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ABSTRACT 

Systemic sclerosis (SSc) is a rare chronic autoimmune disease characterized by vasculopathy, 

dysregulation of innate and adaptive immune responses, and progressive fibrosis. SSc remains an 

orphan disease, with high morbity and mortality in SSC patients. The mesenchymal stromal cells (MSC) 

demonstrate in vitro and in vivo pro-angiogenic, immuno-suppressive, and anti-fibrotic properties  and 

appear as a promising stem cell therapy type, that may target the key pathological features of SSc 

disease. 

This review aims to summarize acquired knowledge in the field of :1) MSC definition and in vitro and in 

vivo functional properties, which vary according to the donor type (allogeneic or autologous), the tissue 

sources (bone marrow, adipose tissue or umbilical cord) or inflammatory micro-environment in the 

recipient;  2) preclinical studies in various SSc animal models , which showed reduction in skin and lung 

fibrosis after MSC infusion; 3) first clinical  trials in human, with safety and early efficacy results reported 

in SSc patients or currently tested in several ongoing clinical trials. 

, 
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INTRODUCTION 

Systemic sclerosis (SSc) is a rare chronic autoimmune disease with a prevalence of 38-341 cases per 

million adults. It is characterized by a pathogenic triad of 1) early endothelial damage and small vessel 

vasculopathy, 2) dysregulation of innate and adaptive immune responses, and 3) progressive fibrosis 

primarily affecting the skin, gastrointestinal tract, lungs, heart, and kidneys, resulting in multi-organ 

dysfunction [1,2]. Health-related quality of life (HRQoL) is considerably impaired for these patients [3,4]. 

Disease presentation is heterogeneous, with high morbidity and a standardized mortality ratio of 3.5, 

compared to the general population [5]. The leading causes of death are cardiac [6]  and pulmonary [7,8] 

involvement, and the 8-10-year mortality rate is over 20-30% [5,6,8]. In cases of rapid and diffuse 

progression, which accounts for 10 to 20% of the SSc population, the 3-5-year survival rate is estimated 

at 50-70% [9,10], depending on the type and extent of organ involvement.  

SSc remains an orphan disease with high unmet therapeutic needs. The recommended treatments are 

mostly symptomatic for Raynaud’s phenomenon and gastro-esophageal reflux [11]. Standard 

immunosuppressive drugs, including cyclophosphamide and mycophenolate mofetil, for early severe or 

rapidly progressive forms, have modest effects without improving survival [12]. Several 

immunotherapies that specifically target cytokine signaling (eg.: Interleukin (IL)-6), B cells (with anti-

CD20 therapy), T cells (with inhibition of T-cell co-stimulation), or other specific fibrosis signaling 

pathways, such as anti-transforming growth factor (TGF)-β agents are under investigation, but have yet 

to be approved as disease-modifying therapies in SSc.   

In this context, stem cell therapies are emerging as a new therapeutic option for SSc. Autologous 

hematopoietic stem cell transplant (AHSCT) was the first intervention to have disease modifying 

properties [13–15], including regression of skin[16] and lung [14,17] fibrosis, allowing improvement in 

both overall survival (OS) and event-free survival (EFS) up to 5-7 years after transplant. However, the 

procedure is contraindicated in cases with advanced visceral involvement [18,19], and its use is 

restricted to the most severely affected patients, which represent 20 to 30 % of the SSc patient 

population. Mesenchymal stromal cells (MSC), first identified in the bone marrow (BM-MSC) 25 years 

ago by Friedenstein [20], have been extensively characterized [21–24]. MSC can be easily harvested 

from various other sources including adipose tissue (AD-MSC), and umbilical cord or Wharton jelly (UC-

MSC). These multipotent progenitor cells modulate both innate [25] and adaptive [26] immune systems, 

and have pro-angiogenic and anti-fibrotic properties, all providing a strong rationale for their use to 

target the SSc pathogenic triad [27,28].  
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1. PATHOPHYSIOLOGY OF SYSTEMIC SCLEROSIS

Although the exact cause of SSc remains undetermined, numerous studies show that a complex 

interplay between genetic susceptibility and environmental factors (such as exposure to silica dust and 

organic or occupational solvents) triggers disease onset with consequent endothelial damage and 

microvascular injury, inflammation, and autoimmune activation [1,2]. These factors contribute to 

fibroblast activation, enhanced collagen and extracellular matrix protein production, with consequent 

fibrosis, and disease progression.    

1.1 Genetic susceptibility  

SSc is not a monogenic disease [29]. Multiple gene polymorphisms have been associated with a 

predisposition to developing SSc. While the SSc concordance rate between monozygotic twins is low 

(4.2%) compared to other autoimmune diseases [30], the relative risk of SSc is ~1% among relatives of 

SSc patients. These individuals also have a higher frequency of other autoimmune disorders [31]. 

Candidate gene studies and genome-wide associated studies (GWAS) [32], immunochip data, and whole 

exome sequencing (WES) have identified many SSc-associated polymorphisms (reviewed in [29,33–35]).  

Genetic susceptibilities are insufficient to explain disease entirely, underlining the importance of 

environmental and epigenetic dysregulation, as recently reviewed [29,33,35,36]. Evidence supporting 

the latter include: 1) abnormal DNA methylation of the promoter region of genes encoding for 

costimulatory molecules, such as CD70 on activated lymphocytes or CD40LG on activated T cells, FOXP3 

on peripheral blood CD4+ cells [29,33,35,36], Friend Leukemia-Integration (FLI-1) in keratinocytes, 

endothelial cells, and lung fibroblasts, and Bone morphogenetic protein receptor type II (BMPR 2) and 

nitric oxide synthase 3 (NOS3) in endothelial cells; 2) abnormal histone acetylation resulting in Krüppel-

Like Factor 5 (KLF5)  and Friend leukemia integration 1 transcription factor (FLI1) epigenetic repression 

and increasing  connective tissue growth factor (CTGF) in fibroblasts from SSc patients, and  abnormal 

histone methylation associated with abnormalities in Transforming Growth Factor- (TGF-)-SMAD 

signaling pathways; 3) changes in non-coding RNA expression in immune cells, fibroblasts, and in serum 

levels of micro RNAs that correlate with disease phenotypes and activity.

1.2 Vasculopathy 

Vascular injury and endothelial cell damage occur early in SSc [37], with infiltration and accumulation of 

immune cells in affected tissues [1,2,38,39]. The primary trigger is thought to increase reactive oxygen 

species (ROS) and cause mild oxidative stress [2,37]. Endothelial cells undergo vacuolization and 

apoptosis, resulting in break-down of the endothelial lining [39]. The interaction between leukocytes 
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and endothelial cells increases endothelial cell permeability, with upregulation of the expression of cell 

adhesion molecules, and secretion of chemokines and mediators of trans-endothelial leukocyte 

migration by the activated endothelial cells [38].  Perivascular infiltration and proliferation of 

monocytes, macrophages, mast cells, T-lymphocytes [40], and autoantibody-producing cells all 

contribute to cytokine release [41]. Autoantibodies against the native platelet-derived growth factor 

(PDGF) receptor in scleroderma patients [42], were shown to trigger tyrosine phosphorylation and ROS 

accumulation and to stimulate type I collagen expression as well as conversion of normal human 

primary fibroblast into myofibroblast. Angiogenesis is also altered in SSc, with inadequate proliferation 

and differentiation of endothelial cells in response to endothelial injury [37,38]. Endothelial damage, 

dysfunctional angiogenesis, and sustained inflammation lead to progressive structural alterations and 

loss of small blood vessels, particularly arterioles [37].  Vascular smooth-muscle cells and pericytes 

proliferate actively in early SSc, with progressive thickening of the perivascular wall. Pericytes infiltrate 

the perivascular space and can transdifferentiate into vascular smooth-muscle cells, fibroblasts, or 

myofibroblasts [37].  

1.3 Activation of the innate and the adaptive immune responses 

Activation of the innate  immune response has been shown for long in SSc, with the presence of 

monocytes, macrophages [43], mast cells, and dendritic cells (DC) in  skin [44–47] and lung [48] biopsies, 

even before the detection of vasculopathy and altered endothelial cells. Activation of the adaptive 

immune response [49] is present at early stages, with predominant T lymphocyte infiltration [40,50,51] 

in  the skin and lung, and auto-antibody production [52,53],  which all may precede disease symptoms. 

Immune system activation contributes to large amount of cytokine release [41] and further promote 

inflammation and fibrosis [54]. More recently transcriptome analysis within the peripheral blood [55] 

and skin [56–58] samples have shown variables degrees of upregulation of  the immune response 

signatures, according to disease and activity stages [59].  

In the early inflammatory phase of SSc, Toll-like receptors (TLR) signaling in innate immune cells, which 

can be triggered by pathogens, cellular damage, or stress, is an important driver of inflammation 

[60,61]. TLR activation in macrophages and dendritic cells triggers production of interleukins (IL)-1, IL-6 

and tumor necrosis factor (TNF)-α  [62], and results in the release of inflammatory cytokine release, 

including type I interferons (IFNs). IFN- induces inflammation and activation of other innate immune 

cells, such as classical DC (cDC), which in turn lead to increased production of cytokines (IL-6, TNF-), 

chemokines (CXCL10, CCL4,), and cell adhesion molecules (P selectin, glycoprotein ligand (PSGL-1)). DC 

promote inflammation, myofibroblast transformation, and extracellular matrix (ECM) deposition in 
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affected tissue from SSc patients [47,63]. Upregulated CXCL4 production by plasmacytoid DC (pDC) can 

modulate monocyte differentiation into monocyte-derived inflammatory DC with increased TLR-

mediated cytokine production, superior T-cell stimulation, and a profibrotic phenotype [47,63]. TLR-4 

expression is elevated in SSc skin and lung biopsies, with robust TLR4 staining in fibroblast and vascular 

cells of affected tissues, and correlates with disease progression [64]. A high level of skin TLR-9 

expression and downstream pathway activation contributes to endogenous TGF production and 

fibrosis. pDC produce high levels of IFN [65], CXCL4 and TLR-8, and activated cDC are the most efficient 

inducers of T cell activation.  

T cells play a critical role in the pathogenesis of SSc and can also influence autoantibody synthesis [50]. 

CD4+ and CD8+ T-cells have been identified in skin [66–68] and lung [69,70] of SSc patients and the two 

subpopulations may contribute to different disease stages [68]. CD4+ T cells could differentiate into 

various functionally  and phenotypically different subtypes, including  Th1, Th2, Th17, Treg (T regulatory 

cells), and Tfh (T-follicular helper), depending on the cytokine context  [41,71–73]. Although the exact 

role of IL-17 in fibrinogenesis remains controversial (ie.: trans-differentiation of human fibroblast into 

myofibroblast, collagen synthesis), Th17 cells and IL-17 production were found to be elevated in the 

peripheral blood, skin, and lungs from SSc patients, and to participate in and exacerbate early 

inflammatory responses [74–76]. Restoration of the Th1/Th2/Th17/Treg cytokine balance is an 

important goal of therapy.  

At early stages of SSc, macrophages and Th1 cells are the predominant inflammatory cell types to induce 

inflammation, which is associated with IFN-type I upregulation. Tissue resident macrophages are 

activated by Interferon (M1, classically activated) and IL-4 (M2, alternatively activated), and become 

fibrotic with exposure to type 2 cytokines, such as IL-6 [62] and IL-13 [77,78]. Reduced numbers [79,80] 

and altered suppressive functions [81–84] of Treg cells also contribute to immune activation [78,84]. B 

cell activation is associated with phenotypic and functional changes and contributes to autoantibody 

production [85]. Cell surface expression of CD19 is upregulated in peripheral blood B cells [86], which 

regulates B cell receptor-induced signaling and antibody production. CD95, CD80 and CD86 are also 

upregulated in memory B cells [86–88], as well as B cell activating factor (BAFF) [89], which also 

contribute to the regulation of B cell-induced immunoglobulin production and secretion [52].  In 

addition, B cells can also act as antigen-presenting cells to T cells and induce dendritic cell maturation, 

promoting Th2 profibrotic responses [90].  

1.4 Fibrosis  
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Early vascular inflammation is eventually replaced by a fibrotic stage. CD4+ and CD8+ T cells undergo 

expansion in response to cytokine release [51,66,67], which in turn activates fibroblast and stimulates 

collagen production via direct or indirect mechanisms. Fibroblasts can be activated by the two major 

pro-fibrotic cytokines, transforming growth factor-β (TGF-β)[91] and connective tissue growth factor 

(CTGF), as well as through interactions with the other immune mediators and growth factors. Fibroblast 

activation results in excessive deposition of collagen and remodeling of other  ECM components 

associated with progressive diffuse fibrosis, loss of small vessels, hypoxia, and consequent alterations in 

skin and internal organ architecture and function [92,93]. Plasma levels of Th2/Tc2 cytokines (IL-4 and 

IL-13) are elevated in SSc patients compared with healthy controls [41]. Fibroblasts can be recruited by 

chemotaxis to sources of TGF-β, IL-4, TNF-α, PDGF and ET-1, and will proliferate in response to IL-1, IL-4, 

IL-6, IL-17, ET-1, PDGF, or TGF-β. These profibrotic cytokines, as well as TGF-β, stimulate differentiation 

and activation of myofibroblasts, with increased ECM production leading to fibrosis. Disruptions in the 

ECM vary with disease progression; changes in different collagens, proteoglycans, and fibrillins [94] 

occur typically earlier in the disease, with type I collagen accumulating in later disease stages. 

2. DEFINITION AND CHARACTERISATION OF MESENCHYMAL STROMAL CELLS (MSC)

In vitro expanded MSC are defined a minima since 2006  by the International Society for Cellular Therapy 

(ISCT) MSc committee, as : 1) a plastic-adherent polyclonal population with fibroblast-like morphology, 

2) expressing CD73, CD90 and CD105 (in > 95% MSC), 3) in the absence of hematopoietic and

endothelial markers, and 4) able to differentiate in vitro into osteoblasts, adipocytes, and chondroblasts 

[21]. Importantly, MSC are not equivalent to mesenchymal stem cells, referring to cells with validated in 

vitro and in vivo self-renewal and multi-lineage differentiation potential at the clonal level [95]. Some 

MSC effects are mediated by direct cell-cell contact, but most of their action is exerted through 

secretion of soluble factors, which are not constitutively expressed by MSC, but are induced by several 

proinflammatory cytokines in the local milieu.  

MSC secrete growth factors, cytokines, and hormones [96–99], which are central to MSC paracrine 

activities, all contributing to tissue regeneration  in various diseases, including for SSc patients [100,101] 

[96–99]. Together with this short-lasting bystander trophic activity, the clinical potential of MSC has 

been proposed to depend on their wide immunosuppressive and anti-inflammatory potential, 

suggesting that immunomodulation facilitates host tissue regeneration [102,103]. Numerous 

parameters have been proposed to modulate MSC functional properties, including the tissue source and 

the production process, and also the inflammatory environment, since MSC immune properties are 
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essentially not constitutive, but licensed (also called MSC priming) by inflammatory stimuli (e.g. IFN-  

TNF-, IL-1 or IL-1β) [104–106]. Therefore, the expression of surface markers and MSC functional 

features may change according to culture conditions, cryopreservation, and inflammatory status [104], 

and these properties are critical for clinical application and the interpretation of MSC studies [107,108]. 

Importantly, MSC priming also increases the expression of major histocompatibility complex (MHC) class 

I and induces MHC class II molecules and MSC are recognized and killed by activated immune cells.  The 

early concept of MSC as being immune-privileged is thus more accurately described as immune-evasive 

[23,109].  

2.1 Different sources of MSC 

MSC, originally identified in the bone marrow (BM) stem cell niche [20,24],  were subsequently isolated 

from adipose tissue, dental pulp, synovial membranes, placenta, umbilical cord, and Wharton’s jelly 

[110,111]. The most frequent sources of MSC for therapeutic use have been bone marrow (BM-MSC), 

adipose tissue (AD-MSC) [112], and fetal tissues [111] [umbilical cord (UC-MSC)  tissue or blood, 

Wharton’s jelly, and placenta]. While MSC from these sources share many biological features, they differ 

in terms of their proliferation potential, multilineage capacities, overall transcriptional profile, and 

functionality [107,113–117].  

BM-MSC were first considered as the main source of MSC used in clinical trials, although their capacity 

to proliferate and differentiate changes significantly over time, decreasing with age, and varies 

extensively according to donor sources [107,118]. It requires a painful invasive procedure to obtain BM 

sample in the donor and there is a risk of viral exposure. Adipose-derived MSC (AD-MSC) isolated from 

the stromal vascular fraction (SVF) of subcutaneous adipose tissue can yield up to a 500-fold higher 

number of MSC compared to bone marrow [119]. Recently, the first transcriptomic, phenotypic and 

functional analyses on paired BM-MSC and AD-MSC samples from the same healthy donor, showed 

stronger inhibition of immune responses by AD-MSC and lower immunogenicity, providing a new 

rationale to support the use of adipose tissue as a source of MSC for the treatment of immune‐mediated 

diseases [120]. UC-MSC as well as MSC from other perinatal tissues (ie.: amniotic membrane, chorionic 

membrane, placental decidua and Wharton Jelly) are an interesting alternative cell therapy product, as 

they can be isolated and cryopreserved in a non-traumatic and ethical way (reviewed in [121]). Of 

interest, UC-MSC may be less immunogenic due to a lack of MHC class II upregulation in response to 

IFN- [122–124]. In addition, they display a unique gene expression profile, including genes involved in 

immunomodulation, angiogenesis, and wound healing, compared to BM-MSCs as evaluated by single 

cell RNA seq technology [125].  
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These three types of MSC all secrete angiogenic, antiapoptotic, and anti-inflammatory cytokines with 

different cytokine profiles according to tissue source and donor type [126]. Which tissue is best for a 

particular therapeutic application is a question that is currently under evaluation in SSc patients. Indeed, 

a comprehensive comparison of UC-MSC versus AD-MSC and BM-MSC is still lacking.  

In addition to MSC tissue source, the culture conditions, including culture medium and scale of 

expansion, and the use of cryopreservation were shown to affect MSC functions [126]. In particular, 

both the onset of replicative senescence associated with huge in vitro expansion and the use of 

cryopreservation were shown to impact the immunosuppressive functions and the in vivo persistence of 

clinical-grade MSC, which can be partly restored by in vitro licensing by inflammatory stimuli [127–131]. 

Each of these numerous sources of heterogeneity during the MSC production process [107] and their 

release for therapeutic use has to be considered when designing clinical trials [126]. 

2.2 MSC immunomodulatory and immunosuppressive properties 

MSC exert their immunomodulatory and immunosuppressive effects on both innate and  adaptive 

immune cells through a wide panel of mechanisms [100,101].  

In vitro data showed that MSC modulate the immunological activity of the different cell 

populations engaged in the pathogenesis of systemic sclerosis (Figure 1), which led us and others to 

evaluate MSC potential therapeutic values in SSC patients [28]. First, MSC inhibit DC differentiation, 

maturation, cytokine expression and capacity to present antigens to T lymphocytes [132,133].  They 

influence antigen presentation by DC via downregulation of DC cell surface expression of MHC class II, 

CD11c, and CD83, which modulate their anti-inflammatory action [134]. MSC directly modulate T cell 

activation, proliferation, differentiation, and effector function. MSC inhibit the proliferation of both 

naïve and memory CD4+ and CD8+ T cells through arrest in  the G0/G1 phase of the cell cycle [135], and 

abrogate T cell activation [116,136–138]. Interestingly, MSC also influence the differentiation of naïve 

CD4+ T helper cells by promoting anti-inflammatory immune responses and affect the balance of T cell 

polarization [139]. Thereby, in an inflammatory setting, MSC appear to increase the number and activity 

of Treg cells and IL-10 expression, while suppressing Th1, Th2, and Th17 cells [140,141]. MSC can reduce 

the release of pro-inflammatory cytokines from different T cell populations, including interferon IFN-γ, 

TNF, IL-6, and IL-7, and increase anti-inflammatory cytokines, such as IL-4 and IL-10 [139,142]. MSC can 

also inhibit IL-2-induced proliferation of resting NK cells and partially inhibit the proliferation of 

activated NK cells and thereby NK mediated cytotoxicity [143]. Besides, MSC also inhibit B cell 

proliferation, antibody production, and chemotaxis under inflammatory conditions [116,144], and favor 
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Breg expansion. Inhibition of B cell proliferation appears to be indirect, as it requires the presence of 

CD4+ and CD8+ T cell lymphocytes [145].  

MSC effects are mediated in part by direct cell-cell contact. In particular CD106/VCAM-1 and 

CD54/ICAM-1, that are both upregulated on MSC by TNF, play a critical role in the immunosuppressive 

capacities of MSC by favoring adhesion to T cells [146]. In addition, CD54 is specifically upregulated and 

enriched at the contact area between inflammatory macrophages and MSC, thus increasing their 

immunosuppressive capacities [147]. MSC were also shown to directly promote apoptosis of activated T 

cells via the Fas/Fas ligand pathway [148] and to suppress T cell proliferation via engagement of the 

inhibitory molecule programmed death 1 (PD-1) by its ligands PD-L1 and PD-L2 [149]. PD-1/PD-L1 axis 

was also proposed as involved in the repression of Th17 differentiation program by MSC [150]. 

Interestingly, human MSC also express several ligands for activating NK cell receptors such as ULBP3, 

poliovirus receptor (PVR) and nectin 2 (also known as PVRL2). In agreement, they can be lysed by 

activated NK cells but not by freshly isolated NK cells [151–153]. Interestingly, treatment of MSC with 

IFN-γ leads to the upregulation of MHC class I expression and the downregulation of ULBP3 expression 

[97,143,154], making them more resistant to NK cell cytotoxicity [153].  

Most MSC effects are paracrine and exerted through secretion of soluble factors. Typically, the 

mechanism of action of MSC first involves the release of chemokines allowing attraction of activated T 

cells [98], that in turn produce proinflammatory cytokines responsible for the priming of MSC towards 

an immunosuppressive phenotype. In turn, MSC secrete growth factors, cytokines, enzymes and 

hormones (e.g., VEGF, PDGF, ANG-1, IL-11, PGE2, TSG-6, SDF-1, HGF, IGF-1, IDO) [96–99], which are 

central to MSC paracrine activities. Immunosuppressive soluble factors secreted by MSC in vitro include 

indoleamine 2,3-dioxygenase (IDO), an enzyme that catalyzes transformation of tryptophane to 

kynurenine [143,155], which is involved in inhibition of B cell and T cell proliferation and in the 

polarization of monocytes into IL‐10‐secreting M2 macrophages [156]. Non-inflammatory resting MSC, 

that do not express IDO, induce expansion of IL-10-expressing Breg, instead of inhibiting B cell 

proliferation and differentiation, through poorly characterized soluble factors [144,157]. Apart from the 

central role of IDO/iNOS, other soluble factors have been proposed to contribute to the inhibition of T 

cell proliferation, including galectin-1 and 3  [158,159], or IL-10 [160]. Conversely, the capacity of MSC to 

induce Treg is mediated by TGF- and soluble HLA-G5 [162], with IL-10, IL1R, and PGE2 further 

impacting the Th17/Treg balance [163]. HLA-G5 and PGE2 have both been shown to be involved in the 

suppression of NK function [143,162]. Moreover, PGE2 abrogates the monocyte differentiation into DC, 

and contributes to the repolarization of macrophages into anti-inflammatory M2 macrophages 
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producing IL-10 [164,165]. Other immunosuppressive activities of MSC on myeloid cells are driven by 

soluble factors, such as CCL2 and CXCL12 that cooperate as a heterodimer to upregulate IL-10 in 

CCR2pos macrophages [166], tumor necrosis factor‐stimulated gene 6 (TSG‐6) that promotes the early 

inhibition of neutrophil and macrophage activity at sites of inflammation and inhibits CXCL8-dependent 

neutrophil transendothelial migration and chemotaxis [167–169], and IL6 that is responsible for the 

blockade of monocyte differentiation into DC [170]. Finally, HGF displays both anti-inflammatory and 

anti-fibrotic effects [171] and has been proposed to favor the development of myeloid-derived 

suppressor cells (MDSC) together with PGE2 [172,173].   

MSC also produce extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic 

bodies, which are small (44-100 nm in diameter) membrane vesicles. These exosomes have 

immunosuppressive and immunomodulatory activity, and  have been found to favor Treg expansion 

[174,175], potentially mediated by an increased secretion of IL-10 and TGF-β1 by DC [176]. Human MSC-

EVs were shown to polarize macrophages to a regulatory phenotype in a PGE2-dependent manner in 

vitro [177]. In addition, MSC-derived exosomes support the differentiation of suppressive M2 

macrophages in a mouse model of breast cancer, via carrying high levels of TGF-β, semaphorins, and 

complement factors, [178]. Exosomes from IFN--activated MSC were also shown to improve the clinical 

score in a mouse model of colitis, due to increased amounts of micro ribonucleic acid family miR-125a 

and miR-125b, which repress Th-17 differentiation by targeting stat3 [179]. MSC-derived EVs in various 

preclinical models, together with their immunosuppressive and regenerative activity, encourages their 

use in clinical setting, as cell-free products with highly scalable/quality-controllable production process 

and interesting safety profiles [180].  

Other mechanisms for MSC immunosuppressive actions were recently discovered using in vivo 

models. Among these, MSC mitochondrial transfer increases the phagocytic capacity of lung 

macrophages, and thereby favors bacterial clearance in sepsis [181,182]. In addition, artificial 

mitochondrial transfer from MSC to T cells was shown to trigger transcriptomic, metabolic, and 

functional reprogramming and to favor Treg differentiation [183]. Efferocytosis, the process by which 

apoptotic cells are engulfed, has been associated with the capacity of MSC to upregulate PGE2 and IL-10 

[184]. When MSC are infused intraperitoneally in mice with Graft versus Host Disease (GvHD), 

efferocytosis also accounts for their immunosuppressive activity, leading macrophage toward IDO 

expression. However, MSC improve GvHD only when infused intraperitoneally [99], and the efficacy of 

apoptotic MSC in this model was substantially lower than that of live MSC [185].  
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MSC immunopotency assays. In 2016, the MSC committee of the ISCT published guidelines 

addressing the characterization of MSC immune modulatory properties [23].  Since MSC deploy a panel 

of immunomodulatory and regenerative properties, largely dependent on their interaction with their 

microenvironment. Standard functional markers of MSC potency as well as release potency assays have 

been defined for conducting advanced clinical studies and their potential registration [23,186]. 

Standardized methods have been proposed to assess MSC functional properties [187]. The preferred 

analytic methods for matrix assays evaluating the immunosuppressive and immunomodulatory 

capacities of MSC [188,189] currently include:  a) quantitative RNA analysis of selected gene products 

[190], b) flow cytometry analysis of functionally relevant surface markers, and c) protein-based assay of 

secretome.  Recently, a combination of transcriptome and secretome analyzes has been proposed as 

predictive of T cell immunosuppressive properties [191] but additional quantitative assays are urgently 

required to capture the whole MSC immunosuppressive, anti-inflammatory, and regenerative potential 

that could synergistically improve SSc patient behavior. Similarly, standardized high-throughput 

multiparametric immunomonitoring tools have to be set up to characterize the patient immunological 

status and the various immune cell subsets before and after MSC treatment, to identify responders and 

thereby optimize clinical trials design.  

2.3 MSC proangiogenic and antifibrotic properties: in vitro evidence   

The angiogenic potential of MSC was first demonstrated by their capacity to differentiate towards an 

endothelial cell lineage [192]. Adult human BM-MSC can be expanded in vitro and differentiated into 

cells with phenotypic and functional features of endothelial cells able to form capillary-like structures 

[193–195]. A broad complement of angiogenic factors has been identified in the BM-MSC secretome, 

including vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-2, placental growth 

factor (PLGF), angiopoietin (Ang)-1, monocyte chemoattractant protein-1 (MCP-1), and IL-6 [196–199]. 

Human AD-MSC can also give rise to CD34+ and CD13+ populations, which can spontaneously 

differentiate into endothelial cells in vitro and participate in the formation of vascular structures in a 

Matrigel model [192]. AD-MSC secrete angiogenic and antiapoptotic factors, such as VEGF, hepatocyte 

growth factor (HGF) [200], leptin [201], basic fibroblast growth factor (bFGF), Ang-1, Ang-2, platelet 

derived growth factor (PDGF) [202–204], as well as mesenchymal stem cell-like protein (MSCP1) and 

stromal cell-derived factor-1 (SDF1), which are essential for vascular remodeling [205]. The  combination 

of VEGF and shear stress can enhance endothelial differentiation of AD-MSC [206]. More recently the 

angiogenic/angiostatic signaling pathways by which AD-MSC support neo-vessel formation and 

stabilization were described, elucidating the functional interaction between AD-MSCs and endothelial 
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cells [207–211], and AD-MSC appear to be more effective in this regard than their counterparts from 

bone marrow. Placental MSC also secrete angiogenic factors such as IL-6 [212]. The secretion of 

angiogenic factors by MSCs can be upregulated according by different chemokines and local hypoxia 

[206,213]. In BM-MSC, TGFβ induces secretion of several growth factors, including  VEGF, HGF, PDGF-BB, 

Ang-2, IL-6, and IL-8 [213].  

The contribution of the MSC secretome to inhibiting or reversing fibrosis in the SSc pathologic 

microenvironment is not well understood. MSC-conditioned medium can inhibit proliferation of lung 

fibroblasts in vitro and improve regeneration of injured lung epithelium in an alveolar epithelial wound 

repair assay [214].  There is currently no consensus on which assays should be used to assess anti-

fibrotic activity of MSC in vitro, which is crucial for the selection of MSC products to be used in the 

therapeutic setting, including for clinical trials.  

3. MSC IN EXPERIMENTAL ANIMAL MODELS OF SYSTEMIC SCLEROSIS

MSC have been investigated in several animal models of SSc [92,215], although none of these 

encompass all the features of the disease [92]. Table 1 summarizes common animal models of SSc.  

Subcutaneous injection of bleomycin, an antitumor antibiotic agent that arrests cells in the G2 phase, is 

used as a model of skin and lung fibrosis, with mononuclear cell infiltration, antinuclear antibody 

production, and dermis thickening at sites of injection and in alveolar walls. Reactive oxygen species 

(ROS) produced by bleomycin cleave DNA, and induce oxidative RNA degradation and lipid peroxidation. 

Cell damage induced by free-radicals, subsequent recruitment of immune cells, and release of pro-

fibrotic mediators appear to underlie the fibrotic response. SMA-positive myofibroblasts observed in the 

skin gradually increase with dermal sclerosis. Using this model, BM-MSC from male bleomycin-resistant 

Balb/C mice transplanted into female C57BL/6 mice exposed to intratracheal bleomycin [216] were 

localized by in situ hybridization to areas of bleomycin-induced injury, consistent with MSC homing. MSC 

infused immediately after bleomycin exposure reduced the extent of bleomycin-induced inflammation 

and collagen deposition in the lung, but not when MSC infused 7 days after exposure to bleomycin. In 

rats, injection of BM- MSC 4 days after bleomycin exposure reduced neutrophil infiltration and collagen 

deposition, as well as nitric oxide metabolites and cytokines [217]. In this model,  two weeks after rat 

BM- MSC  injection [218], TGFβ1, PDGF-A, PDGF-B, and IGF-I mRNA expression in lung tissue was 

decreased, as measured by real-time PCR,.  

The effect of a myelosuppressive regimen with busulfan prior to similar intratracheal bleomycin 

exposure 6 hours before injection of BM-MSC derived from GFP-positive C57BL/6 mice was examined in 
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C57BL/6 recipient mice [219]. Myelosuppressive conditioning significantly decreased 14-day survival 

following bleomycin exposure, but all MSC-treated animals survived, whether they were 

myelosuppressed or not. Injured lung cells cultured in vitro secreted factors that increased MSC 

proliferation and homing to the injured lung cells in a migration assay. Similarly, AD-MSC infusion 24 

hours after intratracheal bleomycin exposure in C57BL/6 mice reduced lung and dermis fibrosis, and 

accelerated wound healing [220].  

UC-MSC isolated from Wharton’s jelly were infused 24 hours after intranasal bleomycin exposure in 

severe combined immunodeficiency (SCID) mice to minimize potential rejection of human cells [221]. 

UC-MSC were localized at sites of injury and fibrosis in lung two weeks after infusion and were no longer 

found in lung 28 days after infusion. MSC infusion reduced bleomycin-induced pneumonitis and lung 

fibrosis. Quantitative PCR identified a decreased expression of IL-10, TNF-, TGF-, and IFN-γ in lung 

with MSC treatment. In mice simultaneously receiving infusions of AD-MSCs isolated from C57/BL6 GFP-

positive mice (2 X 106 in 100 µl), dermal thickness and hydroxyproline content were significantly reduced 

4 weeks after transplant [222].  

In the SSc hypochlorite (HOCI)-injected mouse model, daily subcutaneous injections of HOCl in BALB/c 

mice produce ROS, anti-DNA topoisomerase 1 antibodies, progressive collagen deposition, and early and 

continued skin and lung fibrosis that best reproduce human pathological findings [223]. In this model, a 

single infusion of allogeneic BM- MSC immediately after HOCl exposure in BALB/c mice (2.5 X 105, 5 X 

105, 5 X 106 cells) significantly reduced skin and lung fibrosis [224]. The lowest dose (2.5 X 105) examined 

was the most effective, with sustained reduction of fibrosis, advanced oxidative protein products and 

total collagen content until 42 days. Markers of fibrosis and cytokine expression were lower in lung 

tissue after MSC infusion. Only fibrosis marker expression was significantly reduced in skin and only with 

the lowest dose. Serum levels of anti-scl-70 auto-antibodies were also lower in all mice that received 

MSC infusions. MSC treatment transiently improved skin thickness in HOCl-exposed mice, with a rate of 

disease progression similar to untreated mice after day 21 and no additional treatment benefit after this 

point. In mice that received a second MSC infusion on day 21, a significantly slower progression of skin 

thickening between day 21 and 42 was observed. In mice with established SSc, the effects of a late 

single MSC infusion were observed from 1 week after treatment onward, with significant reductions in 

skin and lung fibrosis. Both allogeneic and xenogeneic MSC were examined in the SSc (HOCI)-induced 

mouse model [225]. BALB/c mice exposed to HOCI were infused with syngeneic BALB/c MSCs, allogeneic 

C57BL/6 MSC, or xenogeneic human MSC isolated from either bone marrow or adipose tissue. In each of 

these condition MSC were collected from 3 donors. All the sources of MSC appeared to have similar 
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therapeutic effects, including a decrease in skin thickness, collagen levels in skin and lung, and 

expression of collagen 1, collagen 3, and αSma [225,226].  

Various labeling methods have been used to analyze MSC biodistribution and homing, but these 

techniques cannot confirm sustained cell viability, in either animals or humans [227–229]. While studies 

have identified mechanism by which MSCs can migrate to sites of injury and participate in tissue repair 

[230], studies in mice have reported that MSC are rapidly removed from circulation (~24 hours) after iv 

injection; the cells are first trapped in lung, then transmigrate beyond vascular spaces, where most MSC 

are rapidly phagocytosed by lung-resident tissue macrophages [164]. The adhesion molecules VLA-

4/VCAM-1 influence interactions between MSCs and endothelial cells during transmigration in the lung. 

The fucosylation of CD44 to HCELL, a highly active E-selectin ligand on MSC, may also modulate MSC 

homing to bone marrow endothelium [231]. The term “medicinal signaling cells” (MSC) proposed by 

Caplan [24] reflect that in vivo MSC “release therapeutic agents in situ at site of injury, disease, or 

inflammation” due to their secretory properties. 

4. USE OF MSC IN SSC PATIENTS: CLINICAL STUDIES

Although we and others initially reported that MSC obtained from SSc and healthy controls inhibit 

proliferation of mixed peripheral blood mononuclear cells and T cell proliferation at similar rates 

[232,233], when specifically co-cultured with PHA-conditioned T lymphocytes [232], disease-specific 

abnormalities in MSC from SSc patients later emerged [234,235].  

4.1 Abnormal MSC in SSc patients 

BM-MSC from SSc patients have increased TGFβ-R2 on their cell surface, and a higher sensitivity to 

TGFβ, resulting in excessive production of collagen 1, contributing to tissue fibrosis [236]. BM-MSC 

samples from SSc patients also have reduced clonogenicity (assessed in colony-forming unit fibroblast 

(CFU-F) assay) [234], and undergo early senescence (increased β-Gal activity), with a significantly 

decreased proliferation rate (lower ki67 gene expression, higher p21 transcript level) [237]. SSc BM-MSC 

also demonstrate a reduced capacity to differentiate into endothelial progenitor cells, osteoblasts, and 

adipocytes, as well as angiogenic dysfunction [235]. When co-cultured with CD4+CD25– lymphocytes, 

TGF-β expression is significantly higher in MSC derived from SSc patients, compared to healthy controls. 

Cell surface expression of TGFβ-RII is also increased SSc MSC, resulting in a higher sensitivity to TGF-β 

[237]. In the presence of TGF-β, SSc MSC significantly increase collagen 1α synthesis and Smad-3 

phosphorylation, which contribute to tissue fibrosis [236]. A recent study confirmed that the 

proliferation rate, metabolic activity, and migration and invasion potential of AD-MSC was decreased in 
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SSc patients compared to normal controls [238]. These data support the use of MSC from umbilical cord 

or other allogeneic (instead of autologous) MSC sources for SSc treatment. 

The SDF-1/CXCR4 axis is involved in MSC recruitment at sites of injury and in angiogenesis. Compared to 

healthy controls, SDF-1 is upregulated in MSC derived from SSc patients, although CXCR4 expression is 

comparable [239]. TGFβ1 expression is similar between MSC isolated from SSc patients and healthy 

controls, but VEGF or SDF-1 stimulation increases TGFβ1 secretion by SSc MSC only, not healthy 

controls. In addition, TGFβRI expression is significantly lower in SSc MSC compared to healthy controls 

[239]. Stimulation with VEGF, TGFβ, and SDF-1 only increase TGFβRII expression in MSC from SSc 

patients, not healthy controls. Using in vitro assays of capillary morphogenesis on dermal microvascular 

endothelial cells (MVECs) [239], MSC-conditioned medium from SSc patients was shown to significantly 

increase capillary morphogenesis compared to MSC-conditioned medium from healthy controls, with 

pro-angiogenic effects mediated by VEGF and SDF-1.  

4.2 Autologous MSC in SSc patients   

In a 24 year-old SSc patient refractory to all conventional first-line treatments, with extensive critical 

limb ischemia and gangrene, autologous MSC (1 x 106/Kg) was infused at Day 0, 30, and 60. Post-infusion 

angiography showed new vessel formation [240]. In another SSc patient, intramuscular injection of 

autologous bone marrow-derived mononuclear cells into ischemic limbs reduced the size and number of 

digital ulcers [241]. Some autologous BM–MSC transplants have had positive outcomes, but results are 

conflicting.  

4.3 Allogeneic MSC in SSc patients 

The feasibility of allogeneic BM-MSC is supported by several small studies in severe SSc patients, with 

follow-up varying between 6 and 44 months. Improvement in skin ulcers and reduction in skin fibrosis 

has been reported in 6 patients to date [242,243].  One clinical case reported an allogeneic BM-MSC 

transplant from a father to his 41-year old daughter with diffuse cutaneous SSc [242]. Vascular 

ultrasound 6 months after transplantation revealed a marked improvement in perfusion of hands and 

fingers, and revascularization of the patient’s extremities was confirmed on angiography. A follow-up 

study by the same group investigated MSC in 5 patients with severe SSc, with follow-ups ranging from 6 

to 44 months, without any major adverse events [243]. Two of the patients received fresh MSC, and 3 

were injected with MSC isolated from cryopreserved tissue. One patient died of cardiac arrest related to 

disease progression 18 months after treatment. 

One Chinese study investigated the combination of plasmapheresis (PE) and allogeneic MSC in systemic 

sclerosis [244]. Fourteen patients received three repeated PE treatments with subsequent pulse 
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cyclophosphamide on days 1, 2, and 5. UC-MSC infusion on day 8. At 12-month follow-up, patients 

exhibited improvements in the modified Rodnan skin score (20.1 + 3.1 versus 13.8 + 10.2; P<0.001). A 

subset of patients with interstitial lung disease experienced an improvement in lung function and on 

computed tomography (CT) scans. Scl70 antibodies, serum TGF-β, and EGF levels were also significantly 

decreased at 12-month follow-up. 

A phase I/II dose escalation trial of a single IV infusion of allogenic BM-MSC in diffuse SSc refractory to 

standard therapy is ongoing in France (ClinicalTrials.gov Identifier: NCT02213705), with 20/20 patients 

included as of September, 2020. There are 4 additional trials of MSC for SSc patients in November 2020 

registered at clinicaltrials.gov, of which 2 involve BM-MSC (in Netherlands, NCT03211793, using intra-

muscular injections for severe ischemia and the other in China through IV infusion, NCT00962923, 

started in 2009 with unknown status), 1 involves autologous AD-MSC (in France, NCT04356755) through 

digital infusion, and 1 involves UC-MSC (in Canada, (NCT04356287)) through IV infusion. 

CONCLUSION 

In vitro studies have demonstrated that MSC have the potential to target the three pathological disease 

components in SSc progression. Pre-clinical studies in animal models of SSc confirmed that MSC 

transplant can reduce inflammation, as well as skin and lung fibrosis. The characterization of the MSC 

secretome and standardization of functional markers of potency, release potency assays, and tests for 

assessing MSC functional properties have paved the way for conducting clinical trials with reproducible 

results. Early human trials in SSC patients are showing that MSC transplant can result in regression of 

skin fibrosis, reductions in skin ulcers and recovery of circulation in the extremities, as well as 

improvements in lung function. To increase the success of MSC based clinical trials in SSc, the design and 

validation of relevant preclinical models and potency assays with good predictive value are required, 

with adequate clinical study design, based on immune profiling strategies allowing patient screening and 

follow-up. Ongoing studies will help establish the appropriate choice of MSC source in different clinical 

settings, optimal MSC characteristics and priming, as well as the method of delivery. 
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Table 1 Animal models of Systemic Sclerosis 

Inflammation Vascular Autoimmunity Fibrosis 

Spontaneous mutations 

Type 1 tight skin mouse (Tsk1) 

fibrillin 1 gene 
-- 

 No vasculopathy 

 Endothelial dysfunction 
 Skin 

UCD-200/206 chickens 

Homozygous at the major 

histocompatibility complex [B-locus] 

 Inflammatory cell 

infiltration 

 Microvascular endothelial 

cell apoptosis 

Esophagus 

Lung 

kidney 

Transgenic models 

Type 2 tight skin mouse (Tsk2) 

(Type III collagen) 

 Inflammatory cell 

infiltration 
 No vasculopathy  Skin 

Conditional TGFβRI
ca

Col1a2
cre-ER

Conditional overexpression of Type I TGF-β 

receptor (TGFβRI) by fibroblasts at 

postnatal day 14 

 Systemic inflammation  Thickening of smaller 

arteries in lung, kidney, -- 

Skin 

Lung 

Kidney 

Dominant negative TGFβRIIΔk 

Overexpression of a dominant-negative 

kinase-deficient type II TGF-β receptor in 

fibroblasts 

 Minimal  Microvascular alterations in 

lung -- 

Skin 

Lung 

gut 

KLF5
-/+

/Fli1
-/+

Kruppel-like factor 5 / Friend leukemia 

integration 1  

 B cell activation  Vasculopathy 


Kidney 

Heart 

uPAR/CD87
-/+

Urokinase-type plasminogen activator 

receptor 

-- 
 Microvascular alterations 

 Impaired angiogenesis -- 

Skin 

Lung 

Fra-2 

Fos-related antigen 2 

 Systemic inflammation  Small blood vessel loss in 

skin and lung 

 Endothelial cell apoptosis 

-- 

Skin 

Lung 

Chemically-induced models 

Bleomycin  Inflammatory cell 

infiltration 

 Endothelial cell apoptosis 


Skin 

Lung 

Vinyl chloride  Inflammatory cell 

infiltration 

-- 
 Skin 

Hypochlorite (HOCI)  Inflammatory cell 

infiltration in lung 

 Endothelial cell damage 


Skin 

Lung 

Mismatched immune cell transplant 

Scl-GVHDv1  T cells, monocyte, and 

mast cell infiltration 

-- 



Skin 

Lung 

Kidney 

Scl-GVDH 2  Inflammatory cell 

infiltration 

-- 



Skin 

Lung 

Kidney 
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Figure 1.  Mesenchymal Stromal Cells (MSC) for the treatment of Systemic Sclerosis 

Due to a dysregulation of adaptive and innate immune responses, SSc leads to a pro-inflammatory 

microenvironment with high systemic levels of inflammatory cytokines. These pro-inflammatory stimuli 

shift MSC toward an immunomodulatory state, activating immunomodulatory pathways, such as the 

production of metabolic enzymes (e.g.: IDO), cytokines (e.g.: IL-6, IL-10, PGE-2), and upregulation of 

specific membrane proteins (e.g.: ICAM, PDL-1). Activation of these pathways results in the modulation 

of immune responses through reduction of inflammation and promotion of tissue repair. MSC 

Immunosuppressive (blue), pro-angiogenic (red) and antifibrotic (green) properties can target the 3 

pathogenic pathways of Systemic Sclerosis 
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Mesenchymal stromal cells for Systemic sclerosis treatment 

Dominique Farge, Séverine Loisel, Pauline Lansiaux, Karin Tarte 

Systemic Sclerosis (SSc) is a rare chronic autoimmune orphan disease. 

SSc pathogenesis associates vasculopathy, immune dysregulation and fibrosis. 

Mesenchymal Stromal Cells (MSC) properties can target the SSc pathogenic triad. 

In vitro and in vivo MSC properties vary with donor sources and local inflammation. 

MSC appear as a new promising stem cell therapy for SSc patients. 




