇ϕ, where ϕ is a convex function that verifies
∇ϕ#ρ = µ. We recall that T#ρ denotes the image measure of ρ under the
map T . In our precise setting, where the density ρ is bounded from above
and below on a compact convex set, the potential ϕ is uniquely defined in
L2(ρ) up to an additional constant. Square-summability of ϕ follows from
the Poincaré-Wirtinger inequality on X .

Definition 1.1 (Potentials and maps). We fix a probability measure ρ ∈
P2(Rd), which we assume to be absolutely continuous with respect to the
Lebesgue measure and supported over a compact convex set X . We assume
that the density of ρ is bounded from above and below by positive constants
on X . Given µ ∈ P2(Rd), we call
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• Brenier map and denote Tµ the (unique) optimal transport map
between ρ and µ;

• Brenier potential the unique lower semi-continuous convex function
ϕµ ∈ L2(ρ) such that Tµ = ∇ϕµ and which satisfies

∫
X ϕµdρ = 0;

• dual potential the convex conjugate of ϕµ, denoted ψµ:
∀y ∈ Rd, ψµ(y) = max

x∈X
⟨x|y⟩ − ϕµ(x),

where the maximum is attained by lower semi-continuity of the convex
function ϕµ on the compact convex set X .

Since µ is the image of ρ under Tµ, the mapping µ ∈ (P2(Rd),W2) 7→ Tµ ∈
L2(ρ,Rd) is obviously injective. Using that (Tµ, Tν)#ρ is a coupling between
µ and ν, one can actually prove that this mapping increases distances, namely

∀µ, ν ∈ P2(Rd), W2(µ, ν) ≤ ∥Tµ − Tν∥L2(ρ,Rd) .

This mapping is also continuous: if a sequence of probability measures (µn)n
converges to some µ in (P2(Rd),W2), then Tµn converges to Tµ in L2(ρ,Rd).
This continuity property is for instance implied by Corollary 5.23 in [37],
together with the dominated convergence theorem. However, we note that the
arguments used to prove this general continuity result are non-quantitative.

Linearized Optimal Transport. These two properties of the map µ 7→ Tµ
motivated its use to embed the metric space (P2(Rd),W2) into the Hilbert
space L2(ρ,Rd) [38].

This approach is often referred to as the Linearized Optimal Transport
(LOT) framework and has shown great results in applications to image
processing:

• [38, 23, 5, 11] used this idea to perform pattern recognition in im-
ages for various tasks, including discrimination of nuclear chromatin
patterns in cancer cells, detection of differences in facial expressions,
bird species, galaxy morphologies, sub-cellular protein distributions,
detection and visualization of cell phenotype differences from mi-
croscopy images, or finally jets tagging of collider data in collider
physics.

• [31] considered this framework for generative modelling of images,
with experiments showcasing the generative modelling of digits and
faces images, PET scans in the context of Alzheimer’s disease neu-
roimaging, or thyroid nuclei images.

• [22] followed this approach for improving the resolution of faces
images.

At this stage, the good practical behavior of the linearized optimal transport
framework is not justified from a mathematical viewpoint. A practical benefit
of the embedding is to enable the use of the classical Hilbertian statistical
toolbox on families of probability measures while keeping some features of
the Wasserstein geometry. A particularly nice feature of the embedding
µ 7→ Tµ is that its image in L2(ρ,Rd) is convex, i.e. barycenters of optimal
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transport maps are optimal transport maps. Working with this embedding
is equivalent to replacing the Wasserstein distance by the distance

W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ,Rd) .

We note that the geodesic curves with respect to the distance W2,ρ are called
the generalized geodesics in the book of Ambrosio, Gigli, Savaré [2]. The
choice of the Brenier map between a reference measure ρ and a measure µ as
an embedding of µ may also be motivated by the Riemannian interpretation
of the Wasserstein geometry [30, 2]. In this interpretation, the tangent space
to P2(Rd) at ρ is included in L2(ρ,Rd). The Brenier map minus the identity,
Tµ − id, can be regarded as the vector in the tangent space at ρ which
supports the Wasserstein geodesic from ρ to µ. In the Riemannian language
again, the map µ 7→ Tµ − id would be called a logarithm, i.e. the inverse
of the Riemannian exponential map: it sends a probability measure µ in
the (curved) manifold P2(Rd) to a vector Tµ − id belonging to the linear
space L2(ρ,Rd). This establishes a connection between the linearized optimal
transport framework idea and similar strategies used to extend statistical
inference notions such as principal component analysis to manifold-valued
data, e.g. [17, 13].

It is quite natural to expect that the embedding µ 7→ Tµ retains some of
the geometry of the underlying space, or equivalently that the metric W2,ρ
is comparable, in some coarse sense, to the Wasserstein distance. The main
difficulty, which we study in this article, is to establish quantitative (e.g.
Hölder) continuity properties for the mappings µ 7→ Tµ and µ 7→ ϕµ. We
note that such stability estimates are also important in numerical analysis
and in statistics, where a probability measure of interest µ ∈ P2(Rd) is
often approximated by a sequence of finitely supported measures (µn)n:
convergence rates of quantities related to the sequence (Tµn)n toward a
quantity related to Tµ may then be directly deduced from quantitative
stability estimates controlling ∥Tµn − Tµ∥L2(ρ,Rd) with W2(µn, µ).

Existing results. We focus here on the already known stability results
on the mapping µ 7→ Tµ, starting with negative results. We first note that
explicit examples show that the mapping µ 7→ Tµ is in general not better
than 1

2 -Hölder, see §4 in [18] or Lemma 5.1 in [29]. A much stronger negative
result comes from Andoni, Naor and Neiman [3, Theorem 7] showing that
one cannot construct a bi-Hölder embedding of (P2(Rd),W2), d ≥ 3, into a
Hilbert space:

Theorem (Andoni, Naor, Neiman). (P2(R3),W2) does not admit a uniform,
coarse or quasisymmetric embedding into any Banach space of nontrivial
type.

This theorem implies in particular that one cannot hope to prove that
µ 7→ Tµ is bi-Hölder on the whole set P2(Rd) of probability measures with
finite second moment.
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Existing quantitative stability results can be summed up under the two
following statements. A first result due to Ambrosio and reported in [18],
shows a local 1/2-Hölder behaviour near probability densities µ whose asso-
ciated Brenier map Tµ is Lipschitz continuous. We quote here a variant of
this statement, from [29]:

Theorem (Ambrosio). Let ρ be a probability density over a compact set X .
Let Y ⊂ Rd be a compact set and µ, ν ∈ P(Y). Assume that the Brenier map
Tµ from ρ to µ is L-Lipschitz. Then,

∥Tµ − Tν∥L2(ρ,Rd) ≤ 2
√

diam(X )LW1(µ, ν)1/2.

Assuming Lipschitzness of the Brenier map is rather strong. First, it
implies that the support of µ is connected, so that the previous theorem
cannot be applied when both µ and ν are finitely supported. In addition, to
prove that Tµ is Lipschitz one has to invoke the regularity theory for optimal
transport maps, which requires very strong assumptions on µ, in particular
that its support spt(µ) is convex. A more recent result, due to Berman [6],
proves quantitative stability of the map µ 7→ Tµ under milder assumptions
on the target probability measures. Berman proves a stability result on the
inverse transport maps when the target measure is bound to remain in a fixed
compact set [6, Proposition 3.2]. This result implies quantitative stability of
the Brenier maps; we refer to Corollary 2.4 in [29] for a precise statement.

Theorem (Berman). Let ρ be a probability density over a compact convex set
X , bounded from above and below by positive constants. Let Y be a bounded
connected open subset of Rd with a Lipschitz boundary. Then there exists a
constant C depending only on ρ, X and Y such that for any µ, ν ∈ P(Y),

∥Tµ − Tν∥L2(ρ,Rd) ≤ CW1(µ, ν)
1

2(d−1)(d+2) .

Unlike in Ambrosio’s theorem, the Hölder behavior given does not depend
on the regularity of the transport map Tµ. On the other hand, the Hölder
exponent depends exponentially on the ambient dimension d. As we will see
below, this is not optimal.

Contributions. In this article, we prove quantitative stability results for
quadratic optimal transport maps between a probability density ρ and target
measure µ. We do not assume that µ is compactly supported.

Introducing Mp(µ) =
∫

Rd ∥x∥p dµ(x) the p-th moment of µ ∈ P2(Rd),
we prove in particular the following theorem. We denote by Ca1,...,an a
non-negative constant which depends on a1, . . . , an.

Theorem (Corollary 3.4 and Theorems 4.2 and 4.3). Let X be a compact
convex set and let ρ be a probability density on X , bounded from above and
below by positive constants. Let p > d and p ≥ 4. Assume that µ, ν ∈ P2(Rd)
have bounded p-th moment, i.e. max(Mp(µ),Mp(ν)) ≤ Mp < +∞. Then

∥Tµ − Tν∥L2(ρ,Rd) ≤ Cd,p,X ,ρ,MpW1(µ, ν)
p

6p+16d ,



QUANTITATIVE STABILITY OF OPTIMAL TRANSPORT MAPS 5

∥ϕµ − ϕν∥L2(ρ) ≤ Cd,p,X ,ρ,MpW1(µ, ν)1/2.

If µ, ν are supported on a compact set Y, we have an improved Hölder
exponent for the Brenier map:

∥Tµ − Tν∥L2(ρ,Rd) ≤ Cd,X ,Y,ρW1(µ, ν)
1
6 .

Remark 1.1 (Comparison between W1 and W2). We note that since W1 ≤ W2,
the estimates in all the previous theorems indeed imply a bi-Hölder behaviour
of the map µ 7→ Tµ on subsets of P2(Rd) with respect to both Wasserstein
distances W1 and W2.

Remark 1.2 (Constants). The constants appearing in the above theorem may
all be tracked down and all feature the product of three terms that depend
respectively on the dimension d, the diameter and perimeter of X , and the
bounds mρ,Mρ > 0 on ρ that are such that mρ ≤ ρ ≤ Mρ on X . If µ, ν
are supported on a compact set Y, the constants also feature a factor that
only depends on the smallest positive real RY such that Y ⊂ B(0, RY). For
instance in such compact setting, the constant controlling the L2(ρ) distance
between ϕµ and ϕν reads:

Cd,p,X ,ρ,Mp = Cd,p,X ,ρ,Y = e(d+ 1)2d
M2
ρ

m2
ρ

diam(X )2RY .

In the non-compact setting, a factor involving Mp appears, as well as a
factor involving the Poincaré constant of order p of X and the p-th power
of the ratio RX

rX
, where rX , RX > 0 are the largest and smallest reals such

that B(0, rX ) ⊂ X ⊂ B(0, RX ) (assuming without any loss of generality X
contains the origin).

A large class of probability measures verifies the moment assumption,
such as sub-Gaussian or sub-exponential measures (see Remark 3.1). A
preliminary version of this theorem was announced in [29], with a different
proof strategy, relying on the study of the case where both µ, ν are supported
on the same finite set. The proof in [29] led to a worse Hölder exponent in
the compact case, and couldn’t deal with non-compactly supported measures.
We do not know whether the Hölder exponents in this theorem are optimal.

To prove these stability estimates, we use the fact that the dual potentials
solve a convex minimization problem involving the functional K(ψ) =

∫
ψ∗dρ,

which we call Kantorovich’s functional. We first prove in (§2) a strong
convexity estimate for Kantorovich’s functional, relying in particular on
the Brascamp-Lieb inequality, and which holds under the assumption that
the Brenier potentials are bounded. This strong convexity estimate is then
translated into a stability estimate concerning the dual and Brenier potentials
(§3). The stability of Brenier maps is then obtained (§4), relying in particular
on a Gagliardo-Nirenberg type inequality for the difference of convex functions
(§5), which might be of independent interest.
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2. Strong convexity of Kantorovich’s functional

Let X be a compact convex subset of Rd, and let ρ be a probability density
on X . Given any measure µ ∈ P2(Rd), we consider the problem of finding the
coupling γ ∈ Π(ρ, µ) which maximizes the correlation

∫
⟨x|y⟩dγ(x, y). This

problem is equivalent to the standard quadratic optimal transport problem
and in this setting Kantorovich duality reads

max
γ∈Π(ρ,µ)

∫
⟨x|y⟩dγ(x, y) = min

ψ∈C0(Rd)
K(ψ) +

∫
Rd
ψdµ,

where the functional K, which we will call Kantorovich’s functional, is defined
by

K(ψ) :=
∫

X
ψ∗dρ.

This dual formulation of the maximal correlation problem can for instance
be found as Particular Case 5.16 in [37]. Kantorovichs’ functional is convex
because for any x ∈ Rd, the map ψ 7→ ψ∗(x) is convex in ψ. Moreover, formal
computations, which are justified in Proposition 2.2, show that

∇K(ψ) = −(∇ψ∗)#ρ.

In particular, with ϕµ the Brenier potential associated to the optimal trans-
port problem between ρ and µ and ψµ = ϕ∗

µ its convex conjugate, this gives
the relation ψµ = (∇K)−1(−µ). Since K is convex, its gradient must be
monotone, thus implying that for all probability measures µ0, µ1 ∈ P2(Rd),

⟨ψµ1 − ψµ0 |∇K(ψµ1) − ∇K(ψµ0)⟩ = ⟨ψµ1 − ψµ0 |µ0 − µ1⟩ ≥ 0.
Our aim in this section is to prove Theorem 2.1, establishing strong convexity
estimates for Kantorovich’s functional K, which we will later be able to
translate into stability estimates for µ 7→ ψµ = (∇K)−1(−µ).

Theorem 2.1 (Strong convexity). Let µ0, µ1 ∈ P2(Rd) and let ρ be a
probability density over a compact convex set X , satisfying 0 < mρ ≤ ρ ≤ Mρ.
For k ∈ {0, 1}, denote ϕk = ϕµk the Brenier potential between ρ and µk (see
Definition 1.1). Assume that

(1) ∀k ∈ {0, 1}, −∞ < mϕ ≤ min
X

ϕk ≤ max
X

ϕk ≤ Mϕ < +∞.

Then the convex conjugates ψ0 and ψ1 of ϕ0 and ϕ1 verify:

(2) Var 1
2 (µ0+µ1)(ψ

1 − ψ0) ≤ Cd
M2
ρ

m2
ρ

(Mϕ −mϕ)⟨ψ0 − ψ1|µ1 − µ0⟩,

where Cd = e(d+ 1)2d−1.

Remark 2.1 (Variance). The left-hand side of (2) involves the variance of
ψ1 −ψ0 instead of a squared L2 norm. This is to be expected, because of the
invariance of the Kantorovich’s functional under addition of a constant. The
choice of µ0 +µ1 as the reference measure for the variance term in inequality
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(2) may seem unnatural, but we note that there is no natural reference
measure on the target. The choice of 1

2(µ0 + µ1) as the reference measures
proves relevant for establishing the stability of Brenier potentials in the
next section. Proposition 3.1 especially asserts that Var 1

2 (µ0+µ1)(ψ1 − ψ0) ≥
1
2 Varρ(ϕ1 − ϕ0). We also note that, as detailed in the proof of Theorem 2.1,
the left-hand side of the inequality could actually be replaced by the quantity

Cd
Mρ

mρ

∫ 1

0
Varµt(ψ1 − ψ0)dt,

where for t ∈ [0, 1], µt = ∇((1 − t)ψ0 + tψ1)∗
#ρ interpolates between µ0 and

µ1. This inequality is tighter, but the interpolation t 7→ µt has no simple
interpretation and is quite difficult to manipulate. In particular, this curve
is not a generalized geodesic in the sense of Ambrosio, Gigli, Savaré [2].

Remark 2.2 (Optimality of exponents). Estimate (2) is optimal in term of
exponent of Var 1

2 (µ0+µ1)(ψ1 − ψ0). Indeed in dimension d = 1, for ε ≥ 0,
denote µε the uniform probability measure on the segment [ε, 1 + ε]. Then
for ρ = µ0, one can show that for ε ≤ 1, both Var 1

2 (µ0+µε)(ψε − ψ0) and
⟨ψ0 − ψε|µε − µ0⟩ are of the order of ε2.

The strong convexity estimate of Theorem 2.1 may find applications
beyond the stability of optimal transport maps. In particular, the authors
noticed in a subsequent work [12] that this estimate can be used to derive
non-trivial quantitative stability bounds for Wasserstein barycenters (defined
in [1]) under mild regularity assumptions on the marginal measures.

We also note that a strong convexity estimate similar to (2) was derived
in [16] for entropy-regularized optimal transport, using a proof similar in
spirit to the proof of Theorem 2.1 to be presented below.

The strong convexity estimate (2) is derived from a local estimate, a
Poincaré-Wirtinger inequality for the second derivative of K, which is in turn
a consequence of the Brascamp-Lieb inequality (5). To make the connection
with the Brascamp-Lieb inequality clearer, we first compute the first and
second order derivatives of K along the path ((1 − t)ψ0 + tψ1)t∈[0,1], under
regularity and strong convexity hypotheses. These hypothesis are relaxed in
the proof of Theorem 2.1.

Proposition 2.2. Let ϕ0, ϕ1 ∈ C2(Rd) be strongly convex functions. Define
ψ0 = (ϕ0)∗, ψ1 = (ϕ1)∗ and v = ψ1 − ψ0. For t ∈ [0, 1], define ψt = ψ0 + tv
and finally ϕt = (ψt)∗. Then, ϕt is a strongly convex function, belongs to
C2(Rd), and

d
dtK(ψt) = −

∫
X
v(∇ϕt(x))dρ(x),(3)

d2

dt2 K(ψt) =
∫

X
⟨∇v(∇ϕt(x))|D2ϕt(x) · ∇v(∇ϕt(x)⟩dρ(x).(4)
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We then find a positive lower-bound on the second order derivative ex-
pressed in equation (4) using the Brascamp-Lieb inequality [8]. We cite here
a version of this inequality that is adapted to our context, i.e. that concerns
log-concave probability measures supported on the compact and convex set
X . This statement is a special case of Corollary 1.3 of [24], where X is a
convex subset of a Riemannian manifold. We also refer to Section 3.1.1 of
[21].

Theorem 2.3 (Brascamp-Lieb inequality). Let ϕ ∈ C2(X ) be a strictly convex
function. Let ρ̃ be the probability measure defined by dρ̃ = 1

Zϕ
exp(−ϕ)dx

with Zϕ =
∫

X exp(−ϕ)dx. Then every smooth function s on X verifies:

(5) Varρ̃(s) ≤ Eρ̃⟨∇s|(D2ϕ)−1 · ∇s⟩.

We now justify the computation of the derivatives presented in Proposition
2.2.

Proof of Proposition 2.2. We assume that ϕ0, ϕ1 are both α-strongly convex
and belong to C2(Rd). Then, the convex conjugates ψ0 = (ϕ0)∗, ψ1 =
(ϕ1)∗ are C2 with 1/α-Lipschitz gradients and satisfy D2ψ0 > 0,D2ψ1 > 0
everywhere on Rd. Hence their linear interpolates ψt = (1 − t)ψ0 + tψ1 enjoy
the same properties. This in turn implies that for all t ∈ [0, 1], the convex
conjugate ϕt of ψt belongs to C2(Rd) and is α-strongly convex.

We will now prove that the map G : (t, x) 7→ ∇ϕt(x) has class C1. Let
F : [0, 1] × Rd × Rd → Rd be the continuously differentiable function defined
by F (t, x, y) = ∇ψt(y)−x. A well-known property of the convex conjugate is
that ∇ϕt is the inverse of ∇ψt, implying that G(t, x) is uniquely characterized
by F (t, x,G(t, x)) = 0. Since D2ψt > 0, the Jacobian DyF (t, x, y) = D2ψt(y)
is invertible and the implicit function theorem thus implies that G has class
C1. Differentiating the relation F (t, x,G(t, x)) = 0 with respect to time, we
get

(6) d
dt∇ϕ

t(x) = −D2ϕt(x) · ∇v(∇ϕt(x)).

By Fenchel-Young’s equality case, one has for any x ∈ X and t ∈ [0, 1],

ϕt(x) = ⟨x|∇ϕt(x)⟩ − ψt(∇ϕt(x)),

so that ϕt is at least C1 with respect to time. We can actually differentiate
this equation with respect to time twice and using (6) we get
d
dtϕ

t(x) = ⟨x| d
dt∇ϕ

t(x)⟩ − v(∇ϕt(x)) − ⟨∇ψt(∇ϕt)| d
dt∇ϕ

t(x)⟩ = −v(∇ϕt(x)),

d2

dt2ϕ
t(x) = −⟨∇v(∇ϕt(x))| d

dt∇ϕ
t(x)⟩ = ⟨∇v(∇ϕt(x))|D2ϕt(x) · ∇v(∇ϕt(x))⟩.

Since K(ψt) =
∫

X ϕt(x)dρ(x), we get the result by differentiating twice under
the integral.

□
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Proposition 2.4. In addition to the assumptions of Theorem 2.1, assume
that the Brenier potentials ϕ0, ϕ1 are strongly convex, belong to C2(Rd), and
that ∇ϕ0 and ∇ϕ1 induce diffeomorphisms between X and a closed ball Y.
Then, inequality (2) holds.

Proof. Under the assumptions on ϕ0, ϕ1, Proposition 2.2 ensures that the
function ϕt it defines is strongly convex and belongs to C2(Rd) for any
t ∈ [0, 1]. By the fundamental theorem of calculus, again with the notations
of Proposition 2.2, we have:

⟨ψ0 − ψ1|µ1 − µ0⟩ = d
dtK(ψt)

∣∣∣∣
t=1

− d
dtK(ψt)

∣∣∣∣
t=0

=
∫ 1

0

d2

dt2 K(ψt)dt.(7)

From Proposition 2.2, we have the following expression for the second deriv-
ative of K:

d2

dt2 K(ψt) = Eρ⟨∇v(∇ϕt)|(D2ϕt) · ∇v(∇ϕt)⟩.

We introduce ṽt = v(∇ϕt) for any t ∈ [0, 1], which belongs to C1(Rd) as
the composition of v = ψ1 − ψ0 ∈ C2(Rd) and ∇ϕt. We have ∇ṽt =
D2ϕt · ∇v(∇ϕt), where (D2ϕt) is invertible by strong convexity. Thus,

(8) d2

dt2 K(ψt) = Eρ⟨∇ṽt|(D2ϕt)−1 · ∇ṽt⟩.

We now introduce ρ̃t = exp(−ϕt)/Zt where Zt =
∫

X exp(−ϕt(x))dx, which
is the density of a log-concave probability measure supported on X . The
Brascamp-Lieb inequality, recalled in Theorem 2.3, then ensures that
(9) Varρ̃t(ṽt) ≤ Eρ̃t⟨∇ṽt|(D2ϕt)−1 · ∇ṽt⟩.

We assumed that for any k ∈ {0, 1} and x ∈ X , mϕ ≤ ϕk(x) ≤ Mϕ. We
claim that this property is transferred to ϕt for any t ∈ [0, 1]. Indeed, on the
one hand for all t ∈ [0, 1],

ϕt =
(
(1 − t)ψ0 + tψ1

)∗
≤ (1 − t)(ψ0)∗ + t(ψ1)∗ = (1 − t)ϕ0 + tϕ1 ≤ Mϕ,

where we used the convexity of the convex conjugation. On the other hand,
for any x ∈ X , we have by definition:

ϕt(x) = sup
y∈Rd

⟨x|y⟩ − ψt(y) ≥ −ψt(0) = −(1 − t)ψ0(0) − tψ1(0).

But again, for k ∈ {0, 1}, ψk(0) = supx∈X −ϕk(x) ≤ −mϕ, ensuring that
ϕt ≥ mϕ for all t ∈ [0, 1]. The inequality mϕ ≤ ϕt ≤ Mϕ allows us to compare
the densities ρ and ρ̃t:(

exp(−Mϕ)
MρZt

)
ρ ≤ ρ̃t ≤

(
exp(−mϕ)
mρZt

)
ρ.

This comparison and equation (9) thus give:(
exp(−Mϕ)
MρZt

)
Varρ(ṽt) ≤

(
exp(−mϕ)
mρZt

)
Eρ⟨∇ṽt|(D2ϕt)−1 · ∇ṽt⟩,
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where we used that for any absolutely continuous ρ1, ρ2 ∈ P2(Rd) and
f : Rd → R, the density comparison ρ1 ≤ Cρ2 for some C > 0 yields

Varρ1(f) = min
c∈R

∥f − c∥2
L2(ρ1) ≤ C min

c∈R
∥f − c∥2

L2(ρ2) = C Varρ2(f).

Therefore, using ṽt = v(∇ϕt), µt = (∇ϕt)#ρ, v = ψ1 − ψ0 and expression
(8):

(10) Varµt(ψ1 − ψ0) ≤ Mρ

mρ
exp(Mϕ −mϕ) d2

dt2 K(ψt).

Note that µt = ∇((1 − t)ψ0 + tψ1)∗
#ρ interpolates between µ0 in t = 0 and

µ1 in t = 1, but this interpolation is neither a displacement interpolation in
the sense of McCann [28] nor a generalized geodesic in the sense of Ambrosio,
Gigli, Savaré [2]. Recalling equation (7), this equation is similar to that of
(2), except that we would like to replace µt by 1

2(µ0 + µ1). For this purpose,
we will prove that

(11) µt ≥ mρ

Mρ
min(t, 1 − t)d(µ0 + µ1).

This will be done using an explicit expression for µt. By smoothness and
strong convexity of the function ϕt, the restriction of ∇ϕt to X is a diffeo-
morphism on its image. This implies that µt is absolutely continuous with
respect to the Lebesgue measure. Moreover, by e.g. Villani [36, p.9], for any
x ∈ X the density of µt with respect to Lebesgue, also noted µt, is given by
µt(∇ϕt(x)) det(D2ϕt(x)) = ρ(x). Setting y = ∇ϕt(x) in this formula, we get

∀y ∈ ∇ϕt(X ), µt(y) = ρ(∇ψt(y)) det(D2ψt(y)).

By assumption, ∇ϕk is a diffeomorphism from X to Y and so is ∇ψk from
Y to X . Thus by convexity of X , ∇ψt(Y) ⊂ X , which entails Y ⊂ ∇ϕt(X ).
The equality above then gives

∀k ∈ {0, 1},∀y ∈ Y, µk(y) ≤ Mρ det(D2ψk(y)).

On the other hand, the same equality gives

∀t ∈ [0, 1],∀y ∈ Y, µt(y) ≥ mρ det(D2ψt(y)).

Using the two inequalities above and the concavity of det1/d over the set of
non-negative symmetric matrices, we get for every y ∈ Y,

µt(y) ≥ mρ det(D2ψt(y))

≥ mρ

(
(1 − t) det(D2ψ0)1/d + tdet(D2ψ1)1/d

)d
≥ mρ min(t, 1 − t)d(det(D2ψ0(y)) + det(D2ψ1(y)))

≥ mρ

Mρ
min(t, 1 − t)d(µ0(y) + µ1(y))

Using that spt(µ0) = spt(µ1) = Y, this directly implies (11),
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which in turn gives us

Varµt(v) ≥ 2 min(t, 1 − t)dmρ

Mρ
Var 1

2 (µ0+µ1)(v).

Combined with inequality (10), this gives after integrating over t ∈ [0, 1]:
1

(d+ 1)2d−1
mρ

Mρ
Var 1

2 (µ0+µ1)(v) ≤ Mρ

mρ
exp(Mϕ −mϕ)

∫ 1

0

d2

dt2 K(ψt)dt.

Using (7), we obtain the inequality

(12) Var 1
2 (µ0+µ1)(ψ

1−ψ0) ≤ (d+1)2d−1M
2
ρ

m2
ρ

exp(Mϕ−mϕ)⟨ψ0−ψ1|µ1−µ0⟩.

We finally leverage an in-homogeneity in the scale of the Brenier potentials in
the last inequality in order to improve the dependence on Mϕ −mϕ. For any
λ > 0, introduce for k ∈ {0, 1} the Brenier potential ϕkλ = λϕk and denote
µkλ = (∇ϕkλ)#ρ the corresponding probability measure and ψkλ = (ϕkλ)∗ its
dual potential. Then using the formula ψkλ = λψk(·/λ), one can notice that
for any λ > 0,

Var 1
2 (µ0

λ
+µ1

λ
)(ψ

1
λ − ψ0

λ) = λ2 Var 1
2 (µ0+µ1)(ψ

1 − ψ0),

⟨ψ0
λ − ψ1

λ|µ1
λ − µ0

λ⟩ = λ⟨ψ0 − ψ1|µ1 − µ0⟩,

∀x ∈ X , ∀k ∈ {0, 1}, λmϕ ≤ ϕkλ(x) ≤ λMϕ.

Thus applying inequality (12) to µ0
λ, µ

1
λ and the associated potentials yields

for any λ > 0

Var 1
2 (µ0+µ1)(ψ

1 −ψ0) ≤ (d+ 1)2d−1M
2
ρ

m2
ρ

exp(λ(Mϕ −mϕ))
λ

⟨ψ0 −ψ1|µ1 −µ0⟩.

Choosing λ = 1
Mϕ−mϕ

in the last inequality finally gives

Var 1
2 (µ0+µ1)(ψ

1 − ψ0) ≤ e(d+ 1)2d−1M
2
ρ

m2
ρ

(Mϕ −mϕ)⟨ψ0 − ψ1|µ1 − µ0⟩. □

To deduce the general case of Theorem 2.1, we need to approximate the
convex potentials ϕ0, ϕ1 on X with strongly convex potentials ϕ0

n, ϕ
1
n that

belong to C2(X ) and that are such that their gradients ∇ϕ0
n,∇ϕ1

n induce
diffeomorphisms between X and a closed ball Yn. A regularization that
uses a (standard) convolution does not seem directly feasible. Indeed, ϕk is
defined on X only, and its gradient explodes on the boundary of X when µk
has non-compact support, so that any convex extension of ϕk to Rd has to
take value +∞.

Our strategy is as follows. First, we resort to Moreau-Yosida’s regulariza-
tion to approximate the functions ϕ0, ϕ1 by regular convex functions defined
on Rd. Then, we regularize the target probability measures associated to
the approximated potentials and resort to Caffarelli’s regularity theory to
guarantee smoothness and strong convexity. Caffarelli’s regularity theory
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results require smoothness assumptions on the source probability measure
and strong convexity and smoothness assumption on the domain. We make
these assumptions in the next proposition, but we will later show that these
can be relaxed to get the general case of Theorem 2.1.

Proposition 2.5. Let µ0, µ1 ∈ P2(Rd). Let X be a compact, smooth and
strongly convex set, let ρ be a smooth probability density on X and assume that
ρ is bounded away from zero and infinity on this set. Denote ϕk the Brenier
potentials for the quadratic optimal transport from ρ to µk, ψk = (ϕk)∗, and
assume that there exists mϕ,Mϕ ∈ R such for k ∈ {0, 1} and any x ∈ X ,

mϕ ≤ ϕk(x) ≤ Mϕ.

Then there exists sequences of strongly convex functions (ϕ0
n)n∈N, (ϕ1

n)n∈N in
C2(Rd) such that if one introduces µkn = ∇ϕkn#ρ and ψkn = (ϕkn)∗, then:

(i) limn→+∞⟨ψ0
n − ψ1

n|µ1
n − µ0

n⟩ = ⟨ψ0 − ψ1|µ1 − µ0⟩,
(ii) limn→+∞ Var 1

2 (µ0
n+µ1

n)(ψ1
n − ψ0

n) = Var 1
2 (µ0+µ1)(ψ1 − ψ0),

(iii) let mϕn = minX mink ϕkn, and Mϕn = maxX maxk ϕkn. Then,
mϕ ≤ lim inf

n→+∞
mϕn ≤ lim sup

n→+∞
Mϕn ≤ Mϕ

(iv) there exists a closed ball Yn such that for k ∈ {0, 1}, ∇ϕkn is a
diffeomorphism between X and Yn.

Before proving this proposition, we recall some facts regarding Moreau-
Yosida’s regularization of convex functions. Quoting Section 3.4 of [4], the
Moreau-Yosida regularization of parameter λ > 0 of a closed and proper
convex function f : Rd → R ∪ {+∞} is defined for all x ∈ Rd by infimum
convolution of the function f with 1

2λ ∥·∥2:

fλ(x) = min
u∈Rd

f(u) + 1
2λ ∥u− x∥2 .

The next lemma gathers a few properties of the Moreau-Yosida regularisation.

Lemma 2.6. Let f : Rd → R ∪ {+∞} be a closed and proper convex function
and let λ > 0. Then,

(i) fλ = (f∗ + λ
2 ∥·∥2)∗,

(ii) for all x ∈ Rd, limλ→0 fλ(x) = f(x),
(iii) fλ ∈ C1,1(Rd) and more precisely, ∇fλ is 1

λ -Lipschitz,
(iv) if f is differentiable at x ∈ Rd, then limλ→0 ∇fλ(x) = ∇f(x),
(v) if f is differentiable at x ∈ Rd, then ∥∇fλ(x)∥ ≤ ∥∇f(x)∥.

Proof. Point (i) is found in Proposition 3.3 of [4], points (ii) and (iii) are
found in Theorem 3.24 of [4] and (iv) and (v) can be found in Proposition
2.6 of [10]. □

Proof of Proposition 2.5. First regularization and truncation. We will first
approximate and extend the Brenier potentials ϕ0, ϕ1, which are defined on X ,
with elements of C1,1(Rd). To do so, we extend ϕ0, ϕ1 by +∞ outside of the
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set X and for any α > 0 we denote by ϕkα the Moreau-Yosida regularization
of ϕk with parameter α. We let µkα = (∇ϕkα)#ρ and define ψkα as the convex
convex conjugate of ϕkα. By Lemma 2.6, ∇ϕkα is Lipschitz on the bounded
domain X , implying that the images of ∇ϕkα(X ) are contained in a closed
ball Yα = B(0, Rα). We now prove the claimed convergences (i)—(iii),
relying mainly on the dominated convergence theorem. We first note that
if f : Rd → R satisfies the growth condition |f(x)| ≤ C(1 + ∥x∥2) for some
constant C,

(13) ⟨f |µkα⟩ =
∫

X
f(∇ϕkα)dρ −−−→

α→0

∫
X
f(∇ϕk)dρ = ⟨f |µk⟩.

Indeed, Lemma 2.6.(iv) ensures that for every point x ∈ X where ϕk is
differentiable, thus for ρ-almost every point x, one has limα→0 ∇ϕkα(x) =
∇ϕk(x). Besides, for all such x, Lemma 2.6.(v) gives∣∣∣f(∇ϕkα(x))

∣∣∣ ≤ C

(
1 +

∥∥∥∇ϕkα(x)
∥∥∥2
)

≤ C

(
1 +

∥∥∥∇ϕk(x)
∥∥∥2
)
.

Moreover,∫
X

(
1 +

∥∥∥∇ϕk(x)
∥∥∥2
)

dρ(x) ≤ 1 +M2(∇ϕk(x)#ρ) = 1 +M2(µk) < +∞.

Thus, the dominated convergence theorem ensures that (13) holds.
(i) By Lemma 2.6.(i), ψ0

α − ψ1
α = ϕ0∗

α − ϕ1∗
α = ψ0 + α

2 ∥·∥2 − ψ1 − α
2 ∥·∥2 =

ψ0 − ψ1. Since ψ0, ψ1 are convex conjugates of functions defined on the
compact set X , the functions ψ0 and ψ1 are (globally) Lipschitz on Rd. Thus
f = ψ0

α − ψ1
α is also Lipschitz, and therefore satisfies a growth condition of

the form |f | ≤ C(1 + ∥x∥). By an application of (13), we get

lim
α→0

⟨ψ0
α − ψ1

α|µ1
α − µ0

α⟩ = lim
α→0

⟨ψ0 − ψ1|µ1
α − µ0

α⟩ = ⟨ψ0 − ψ1|µ1 − µ0⟩.

(ii) We use Varµ(f) =
∫
f2dµ − (

∫
fdµ)2. Letting f as in the previous

item, we get

Var 1
2 (µ0

α+µ1
α)(ψ

1
α − ψ0

α) = ⟨f2|12(µ0
α + µ1

α)⟩ − ⟨f |12(µ0
α + µ1

α)⟩2,

Var 1
2 (µ0+µ1)(ψ

1 − ψ0) = ⟨f2|12(µ0 + µ1)⟩ − ⟨f |12(µ0 + µ1)⟩2.

Since f is Lipschitz, both f and f2 satisfy the growth condition allowing us
to apply (13). We therefore get

lim
α→0

Var 1
2 (µ0

α+µ1
α)(ψ

1
α − ψ0

α) = Var 1
2 (µ0+µ1)(ψ

1 − ψ0).

(iii) We note that for k ∈ {0, 1} and x ∈ X , mϕ ≤ ϕkα(x) ≤ Mϕ. This is a
simple consequence of the definition of the Moreau-Yosida regularization ϕkα
as an infimum convolution. Indeed for any x ∈ X , we have on one hand:

ϕkα(x) = inf
x′∈X

(
ϕk(x′) + 1

2α
∥∥x− x′∥∥2

)
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≥ inf
x′∈X

ϕk(x′) + inf
x′∈X

1
2α
∥∥x− x′∥∥2 ≥ mϕ.

On the other hand,

ϕkα(x) = inf
x′∈X

(
ϕk(x′) + 1

2α
∥∥x− x′∥∥2

)
≤ ϕk(x) + 1

2α ∥x− x∥2 ≤ Mϕ.

We have all the desired properties (i)-(iii) but the potentials ϕkα are not
strongly convex and C2 on Rd: they are merely C1,1. Moreover, the property
(iv) does not hold. These properties will be obtained thanks to a second
regularization.

Second regularization. From now on, we fix some α > 0, and we denote
Yα = B(0, Rα) a closed ball that contains the supports of µ0

α and µ1
α. To

construct the regularization of ϕkα we will regularize the measures µkα and
solve an optimal transport problem. We first note that it is straightfor-
ward, e.g. using a simple convolution and truncation, to approximate the
probability measures µkα on Yα by smooth probability densities µkα,β sup-
ported on Yα, bounded away from zero and infinity on Yα and such that
limβ→0 W2(µkα,β, µkα) = 0. By Caffarelli’s regularity theory (e.g. Theorem 3.3
in [15]), the optimal transport map Tα,β between ρ and µkα,β is the gradient
of a strongly convex potential ϕkα,β belonging to C2(X ) and is actually a
diffeomorphism between X and Yα. By Theorem 4.4 in [39], the potential
ϕkα,β can be extended into a C2 strongly convex function on Rd. By stability
of Kantorovich potentials (Theorem 1.51 in [33]), taking a subsequence if
necessary, we can assume that ϕkα,β converges uniformly to ϕkα on X as β → 0.
Since ∇ϕkα,β sends ρ to the measure µkα,β, which is supported on B(0, Rα),
we get

∥∥∥∇ϕkα,β∥∥∥ ≤ Rα. Moreover, since the convex function ϕkα,β converges
uniformly to ϕkα as β → 0, we get

for a.e. x ∈ X , lim
β→0

∇ϕkα,β(x) = ∇ϕkα(x).

This convergence result is also induced by the stability of optimal transport
maps [37, Corollary 5.21], since limβ→0 W2(µkα,β, µkα) = 0 and ∇ϕkα,β (resp.
∇ϕkα) is the optimal transport map between ρ and µkα,β (resp. ρ and µkα).
From these two properties we get as above the desired convergence properties:
denoting with ψkα,β the convex conjugate of ϕkα,β for k ∈ {0, 1},

(i) limβ→0⟨ψ0
α,β − ψ1

α,β|µ1
α,β − µ0

α,β⟩ = ⟨ψ0
α − ψ1

α|µ1
α − µ0

α⟩,
(ii) limβ→0 Var 1

2 (µ0
α,β

+µ1
α,β

)(ψ1
α,β − ψ0

α,β) = Var 1
2 (µ0

α+µ1
α)(ψ1

α − ψ0
α),

(iii) mϕ ≤ lim infβ→0 minX ϕkα,β(x) ≤ lim supβ→0 maxX ϕkα,β(x) ≤ Mϕ.
The sequence in the statement of the proposition is finally constructed using
a diagonal argument: for n ≥ 1, consider α = αn = 1

n and denote

εn =
∣∣∣⟨ψ0

αn
− ψ1

αn
|µ1
αn

− µ0
αn

⟩ − ⟨ψ0 − ψ1|µ1 − µ0⟩
∣∣∣

+
∣∣∣Var 1

2 (µ0
αn

+µ1
αn

)(ψ
1
αn

− ψ0
αn

) − Var 1
2 (µ0

n+µ1
n)(ψ

1 − ψ0)
∣∣∣
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+ (mϕ − min
X

min
k
ϕkαn

)+ + (max
X

max
k

ϕkαn
−Mϕ)+,

where x+ = max(0, x). By the first regularization argument above, εn goes
to 0 as n goes to infinity. Then for a given n ≥ 1, choose β = βn small
enough such that

εn ≥
∣∣∣⟨ψ0

αn,βn
− ψ1

αn,βn
|µ1
αn,βn

− µ0
αn,βn

⟩ − ⟨ψ0
αn

− ψ1
αn

|µ1
αn

− µ0
αn

⟩
∣∣∣

+
∣∣∣∣Var 1

2 (µ0
αn,βn

+µ1
αn,βn

)(ψ
1
αn,βn

− ψ0
αn,βn

) − Var 1
2 (µ0

αn
+µ1

αn
)(ψ

1
αn

− ψ0
αn

)
∣∣∣∣

+ (min
X

min
k
ϕkαn

− min
X

min
k
ϕkαn,βn

)+ + (max
X

max
k

ϕkαn,βn
− max

X
max
k

ϕkαn
)+.

By the second argument above, such a βn always exists. Then the sequences
(ϕ0
n)n≥1, (ϕ1

n)n≥1defined for all n ≥ 1 by ϕ0
n = ϕ0

αn,βn
and ϕ1

n = ϕ1
αn,βn

satisfy
the regularity properties and convergence results of the statement. □

Proposition 2.7. In addition to the assumptions of Theorem 2.1, assume
that X is a smooth and strongly convex set and that the density ρ is smooth.
Then, (2) holds.

Proof. Let ϕ0
n, ϕ

1
n be the sequence of C2 and strongly convex potentials

constructed by Proposition 2.5, converging respectively to ϕ0 and ϕ1, and such
that ∇ϕ0

n,∇ϕ1
n are diffeomorphisms from X to a ball Yn. By Proposition 2.4,

(2) holds for ϕ0
n, ϕ

1
n:

Varµ0
n+µ1

n
(ψ1

n − ψ0
n) ≤ Cd

M2
ρ

m2
ρ

(Mϕn −mϕn)⟨ψ0
n − ψ1

n|µ1
n − µ0

n⟩.

By the claims (i)-(iv) in Proposition 2.5, all the terms in this inequality
converge as n → +∞ and establish (2) in the limit. □

Proof of Theorem 2.1. Let X be a bounded convex set and assume that ρ is
a probability density satisfying mρ ≤ ρ ≤ Mρ. We extend ρ by mρ outside
of X . One can construct a sequence Xn of smooth and strongly convex sets
included in X and converging to X in the Hausdorff sense as n → +∞ [34,
§3.3]. Let K be a smooth, non-negative and compactly supported function,
Kn(x) = ndK(nx) and define

ρn = 1
Zn

(ρ ∗Kn)|Xn
,mρn = mρ

Zn
,Mρn = Mρ

Zn
,

where Zn is a constant ensuring that ρn belongs to P(Xn). We define
µkn = ∇ϕk#ρn. Applying Proposition 2.7 to (Xn, ρn) and (ϕ0, ϕ1), we have:

(14) Varµ0
n+µ1

n
(ψ1 − ψ0) ≤ Cd

Mρ
2
n

mρ
2
n

(Mϕ −mϕ)⟨ψ0 − ψ1|µ1
n − µ0

n⟩.

By construction, limn→+∞ Zn = 1 and ρn converges to ρ in L1(X ). Thus up
to subsequences, ρn converges pointwise almost everywhere to ρ. Setting
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f = ψ0 − ψ1, we have

⟨ψ0−ψ1|µ0
n⟩ =

∫
X
f(∇ϕ0)ρn(x)dx n→+∞−−−−−→

∫
X
f(∇ϕ0)ρ(x)dx = ⟨ψ0−ψ1|µ0⟩.

The limit in the above equation is proven as in Proposition 2.5, using that f
is Lipschitz, that M2(µ0) < +∞ and applying the dominated convergence
theorem. All the terms can be dealt with in a similar manner. Taking the
limit n → +∞ in (14) gives the desired (2). □

3. Stability of potentials

A direct consequence of the strong convexity estimate of Theorem 2.1 is
a quantitative stability result on the dual potential ψµ with respect to the
target measure µ. This estimate on dual potentials is readily transferred to
the Brenier (primal) potentials thanks to the next proposition. We refer to
Definition 1.1 for a definition of the potentials.

Proposition 3.1. Let ρ be a probability density over a compact convex set
X , and let ϕ0, ϕ1 be convex functions on X . Denote ψk the convex conjugate
of ϕk and µk the image of ρ under ∇ϕk. Then for any p > 0,∥∥∥ϕ1 − ϕ0

∥∥∥
Lp(ρ)

≤
∥∥∥ψ1 − ψ0

∥∥∥
Lp(µ0+µ1)

.

In particular,
1
2 Varρ(ϕ1 − ϕ0) ≤ Var 1

2 (µ0+µ1)(ψ
1 − ψ0).

Before proving this proposition, let us mention some consequences. The
stability estimates resulting from Theorem 2.1 and this proposition are
expressed in Corollary 3.2 in terms of variance for the potentials and 1-
Wasserstein distance for the target measures. Assuming that one of the
target measures is absolutely continuous with respect to the other, these
estimates can also be expressed in term of χ2 or Kagan’s divergence of the
target measures. The χ2 divergence reduces to the χ2 test-statistic used
for goodness of fit testing when the compared measures are finitely and
commonly supported and one of them is observed empirically. Note that
such divergence can be interpreted as the square of a divergence, noting for
instance that the total variation distance is only 1

2 -Hölder stable with respect
to it [32].

Corollary 3.2 (Stability of potentials). Let ρ be a probability density over a
compact convex set X , satisfying 0 < mρ ≤ ρ ≤ Mρ and let µ0, µ1 ∈ P2(Rd).
For k ∈ {0, 1}, denote ϕk = ϕµk the Brenier potential between ρ and µk.
Assume that ϕ0, ϕ1 satisfy (1) and denote ψ0 and ψ1 the convex conjugates
of ϕ0 and ϕ1. Then,

Varρ(ϕ1−ϕ0) ≤ 2 Var 1
2 (µ0+µ1)(ψ

1−ψ0) ≤ Cd,ρ diam(X )(Mϕ−mϕ)W1(µ0, µ1)
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with Cd,ρ = e(d + 1)2dM
2
ρ

m2
ρ
. Assuming additionally that µ1 is absolutely

continuous w.r.t. µ0, then

Varρ(ϕ1 − ϕ0) ≤ 2 Var 1
2 (µ0+µ1)(ψ

1 − ψ0) ≤ C2
d,ρ(Mϕ −mϕ)2Dχ2(µ1|µ0)

where Dχ2(µ1|µ0) stands for the χ2 or Kagan’s divergence from µ1 to µ0.

Proof. Proposition 3.1 combined with Theorem 2.1 give the inequalities

Varρ(ϕ1 − ϕ0) ≤ 2 Var 1
2 (µ0+µ1)(ψ

1 − ψ0)

≤ Cd,ρ(Mϕ −mϕ)⟨ψ0 − ψ1|µ1 − µ0⟩.

The first estimate follows from Kantorovich-Rubinstein duality result: for
any x ∈ Rd and k ∈ {0, 1}, for any gk ∈ ∂ψk(x), one has gk ∈ X so that
ψ1 − ψ0 is diam(X )-Lipschitz continuous. Kantorovich-Rubinstein duality
formula then ensures

⟨ψ0 − ψ1|µ1 − µ0⟩ ≤ diam(X )W1(µ0, µ1).

Now notice that if µ1 is absolutely continuous with respect to µ0, then we
have for any constant c ∈ R:

⟨ψ0 − ψ1|µ1 − µ0⟩ = ⟨ψ0 − ψ1 − c|µ1 − µ0⟩

=
∫

Rd
(ψ0 − ψ1 − c)(dµ1

dµ0 − 1)dµ0

≤
(∫

Rd
(ψ0 − ψ1 − c)2dµ0

)1/2
(∫

Rd
(dµ1

dµ0 − 1)2dµ0
)1/2

=
∥∥∥ψ0 − ψ1 − c

∥∥∥
L2(µ0)

Dχ2(µ1|µ0)1/2

≤
√

2
∥∥∥ψ0 − ψ1 − c

∥∥∥
L2( 1

2 (µ0+µ1))
Dχ2(µ1|µ0)1/2.

The second estimate comes after minimizing with respect to c in the last
inequality:

⟨ψ0 − ψ1|µ1 − µ0⟩ ≤
√

2 Var 1
2 (µ0+µ1)(ψ

1 − ψ0)1/2Dχ2(µ1|µ0)1/2. □

Proof of Proposition 3.1. Let A = {x ∈ X | ϕ1(x) ≥ ϕ0(x)} and let x ∈ A
where ϕ1 is differentiable. The Fenchel-Young inequality (and equality) give:

ψ0(∇ϕ1(x)) ≥ ⟨x|∇ϕ1(x)⟩ − ϕ0(x) = ψ1(∇ϕ1(x)) + ϕ1(x) − ϕ0(x),

which thus ensures that for almost every x ∈ A,

ψ0(∇ϕ1(x)) − ψ1(∇ϕ1(x)) ≥ ϕ1(x) − ϕ0(x) ≥ 0.

Similarly, for almost every x ∈ X \A, we have

ψ1(∇ϕ0(x)) − ψ0(∇ϕ0(x)) ≥ ϕ0(x) − ϕ1(x) ≥ 0.
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From this, we deduce the first statement of the proposition:

∥ψ1 − ψ0∥pLp(µ0+µ1) =
∫

X

(∣∣∣(ψ1 − ψ0) ◦ (∇ϕ0)
∣∣∣p +

∣∣∣(ψ1 − ψ0) ◦ (∇ϕ1)
∣∣∣p) dρ

≥
∫

X \A

(
ψ1(∇ϕ0) − ψ0(∇ϕ0)

)pdρ+
∫
A

(
ψ0(∇ϕ1) − ψ1(∇ϕ1)

)pdρ
≥
∫

X \A

(
ϕ0 − ϕ1)pdρ+

∫
A

(
ϕ1 − ϕ0)pdρ =

∥∥∥ϕ1 − ϕ0
∥∥∥p

Lp(ρ)
.

Let c ∈ R. Having established the previous inequality for any convex functions
ϕ0, ϕ1 on X , we may replace ϕ0 with ϕ0−c in this inequality, and consequently
replace ψ0 with (ϕ0 − c)∗ = ψ0 + c. This yields thus for any c ∈ R,∥∥∥ϕ1 − ϕ0 + c

∥∥∥
Lp(ρ)

≤
∥∥∥ψ1 − ψ0 − c

∥∥∥
Lp(µ0+µ1)

.

Taking c that achieves the minimum on the right-hand side, for p = 2, we get
1
2 Varρ(ϕ1 − ϕ0) ≤ 1

2

∥∥∥ϕ1 − ϕ0 + c
∥∥∥2

L2(ρ)

≤
∥∥∥ψ1 − ψ0 − c

∥∥∥2

L2( 1
2 (µ0+µ1))

= Var 1
2 (µ0+µ1)(ψ

1 − ψ0). □

All the stability estimates that have been established so far involve the
oscillation of the Brenier potentials Mϕ −mϕ. It is then natural to wonder
under what assumption on a measure µ ∈ P2(Rd) can we control this oscilla-
tion. The next proposition, found in [7], shows that a sufficient condition is
that µ admits a finite moment of order p > d. This assumption seems nearly
tight : Remark 3.2 below shows that there exists a measure µ such that
Mp(µ) < +∞ with p < d, whose associated Brenier potential is unbounded.

Proposition 3.3 (Proposition 2.22 in [7]). Let ρ be a probability density over
a compact convex set X , satisfying 0 < mρ ≤ ρ ≤ Mρ and let µ ∈ P2(Rd).
Denote ϕ the Brenier potential for the quadratic optimal transport between ρ
and µ. Assume that there exists p > d and Mp < +∞ such that

Mp(µ) =
∫

Rd
∥y∥p dµ(y) ≤ Mp.

Then ϕ is Hölder continuous and verifies for all x, x′ ∈ X :

∣∣ϕ(x) − ϕ(x′)
∣∣ ≤ Cd,p,X

(
Mp

mρ

)1/p ∥∥x− x′∥∥1− d
p .

In particular, there exists mϕ,Mϕ ∈ R that can be chosen such that for any
x ∈ X , mϕ ≤ ϕ(x) ≤ Mϕ and such that

Mϕ −mϕ ≤ Cd,p,X

(
Mp

mρ

)1/p

diam(X )1− d
p .

Corollary 3.2 and Proposition 3.3 together imply the following.
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Corollary 3.4 (Stability with enough moments). Let ρ be a probability
density over a compact convex set X , satisfying 0 < mρ ≤ ρ ≤ Mρ. For any
µ ∈ P2(Rd), denote ϕµ the Brenier potential for the optimal transport between
ρ and µ. Let p > d. Then the restriction of the mapping µ 7→ ϕµ to the set
of probability measures with bounded p-th moment is 1/2-Hölder with respect
to the W1 distance. More precisely, if max(Mp(µ0),Mp(µ1)) ≤ Mp < +∞,
then ∥∥∥ϕµ1 − ϕµ0

∥∥∥
L2(ρ)

≤ Cd,p,X ,ρ,MpW1(µ0, µ1)1/2.

Remark 3.1. A large class of probability distributions admit a finite moment
of order p > d. For instance, sub-exponential measures, which encompass
most of the commonly used heavy-tailed distributions fall into this class. We
say that a measure µ ∈ P

(
Rd
)

is sub-exponential with variance proxy σ2

for σ > 0 if it has zero mean and if for all r > 0,

µ({x ∈ Rd | ∥x∥ ≥ r}) ≤ 2e−2r/σ.

We refer to Proposition 2.7.1 in [35] for equivalent characterization. The
moments of such a measure are all bounded, and more precisely,

Mp(µ) ≤ 2p!
(
σ

2

)p
.

We report the proof of Proposition 3.3 from [7] for completeness.

Proof of Proposition 3.3. The gradient ∇ϕ corresponds to the optimal trans-
port map between ρ and µ. Using that µ is the image of ρ under ∇ϕ, the
moment assumption gives,

∥∇ϕ∥pLp(X ) =
∫

X
∥∇ϕ(x)∥p dx ≤ 1

mρ

∫
X

∥∇ϕ(x)∥p dρ(x) ≤ Mp

mρ
.

We can add a constant to ϕ so that
∫

X ϕ(x)dx = 0 without changing its
modulus of continuity. The Poincaré-Wirtinger inequality then ensures that
∥ϕ∥Lp(X ) ≤ Cp,X ∥∇ϕ∥Lp(X ) . In particular, the potential ϕ belongs to the
Sobolev space W 1,p(X ). Morrey’s inequality (Theorem 11.34 and Theorem
12.15 in [25]) ensures that ϕ is (1− d

p)-Hölder and that there exists a constant
depending only on d, p and X such that

∀x ̸= x′ ∈ X , |ϕ(x) − ϕ(x′)|

∥x− x′∥1− d
p

≤ Cd,p,X ∥ϕ∥W 1,p(X ) ≤ Cd,p,X

(
Mp

mρ

)1/p

.□

Remark 3.2 (Morrey’s inequality for convex functions). Since the Brenier
potentials ϕ are convex, one may wonder whether Morrey’s inequality and
the resulting Sobolev embedding can be improved when restrictected to the
class of convex functions. However, one can show that for X = [0, 1]d and
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p < d, for α ∈
(
0, dp − 1

)
, the potential

ϕ :
{

X → R
(x1, . . . , xd) 7→ (x1 + · · · + xd)−α

is convex, belongs to W 1,p(X ), but obviously neither Hölder continuous nor
even bounded. In other words, assuming that Mp(µ) < +∞ for p < d does
not guarantee that the Brenier potential from ρ to µ is α-Hölder, or even
bounded.

4. Stability of optimal transport maps

In this section, we derive quantitative stability estimates on optimal trans-
port maps with respect to the target measures from the stability estimates
on Brenier potentials given in the preceding section. This derivation relies on
a Gagliardo–Nirenberg type inequality on the difference of convex functions,
which is reported here but will be proven in Section 5.

Proposition 4.1. Let K be a compact domain of Rd with rectifiable boundary
and let u, v : K → R be two L-Lipschitz functions on K that are convex on
any segment included in K. Then there exists a constant Cd depending only
on d such that

∥∇u− ∇v∥2
L2(K,Rd) ≤ CdHd−1(∂K)2/3L4/3 ∥u− v∥2/3

L2(K) ,

where Hd−1 denotes the (d− 1)-dimensional Hausdorff measure.

With this proposition at hand, the stability result for Brenier potentials
can readily be transferred to stability of the corresponding optimal transport
maps – that is, to their gradient – at least when the target measures are
compactly supported. Indeed, Proposition 4.1 together with Corollary 3.2
directly imply:

Theorem 4.2 (Stability of the Brenier map, compact case). Let X ,Y be
compact subsets of Rd with X convex, let ρ be a probability density over X
bounded from above and below by positive constants and let µ0, µ1 ∈ P(Y).
Denoting Tµk the Brenier map from ρ to µk, we have

W2(µ0, µ1) ≤
∥∥∥Tµ0 − Tµ1

∥∥∥
L2(ρ,Rd)

≤ Cd,ρ,X ,YW1(µ0, µ1)
1
6 .

In particular, the embedding µ ∈ P2(Y) → Tµ ∈ L2(ρ,Rd) is bi-Hölder
continuous.

Remark 4.1 (bi-Hölder embedding via potentials). The previous theorem
and Proposition 4.1 together with Corollary 3.2 also ensure the following
bi-Hölder behavior for the Brenier potentials (with zero mean against ρ on
X ):

∀µ0, µ1 ∈ P(Y), W2(µ0, µ1)3 ≲
∥∥∥ϕ1 − ϕ0

∥∥∥
L2(ρ)

≲ W1(µ0, µ1)
1
2 ,

where the ≲ notation hides multiplicative constants depending on d, ρ,X ,Y .
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We now phrase a similar stability result for probability measures whose
Brenier potential is Hölder continuous and that admit a bounded fourth
order moment. This includes a large class of probability measures, as noticed
in Proposition 3.3 and Remark 3.1.

Theorem 4.3 (Stability of the Brenier map). Let ρ be a probability density
over a compact convex set X ⊂ Rd, satisfying 0 < mρ ≤ ρ ≤ Mρ. Let
µ0, µ1 ∈ P2(Rd) and denote ϕ0, ϕ1 the Brenier potentials for the quadratic
optimal transport between ρ and µ0, µ1 respectively. Assume that there exists
Mα > 0 and α ∈ (0, 1) such that for all x, x′ ∈ X and k ∈ {0, 1},∣∣∣ϕk(x) − ϕk(x′)

∣∣∣ ≤ Mα

∥∥x− x′∥∥α .
Assume that there exists 0 < M < +∞ such that for k ∈ {0, 1}, M4(µk) ≤ M.
Then
(15)

W2(µ0, µ1) ≤
∥∥∥∇ϕ1 − ∇ϕ0

∥∥∥
L2(ρ,Rd)

≤ Cd,ρ,X ,α,Mα,MW1(µ0, µ1)
1

2(11−8α) .

Remark 4.2. The assumption M4(µk) < +∞ comes from a use of the Cauchy-
Schwarz inequality in the proof of Theorem 4.3. However, one could use
Hölder’s inequality instead, under different moment assumption and show
that for any q ≥ 1, assuming that M2q(µk) ≤ M2q < +∞ for k ∈ {0, 1}, one
has ∥∥∥∇ϕ1 − ∇ϕ0

∥∥∥
L2(ρ)

≤ Cd,ρ,X ,Mα,α,M2q W1(µ0, µ1)
q−1

2(q(7−4α)−3) .

Since the exponent is an increasing function of q, a stronger stability can be
obtained at the cost of stronger moment assumptions.

Theorem 4.3 and Proposition 3.3 directly imply the following.

Corollary 4.4 (Stability with enough moments). Let ρ be a probability
density over a compact convex set X ⊂ Rd, satisfying 0 < mρ ≤ ρ ≤ Mρ. For
µ ∈ P2(Rd), denote ∇ϕµ the optimal transport map for the quadratic optimal
transport between ρ and µ. Let p ∈ R and assume p ≥ 4 and p > d. Then, the
map µ 7→ Tµ is Hölder when restricted to the set of probability measures with
bounded p-th moment. More precisely, if max(Mp(µ0),Mp(µ1)) ≤ Mp < +∞,
then

W2(µ0, µ1) ≤
∥∥∥∇ϕµ1 − ∇ϕµ0

∥∥∥
L2(ρ,Rd)

≤ Cd,p,X ,ρ,MpW1(µ0, µ1)
p

6p+16d .

To prove Theorem 4.3, we first show that whenever a Brenier potential
defined on the compact and convex set X is Hölder continuous, it is possible
to control its Lipschitz constant on erosions of X . We recall that for η > 0,
the η-erosion of X , denoted X−η, corresponds to the set of points of X that
are at least at a distance η from ∂X . The proof of this proposition is inspired
by Proposition 3.3 in [20].

Proposition 4.5 (Lipschitz behavior on erosion). Let ρ be a probability
density over a compact convex set X ⊂ Rd, satisfying 0 < mρ ≤ ρ ≤ Mρ.
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Let µ ∈ P2(Rd) and denote ϕ the Brenier potential for the quadratic optimal
transport between ρ and µ. Assume that there exists Mα > 0 and α ∈ (0, 1)
such that for all x, x′ ∈ X ,∣∣ϕ(x) − ϕ(x′)

∣∣ ≤ Mα

∥∥x− x′∥∥α .
Then, ϕ is R-Lipschitz on the erosion X−ηR with ηR =

(
Mα
R

) 1
1−α .

Proof. Let x ∈ X be such that d(x, ∂X ) ≥ ηR, and let g ∈ ∂ϕ(x). We will
show that ∥g∥ ≤ R, thus implying the statement. Denoting ψ = (ϕ)∗, the
Fenchel-Young equality and inequality ensures that{

ψ(g) = ⟨g|x⟩ − ϕ(x),
ψ(g) ≥ ⟨g|x′⟩ − ϕ(x′) for all x′ ∈ X .

Putting these equations together, we get that for any x′ ∈ X ,

⟨g|x′ − x⟩ ≤ ϕ(x′) − ϕ(x) ≤ Mα

∥∥x′ − x
∥∥α ,(16)

where we used the Hölder continuity assumption on ϕ. We now choose x′ to
be the unique point in the intersection between the ray x+ R+g and ∂X , so
that ⟨g|x′ − x⟩ = ∥x− x′∥ ∥g∥ and in (16),

∥g∥ ≤ Mα

∥x− x′∥1−α .

Now using ∥x′ − x∥ ≥ d(x, ∂X ) ≥ ηR in this last inequality yields ∥g∥ ≤ R.
□

Proposition 4.5 allows to control the Lipschitz constant of the restriction
ϕk to X−η assuming that ϕk is α-Hölder continuous. Combining it with the
inequality of Proposition 4.1, we get a stability estimate for the restriction
of the transport map to X−η. To conclude the proof of the theorem, we will
rely on an upper bound on the volume of the symetric difference betwen X
and its erosion X−η given in the next proposition.

Proposition 4.6 (Volume of boundary slices). Let X ⊂ Rd be a compact
convex set containing the origin, and denote rX > 0 and RX > 0 the largest
and smallest radii such that B(0, rX ) ⊆ X ⊆ B(0, RX ). Then, for all η ≥ 0,

vold(X \X−η) ≤ 2Sd−1(RX + rX )d−1RX
rX

η,

where Sd−1 denotes the surface area of the (d− 1)-dimensional unit sphere.

We quote a lemma extracted from [26] that allows to control the volume
of the difference between a convex X and its η-erosion X−η using the volume
of η-dilation of X , denoted X+η = {x ∈ Rd | d(x,X ) ≤ η}.

Lemma 4.7 (Lemma 1 in [26]). For all η ≤ rX , vold(X \X−η) ≤ vold(X+η\X ).
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This lemma, together with Steiner’s formula already implies that vold(X \
X−η) grows linearly in η for small values of η. We provide a direct proof
below.

Proof of Proposition 4.6. This result is proven using the radial function of
X , ΛX (x) = max{λ ≥ 0|λx ∈ X }. Since x ∈ Sd−1 7→ ΛX (x)x is a radial
parametrization of ∂X , we have:

vold(X ) =
∫

X
1dx =

∫
Sd−1

∫ ΛX (u)

0
rd−1drdu = 1

d

∫
Sd−1

ΛX (u)ddu.

Combined with Lemma 4.7, this implies that for any 0 ≤ η ≤ rX ,

vold(X \X−η) ≤ vold(X+η\X ) = 1
d

∫
Sd−1

(
ΛX+η (u)d − ΛX (u)d

)
du

= 1
d

∫
Sd−1

(
ΛX+η (u) − ΛX (u)

)(d−1∑
k=0

ΛX+η (u)d−1−kΛX (u)k
)

du

≤ 1
d

∫
Sd−1

(
ΛX+η (u) − ΛX (u)

)
d · (RX + rX )d−1du.

Using the inclusions B(0, rX ) ⊆ X ⊆ B(0, RX ), one can prove that for any
η > 0 and for any unit vector u,

0 ≤ ΛX+η (u) − ΛX (u) ≤ (r2
X +R2

X )1/2

rX
η ≤ 2RX

rX
η.

This can be seen from the worst case where X is an ice cream cone made
from the convex hull of B(0, rX ) and a point at distance RX of the origin.
This finally gives, for η ∈ [0, rX ],

vold(X \X−η) ≤
∫

Sd−1

2RX
rX

η(RX + rX )d−1du = 2Sd−1(RX + rX )d−1RX
rX

η.

One can easily check that in the case η ≥ rX the inequality also holds.
□

Proof of Theorem 4.3. In the following, the ≲ notation hides multiplicative
constants that might depend on d, ρ,X , α,Mα,M . We get the left inequality
of (15) by recalling that

W2(µ0, µ1)2 = min
γ∈Π(µ0,µ1)

∫
Rd×Rd

∥x− y∥2 dγ(x, y),

and by noticing that the optimal transport maps ∇ϕ0,∇ϕ1 between ρ and
µ0, µ1 yield an admissible coupling γ0,1 := (∇ϕ0,∇ϕ1)#ρ ∈ Π(µ0, µ1), which
leads to:

W2(µ0, µ1)2 ≤
∫

Rd×Rd
∥x− y∥2 dγ0,1(x, y) =

∫
X

∥∥∥∇ϕ1 − ∇ϕ0
∥∥∥2

dρ.
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We now prove the right inequality of (15). We recall that ηR =
(
Mα
R

) 1
1−α .

Then, denoting ρR the restriction of ρ to X−ηR and ρ⊥
R = ρ− ρR,∥∥∥∇ϕ1 − ∇ϕ0

∥∥∥2

L2(ρ,Rd)
=
∥∥∥∇ϕ1 − ∇ϕ0

∥∥∥2

L2(ρR,Rd)
+
∥∥∥∇ϕ1 − ∇ϕ0

∥∥∥2

L2(ρ⊥
R ,R

d)
.

On X−ηR , Proposition 4.5 ensures that
∥∥∥∇ϕk∥∥∥ ≤ R for k ∈ {0, 1}. This fact

thus ensures with Proposition 4.1 that for any c ∈ R:∥∥∥∇ϕ1 − ∇ϕ0
∥∥∥2

L2(ρR,Rd)
≲ R4/3

∥∥∥ϕ1 − ϕ0 − c
∥∥∥2

L2(ρR)
.

Note that we used the inequality Hd−1(∂X−ηR) ≤ Hd−1(∂X ) obtained from
the inclusion of the convex set X−ηR into X , where the convexity of X−ηR is
visible from X−ηR =

⋂
∥e∥=ηR

(X − e). Minimizing over c in the last inequality
thus ensures

(17)
∥∥∥∇ϕ1 − ∇ϕ0

∥∥∥2

L2(ρR,Rd)
≲ R4/3 Varρ(ϕ1 − ϕ0)1/3 ≲ R4/3W1(µ0, µ1)1/3,

where we used Corollary 3.2 to get the second inequality. On the other hand,
notice that∥∥∥∇ϕ1 − ∇ϕ0

∥∥∥2

L2(ρ⊥
R ,R

d)
≤ 2

∥∥∥∇ϕ1
∥∥∥2

L2(ρ⊥
R ,R

d)
+ 2

∥∥∥∇ϕ0
∥∥∥2

L2(ρ⊥
R ,R

d)
.

By the Cauchy-Schwartz inequality we have for k ∈ {0, 1}∥∥∥∇ϕk∥∥∥2

L2(ρ⊥
R ,R

d)
=
∫

X \X−ηR

∥∥∥∇ϕk∥∥∥2
dρ

≤
(∫

X \X−ηR

∥∥∥∇ϕk∥∥∥4
dρ
)1/2(∫

X \X−ηR

12dρ
)1/2

≲M4(µk)1/2vold(X \ X−ηR)1/2.

Proposition 4.6 ensures that for any R ≥ 0, we have

vold(X \ X−ηR) ≲ ηR =
(
Mα

R

)1/(1−α)
.

This gives thus the estimation

(18)
∥∥∥∇ϕ1 − ∇ϕ0

∥∥∥2

L2(ρ⊥
R ,R

d)
≲ R−1/2(1−α)

Estimations (17) and (18) thus give for R ≥ 0

(19)
∥∥∥∇ϕ1 − ∇ϕ0

∥∥∥2

L2(ρ,Rd)
≲ R4/3W1(µ0, µ1)1/3 +R−1/2(1−α).

Solving for R4/3W1(µ0, µ1)1/3 = R−1/2(1−α) yields R = W1(µ0, µ1)
−2(1−α)

11−8α .
Injecting this value of R in (19) yields the desired estimate.

□
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We finally prove that if the target measures µ0, µ1 are supported on a
compact set Y ⊂ Rd, if they are absolutely continuous and if their densities
are bounded away from zero and infinity, then the Hölder exponents can be
slightly improved.

Corollary 4.8. Let X ,Y be compact subsets of Rd, and assume that X is
convex and that Y has a rectifiable boundary. Let ρ be a probability density
over X satisfying 0 < mρ ≤ ρ ≤ Mρ < +∞ and let µ0, µ1 be probability
densities over Y satisfying

∀k ∈ {0, 1}, 0 < cµ ≤ µk ≤ Cµ < +∞.

Then, if ϕk (resp. T k) is the Brenier potential (resp. Brenier map) from ρ
to µk, we have

W2(µ0, µ1)6 ≲ Varρ(ϕ1 − ϕ0) ≤ 2 Var 1
2 (µ0+µ1)(ψ

1 − ψ0) ≲ W2(µ0, µ1)
6
5 ,

W2(µ0, µ1) ≤
∥∥∥T 1 − T 0

∥∥∥
L2(ρ,Rd)

≲ W2(µ0, µ1)
1
5 ,

where the ≲ notation hides multiplicative constants depending on d, ρ,X ,Y, cµ
and Cµ.

This corollary will be a consequence of the following lemma from [27],
which we will use as a replacement of the Kantorovich-Rubinstein inequality.

Lemma 4.9 (Lemma 3.5 in [27]). Assume that µ0 and µ1 are absolutely
continuous measures on the compact Y, whose densities are bounded by a
common constant Cµ. Then, for any function f ∈ H1(Y), we have the
following inequality:∫

Y
fd(µ1 − µ0) ≤

√
Cµ∥∇f∥L2(Y)W2(µ0, µ1).

Proof of Corollary 4.8. Because Y is compact, the Brenier potentials ϕ0, ϕ1

are RY -Lipschitz continuous for any RY ∈ R+ such that Y ⊂ B(0, RY). One
can thus find mϕ,Mϕ ∈ R such that for k ∈ {0, 1},mϕ ≤ ϕk ≤ Mϕ on X and
Mϕ −mϕ ≤ RY diam(X ). Setting ψ0 = (ϕ0)∗, ψ1 = (ϕ1)∗, we thus have from
(2) in Theorem 2.1:
(20) Var 1

2 (µ0+µ1)(ψ
1 − ψ0) ≲ ⟨ψ0 − ψ1|µ1 − µ0⟩.

For c ∈ R such that
∥∥ψ1 − ψ0 − c

∥∥2
L2( 1

2 (µ0+µ1)) = Var 1
2 (µ0+µ1)(ψ1 − ψ0), esti-

mation (20) and Lemma 4.9 ensure that:

(21)
∥∥∥ψ1 − ψ0 − c

∥∥∥2

L2( 1
2 (µ0+µ1))

≲
∥∥∥∇ψ1 − ∇ψ0

∥∥∥
L2(Y)

W2(µ0, µ1).

But Proposition 4.1 applied to the convex and Lipschitz functions ψ0 + c, ψ1

ensures that ∥∥∥∇ψ1 − ∇ψ0
∥∥∥

L2(Y)
≲
∥∥∥ψ1 − ψ0 − c

∥∥∥1/3

L2( 1
2 (µ0+µ1))

.

Injecting this estimation into (21) yields
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∥∥∥ψ1 − ψ0 − c
∥∥∥2

L2( 1
2 (µ0+µ1))

≲ W2(µ0, µ1)6/5.

This gives thus with Proposition 3.1

Varρ(ϕ1 − ϕ0) ≤ 2 Var 1
2 (µ0+µ1)(ψ

1 − ψ0) ≲ W2(µ0, µ1)6/5.

Finally, a last use of Proposition 4.1 also ensures that under these assumptions
on the targets µ0, µ1 we have

W2(µ0, µ1) ≤ ∥∇ϕ1 − ∇ϕ0∥L2(ρ,Rd) ≲ Varρ(ϕ1 − ϕ0)
1
6 ≲ W2(µ0, µ1)

1
5 . □

5. Gagliardo–Nirenberg type inequality for difference of
convex functions

We prove here Proposition 4.1, a sort of reverse Poincaré inequality which
allows to control the L2 distance ∥∇u− ∇v∥L2(K,Rd) between the gradients of
Lipschitz convex functions u, v using the L2 distance beween these functions
∥u− v∥L2(K). This proposition is a refinement of Theorem 3.5 in [14], in which
the upper bound involved the uniform distance ∥u− v∥∞. Proposition 4.1
is first proven in dimension d = 1 and on a segment (Lemma 5.1) and then
generalized to higher dimensions using arguments from integral geometry.

Remark 5.1 (Relation to the Gagliardo–Nirenberg inequality). Although the
estimate of Proposition 4.1 resembles the Gagliardo–Nirenberg inequality, it
cannot be deduced form it. More precisely, we note that without convexity
of u and v, the inequality in (4.1) does not hold. One can see this by taking
u = 0 and vn(x) = 1

n sin(nx) on K = [0, 1].

Remark 5.2 (Optimality of exponents). The inequality proposed in Propo-
sition 4.1 is sharp in term of the exponents of L and ∥u− v∥L2(K) in the
right-hand side. In the case d = 1, let L > 0, ε > 0 and define on K = [0, 1],
u(x) = L|x − 1

2 | and v = max(u, ε). Then u, v are convex and L-Lipschitz
and we have:

∥u− v∥2
L2([0,1]) = 2

3
ε3

L
and

∥∥u′ − v′∥∥2
L2([0,1]) = 2Lε.

so that ∥u′ − v′∥2
L2([0,1]) = 121/3L4/3 ∥u− v∥2/3

L2([0,1]) .

Lemma 5.1. Let I ⊂ R be a compact segment and let u, v : I → R be two
convex functions with uniformly bounded gradients on I. Then

(22)
∥∥u′ − v′∥∥2

L2(I) ≤ 8(
∥∥u′∥∥

L∞(I) +
∥∥v′∥∥

L∞(I))
4/3 ∥u− v∥2/3

L2(I) .

Proof. We first assume that I = [0, 1]. Using a simple approximation, we
may assume that u, v are C2 on I to get the following integration by part:∥∥u′ − v′∥∥2

L2([0,1]) = [(u− v)(u′ − v′)]10 −
∫

[0,1]
(u− v)(u′′ − v′′).
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The convexity hypothesis then allows to get a L∞ estimate. Indeed,∣∣∣[(u− v)(u′ − v′)]10
∣∣∣ ≤ 2(

∥∥u′∥∥
L∞ +

∥∥v′∥∥
L∞) ∥u− v∥L∞ ,

and by convexity∣∣∣∣∣
∫

[0,1]
(u− v)(u′′ − v′′)

∣∣∣∣∣ ≤ ∥u− v∥L∞

(∫
[0,1]

∣∣u′′∣∣+ ∫
[0,1]

∣∣v′′∣∣)

= ∥u− v∥L∞

(∫
[0,1]

u′′ +
∫

[0,1]
v′′
)

≤ 2(
∥∥u′∥∥

L∞ +
∥∥v′∥∥

L∞) ∥u− v∥L∞ .

This gives ∥∥u′ − v′∥∥2
L2([0,1]) ≤ 4(

∥∥u′∥∥
L∞ +

∥∥v′∥∥
L∞) ∥u− v∥L∞ .(23)

We now bound the L∞ norm of u−v with its L2 norm using that the Lipschitz
constant of u− v is less than L = ∥u′∥L∞ + ∥v′∥L∞ . Let ε = ∥u− v∥L∞ and
let x∗ ∈ [0, 1] where the maximum of |u− v| is attained. Since Lip(u−v) ≤ L,
one gets |u(x) − v(x)| ≥ ε

2 on the interval I∗ = I ∩ [x∗ − ε
2L , x

∗ + ε
2L ]. The

length of I∗ is at least min( ε
2L , 1), so that

(24) ∥u− v∥2
L2([0,1]) ≥ 1

4 min( ε2L, 1)ε2.

Assume first that ε ≤ 2L. Then, equation (24) gives ε3 = ∥u− v∥3
∞ ≤

8L ∥u− v∥2
L2([0,1]), thus implying

∥u− v∥L∞ ≤ 2(
∥∥u′∥∥

L∞ +
∥∥v′∥∥

L∞)1/3 ∥u− v∥2/3
L2([0,1]) .

This gives, with equation (23):∥∥u′ − v′∥∥2
L2([0,1]) ≤ 8(

∥∥u′∥∥
L∞ +

∥∥v′∥∥
L∞)4/3 ∥u− v∥2/3

L2([0,1]) .(25)

On the other hand, if ε ≥ 2L, then ∥u− v∥L2([0,1]) ≥ ε
2 by equation (24), so

that

8(
∥∥u′∥∥

L∞ +
∥∥v′∥∥

L∞)4/3 ∥u− v∥2/3
L2([0,1]) ≥ 8L4/3

(
ε

2

)2/3
≥ L4/3+2/3 = L2,

which allows to conclude using L2 ≥ ∥u′ − v′∥2
L2([0,1]). We get inequality (22)

for a general interval I = [a, b] by an affine change of variable.
□

The one-dimensional result from Lemma 5.1 is generalized to higher
dimensions thanks to two formulas from integral geometry that allow to
rewrite the L2 norms of the scalar-field u− v and vector-field ∇u− ∇v over
set K ⊂ Rd using integrals over lines intersecting K.
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Integral geometry. Denote Sd−1 the unit sphere in Rd, and let σ be the
uniform probability measure on it. We denote {e}⊥ the hyperplane orthogonal
to a unit vector e. Using a simple change of variable formula, we note that
for any square-integrable function f on Rd and any square-integrable vector
field F on Rd, one has for any e ∈ Sd−1∫

Rd
f(x)2dx =

∫
{e}⊥

∫
R
f(y + te)2dtdHd−1(y),∫

Rd
⟨F (x)|e⟩2dx =

∫
{e}⊥

∫
R
⟨F (y + te)|e⟩2dtdHd−1(y),

where Hk denotes the k-th dimensional Hausdorff measure. Integrating these
equalities over e ∈ Sd−1 one gets∫

Rd
f(x)2dx =

∫
e∈Sd−1

[∫
{e}⊥

∫
R
f(y + te)2dtdHd−1(y)

]
dσ(e)

∫
Rd

∥F (x)∥2 dx = Cd

∫
e∈Sd−1

[∫
{e}⊥

∫
R
⟨F (y + te)|e⟩2dtdHd−1(y)

]
dσ(e).

To get the second equality, in addition to the change of variable, we used
Fubini’s theorem and the existence of a dimensional constant Cd such that
for any vector V ∈ Rd,

Cd

∫
e∈Sd−1

⟨V |e⟩2dσ(e) = ∥V ∥2 .

Finally, we will rely on Crofton’s formula – see for instance the first paragraph
of Chapter 5 in [19] – which states that for any Hd−1-rectifiable subset S of
Rd the (d − 1)-dimensional Hausdorff measure of S is proportional to the
average number of intersections of a line with S. More precisely, there exists
a dimensional constant C ′

d such that

(26) Hd−1(S) = C ′
d

∫
e∈Sd−1

∫
{e}⊥

#((y + Re) ∩ S)dHd−1(y)dσ(e),

where #X is the cardinality of the set X. We are now ready to prove the
Gagliargo-Nirenberg type inequality of Proposition 4.1.

Proof of Proposition 4.1. For any e ∈ Sd−1 and y ∈ {e}⊥, denote ℓye the
oriented line y + eR. Then, denoting uℓye = u|ℓye∩K , vℓye = v|ℓye∩K , we know by
the previous paragraph, setting F = ∇u− ∇v, that there is a dimensional
constant Cd such that:

∥∇u− ∇v∥2
L2(K,Rd) = Cd

∫
e∈Sd−1

∫
{e}⊥

∥∥∥u′
ℓye

− v′
ℓye

∥∥∥2

L2(ℓye∩K)
dHd−1(y)dσ(e).

Given any oriented line ℓye , denote nℓye ∈ N ∪ {+∞} the number of connected
components of ℓye ∩K. Then, nℓye ≤ #(ℓye ∩∂K) so that by Crofton’s formula,∫

e∈Sd−1

∫
{e}⊥

nℓye dHd−1(y)dσ(e) < +∞.



QUANTITATIVE STABILITY OF OPTIMAL TRANSPORT MAPS 29

This implies that for almost every e ∈ Sd−1 and y ∈ {e}⊥, the set ℓye ∩ K

may be decomposed as a finite union of nℓye segments, i.e. ℓye ∩K =
⋃nℓ

y
e

i=1 I
i
ℓye

.
This gives ∥∥∥u′

ℓye
− v′

ℓye

∥∥∥2

L2(ℓye∩K)
=

n
ℓ
y
e∑

i=1

∥∥∥u′
ℓye

− v′
ℓye

∥∥∥2

L2(Ii
ℓ
y
e

)
,

∥∥∥uℓye − vℓye

∥∥∥2

L2(ℓye∩K)
=

n
ℓ
y
e∑

i=1

∥∥∥uℓye − vℓye

∥∥∥2

L2(Ii
ℓ
y
e

)
.

Lemma 5.1 combined with Jensen’s inequality then ensure that we have for
almost every e ∈ Sd−1 and y ∈ {e}⊥:

∥∥∥u′
ℓye

− v′
ℓye

∥∥∥2

L2(ℓye∩K)
≤ 8(2L)4/3

n
ℓ
y
e∑

i=1

∥∥∥uℓye − vℓye

∥∥∥2/3

L2(Ii
ℓ
y
e

)

≤ 8(2L)4/3n
2/3
ℓye

∥∥∥uℓye − vℓye

∥∥∥2/3

L2(ℓye∩K)
.

The quantity ∥∇u− ∇v∥2
L2(K,Rd) is thus upper bounded by the integral

8Cd(2L)4/3
∫
e∈Sd−1

∫
{e}⊥

n
2/3
ℓye

∥∥∥uℓye − vℓye

∥∥∥2/3

L2(ℓye∩K)
dHd−1(y)dσ(e).

But Hölder’s inequality together with the change of variable formula for
∥u− v∥L2(K) give∫

e∈Sd−1

∫
{e}⊥

n
2/3
ℓye

∥∥∥uℓye − vℓye

∥∥∥2/3

L2(ℓye∩K)
dHd−1(y)dσ(e)

≤
(∫

e∈Sd−1

∫
{e}⊥

nℓye dHd−1(y)dσ(e)
)2/3

∥u− v∥2/3
L2(K) .

The conclusion comes after using again that nℓye ≤ #(ℓye ∩ ∂K) and
Crofton’s formula (26)∫

e∈Sd−1

∫
{e}⊥

nℓye dHd−1(y)dσ(e) ≤ 1
C ′
d

Hd−1(∂K). □
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