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Change Detection in Multilook Polarimetric SAR
Imagery With Determinant Ratio

Test Statistic
Nizar Bouhlel , Member, IEEE, Vahid Akbari , Member, IEEE, and Stéphane Méric , Member, IEEE

Abstract— In this article, we propose a determinant ratio
test (DRT) statistic to measure the similarity of two covariance
matrices for unsupervised change detection in polarimetric radar
images. The multilook complex covariance matrix is assumed
to follow a scaled complex Wishart distribution. In doing so,
we provide the distribution of the DRT statistic that is exactly
Wilks’s lambda of the second kind distribution, with density
expressed in terms of Meijer G-functions. Due to this distribution,
the constant false alarm rate (CFAR) algorithm is derived in
order to achieve the required performance. More specifically,
a threshold is provided by the CFAR to apply to the DRT
statistic producing a binary change map. Finally, simulated and
real multilook polarimetric SAR (PolSAR) data are employed to
assess the performance of the method and is compared with the
Hotelling–Lawley trace (HLT) statistic and the likelihood ratio
test (LRT) statistic.

Index Terms— Change detection, complex Wishart distrib-
ution, determinant ratio test (DRT), Hotelling–Lawley trace
(HLT), likelihood ratio test (LRT), multilook polarimetric syn-
thetic aperture radar (SAR) data, Wilks’s lambda of the second
kind distribution.

I. INTRODUCTION

THE synthetic aperture radar (SAR) image change detec-
tion has become very important in remote sensing for

monitoring dynamic processes on the Earth, for instance,
damage assessment in urban areas, deforestation and clear-
cut detection, flooding, and monitoring of glaciers. Change
detection is a process that analyzes multitemporal remote
sensing images acquired on the same geographical area for
identifying changes that occurred at distinct observation dates.
The result is a generation of a change detection map in which
changed areas are explicitly identified.

Several unsupervised change detection methods have been
proposed in the literature. Two families of methods handle
the change detection process: the statistical information theory
and the hypothesis test theory. The first family is based on
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information-theoretic measures in order to design a distance
between images. In doing so, surrounding pixels are modeled
by a given distribution and distance measures are applied to
obtain a comparative statistic. With this family, the change
detection is less sensitive to acquisition conditions since the
used methodology considers information from the neighbor-
hood. This information is relevant when dealing with data
corrupted by speckle or/and the number of looks is low:
to name a few of statistical information distances: mutual
information [1], [2], variational and mixed information [1], [3],
and stochastic distances such as the Kullback–Leibler, Rényi,
Bhattacharyya, and Hellinger distances [4].

The second family aims to compute a covariance equality
test and to test the hypotheses of change versus no-change
where an asymptotic distribution is usually employed by the
test statistic. The simplest one is to compute the ratio of
SAR amplitudes or intensities observed at different times.
This kind of ratios is a well-known test statistic in single-
channel SAR-based change detection [5]. A large number
of test statistics have been developed and described in the
literature for automatic and unsupervised change detection,
such as mean ratio/log-ratio measures [6], [7], Gauss log ratios
[8], multitemporal coherence analysis [6], and maximum-
likelihood ratios [9].

Polarimetric SAR (PolSAR) gives more scattering informa-
tion than single-polarization channel SAR data, which can be
used to detect the change and increase the quality of the change
detection map. The first work on test statistics for change
detection in multilook PolSAR data was proposed by Conrad-
sen et al. [10]. They proposed a likelihood ratio test (LRT) for
the equality of two complex covariance matrices �1 and �2

and gave the approximated distribution of the LRT statistic.
The LRT algorithm worked by comparing two hypotheses:
the null hypothesis (H0) corresponding to ”no-change” and
an alternative hypothesis (H1) corresponding to ”change.”
The LRT approach was extended to the multitemporal case
[11], [12] and multifrequency data [13]. Kersten et al. [14]
compared three test statistics: the LRT statistic also called
the Bartlett test, the contrast ratio test, and the ellipticity test.
The second one was based on the largest and the smallest
eigenvalues of �1�

−1
2 , and then, the change was represented

by these eigenvalues. The third test statistic was based on the
combination of the determinant and the trace of �1�

−1
2 by

using the eigenvalues.
Later, Akbari et al. [5] proposed a simpler test statistic

to detect changes in many scenarios. The test assumed the
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scaled complex Wishart distribution for the covariance matrix
data. It was based on the complex-kind Hotelling–Lawley
trace (HLT) that was used to measure the similarity of two
covariance matrices. They applied a decision threshold to the
test statistic to detect changes. The threshold was determined
using the constant false alarm rate (CFAR) algorithm [15].
Akbari et al. proposed the Fisher–Snedecor (FS) distribution as
the approximation of the sampling distribution of the HLT test
statistic. The parameters of the FS distribution depended only
on the dimension of the polarimetric data and the equivalent
number of looks (ENL) estimated for images. They used the
method of the matrix log cumulants [16] to estimate the ENL.

In this article, the ratio of the determinant of two matrices is
proposed as a new test statistic to measure the similarity of two
covariance matrices that are assumed to follow scaled complex
Wishart distributions. The new test is called the determinant
ratio test (DRT) statistic and it is able to produce a scalar value,
to which a threshold is applied. The distribution of the test
statistic under the null hypothesis is exactly Wilks’s lambda
of the second kind distribution with density expressed in
terms of Meijer G-functions [17]. Wilks’s lambda distribution
corresponds to the product of d independent Beta distributed
of the second kind random variables, where d is the number of
polarimetric channels. The latter distribution depends on the
dimension of the polarimetric data and the ENL.

For the production of a binary change detection map,
a threshold is applied to the test statistic. Several thresholding
methods have been suggested in the literature to determine
the threshold in a completely unsupervised manner: to name
a few of them, CFAR algorithm [15], Otsu’s method [18],
and Kittler and Illingworth (K&I) algorithm [19], [20]. In this
article, we limit ourselves to the CFAR algorithm since we are
more interested in the test statistic rather than the thresholding
method. Consequently, the final binary change map is made
at a predefined false alarm rate (FAR). To further illustrate
the potential of our method in change detection for multilook
PolSAR data, the well-known HLT and LRT test statistics for
measuring the equality of two multilook covariance matrices
are compared with our approach. Simulated and real multilook
PolSAR data are used for this comparison.

This article is organized as follows. Section II introduces the
statistical model for the covariance matrix data. Section III
describes some properties related to the scaled complex
Wishart distribution, the DRT for equality of two complex
scaled Wishart distributions, and its sampling distribution.
In Section IV, the proposed polarimetric change detection
algorithm based on the DRT is presented, followed by the
CFAR principle to determine the threshold. The HLT and
LRT methods are briefly shown for a later comparison with
our method. Section V demonstrates the performance of the
method with a simulated and real PolSAR data set and
discusses the results. Section VI is dedicated to a summary
and a conclusion.

II. MULTILOOK POLSAR IMAGE MODEL

The polarimetric scattering vector is defined as

s = [shh, shv, svh, svv]T ∈ C
d (1)

with sxy representing the complex scattering coefficients,
where x is the transmit and y is the receive polarization. More-
over, h denotes horizontal, v denotes vertical [21], [.]T means
transposition, and d = dim(s) is the vector dimension. The
vector s is a single-look polarimetric complex format represen-
tation of PolSAR data. It is assumed that s is a d-dimensional
speckle vector, which follows a circular complex Gaussian
distribution (s ∼ NC

d (0,�)), with a zero-mean vector and
a covariance matrix �. The multilooking of PolSAR data
reduces the speckle effect characteristic of coherent imaging
systems. The polarimetric multilooking operation is given by

X = 1

L

L∑
�=1

s�sH
� , L ≥ d (2)

where L is the number of looks, (.)H denotes the Hermitian
operator, and X ∈ �+ ⊂ C

d×d is the multilook polarimetric
covariance matrix considered as a random matrix defined
on the cone, denoted �+, of the positive definite complex
Hermitian matrices. When L ≥ d , the unnormalized sample
covariance matrix defined as Z = LX follows the nonsingular
complex Wishart distribution [22] denoted as Z ∼ WC

d (L,�)
and X follows a scaled complex Wishart distribution, denoted
X ∼ sWC

d (L,�), with a probability density function (pdf)
given by fX(X) = fZ(LX)|JZ→X|, where |JZ→X| = Ld2

is the
Jacobian determinant of the transformation Z = LX [23]. The
pdf of X is

fX(X) = L Ld |X|L−d

�d(L)|�|L
etr(−L�−1X) (3)

where etr(.) = exp(tr(.)) is the exponential trace operator,
|.| is the determinant operator, and �d(L) is the multivariate
gamma function of the complex kind defined as

�d(L) = πd(d−1)/2
d−1∏
i=0

�(L − i) (4)

where �(L) is the standard Euler gamma function.

III. THEORY

This section describes some properties related to the scaled
complex Wishart distribution and the DRT for equality of two
complex scaled Wishart distributions.

Theorem 1 (Goodman [24]): Let X be a complex Her-
mitian positive definite random d × d matrix that follows a
scaled complex Wishart distribution, X ∼ sWC

d (L,�). The
random variable (2L)d |X|/|�| is distributed as the product
of d independent chi-square (χ2) distributed random variables
with 2L, 2(L − 1), . . . , 2(L − d + 1) degrees of freedom,
respectively, i.e.,

(2L)d
|X|
|�| ∼

d−1∏
i=0

χ2(2(L − i)). (5)

Proof: The characteristic functions of the random variable
ln((2L)d |X|/|�|) and ln(

∏d−1
i=0 χ

2(2(L−i))) are computed and
seen to be equal (for more details, see Appendix A). �

. 
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Corollary 2: Let X and Y be two complex Hermitian
positive definite random d × d matrices that follow scaled
complex Wishart distributions defined as:

X ∼ sWC

d (Lx ,�) and Y ∼ sWC

d (L y,�). (6)

The random variable defined by the determinant ratio of Lx X
and L yY is distributed as the product of d independent Beta
distributed of the second kind (also called Beta prime) random
variables with parameters (Lx − i) and (L y − i)

|Lx X|
|L yY| ∼

d−1∏
i=0

BetaII(Lx − i, L y − i) (7)

where the pdf for BetaII(Lx − i, L y − i) is given by

fi (x) = �(Lx + L y − 2i)

�(Lx − i)�(L y − i)

x Lx −i−1

(1 + x)Lx +L y−2i
(8)

= 1

�(Lx − i)�(L y − i)
G1,1

1,1

( −L y + i
Lx − i − 1

∣∣∣∣x
)

(9)

where G1,1
1,1

( ·
·
∣∣∣ ·
)

is the Meijer G-function defined in

Section II-A.
Proof: Corollary 2 is the consequence of (5) and the

relationship between the ratio of two independent χ2 random
variables and the Fisher (F) distribution with two parameters
given as follows.

1) If X ∼ χ2(d1) and Y ∼ χ2(d2) are two independent
random variables, then ((X/d1)/(Y/d2)) ∼ F(d1, d2).

2) If X ∼ F(2α, 2β) has an F-distribution, then (α/β)X ∼
BetaII(α, β).

�

A. Meijer G-Function

The Meijer G-function is a generalization of the generalized
hypergeometric function that is defined using the contour
integral representation [25]

Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ x

)

= 1

2π i
×
∫
L

∏m
j=1 �(b j − s)

∏n
j=1 �(1 − a j + s)∏q

j=1+m �(1 − b j + s)
∏p

j=1+n �(a j − s)

× xsds (10)

where {a j}p
j=1 and {b j}q

j=1 are, in general, complex-valued.
Contour L is a suitable integration contour that separates the
poles of function �(b j −s) from the poles of �(1−a j +s). The
Meijer G-function has been implemented in some commercial
software packages, such as MATLAB and MAPLE.

B. Wilks’ Lambda Distribution of Determinant Ratio Statistic

Definition 3: For noninteger values of n and q and integer
values of p with n ≥ q ≥ p, the pdf of Wilks’s lambda
distribution of the second kind, denoted as��(n, p, q), is given
as [17]

f (x) = A� × G p,p
p,p

( −q,−(q − 1), . . . ,−(q − (p − 1))
n − q − 1, n − q − 2, . . . , n−q− p

∣∣∣∣ x

)
(11)

where A� =∏p−1
j=0 (1/(�(n − q − j)�(q − j))).

Fig. 1. PDF of Wilks’s lambda distribution of second kind, ��(2L , d, L)
with several values of L and different cases. (a) d = 2. (b) d = 4.

Theorem 4: The pdf g(z) of the product Z =∏d−1
i=0 Xi of d

independent Xi variables Beta distributed of the second kind,
Xi ∼ BetaI I (Lx − i, L y − i), is a Meijer G-function multiplied
by a normalizing constant A, i.e.,

g(z) = A × Gd,d
d,d

( −L y,−(L y −1), . . . ,−(L y −(d−1))
Lx −1, Lx −2, . . . , Lx −d

∣∣∣∣ z

)
(12)

where A =∏d−1
i=0 (1/(�(Lx − i)�(L y − i))).

The cumulative distribution function is given by

G(z) = Az ×
Gd,d+1

d+1,d+1

(−L y,−(L y − 1), . . . ,−(L y − (d − 1)), 0
Lx − 1, Lx − 2, . . . , Lx − d,−1

∣∣∣∣ z

)
.

(13)

The kth moment E{Zk} is given by

E{Zk} =
d−1∏
i=0

�(L y − i − k)

�(L y − i)

�(Lx − i + k)

�(Lx − i)
. (14)

Proof: See Appendix B. �
With reference to Definition 3, the distribution of

((|LxX|)/(|L yY|)) is given as follows:
|Lx X|
|L yY| ∼ ��(Lx + L y, d, L y). (15)

It is worthy to note that the determinant ratio depends on
the parameters Lx and L y . In the case Lx = L y = L,
Wilks’s lambda distribution of the second kind is given by
��(2L, d, L). Fig. 1(a) and (b) shows the pdf of ��(2L, d, L),
with multiple values of L, and different cases: d = 2 and
d = 4, respectively.

. 
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IV. POLARIMETRIC CHANGE DETECTOR

We consider X and Y two statistically independent Her-
mitian positive definite random d × d matrices that follow
scaled complex Wishart distributions with different distribu-
tion parameters defined as:

X ∼ sWC

d (Lx ,�x) and Y ∼ sWC

d (L y,� y). (16)

Multilook PolSAR images acquired over the same geo-
graphical area before event (at time tx) and after event (at
time ty) are used to detect any change by comparing at
each position (i, j ) the full polarimetric information before
change and after change given, respectively, by X(i, j) and
Y(i, j). Here, we suppose that at each (i, j), we have two
matrices X(i, j) and Y(i, j). As a consequence, we resort to
compute the determinant ratio of Lx X and L yY described in
Section IV-A.

A. Determinant Ratio Statistic

The determinant ratio statistic is defined by

τDRT = |Lx X|
|L yY| . (17)

DRT is used to measure the similarity between the two
polarimetric covariance matrices X and Y and perform change
detection by choosing between hypotheses [5]{

H0 : �x = � y

H1 : �x �= � y.
(18)

Null hypothesis (H0) corresponds to no-change, and hypoth-
esis (H1) corresponds to change. To quantify the differ-
ence between H0 and H1, a threshold selection procedure
is applied to the test statistic τDRT. It is worth mentioning
that the hypothesis tests are developed with distinct ENLs,
i.e., Lx �= L y . Nevertheless, in the first experiment with sim-
ulations, we assume that the ENL is the same for both images.

The exact distribution of the DRT statistic under null
hypothesis (H0) is Wilks’s lambda distribution of the second
kind given by

τDRT ∼ ��(Lx + L y, d, L y). (19)

For particular case where Lx = L y = L, the DRT statistic
becomes τDRT ∼ ��(2L, d, L).

B. CFAR Thresholding Method

In our study, change detection is realized by applying a
decision threshold to the test statistics [5]. We choose the
CFAR algorithm [15] as a thresholding method in order to
perform a fair comparison between our proposed approach
and the HLT method since we are interested in the test
statistic rather than the thresholding method. Let fτDRT(τ ) be
the distribution of the ratio τDRT under the hypothesis H0. The
significance level of the test αc, expressed in percent, is given
as a function of the desired false alarm probability Pfa and
then given by αc = 100Pfa. The threshold is determined from
the distribution of the determinant ratio statistic.

We adopt the same approach presented in the paper of
Akbari et al. [5] where changes from X to Y and reversely
from Y to X were considered in the CFAR change detector.
This results in using the following two ratios:

τDRT = |LxX|
|L yY| , and τ �

DRT = |L yY|
|LxX| . (20)

The combined test is given by

max
{
τDRT, τ

�
DRT

} H1

≷
H0

T . (21)

The combined threshold T is derived from

Pfa = 2
∫ +∞

T
fτDRT(τ |H0)dτ. (22)

When Pfa is specified, the threshold is obtained by
solving (22), and then, the CFAR change detector is obtained.
The proposed unsupervised change detection based on DRT
between two multilook PolSAR data acquired before and after
change is summarized in the following steps.

1) Find a global estimation of L̂ x and L̂ y .
2) Generate the DRT statistics image using

max{τDRT, τ
�
DRT} computed from two multilook

PolSAR data.
3) Compute the CFAR threshold for a specific Pfa .
4) Apply the threshold and obtain the binary change detec-

tion map.
It is important to mention that the quality of the change detec-
tion map depends on the estimation accuracy of Lx and L y .
For an efficient estimation of the ENL, many methods have
been put forward in the literature for automatic estimate.
To name a few of them, we mention the following. First,
the method of Anfinsen et al. [16] was based on the maxi-
mum likelihood estimator for the ENL under the assumption
that data follow the complex Wishart distribution. Second,
the method proposed by Tao et al. [26] was based on the
development of trace moments (DTMs). This ENL estimator
cancels the textural variation using trace moments. Finally, the
method developed by Bouhlel [27] was based on the fractional
moments of the determinant of the multilook polarimetric
covariance (FMDC) matrix. The FMDC estimator of the ENL
had the particularity of being independent of the distribution of
the texture model. All these methods consisted in performing a
local estimate of the ENL by using a sliding window covering
the whole image. Then, the distribution of estimates was drawn
and the mode value of the density corresponds to the desired
global estimate of the ENL. It is worthy to note that the
presence of texture and correlation between samples can affect
the estimation of the ENL.

In Section IV-C, we briefly describe the HLT and the LRT
statistics in order to compare them with our proposed statistic.

C. HLT Statistic

The complex-kind HLT statistic is defined as

τHLT = tr(Y−1X). (23)

The exact distribution of the HLT statistic is difficult to derive
and an approximation was put forward by Akbari et al. [5].

. 
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It is the FS1 distribution with three parameters used as an
approximation to τHLT and is given as follows:

τHLT ∼ FS(ξ, ζ, μ). (24)

The expression of the FS distribution is given by

fτHLT (τ ) = �(ζ + ξ)

�(ξ)�(ζ )

ξ

μ(ζ − 1)

(
ξτ

μ(ζ−1)

)ξ−1

(
1 + ξτ

μ(ζ−1)

)ξ+ζ (25)

where μ = E{τHLT} > 0 is a scale parameter and ξ, ζ > 0 are
two shape parameters. The parameters of the FS distribution
are computed in terms of distribution parameters of scaled
Wishart matrices X and Y. The solutions for μ, ξ , and ζ are
defined by the following equation system [5]:

m(FS)
ν (μ, ξ, ζ ) = m(HLT)

ν (Lx , L y, d), ν = 1, 2, 3 (26)

where m(FS)
ν and m(HLT)

ν are the νth order moments of the
FS distribution and the HLT statistic, respectively. For more
details about the expressions of the moments, reader can refer
to [5] and [28]. Technically, to estimate the shape parameters
ξ and ζ , a minimum distance optimization is used to solve the
following:

(ξ̂ , ζ̂ ) = arg min
(ξ,ζ )

3∑
ν=2

(
m(FS)
ν − m(HLT)

ν

)2
. (27)

Finally, a good fitting of the FS distribution depends on the
estimation accuracy of (μ, ξ, ζ ), which in turn depends on the
estimates of Lx and L y [5]. It is worth noticing that the FS
distribution of the HLT detector for a low number of looks
does not provide a good approximation and fitting as it will
be seen in the experiments.

The combined test is derived as follows:
max

{
τHLT, τ

�
HLT

} H1

≷
H0

T . (28)

The threshold is determined from the resolution of the follow-
ing equation:

Pfa = 2
∫ +∞

T
fτHLT (τ |H0)dτ. (29)

D. LRT Statistic

The Wishart LRT statistic was derived as [10]

Q = (Lx + L y)
d(Lx +L y )

LdLx
x L

dL y
y

|Lx X|Lx |L yY|L y

|LxX + L yY|Lx +L y
. (30)

The test statistic for change detection based on the LRT is
given by

τLRT = −2ρ ln Q (31)

where

ρ = 1 − 2d2 − 1

6d

(
1

Lx
+ 1

L y
− 1

Lx + L y

)
. (32)

1This notation is used for FS distribution with three parameters. However,
with two parameters, we use the notation (F).

Fig. 2. Pauli decomposition of simulated five-look quad-pol PolSAR data.
(a) Before change. (b) After change. (c) Binary truth change map.

The distribution of τLRT under the null hypothesis (H0) is
approximated by using the associated asymptotic distribution
of the test statistic [10]

τLRT ∼ χ2(d2)+w2[χ2(d2 + 4)− χ2(d2)] (33)

where χ2(d2) denotes a central χ2 distribution with d2 degrees
of freedom and

w2 = −d2

4

(
1 − 1

ρ

)2

+ d2(d2 − 1)

24

×
(

1

L2
x

+ 1

L2
y

− 1

(Lx + L y)2

)
1

ρ2
. (34)

The test with a desired Pfa is given by

τLRT

H1

≷
H0

T (35)

where the threshold T is determined through the equation

Pfa =
∫ +∞

T
fτLRT (τ |H0)dτ. (36)

It is worth mentioning that the LRT is a one-sided test;
however, the DRT and HLT are two-sided test.

V. EXPERIMENTAL RESULTS

The performance of the proposed DRT statistic is evaluated
on both simulated and real PolSAR images. The HLT and the
LRT tests are implemented for comparison with our test.

A. Simulated Data

We simulate two quad-pol data containing two L-look Pol-
SAR images of 250 ×250 pixels and having four polarimetric
channels (d = 4). The generated data follow a scaled Wishart
distribution with a covariance matrix of the speckle � j defined
in Table I where j = {1, . . . , 7}. Then, the polarimetric data
contain seven different classes (areas). Area 7 corresponds
to the polarimetric properties of a heterogeneous urban area.
Area 3 is simulated with the polarimetric properties of a
homogeneous water region. The rest of the areas correspond
to the properties of agricultural crops and vegetation regions.
Different values of the number of looks L are used in this
study, L ∈ {5, 6, 7, 8}. Fig. 2 shows the Pauli decomposition
of the two simulated five-look quad-pol PolSAR data corre-
sponding to images before and after change and the binary

. 
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Fig. 3. Comparison between DRT, HLT, and LRT statistics for simulated data with different levels of multilooking. The number of looks is L ∈ {5, 6, 7, 8},
where the first raw L = 5 and the last raw L = 8. (ai) Logarithm of max{τDRT, τ

�
DRT}. (bi) Plots of τDRT normalized histograms and estimated Wilk’s lambda

of second kind pdfs under (H0) hypothesis. (ai’) Logarithm of max{τHLT, τ
�
HLT}. (bi’) Plots of τHLT normalized histograms and estimated FS pdfs under (H0)

hypothesis. (ai”) τLRT. (bi”) Plots of τLRT normalized histograms and estimated distribution given by (33) under (H0) hypothesis. Change detection map
obtained by rejection of hypothesis test at 1% significance level for (ci) DRT, (ci’) HLT, and (ci”) LRT detector.

TABLE I

COVARIANCE MATRIX FOR EACH REGION OF SIMULATED DATA

truth change map where the change is marked by the white
and the no-change by the black.

By computing the DRT, HLT, and LRT statistics, Fig. 3
shows the results of change detection relative to these methods

and for different cases of L. As it can be seen, each row
corresponds to a particular value of L starting from 5 for
the first row to 8 for the last row. Fig. 3(ai), (ai’), and (ai”)
where i∈ {1, 2, 3, 4} show, respectively, the logarithm of DRT,
the logarithm of HLT, and the LRT statistics for different
values of L. In addition, Fig. 3(bi) shows the comparison
between the normalized histograms of τDRT and the estimated
Wilks’s lambda of the second kind pdfs computed over the
nonchange area. It is clear that the estimated pdf curves fit
well with the normalized histograms. The same comparison
is made in Fig. 3(bi’) between τHLT and the estimated FS
pdfs used as approximations. It is shown that for a low
number of looks smaller than 7, the FS distribution of the
HLT detector is not providing a good fitting. However, the
DRT detector works better for the small number of looks.

. 
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TABLE II

VALUES OF KS AND p-VALUES (%) OBTAINED BY USING WILK’S OF
SECOND KIND DISTRIBUTION FOR SIMULATED DATA WITH

DIFFERENT LEVELS OF MULTILOOKING

Another comparison is made in Fig. 3(bi”) between τLRT

and the estimated pdf given by (33). Furthermore, Fig. 3(ci),
(ci’), and (ci”) shows the corresponding binary change maps
obtained by the thresholding CFAR algorithm. Indeed, binary
change detection map is obtained by the rejection of the
hypothesis test at a 1% significance level for the DRT, HLT,
and LRT detectors. It is noted that changes can be seen in these
statistics for each case of L-values. Moreover, the proposed
method detects more efficiently the changed area even for
highly speckled cases with a low number of looks. It is also
worth noticing that at the central part of the binary images
(region 2), where heterogeneous change detection is present,
the DRT is better than the others, but all three detectors seem
not to work properly. This leads us to extend this work under
non-Wishart case [29], [30] or relaxed Wishart distribution
where the ENL is a local parameter [31].

The fit ability between the estimated Wilks’s of the second
kind pdfs and the normalized histograms of τDRT is evaluated
qualitatively by using the Kolmogorov–Smirnov (KS) hypoth-
esis test. The smaller value of KS indicates better the hypothe-
sized model fits with the empirical distribution. A small value
of p-value of the test indicates strong incompatibilities of the
data with the employed distribution hypothesis. Table II lists
the values of KS and the p-values of the test (in percentage)
obtained for the four cases of L under null hypothesis (H0).
It is evident from the p-value that the fitted Wilk’s of the
second kind distribution can perfectly model the no-change
area.

A quantitative evaluation of the change detection perfor-
mance is also provided at four different significance levels
or specified FARs. Table III shows the measured FAR [false
positive rate (FPR)] and the detection rate [true positive rate
(TPR)] for DRT, HLT, and LRT statistics for various levels
of multilooking and for different specified FARs. As shown
in Table III, the DRT statistic realizes higher detection rates
and lower overall error rates than the HLT and LRT statistics
at specified FARs, especially when the speckle is strong and
the number of looks L is low. As L increases to reach 8 and
at specified FARs, the detection rates for these statistical tests
increase and the overall error rates decrease. Likewise, when
L passes to 8, the detection rate of both the DRT and HLT
becomes close. It is also worth noticing that the measured
FAR is close to the specified FAR regardless of the detector
used.

Another quantitative evaluation of the performance of the
method is provided by the receiver operating characteris-
tic (ROC) curves that are plotted for these statistics using
the ground truth. The ROC curve is the evolution of the
TPR as a function of the FPR [32]. Fig. 4 shows the ROC

TABLE III

CHANGE DETECTION PERFORMANCE FOR SIMULATED DATA. THE BEST
VALUES ARE MARKED BY RED

curves for DRT, HLT, and LRT statistics and for different
values of L. It is shown that the DRT statistics give the best
performance for this example followed by the HLT statistics
in all cases and then by the LRT statistics. The area under
ROC curve (AUC) is also considered in this study. The larger
the AUC, the better the performance. Accordingly, the AUC
values are shown in Table IV for these statistics and multiple
values of L, and we can easily conclude that the proposed DRT
statistic outperforms both the HLT and the LRT statistics for
low values of L. When the ENL increases, the AUC of the
HLT reaches the AUC of the DRT statistic. Consequently, the
two statistics give us similar results. The performance of the
proposed change detection algorithm is further evaluated with
different real multilook PolSAR data sets in Section V-B.

. 
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Fig. 4. ROC curves comparison of three statistical detectors DRT, HLT, and LRT for different levels of multilooking L ∈ {5, 6, 7, 8}. The probability of
detection (TPR) is plotted as a function of the probability of a false alarm (FPR) for simulation data. The DRT statistic performs better than HLT and LRT
statistics. (a) L = 5. (b) L = 6. (c) L = 7. (c) L = 8.

Fig. 5. Pauli RGB (R = HH-VV, G = HV, and B = HH + VV) of quadpol RADARSAT-2 images captured over Suzhou city, East China on (a) April 9,
2009 and (b) June 15, 2010, multilooked with 24-looks. (c) Truth change map. The white means no-change, the gray means change, and the black means
unlabeled pixels.

TABLE IV

AUC FOR SIMULATED DATA COMPUTED WITH VARIOUS METHODS (DRT,
HLT, AND LRT) AND VARIOUS NUMBER OF LOOKS. THE BEST

VALUES ARE MARKED BY RED

B. Real PolSAR Data

1) Data set 1: For real data, we use a set of two
RADARSAT-2 fully PolSAR images over an urban area in
Suzhou city, East China, acquired on April 9, 2009, and June
15, 2010. The two images corresponding to before and after
changes are multilooked with 24-looks (six looks in range and
four looks in azimuth directions). Fig. 5(a) and (b) shows the
Pauli decomposition images of these two PolSAR images. The
ground-truth map is represented in Fig. 5(c) and contains no-
change test pixels with white and change test pixels with gray.

In contrast, the black designates urban areas that do not satisfy
the Wishart assumption. The ENL for both images before
and after changes is estimated to be 7.2 and 6.9, respectively.
Fig. 6(a), (a’), and (a”), respectively, shows the logarithm of
the DRT, the logarithm of the HLT, and the LRT statistic.
The plots of the normalized histograms and the estimated
distributions for DRT, HLT, and LRT detectors are given,
respectively, in Fig. 6(b), (b’), and (b”). Fig. 6(c), (c’), and
(c”) shows their corresponding binary change map obtained by
the thresholding CFAR algorithm. The binary change detection
map is obtained by the rejection of the hypothesis test at a 1%
significance level for the DRT, HLT, and LRT detectors.

Regarding the quantitative assessment, the ROC curves for
the DRT, HLT, and LRT statistics used in the experiments
are given in Fig. 7. In this example, the obtained results
show that the ROC curves of the HLT and LRT are above
the ROC curve of the DRT. The measured AUC for these
methods based on the DTR, HLT, and LRT statistics is 99.68%,
99.45%, and 99.13%, respectively. Different significance levels
of the test are chosen where αc ∈ {0.5%, 1%, 5%, 10%} for
evaluation. The detection rate, the measured FAR, and the
overall error rate for the three methods are shown in Table V.
At each specified FAR level, the best values are highlighted
in red. We can clearly see that the DRT always gives the best
detection rate for any specified FAR level. Also, for the overall
error rate, the DRT gives good results in comparison with the
other statistics for the case of a low value of significance levels

. 
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Fig. 6. Comparison between DRT, HLT, and LRT statistics for real experimental data set over Suzhou city. (a) Logarithm of max{τDRT, τ
�
DRT}. (a’) Logarithm

of max{τHLT, τ
�
HLT}. (a”) τLRT. Plots of normalized histograms and estimated distribution for (b) DRT, (b’) HLT, and (b”) LRT detectors. Change detection

map at 1% significance level obtained from (c) DRT, (c’) HLT, and (c”) LRT statistic.

TABLE V

CHANGE DETECTION PERFORMANCE FOR REAL POLSAR DATA SET 1

of the test αc ∈ {0.5%, 1%}. For large values of αc, the HLT
wins. The measured FAR are close to the specified FAR for the
DRT and LRT statistics when αc ∈ {5%, 10%}. However, for
low values of αc, the HLT gives similar values for measured
and specified FAR.

Fig. 7. ROC curves comparison between DRT, HLT, and LRT statistics for
real PolSAR data set 1. The DRT detector performs better than the HLT and
LRT detectors.

2) Data set 2: Two coregistered pair of L-band polarimetric
images (d = 3) corresponding to scenes 1 and 2 were acquired
by the Jet Propulsion Laboratory/National Aeronautics and
Space Administration UAVSAR (1.26 GHz) over the city of

. 
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Fig. 8. UAVSAR images (in Pauli decomposition) over the city of Los Angeles, California. (a) and (a’) April 23, 2009. (b) and (b’) May 11, 2015. (c) and
(c’) ground truths, where white is change and black is no-change. Top: Scene 1. Bottom: Scene 2.

Los Angeles, California, on April 23, 2009, and May 11, 2015.
The images are 2 × 3 multilooked. Fig. 8 shows the Pauli
decomposition of these two scenes with two images each are
obtained by the JPL’s UAVSAR sensor at two different times.
Fig. 8(c) and (c’) shows the ground truths used to compute the
ROC curves. We recall that the white corresponds to change
and the black to no-change. As we can see, the interesting area
of this data set is an urban area where the changes occurred
due to the effects of urbanization.

Fig. 9 compares the change detection results relative to DRT,
HLT, and LRT statistics. As it can be noted, the logarithms of
max{τDRTτ

�
DRT}, max{τHLT, τ

�
HLT}, and τLRT are first computed

and shown, respectively, in Fig 9(ai), (ai’), and (ai”), where
i ∈ {1, 2} representing scenes 1 and 2. The areas with change
are marked in green (small change) and red (strong change).
The areas without change are marked in blue. Fig. 9(b1) and
(b2) show a good fitting between the normalized histograms
of τDRT and the estimated Wilks’s lambda of the second kind
pdf computed over the nonchange area, respectively. As shown
in Section II, Wilks’s lambda of the second kind distribution
depends on the ENL and dimension (d) of the covariance
matrix. The comparison between the normalized histograms of
τHLT and the estimated FS pdf computed over the nonchange
area is shown in Fig. 9(b1’) and (b’2). We can see here
a good fitting of the FS distribution with the normalized
histograms. The same comparison is realized in Fig. 9(b”1)
and (b”2) with the LRT statistic and the approximated pdf
given by (33) and computed over the nonchange area. As we
can see, the estimated pdf curves based on χ2 distributions do
not fit well the normalized histograms. As consequence, the
CFAR algorithm fails to provide the best threshold for the LRT
statistic. Fig. 9(ci), (ci’), and (ci”) shows the binary change

TABLE VI

CHANGE DETECTION PERFORMANCE FOR REAL POLSAR
DATA SET 2: SCENES 1 AND 2

map obtained by the thresholding CFAR algorithm applied to
the DRT, HLT, and LRT statistics, where the significance level
of the test αc is chosen equal to 1%. It is worth to notice that
with the DRT statistics, more regions are detected than those
using the HLT statistics.

. 
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Fig. 9. Comparison between DRT, HLT, and LRT statistics for real experimental data set over Los Angeles. (ai) Logarithm of max{τDRT, τ
�
DRT} for scene i,

i∈ {1, 2}. (ai’) Logarithm of max{τHLT, τ
�
HLT}. (ai”) τLRT. Plots of normalized histograms and estimated distribution for (bi) DRT, (bi’) HLT, and (bi”) LRT

detector. Change detection map at 1% significance level obtained from: (ci) DRT, (ci’) HLT, and (ci”) LRT statistic.

. 
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Fig. 10. ROC curves comparison between DRT, HLT, and LRT statistics
for real PolSAR data set 2. Top: Scene1. Bottom: Scene2. The DRT detector
performs better than the HLT and LRT detectors, especially for a low FPR.

For a final comparison between these change detectors,
we draw Table VI. It reports the detection rate, the measured
FAR, and the overall error rate computed for the three detec-
tors for scenes 1 and 2, at four different significance levels
of the test αc. The DRT statistic obtains the highest detection
rate in this example, followed by the HLT statistic. The LRT
statistic gives the worst performance. The DRT also achieves
a lower overall error rate compared to the HLT and LRT
statistics except for scene 1 when αc ≥ 5%. Regarding the
measured FAR, the DRT gives values close to the specified
FAR in most cases (cases of scene 2), but in other cases, the
values are far apart (cases of scene 1). The performance of
the DRT statistic is evaluated as well through the ROC curve
and compared with that of the HLT and LRT statistic. Fig. 10
shows the corresponding ROC curves of the three detectors,
indicating a better performance for the DRT statistic for low
FPR values followed by the HLT and then by the LRT. The
AUC is also provided for this example. For scene 1, it is
81.60% for the DRT, 80.42% for the HLT, and 78.96% for
the LRT. For scene 2, it is 78.31% for the DRT, 77.77% for
the HLT, and 74.41% for the LRT. Indeed, the AUC given by
the DRT statistic is larger than the others.

VI. CONCLUSION

The DRT statistic has been proposed for change detection
in multilook PolSAR images. Under the null hypothesis cor-
responding to no change, the statistic follows exactly Wilks’s
lambda distribution of the second kind depending on the
ENL and the covariance matrix dimension. The fit ability is

evaluated quantitatively using the KS goodness-of-fit test. With
this statistic test distribution, the decision threshold can be
efficiently determined at a specified probability of false alarm
by using the CFAR-threshold method. The performance of the
method has been evaluated on simulated and real multilook
PolSAR data where ground-truth data were available and has
been compared to the performance of the known HLT and LRT
detectors. The results in terms of measured FAR, detection
rate, ROC curve, and AUC have shown that the proposed
DRT statistic outperforms the HLT and LRT performances
especially for low ENL values and can perform a binary
change detection map very close to the ground-truth data.
The method can be extended to a heterogeneous model by
considering the texture in the change detection process. The
presence of texture can be useful to improve the detection, but
additional texture parameters need to be estimated.

APPENDIX A

The characteristic function of the random variable V =
ln((2L)d(|X|/|�|)) is given as follows:

ψV (t) = E{eitV } = E
{

e
it ln

(
(2L)d |X|

|�|
)}

(37)

= E

{(
(2L)d

|X|
|�|

)it
}

(38)

= E

{(
2d |LX|

|�|
)it

}
. (39)

Let us consider the Hermitian matrix Z = LX, which follows
the nonsingular complex Wishart distribution. The pdf of Z is
as follows:

fZ(Z) = |Z|L−d

�d(L)|�|L
etr(−�−1Z). (40)

Then, the integral over all the positive definite complex
Hermitian matrices verifies∫

�+
|Z|L−d etr(−�−1Z)dZ = �d(L)|�|L . (41)

We can write that∫
�+

|Z|L+it−d etr(−�−1Z)dZ = �d(L + i t)|�|L+it . (42)

As a consequence, (39) can be written as

ψV (t)

=
∫

�+

(
2d |Z|

|�|
)it

fZ(Z)dZ (43)

= 2itd

�d(L)|�|L+it

∫
�+

|Z|L+it−d etr(−�−1Z)dZ (44)

= 2itd

�d(L)|�|L+it
�d(L + i t)|�|L+it (45)

= 2itd �d(L + i t)

�d(L)
(46)

= 2itd �(L + i t)�(L + i t − 1) . . . �(L + i t − d + 1)

�(L)�(L − 1) . . . �(L − d + 1)
. (47)
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The pdf of the chi-squared distribution with 2L degrees of
freedom χ2(2L) is given by

fχ2(2L)(x) = 1

2L�(L)
x L−1e− x

2 . (48)

Using the previous pdf, we can write∫ +∞

0
x L−1e− x

2 dx = 2L�(L). (49)

The characteristic function of an lnχ2(2L) random variable
is given by

ψln χ2(2L)(t) = E{eit ln X } = E{Xit } (50)

=
∫ +∞

0
x it fχ2(2L)(x)dx (51)

= 1

2L�(L)

∫ +∞

0
x L+it−1e− x

2 dx (52)

= 2it �(L + i t)

�(L)
. (53)

The characteristic function of the sum of independent
ln χ2(2L), ln χ2(2(L − 1)),…, lnχ2(2(L − d + 1)) random
variables is

ψln χ2(2L)+ln χ2(2(L−1))+···+ln χ2(2(L−d+1))(t) (54)

= ψln χ2(2L)(t)× ψln χ2(2(L−1))(t)× · · · × ψln χ2(2(L−d+1))(t)

(55)

= 2i td �(L + i t)�(L + i t − 1) . . . �(L + i t − d + 1)

�(L)�(L − 1) . . . �(L − d + 1)
.

(56)

We can conclude that

ψV (t) = ψln χ2(2L)+ln χ2(2(L−1))+···+ln χ2(2(L−d+1))(t). (57)

APPENDIX B

The Mellin integral transform of the density function g(z)
of the product

∏d−1
i=0 Xi of d independent random variables Xi

with density functions fi (xi) is given by [33]

M{g(z)}(s) =
d−1∏
i=0

M{ fi (xi)}(s). (58)

Under suitable restrictions [34], [35] satisfied by all density
functions, the density function g(z) is given by the following
inverse formula:

g(z) = 1

2π i

∫
L

z−s
d−1∏
i=0

M{ fi(xi)}(s)ds. (59)

Since the Mellin integral transform of 1/(1 + x)Lx −i+L y−i is
given by

M
{

1

(1 + x)Lx −i+L y −i

}
(s) = �(Lx − i + L y − i − s)�(s)

�(Lx − i + L y − i)
(60)

and for any function f (x)

M{x Lx−i−1 f (x)}(s) = M{ f (x)}(s + Lx − i − 1) (61)

it follows that the density function of the Beta distribution of
the second kind has the following Mellin transform:
M{ fi(xi)}(s) = �(1 + L y − i − s)

�(L y − i)

�(Lx − i − 1 + s)

�(Lx − i)
. (62)

Then, the Mellin integral transform of the pdf g(z) of the
product of d independent random Beta type II variables is

M{g(z)}(s) =
d−1∏
i=0

�(1 + L y − i − s)

�(L y − i)

�(Lx − i − 1 + s)

�(Lx − i)
.

(63)

Accordingly, the g(z) pdf is written otherwise as a function
of the inverse Mellin transform and is given as follows:
g(z)

= 1

2π i

∫
L

z−s
d−1∏
i=0

�(1 + L y − i − s)

�(L y − i)

�(Lx − i − 1 + s)

�(Lx − i)
ds

(64)

= A

2π i

∫
L

zs
d−1∏
i=0

�(1 + L y − i + s)�(Lx − i − 1 − s)ds

(65)

which is the Meijer G-function multiplied by constant A with
b j = Lx − i − 1 and a j = −(L y − i)

g(z) = A × Gd,d
d,d

(−L y,−(L y − 1), . . . ,−(L y −(d−1))
Lx − 1, Lx − 2, . . . , Lx − d

∣∣∣∣ z

)
(66)

where A =∏d−1
i=0 (1/(�(Lx − i)�(L y − i))).

The cumulative distribution function G(t) = ∫ t
0 g(z)dz is

obtained by integrating (65) with respect to the inside contour
integral by using∫ t

0
zsdz = (1 + s)−1t1+s = t

�(1 + s)

�(2 + s)
ts . (67)

Again, using the definition of the Meijer G-function (10), this
results in

G(t)

= At

2π i

∫
L

t s
d−1∏
i=0

�(1 + L y − i + s)�(Lx − i − 1 − s)

× �(1 + s)

�(2 + s)
ds (68)

= At ×
Gd,d+1

d+1,d+1

(−L y,−(L y −1), . . . ,−(L y − (d−1)), 0
Lx −1, Lx −2, . . . , Lx −d,−1

∣∣∣∣ t
)
.

(69)

The Meijer G-function is viewed as an inverse Mellin trans-
form

Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z

)
= 1

2π i

∫
L

z−s�Z (s)ds (70)

where �Z (s) = M{g(z)}(s) is the Mellin transform of the
g(z) pdf. The kth moment E{Zk} is given by

E{Zk} = �Z (s)|s=k+1 =
d−1∏
i=0

�(L y − i − k)

�(L y − i)

�(Lx − i + k)

�(Lx − i)
.

(71)
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