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Abstract

This study deals with the analysis of the propagation of thermal radiation within absorbing and scattering
composite materials with rough boundaries. The two-phase system (resin matrix and fibers reinforcement)
is treated as an equivalent homogeneous medium characterized by volumetric radiative properties, namely
extinction coefficient, scattering albedo, and phase function whereas the interaction of the radiation with
the medium boundaries is modeled with boundary scattering properties. The aim is to determine these
volumetric and boundary scattering properties by an inverse analysis for parameter identification. It consists
of minimizing the sum of the squared difference between calculated and measured bidirectional and normal-
hemispherical reflectances and transmittances. The Gauss—Newton algorithm is employed for solving this
nonlinear least squares problem. The experimental data are obtained by using a visible and near-infrared
spectrophotometer equipped with a goniometric system enabling measurements in different scattering direc-
tions around a sample between 0.4 and 2.5 pm. The collision-based Monte Carlo method is employed to
assess the theoretical values by solving the Radiative Transfer Equation (RTE) along with boundary condi-
tions designed for samples with rough surfaces. The proposed approach is proved to be well appropriate for
determining the radiative properties of the rough composite samples. More interestingly, this study demon-
strates that the scattering phase function can be modeled by the Henyey and Greenstein approximation and
the boundary scattering distributions can be modeled by a Gaussian function and/or a cosine function.

1. Introduction

Composite materials are today involved in many engineering applications due to to their unique structural
features namely, lightness, solidity and rigidity and their competitive production costs. In various applica-
tions, such as automotive, building, aerospace, and defense, light or laser radiation constitutes a tool for a
non-destructive characterization, remote sensing, and diagnostic of materials and structures. A better under-
standing of the light propagation within composite materials, an absorbing-scattering medium characterized
by optically rough surfaces, is very important for developing such light analysis-based devices.

Many studies have been reported on radiative transfer in absorbing and scattering semi-transparent me-
dia [1-4]. Special attention has been paid to high porosity materials such as foams [2, 5-10], fibrous media
[3, 11-22] low porosity materials such as silica aerogel [23], glass containing bubbles [24] and porous ceramics
manufactured from partial sintering of powder compact [1, 25, 26]. In most of these studies, the material
boundaries are treated either entirely transparent (in the case of foams and fibrous materials) or optically
smooth (in the case of low porous materials). The radiative transfer in composite materials has been subjected
to a limited amount of investigations. Existing studies have been mainly focused on polymers loaded with
glass, ceramic or metallic particles for radiative cooling [27-30], new ablative materials of thermal protection
systems [31], and solar energy applications [32-34]. The present study deals specifically with the radiative
transfer in structural composite materials characterized by woven reinforcements. One of the challenges in
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studying the radiative transfer in composite materials is the presence of rough boundaries resulting from
the manufacturing process. The presence of rough boundaries is difficult to handle from a theoretical point
of view while the boundary scattering may significantly affect the radiative transfer and specifically light
scattering measurements.

The exact solution of light propagation in semi-transparent media can be obtained from the electromag-
netic theory [35, 36]. However, this rigorous approach is computationally demanding and, for instance, is not
applicable to heterogeneous media with heterogeneity sizes greater than the wavelength. Alternatively, the
radiative transfer theory can be employed [37-39]. In this theory, the propagation of the radiation intensity
through the medium is described by the Radiative Transfer Equation (RTE). When heterogeneities are much
larger than the wavelength, two RTE-based approaches can be employed: the discrete-scale and the contin-
uum approaches. The former applies the RTE through the discrete heterogeneous material, e.g. a sample
reconstructed from X-ray micro-tomography technique, while the later replaces the real material by a single-
homogeneous or a multiple-homogeneous phase medium characterized by the so-called radiative properties
[40, 41]. Clearly, the discrete scale approach involves fewer approximations but a higher computational cost.
Usually, it is restricted to provide a reference solution.

In the framework of the continuum approach, the radiative transfer problem in heterogeneous media is
generally modeled by the single-homogeneous phase approximation (HPA) through a single-RTE. This ap-
proach may be questionable in some situations such as very fast processes and in the presence of chemical
reactions for which non-equilibrium heat transfer prevails between different phases of the medium. In those
cases, the multiple-homogeneous phase (MPA) or multi-RTE approximation based continuum model can be
used [40, 41]. The multi-RTE approach is better than the single-RTE model to describe the radiation inten-
sity propagation in multiphase systems. However, it involves a large number of mostly unknown radiative
properties, which makes the radiative transfer problem more challenging.

Studying the radiative transfer in heterogeneous media involve two aspects: finding the solution of the
RTE on the one hand and determining the radiative properties on the other hand. In the case of heterogeneous
media with rough boundaries such as composite materials, the intensity propagation is characterized by the
volumetric radiative properties (absorption coefficient, scattering coefficient and scattering phase function)
and the surface scattering properties (reflectivities and transmittivities). Several numerical methods have
been developed to solve the RTE. Some of the current popular methods to solve the RTE are the spherical
harmonics [42], the discrete ordinate method (DOM) [43], the finite volume method [44], the finite element
method [45], the zone method [46] and the Monte Carlo (MC) method [47, 48]. Each of these methods has its
own advantages and drawbacks [38]. Selecting the right resolving method depends essentially on the trade-off
between implementation effort, computation cost, and accuracy. The stochastic MC method is time consum-
ing compared to deterministic methods however, it is far better to handle complex physical processes and
multidimensional problems. In this work, the MC method is chosen to solve the RTE where the computation
time is shown to be acceptable.

The radiative volumetric properties can be determined either by the use of a theoretical model based on
Maxwell’s equations solution for isolated particles such as the Mie theory, geometric optics and the diffrac-
tion theory [49] or an inverse analysis for parameter identification based on the solution method of the RTE
and spectrometric transmittance and reflectance measurements [50]. Baillis and Sacadura [51] recommend
the first method in the case of simple scatterer geometry and the second one for more complex dispersed
materials such as foam, porous ceramic and fibrous media. The ray tracing-based numerical model has at-
tracted much attention these recent years [41, 50, 52-54] but such model is only applicable to heterogeneous
media in the limit of geometric optics, which is not the case of current composite materials. As shown in
the work of Hale and Bohn [55], the identification of radiative properties is carried out from hemispherical
reflectance and transmittance measurements. In their works, Kuhn et al. [56] use a similar experimental
method but with measurements on samples of different thicknesses in order to further retrieve the scattering
phase function consisting of two unknown parameters. In order to identify the extinction coefficient, the
albedo and the phase function of fibrous insulating materials, Nicolau et al. [57] and Henry et al. [58] use
bidirectional transmittance and reflectance measurements. The bidirectional-based measurements were em-
ployed by other researchers such as Randrianalisoa et al. [24] and later Coray et al. [59] to identify radiative
properties of other heterogeneous media. Note that the determination of the exact scattering phase function
needs the use of a complex function such as series of Legendre polynomials involving a larger number of
unknown parameters, which makes the inverse method of identification challenging. In the early works of



Nicolau et al. [57], an alternative approach to the complex scattering phase function uses a combination of
simple scattering functions such as the Henyey and Greenstein approximation and isotropic functions. The
bidirectional-based measurements enable to retrieve a large number of radiative parameters compared to the
hemispherical-based measurements but require specific detection devices such as a high sensitivity detector
mounted on a goniometric system. The combination of hemispherical and bidirectional measurements enables
increasing the number of measurements [60] while ensuring accurate retrieval of hemispherical transmittance
and reflectance data.

In all the previous studies, the sample boundaries are simplified as transparent or optically smooth by fol-
lowing the Fresnel’s laws of reflection and refraction. Consequently, their theoretical models are not directly
applicable to composite materials due to the presence of rough boundaries. Specifically, the scattering of the
incident radiation caused by the rough boundaries induces a drastic change of radiation penetrating/leaving
the sample.

The reflection of electromagnetic waves from a rough surface was introduced by Davis in 1954 [61]. Then,
several studies have been focused on the scattering behavior of an incident light on perfectly reflecting or
opaque rough surfaces [62-64]. However, the methods developed in these works are only valid in the context
of geometric optics for opaque surfaces. The light interaction on rough surfaces is also a common concern
in the field of photovoltaic cells. One of the methods developed in this field consists in solving Maxwell’s
equations. The electromagnetic field is determined throughout the entire space and takes into account the
exact surface topography [65, 66]. Rather than using this complex electromagnetic method, a semi-empirical
approach has often been recommended [34, 67]. With this alternative method, the diffuse reflection and
transmission of light are either obtained from experiments or modeled by the Lambert cosine law. However,
in almost all the studies related to photovoltaic cells, there is no volumetric scattering within the medium.
More recently, the Monte Carlo method has been used to model the distribution of reflected rays on metallic
surfaces [68] but also on semi-transparent sample incorporating both surface and volumetric scattering [69].

Our work aims to improve the current knowledge in the field of radiative properties characterization of
dispersed media. Specifically, the objective is to simultaneously determine the volumetric radiative properties
and the surface scattering properties of rough composite materials made of woven fibers reinforcements and
resin matrix. An inverse analysis for parameter identification using the Gauss—Newton algorithm is employed.
The principle is to minimize the sum of the squared difference between calculated and measured bidirectional
and normal-hemispherical reflectances and transmittances.

In the following, the investigated materials are first described. Then, the inverse method for parameter
identification is recalled. After, the direct model based on stochastic MC solution method of the RTE and the
experimental device to acquire the bidirectional and normal-hemispherical transmittances and reflectances
are detailed. Finally, the results are presented and discussed.

2. Materials and characterizations

2.1. Materials

The materials investigated in this study are laminated composites made of an epoxy resin and fiberglass
reinforcements. This type of material is typically employed in aeronautics and specifically for aircraft struc-
tures. Laminate composite structures consist of successive reinforcing layers impregnated with a polymer
resin. The orientation of each layer is a key variable: in this study, plies are alternatively oriented at 0
or 90° and the stacking sequence is symmetrical to the median plane. The final curing is accomplished by
the simultaneous application of heat and pressure. At the end, the reinforcements give a high mechanical
strength to the material while the resin provides cohesion between the fibers and spreads the mechanical
stresses throughout the system. In this study, the samples are made of 4, 8 and 16 plies, which correspond
to a thickness of 0.76 mm, 1.50 mm and 3.60 mm, respectively.

The epoxy resin (M10R, type) represents about 43% of the mass of the composite material. The refractive
index of this resin in the visible spectrum is between 1.49 and 1.58. E-glass type glass fibers present a density
of 2.56 g/cm? and a refractive index of approximately 1.6. The finished composite samples are obtained from
an industrial prepreg (ref. HexPly® Draft M10R/43%/823) from Hexcel Company which is compressed and
heated inside an autoclave. Detailed informations about the samples are not available for confidentiality
reasons.



2.2. Characterization

We employed an X-ray micro-computed tomography (u-CT) imaging to have internal details of the sam-
ples. The pu-CT was done by using a vjtomejx, GE Sensing and Inspection Technologies Phoenix Xjray, 160
kV, with a resolution of 5 um. Figure 1 depicts a two-dimensional grayscale photograph of a 8 plies sample
consisting of 810 pixels by 780 pixels showing the morphology and arrangement of the reinforcements. The
fiber orientation is alternated to produce a cross-ply laminate. Each fiber strand consists of a multitude of
cylindrical glass fibers with a diameter within the micrometer range. One can further observe some very dark
areas on the figure, they probably correspond to air cavities and show that the composite samples exhibit
micro porosity (pore size on the order of micrometer), which arises due to the incomplete impregnation of the
resin. Figure 2 shows a three-dimensional (3D) rendering of the 8 plies sample. These images make clear that
radiation beams traveling through such a material undergo multiple interactions due to the heterogeneities
(fibers and micro porosities) as they travel through the material.

Figure 2: 3D rendering of a 8 plies glass-epoxy sample

Figure 1: X-ray tomography scan of a 8 plies glass-epoxy obtained from x-ray computed tomography imaging. The
composite sample of 810 pixels x 780 pixels. image dimensions are 500 x 500 x 500 voxels.
3. Method

3.1. Theoretical model

The theoretical model is based on the single-RTE approach. In this study, the semi-transparent medium
is considered to be cold (without any self-emission) and homogeneous. The RTE along a line of sight is then
written in the following form [38, 48]:
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with Ix(s,6,¢) the spectral intensity at the abscissa s along the direction characterized by the couple of
angles (0, ) with 6 the polar angle and ¢ the azimuthal angle, dw’ = sinf’df’'dy’ the unit solid angle, sy
the absorption coefficient, o the scattering coefficient. The phase function ®) is approximated here by the
Henyey and Greenstein function where g, is the asymmetry factor [38]:
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v is the angle between the direction of the ray before a scattering event and the direction after the scattering
event. The extinction coefficient which describes the rate of attenuation of the radiation per distance unit
B> and the albedo wy which gives the probability of scattering of a beam, are linked to the absorption and
scattering coefficient as follows:
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Figure 3: Representation of bidirectional transmittance and reflectance.

The boundary conditions describe the spectral intensity leaving the boundaries into the medium with
1 = cosfl. The system is considered to be semi-infinite along the x and y of the Cartesian reference and
hypothesis of azimuthal symmetry is adopted. The suitability of this hypothesis was analysed by comparing
the hemispherical measurements obtained with an integrating sphere and the hemispherical data obtained
from the bidirectional measurements (Eqgs. 32 and 33) as reported in the appendix A.1.3. The boundary con-
ditions for a collimated irradiation impinging on the sample plane boundary at the abscissa sg = (z,y, 2z = 0)
are given by:
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with s = (x,y, 2 = e) the coordinate of the opposite boundary, normal to the z-axis of the Cartesian reference
and e the sample thickness. The radiation intensities leaving the medium are determined as follows:
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ro1 (', i) refers to the reflectivity for an incident beam in the medium of index 4 along the direction of cosine
1/ reflected into the direction of cosine p by the interface between the medium i and medium j.

The bidirectional reflectance /transmittance (p” /7”) describe the intensity of the radiation reflected /transmitted
by the medium at coordinate sg/s. along a direction of angles 6 and ¢, normalized by the incident flux.
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Ipupdwy is the incident light flux in the absence of the sample. Iy = I(sg, 6o, ¢o) refers to the intensity of
the incident beam. dwy is the solid angle of the incident flux, and pop = 1 and ¢y = 0 for a beam normally
incident on the sample surface. The azimuthal symmetry hypothesis along with normal incident flux condition
makes the solution of the problem invariant around the z-axis. Therefore, the reference to the angle ¢ is
omitted hereafter for simplicity reason and we will use the following simplification rule: p” () = p” (6, ¢) and
T7(0) =77 (0, ).

For rough boundaries, the Fresnel equations alone are not correct to determine the reflectivities involved
in Egs. (5) to (8). Omne of the solutions employed in the literature, and more particularly in the field of
photovoltaic cells, is to use a semi-empirical model [34, 67]. It is assumed that the physics of the reflection at
the interface between two media are decoupled from each other [70, 71]. Under such hypothesis, the angular
reflection distribution, the reflection strength and the angle dependence of the incident light and reflected
light are modeled by three distinct terms. The reflectivity of an interface between medium i and medium j,
ri; (1, ) is thus expressed as follows:

rig (' ) = Rij (1 )p(p)C fij (11)

R;; (1) is the reflectivity for a smooth interface calculated with Fresnel equations and is function of the
incidence angle and the refractive indexes of the two adjacent media. p(u) is a probability distribution
function for an arbitrary incident beam to be reflected into the direction of cosine p. Based on experimental
observations, the probability distribution function has been modeled by the cosine law, Eq. (12) [39], or a
Gaussian function, Eq. (13) [72]. The choice between these two functions is made to better reproduce the
experimental data and will be discussed in the results section.

p(p) = p (12)
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with og the standard deviation of the Gaussian function.
In Eq. (11), Cf;; is a reflectivity factor that aims to correct the Fresnel reflectivity R;; due to the rough
nature of the surface. This factor assesses the size of the roughness of the interface relative to the wavelength
A of the beam. It can be expressed theoretically as follows [71]:

27 Ra(n;—nj)

Cfij=e 3= (14)

With n; and n; the refraction indexes of the medium ¢ and the medium j, respectively, and Ra the root-
mean-square of the roughness. For an ideally smooth surface, the roughness Ra = 0, the correction factor
Cfi; is equal to 1 according to Eq. (14). At the same time, the probability distribution function of reflected
radiation should include, contrary to Eqs. (12) and (13), a dependence on both incident and reflection
directions in the following form: p(u/,pu) = 1if ' = —p and p(p/, ) = 0 otherwise. Unfortunately, the
roughness Ra alone is insufficient to describe completely the roughness of a surface. This parameter does
not take into account the frequency of the peaks and therefore the slope of the roughness. In addition, the
roughness Ra gives no information about the second order superimposed on the basic roughness [38]. As
an alternative approach to Eq. (14), this correction factor has been determined by adjusting its value in
order to better produce the measurements [71]. The radiation model described above involves six unknown
parameters, namely the extinction coefficient ), the scattering albedo w), the asymmetry parameter g, of
the Henyey and Greenstein phase function and the three boundary scattering parameters C'fa1, C fi2 and

(el

3.2. Monte Carlo simulation

In order to solve the RTE, Eq. (1), along with boundary conditions, Eqs. (5) and (6), a collision-based
MC method is employed. This method is well suitable to radiative transfer problems, as shown by Fleck [47]
and later by Howell and Perlmutter [48]. It does not involve any mathematical simplification, which thus
leads to a reference solution.



Briefly, MC simulation consists to individually trace the propagation of N photon bundles, also referred
as rays, which interact with the absorbing and scattering medium. A ray is characterized by its position,
wavelength, and direction during its propagation throughout the medium. To have an overview of the
implemented MC simulation, a flowchart is provided in Figure 4. Each new ray is launched normally to the
boundary (u = 1) at the abscissa z = 0. It may be reflected back or transmitted in the medium according to
the following test. The ray is transmitted in and enters the medium if:

&2 > Ri2(1)C fro (15)

Otherwise, the ray is reflected and contributes to the reflectance. A counter of reflected rays into the direction
of cosine u, N,(u), is updated and a new ray is launched. Usually, the ray direction is characterized by the
polar € and the azimuth angles ¢ with u = cosf. Therefore, the direction of the reflected ray is determined
by solving Eq. (16).
0 "Nyt
&y = M and © =27, (16)
Jou e )dp!
with p(u) the probability of boundary scattering defined by Eq. (12) or (13) and &, and &, two different
random numbers drawn uniformly between 0 and 1. The direction of the transmitted ray into the medium
of polar angle cosine p and azimuth angle ¢ is determined in a similar way as reflected rays according to Eq.
(17) using two different new random numbers &, , and & .

fo |M | dp
fo (| dp

Inside the medium, the distance that the ray will travel before undergoing extinction is given by:

Ep = and © =2m& (17)

__n(§
A= (18)

At the extinction location, the following condition is checked to decide on the future of the ray.
£>wx (19)

If this inequality is satisfied, the ray is absorbed, a counter of absorbed rays N, is updated and a new ray is
launched. Otherwise the ray undergoes scattering and the ray direction is changed by solving the equation
below based on the Henyey and Greenstein phase function and using new random numbers &, and &,.

,LL:
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When the ray interacts with the internal side of the boundary, it may be transmitted out or reflected in the
medium according to the following test. The ray is reflected back if the next condition is verified by means
of a new random number &,9;.

&1 < Ro1(p)C for (21)

In such a case, the reflected ray direction is defined by Eq. (16) and the ray continues its propagation in the
medium until it is either absorbed in or exits from boundaries. If the inequality, Eq. (21), is not true, the
ray leaves the medium from one of the two boundaries and a new ray is launched. When the exit boundary
is located at the abscissa z = 0, the ray contributes to reflectances. The direction cosine of the ray p is
again determined by Eq. (16) and the number of reflected rays into this direction N,.(u) is updated. Now,
when the exit boundary is located at z = e, the ray contributes to transmittances, its direction is computed
through Eq. (17) and a number of transmitted rays N;(u) is updated.

The sum of N,.(u) over all backward directions (—1 < p < 0) divided by the total number of rays
N represents the normal-hemispherical reflectance. Similarly, the sum of N;(u) over all forward directions
(=1 < p < 0) divided by the total number of rays N represents the normal-hemispherical transmittance of
the sample, respectively.
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Figure 4: Flowchart for Monte Carlo solution of ray propagation in an absorbing, scattering and cold medium with semi-
transparent rough boundaries.

The bidirectional transmittance or reflectance can be expressed as the number of rays leaving the sample
along a direction of cosine p = cosf within a differential solid angle Awy.

(0 = ) (22)
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With N the total number of rays and Awy the elementary solid angle containing all rays in the direction of
angle 6 and defined as follows [73]
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The bounds of integration in Eq. (24) follow the rules:
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A# is the angular interval of discretization and is taken equal to the measurement angular interval (i.e. 5°).
In order to assess the suitability of the implemented MC simulation, verification tests were performed. The
details of these tests are reported in appendix A.2.

3.3. Ezperimental method
3.3.1. Experimental setup

The identification method requires some robust measurement data, which mostly condition the quality and
the significance of the retrieved parameters. The hemispherical reflectance and transmittance data are easy
to obtain with the use of an integrating sphere and a photo-detector coupled to a monochromatic light source
or a spectrometer. Bidirectional measurements are more challenging. They require a high sensitivity detector
and an accurate goniometer system. In this study, the Agilent Cary Universal Measurement, Accessory (UMA)
attached to the Agilent Cary 7000 Universal Measurement Spectrophotometer was used. The light source
was a deuterium lamp with a spectral range between 400 and 2500 nm with a resolution of 0.4 nm. The
spectrophotometer was equipped with two detectors, a Silicon and an InGaAs. The goniometer could turn
around a vertical axis from 0° to 168° with an accuracy of 0.02°. The sample holder could also pivot around
the same axis enabling measurement of the specular reflection, e.g. at the scattering angle of 168° to 180°.

Rotary sample
Divergence Incident holder
diaphragms beam A _—
. |
T =\ |
® .
L )
: “E\E] : J |
./’.
L ,/ Detectign
diaphragm
Rotary detector —

Figure 5: Agilent Cary Universal Measurement Accessory. The red line show the optical path for specular reflection measure-
ments.



The spectrophotometer returns a signal ratio M () such as [24, 57]:

M(0) = 1(0)cosfdw,

= 28
TIymin(dwg, dwy) (28)

With dwgy the solid angle of detection linked to the irradiated area of the sensor. Since the incident beam is
not perfectly collimated, it is also essential to consider the solid angle of divergence dwy in order to calculate
the bidirectional transmittances and reflectances. From Egs. (9), (10) and (28), it is possible to calculate
the values of bidirectional transmittances and reflectances as follows [24, 57]:

0" (0),77(0) = cosﬁméf\g((gu))d dwo) !

The solid angles dwy and dwg were controlled with two diaphragms, respectively positioned upstream and
downstream of the sample. The diaphragm positioned upstream of the sample enabled to fix the divergence
angle of the incident beam. Small diaphragm and consequently a small divergence angle would provide a
quasi-collimated incident beam. However, such a setup strongly attenuates the amount of signal resulting in
a greater measurement noise. The choice of diaphragm was based on the absorbing and/or scattering nature
of the sample. The solid angle dwy can be calculated as follows:

dwy = 27(1 — cosOy) (30)

with ©¢ the diaphragm opening angle.

The detection diaphragm enabled the control of the solid angle of detection dwg, which is also calculated

with Eq. (30) but with ©4 the opening angle of the diaphragm. The choice of the detection diaphragm
influences the measurement quadrature. The measurement discretization angle should be greater than the
diaphragm opening angle ©, to avoid double counting of the signal coming from the previous measurement
angle.
The measurement was carried out on the horizontal plane every 5°, from 0° to 85° for the bidirectional
transmittances and from 95° to 180° for the bidirectional reflectances. The choice of using a 5° discretization
angle enabled a large number of measurements while avoiding the overlapping of the measurements due
to the divergence of the incident beam and the detector solid angle. Unlike other discretizations which
favor measurements around the forward direction 0° and backward direction 180° [57], due to the forward
and backward behavior of the scattering, here the high sensitivity of the detector and the broad scattering
behavior of the samples enabled scanning the entire hemisphere.Reflectance measurement, beyond 165° cannot
be realized because, under this configuration, the detector hides the incident beam directed at the sample
(see Figure 6a). To carry out the reflectance measurements for scattering angles between 170° and 180°, it is
a common practice to tilt the sample by a small angle [24, 57, 58]. This tilt angle is about 6.5° in the present
study according to Figure 6.b. Note that the inclination of the sample with respect to the incident beam
direction have two specific effects. It may increase the surface reflection according to the Fresnel equations
and the optical depth as e/cosf) where 6 is the tilt and e the thickness. However, the use of such small tilt
has a clearly negligible effect on the reflectance measurements because the optical depth and the reflectivity
are increased by factors of about 1.007 and 1.00007, respectively compared to the case of normal incidence
(i.e. for no tilt).

The hemispherical data are obtained by summing the bidirectional measurements according to Egs. (32) and
(33) with Awy; the differential solid angle, which subdivides the hemisphere so that:

36
ZAwgi =4r (31)
i=1

Assuming an azimuthal symmetry, it is possible to obtain the hemispherical measurements as follows:

18
P = Zp” (0;)cost; Awg; (32)
i=1
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Figure 6: Distribution of measurement angles.

18
= Z’T” (6;)cos0; Awg; (33)
i=1

i is the index of the experimental quadrature and the solid angle Awy; is calculated with Eqs. (24) and (25).
The use of this method rather than using a measurement from an integrating sphere enforces the azimuthal
asymmetry of the scattering.

3.3.2. Measurements with samples exhibiting roughness-attenuated and rough boundaries

Before identifying simultaneously the volumetric and surface scattering properties, it was important to
verify that the method was able to determine the volumetric properties alone. One way of doing this was to
test the inverse method either with a high porosity sample, such as open-cell foams, or a scattering sample
exhibiting optically smooth boundaries. The second option was retained here by masking the composite
sample boundaries through the use of an index-matching liquid. To do so, the samples were placed one after
the other in a liquid having a refractive index similar to the polymer matrix at the wavelength of interest
as showed in Figure 7. Two candidate liquids having a refractive index close to those of the resin were
tested: the refractive index liquid series A from Cargille Laboratories, with n = 1.499 and n = 1.596 at a
wavelength of 1070 nm. The liquid as well as the container are almost fully transparent at the wavelengths
of measurements. The liquid was expected to fill the roughness of the sample surfaces, and consequently,
the roughness was expected to disappear due to the index-matching effect. However, it is possible that the
smallest roughnesses trap air bubbles so that the roughness of the sample boundaries were not perfectly
hidden. This assumption will be discussed again in the result section.

(a) n = 1.499 (b) n = 1.596

Figure 7: Sample in liquid of refractive index n.

11



In order to determine the most suitable liquid, bidirectional transmittance and reflectance measurements were
carried out on a sample made of the container wall and the containers filled with the liquids. The results
show that the liquid of refractive index n = 1.499 provide the lowest reflectance and highest transmittance
close to those of the single container wall. It means that this liquid exhibits very close refractive index as
the container wall and permits to minimize the light reflexions at liquid/container interfaces. However the
difference with the second liquid (n = 1.596) is not significant so that we decided to conduct the experiments
considering successively the two liquids.

3.4. Identification method

The objective is to identify three equivalent volumetric parameters, namely the extinction coefficient (),
the albedo wy and the asymmetric parameter g, and three surface scattering parameters (C fi2,C fo1 and
o¢g)- The identification method is based on the minimization of the sum of the squared residuals:

36
S = Z(fﬂt(i) —ae()? + (1 = 70)? + (o) — p2)? (34)

With x4(i) the theoretical value of the bidirectional reflectance, x,(i) = p”(0i), or transmittance, (i) =
77(01), at the measurement angle of index ¢ of the quadrature discretized into 36 angles. x.(4) is the corre-
sponding experimental values. 7{' and 7' are the theoretical and experimental hemispherical transmittances,
respectively, and p}' and p' are the theoretical and experimental hemispherical reflectances, respectively.
The Gauss-Newton method is relevant for solving this type of non-linear problem [74]. It has the advantage
of converging quickly despite the fact that it may be sensitive to the choice of initial guesses. As in any
inverse problem, the number of measurement points must be greater or equal to the number of unknown pa-
rameters. We employed here both hemispherical and bidirectional measurements. The greater the number of
bidirectional measurements, the more the identification of the phase function is accurate. The Gauss-Newton
method is an iterative method enabling to solve the following system:

(JTD)op=JTr (35)

With J the jacobian matrix, i.e. a matrix composed of the first order partial derivatives of the function,
calculated through by the MC method. dp the vector of the increments of the unknown parameters and r
the vector of the residuals.

- ap" 8p" A 5
0 0 9
Il o7 w P~ Py
J _ 78/8 78('0 e aO'G . 6p _ 59 R Tth - TeﬂCP (36)
. . . . ’ (SCfr ’ :
: . . . oC 9 )
01736 07”36 17 36 60’? T '36,th — T 36,exp
L 08 ow 7 Oog

As shown in Egs. (35) and (36), the Gauss-Newton method is based on a calculation of partial derivatives.
These derivatives become very sensitive when the residues are small compare to the measurements. The MC
method is a stochastic method which is therefore subject to statistical errors. To prevent these errors from
disturbing the Gauss-Newton algorithm, the theoretical values are obtained from the average of ten different
Monte Carlo runs.

4. Results

4.1. Numerical investigations

The MC simulation and the inverse analysis were implemented in Matlab 7.0.1. The calculation was
performed using a working station (Bull R421-E3 Cluster, Intel Xeon Processors E5-2650v2 8C 2.600 GHz
32 Go DDR3, InfiniBand fast network FDR). The MC simulation is a stochastic solution method and its
accuracy depends on two factors namely, the number of ray samples, N, and the pseudo-random number
generator. By increasing N, the statistical error decreases and the result fluctuation is reduced as shown in
Figure 8.
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Figure 8: Influence of the number of rays N on the calculated bidirectional transmittance and reflectance.

Nevertheless, the computation time proportionally increases with the number of rays. It is thus important
to find a compromise between accuracy and computation time. The maximum standard deviation of the
bidirectional transmittances and reflectances as a function of the number of rays is shown in the Figure 9.
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Figure 9: Standard deviation of bidirectional values and time calculation versus the number of rays.

Clearly, the standard deviation decreases while increasing the number of rays and tends towards a limit value.
At the same time, the calculation time increases linearly as a function of the ray number. To ensure that
the MC simulation error is much smaller than the overall measurement uncertainty, which is estimated to
be about 4%, the ray number is fixed to be 10°. To deal with the error due to the use of a pseudo-random
number generator, results are obtained from the average of ten MC runs based on different random seeds.

4.2. Accuracy analysis

In this section, we report the sensitivity analysis of the theoretical model with respect to each unknown
parameter and the feasibility of the simultaneous determination of these parameters. To do so, the identified
parameters are used as reference data. The study is conducted on the three samples of different thicknesses
and focuses on three points: the reduced sensitivity of the model to the parameters, the accuracy of the
identification method and the possible correlation between the different parameters.
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4.2.1. Sensitivity analysis

The reduced sensitivity matrix contains all the sensitivity coefficients determined for each measurement
quantity and is defined as follows:

With z; the bidirectional measurement for ¢ ranging from 1 to 36, and hemispherical transmittance and
reflectance for i equal to 37 and 38, respectively. j is one of the six unknown parameters. The sensitivities
on hemispherical measurements on the three sample thicknesses are reported in Table 1.

Table 1: Reduced sensitivities on hemispheric measurements.

B Wy 5 Cfiz | Cfa oG

p 16 plies | 0.1641 | 0.8846 | 0.2662 | 0.0601 | 0.0549 | 0.0619
716 plies | 0.1711 | 1.3047 | 0.3125 | 0.0268 | 0.2208 | 0.0588
p"' 8 plies 0.0683 | 0.8178 | 0.1796 | 0.0155 | 0.0178 | 0.0057
71 8 plies 0.1121 | 1.1277 | 0.2126 | 0.0081 | 0.1329 | 0.0026
p"! 4 plies 0.0427 | 0.4984 | 0.09 0.0931 | 0.026 | 0.0805
7 4 plies 0.1527 | 0.8387 | 0.0551 | 0.0089 | 0.2316 | 0.1174

As expected, the radiative volumetric properties (the extinction coefficient 8, the albedo wy and the asym-
metry factor g,) have a greater sensitivity on hemispherical measurements than the surface properties (the
two correction factors C f12 and C'fs; and the standard deviation of the Gaussian function o). The behavior
of the ray is dependent on the volume properties in all the volume of the sample, while the three surface
properties only take place at the surface boundaries. The correction factor C'f12, which is involved in the
reflectivity calculation at the irradiated boundary, mainly impacts the reflectance. The correction factor
C f21, which characterizes the future of rays during their interaction with the internal sides of the boundaries,
presents a greater sensitivity to the transmittance than to the reflectance. The albedo is the parameter
exhibiting the highest sensitivity, which indicates that its identification will be more straightforward. An
increasing thickness seems to improve the sensitivity.
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Figure 10: Reduced sensitivities on bidirectional measurements.

The sensitivity analysis of bidirectional data (Figure 10) provides detailed informations about essential mea-
surement angles. Regarding volumetric radiative properties (Figure 10a), the sensitivity of transmittances
and reflectances to the albedo w) is about five times higher than those of the extinction coefficient 3, and the
asymmetry parameter gy over the entire angular domain. The sensitivities decrease away from the forward
direction and then they vary weakly with the angle especially those on reflectances. That means that the
forward bidirectional transmittances play a key role in the identification of the volumetric properties while
bidirectional reflectances have an equal importance. The determination of the albedo would be definitely
relevant due to the high sensitivity of the model. The determination of the extinction coefficient needs some
accurate measurements of forward bidirectional transmittances. Finally, the determination of the asymmetry
parameter is feasible with both bidirectional transmittances and reflectances. The sensitivities of the model
to the surface scattering properties (Figure 10b) are essentially meaningful on bidirectional transmittances.
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Surprisingly, the sensitivity of bidirectional data to the correction factor C fi1o occurs on the forward trans-
mittances while the sensitivity of hemispherical data to this parameter concerns the reflectance. The use of
bidirectional and hemispherical data can clearly help to identify the surface scattering properties.

4.2.2. Confidence interval

In order to evaluate the accuracy of the identified parameters, it is first necessary to estimate the mean
standard deviation: a8
Zi:l(xi,ezp - xi,theo)2

Ndir — 1

Tmoy = (39)
With 2; eqp the experimental value of the hemispherical or the bidirectional data at the angle ¢ and ; theo
the value at the same angle ¢ but obtained with the MC method using as inputs the identified parameters.
ngsr i the number of measurement points of the quadrature. To measure the uncertainty generated by the
identification method a Student’s t-test is carried out. The t-test consists in determining a confidence inter-
val of the parameters as a function of Student’s distribution and the mean standard deviation of theoretical
solutions to experimental data. Student’s distribution is a probability law based on the reduced centered nor-
mal distribution and the law of x2. The matrix P is determined in order to simplify the following calculations.

P = 0poy[Jt ]! (39)

J being the Jacobian matrix calculated in Eq.(36). The confidence interval d,; is then obtained as follows:

Opj = to/Pj; (40)

P; j refers to the component in the j' column and j*" line of the matrix P calculated at Eq. (39). t* is
the quantile of order 1 — a of Student’s law at k degrees of freedom. This quantile can be easily obtained
based on a Student table. The degree of freedom depends on the number of measurements and the number
of parameters studied. It is possible to calculate this degree of freedom by simply subtracting the number
of parameters identified from the number of measurements made. In the context of this study, the degree
of freedom is therefore 32. The order 1 — « also called confidence level is arbitrarily set according to the
desired precision. In this case, the risk level « is set at 2.5%, the confidence level is therefore 97.5%. The risk
level is low in order to ensure the validity of the results without being too restrictive, which would greatly
increases the confidence interval. This implies that the studied parameter has a 97.5% chance of being in the
confidence interval around the identified value. Then using a Student table, the Student quantile is set to
2.042. As for the sensitivity matrices, this study is conducted on the three samples.

Table 2: Confidence intervals for parameters identified in %.
4 plies | 8 plies | 16 plies
B 4.60 1.52 2.57
W 1.59 0.82 0.60
ax 3.69 1.75 1.41
Cfiz | 3.22 3.62 2.39
Cfa 5.83 4.73 1.77
oG 2.08 2.15 1.84

As already highlighted by the sensitivity study, the Student test confirms the thicker the sample is, the
more accurate the model is. This behavior essentially concerns the three volumetric radiative properties and
this can be explained by the fact that statistically, the thicker a sample is, the more chance there is for a
ray to interact with the medium. For the same reason, the sensitivities of each three surface properties are
approximately identical regardless of the thickness.

4.2.3. Correlation study
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The inverse analysis simultaneously determines six parameters and consequently, it is important to an-
alyze the correlation of these parameters with each other. If one depends on another, the simultaneous
identification of these two parameters becomes irrealistic. To quantify the correlation between a parameter
¢ and a parameter j, a correlation coefficient c;; is calculated as follows:

R.
Cij = — (41)

v PiiPjj
with P;; the components of the matrix calculated in Eq. (39). The calculated correction coefficients are
reported in Table 3.

Table 3: Correlation coefficients c;; between the identified parameters.
g Cfiz | Cfn el
0.130 0.852 | 0.191 | 0.655
0.00971 | 0.566 | 0.416 | 0.446

gn | 0.130 | 0.00971
Cfi2 | 0.852 | 0.566
Cfa1 | 0.191 | 0.416

oc | 0.655 | 0.446

These correlation coefficients are calculated for the case of the 16-plies sample, but the results are similar
with the other two samples. The values obtained are satisfactory since a correlation coefficient lower than
0.9 indicates that the two parameters are enough decorrelated [74], which is the case here. Consequently, the
simultaneous determination of the six parameters is relevant.

4.8. Experimental data

The measurement was carried out on the three glass/epoxy composite samples of different thicknesses,
e = 0.76, 1.50, and 3.10 mm. The results presented here are obtained at the wavelengths 1070 and 1550
nm, which are the wavelengths of interest for the envisioned application. The values of the bidirectional
transmittances and reflectances, reported in Figure 11, are obtained from the spectrometric measurements
according to Eq. (29). The black arrow indicates the direction of the incident radiation to the sample. The
abscissa represents the polar angle in degrees and the ordinate represents the bidirectional values in sr—1.
The data for each sample correspond to the average over ten different measurements. Specifically, for the first
five measurements, the installation is unchanged in order to assess the uncertainty of the spectrophotometer.
For the other five measurements, the irradiated surface is changed in order to assess the homogeneity of
the sample. The average standard deviation of the bidirectional measurements due to the spectrometer
uncertainty itself is less than 1% and the one due to the sample non-homogeneity is less than 4% at 1070
nm. However, at the wavelength of 1550 nm, the average standard deviation reaches 10% because of a lower
accuracy of the detectors at this wavelength.

The angular reflectance distribution is similar from one sample to another. The bidirectional reflectances
are broadly distributed over the reflectance angular domain in the three cases. We explain this trend by the
fact that the scattering by the rough irradiated surface dominates the reflectance and such surface scattering
is almost isotropic. Concerning the bidirectional transmittances, the transmittance is mainly forward for
measurement angles in the range —40° < 6 < 40° otherwise it tends to be isotropic. As expected, the thicker
the sample, the lower the transmittance in a given direction is.

In order to reduce the contribution of rough surface scattering to the measured transmittances and
reflectances, identical measurements were carried out on the same samples but in this case, they were suc-
cessively immersed in a rectangular container filled with an index-matching liquid (see Figure 7). Note that
the refractive index of the current resin matrix is only approximately known to be between 1.490 and 1.576
according to the supplier’s information. For this reason, the measurements were made with two liquids of
different refractive indexes as discussed in section 3.2.2. In this manner, one can expect that the bidirectional
transmittance and reflectance measurements out of the forward and the backward solid angles are mainly due
to volume scattering within the material. Focusing on the wavelength of 1070 nm, the Figure 12 show that
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Figure 11: Experimental bidirectional transmittance and reflectance data of the three investigated samples with error bars at
1070 nm (a) and 1550 nm (b). Same figures with a different scale for the Bidirectional Reflectance Distribution Function (BRDF)
and the Bidirectional Transmittance Distribution Function (BTDF) at 1070 nm (c) and 1550 nm (d).

the angular distribution of the bidirectional transmittance and reflectance measurements in the presence of
an index-matching liquid differ significantly from those obtained with a non-immersed sample. The transmit-
tance lobe is more pronounced in the forward direction whereas the reflectance lobe is still quasi-isotropic,
except that a peak appears in the backward direction. The reflectance peaks come clearly from the specular
reflection at the glass container wall. More interestingly, the contribution of scattering at sample boundaries
is definitely decreased and that explains the significant change on the angular distribution of transmittances
especially for thin samples. However, this comparison does not enable us to confirm that the rough boundary
scattering is completely canceled by the use of an index-matching liquid.
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Figure 12: Experimental bidirectional values in log scale for the sample alone and the sample immersed at 1070 nm

The hemispherical data are obtained from FEgs.

(32) and (33) by using the bidirectional measurements

reported in Figure 12. The contribution of surface scattering to the bidirectional transmittances and re-
flectances of the sample is significant as it can be noticed in Figure 12. Tables 4 and 5 compare the measured
hemispherical transmittances and reflectances between the sample alone and the same sample immersed in
the container with the liquid of refractive index of n = 1.499 or n = 1.596 for the wavelength of 1070 nm.

Table 4: Experimental hemispherical reflectance at 1070 nm.

sample alone | n=1.499 | n =1.596
e = 0.76 mm 0.189 0.0756 0.0785
e = 1.50 mm 0.183 0.0777 0.0816
e = 3.10 mm 0.152 0.0776 0.0818

Table 5: Experimental hemispherical transmittance at 1070

nm.

sample alone | n=1.499 | n =1.596
e = 0.76 mm 0.500 0.688 0.675
e = 1.50 mm 0.454 0.604 0.563
e = 3.10 mm 0.335 0.474 0.466

We can observe that the liquid of the refractive index of 1.499 exhibits the smallest hemispherical reflectance
and largest transmittance for the same thickness. This enables us to conclude that the resin refractive index at
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1070 nm is near the value of 1.5. The presence of rough boundaries increases the reflectance and consequently
decreases the transmittance. It is therefore very important to take the presence of the surface roughness into
account when characterizing radiative transfer through composite samples.

4.4. Identification of the radiative properties

Analyzing the angular distribution of the bidirectional transmittances and reflectances gives an idea of

the surface scattering probability distribution function p(u) to be used in the surface reflectivity model, Eq.
(11). The quasi-isotropic behavior of the bidirectional reflectance can be represented by a cosine distribution
function, Eq. (12). The angular distribution of the bidirectional transmittance lobe can be represented by
the average of a Gaussian function, Eq. (13), whose standard deviation is calculated during identification,
and a cosine function, Eq. (12). Note that other combinations of these distribution functions were tested
but these choices provide the best measurement predictions.
The Gauss-Newton-based inverse method is employed to identify the six unknown parameters. When the
residues, given by Eq. (34), are lower than the experimental standard deviation, i.e. 4%, we consider that
the inverse analysis is sufficiently accurate enough to be aborted. The six radiative properties obtained by
the identification at 1070 nm and at 1550nm, for each sample thickness without any index-matching liquid
are reported in Table 6.

Table 6: Radiative parameters identified at 1070 nm (a) and at 1550 nm (b).

e=310mm | e =1.50mm | e = 0.76 mm
B [mfl] 762 £+ 35 966 + 16 1063 + 29
W 0.896 + 0.007 | 0.884 4+ 0.006 | 0.901 4+ 0.003
agx 0.858 4+ 0.010 | 0.885 £+ 0.010 | 0.908 £ 0.012
Cfi2 0.505 4+ 0.025 | 0.520 4+ 0.005 | 0.648 + 0.072
Cfa1 0.688 4+ 0.020 | 0.577 4+ 0.016 | 0.681 4 0.054
lofe] 0.483 4+ 0.005 | 0.411 £+ 0.007 | 0.384 4+ 0.013
(a) 1070 nm
e=310mm | e=150mm | e = 0.76 mm
B [mfl] 807 £+ 49 1027 + 70 1170 + 69
W 0.854 4+ 0.014 | 0.846 + 0.010 | 0.883 + 0.011
agx 0.940 4+ 0.016 | 0.951 £ 0.010 | 0.936 £ 0.005
Cfi2 0.623 4+ 0.085 | 0.566 + 0.045 | 0.560 £ 0.047
C fa1 0.720 £ 0.038 | 0.598 £ 0.059 | 0.611 £ 0.051
lofe] 0.463 4+ 0.010 | 0.385 4+ 0.009 | 0.362 + 0.005
(b) 1550 nm

The albedo wy and the asymmetry factor g, vary little from one sample to another. These two properties
only depend on the scatterers, which are the glass fibers in this case. As the size, the shape and the orien-
tation of the fibers strands are identical for the three samples, it is expected to retrieve close values of the
albedo wy and the asymmetry factor g, between the three samples. Surprisingly, the extinction coefficient
B> decreases when increasing the thickness. This trend tends to indicate that the manufacturing process of
composites modifies the internal structure of the samples such as its compactness. The parameters C' f12 and
C fa1 characterize the strength of the rough surface scattering while o¢ defines the width of the Gaussian
distribution function, which seems to be narrower for the thinner samples. The values of the coefficient C f12
or Cfy1 are approximately identical for the three samples. However, the parameter C fi5 is systematically
smaller than the parameter C fs;. This is explained by the fact that the overall reflection of radiation from
the air to the sample, i.e. with the parameter C fi5, is weaker than the overall reflection of radiation from
the sample to the air, i.e. with the parameter C fo1, because of the existence of total reflection of radiation
beams at certain angles.
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In order to assess the pertinence of our approach, the identification process was also carried out with
measurements for samples immersed within the index-matching liquids as explained in part 3.3.2. In this
case the samples are considered smooth and the surface scattering is assumed to be negligible. Only the three
volumetric properties are identified here. The extinction coefficient 3, the albedo w) and the asymmetry
factor g, identified for the samples with smooth surfaces are reported in Tables 7 and 8 for the wavelength
of 1070 nm. The difference between the results we obtained with the sample alone (rough surface) and with
the sample immersed in an index-matching liquid (smooth surface) is also given in these tables.

Table 7: Parameters identified with the sample in the liquid n = 1.499 at 1070 nm.
e = 3.10 mm | difference || e = 1.50 mm | difference || e = 0.76 mm | difference

B [m™1] 797.7 4.8% 1015.1 0.6% 1293.7 6.5%
W 0.836 6.2% 0.826 6.7% 0.809 5.9%
gr 0.910 7.8% 0.890 5.4% 0.839 1.6%

Table 8: Parameters identified with the sample in the liquid n = 1.596 at 1070 nm.
e = 3.10 mm | difference || e = 1.50 mm | difference || e = 0.76 mm | difference

Bx [m~1] 837.2 0.1% 1040.2 3.1% 1319.8 8.7%
W 0.862 3.4% 0.861 2.7% 0.811 5.7%
gx 0.884 4.8% 0.810 4.1% 0.840 1.5%

The values of the volumetric radiative properties of non-immersed samples differ on average by 5% with the
liquid of refractive index n = 1.499 and by 3.8% for the liquid of refractive index n = 1.596. These differences
are comparable to the measurement error about 4%. Therefore, the retrieved volumetric radiative properties
with the rough sample are physically consistent and this enable to validate the surface diffusion model.

It is now possible to compare the bidirectional measurements and the bidirectional data returned by the
Monte Carlo simulation from the six identified parameters to judge their relevance and the validity of the
method. The results are given for the wavelength of 1070 nm in Figure 13 and in Table 9, respectively.
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Figure 13: Experimental and theoretical bidirectional data of the three samples at 1070 nm. Symbols:Measurements, Curves:MC
calculation (a) and the same figure with a different scale for the BRDF and the BTDF part (b).

Table 9: Theoretical hemispherical reflectance and transmittance and their deviation (in %) with respect to
measurements at 1070 nm.

o0 diff N diff

e —0.76 mm || 0.2016 | 6.66% || 0.4918 | 1.52%
e— 1.5mm | 0.1825 | 0.491% || 0.4562 | 0.485%
e—31mm | 0.1524 | 0.727% || 0.3377 | 0.896%
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The bidirectional and hemispherical transmittances and reflectances computed with the MC method are very
close to the experimental values. Interestingly, the difference is even less than the measurements error. The
good match between theoretical and experimental reflectances and transmittances proves the relevance of the
proposed approach to determine the radiative properties of semi-transparent rough composite samples.

5. Conclusion

The radiative transfer in semi-transparent composite media with rough boundaries is modelled by the RTE
along with six unknown parameters, which include three volumetric and three surface scattering properties.
The Gauss-Newton identification method is employed to determine six unknown parameters. The method
is based on a minimization of the sum of the squared residues between the experimental and theoretical
values of the bidirectional and hemispherical transmittances and reflectances. The theoretical values are
obtained by resolution of the RTE via the Monte Carlo method with a Henyey and Greenstein phase function.
Boundaries are treated as semi-transparent and scattering. A spectrophotometric device equipped with a
goniometer enables to measure bidirectional transmittances and reflectances on 36 different discrete directions
of scattering distributed uniformly over a horizontal plane around the sample. The identifications were carried
out on samples of fiberglass/epoxy composite material of three different thicknesses with rough interfaces and
the same samples immersed in index-matching liquids. The similarity of the results from the two manners of
samples conditioning leads to the conclusion that the volumetric radiative properties of a woven reinforced
composite material having rough scattering boundaries can be well determined from the proposed inverse
analysis of parameter identification.

The method could be further improved by adding a more realistic phase function such as a phase function
using a series of Legendre polynomials. Subsequently, this method could be incorporated into a coupled heat
transfer model in order to more precisely characterize the radiative exchanges, heat transfer and possible
material damage in the presence of high flux laser irradiation.
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Appendix

A.1 Validation of the experimental method

A.1.1. Validation of the experimental method for smooth boundaries

In order to validate the experimental setup, measurements were carried out on a smooth glass sample
of 3 mm thickness (ref. B270®) i Ultra-White Glass from Schott company) whose real part of the complex
refractive index is known (see table A.1). The exact values of transmittance and reflectance can be obtained,
by calculation from the EM wave theory according to [38]:

R21(0)(1 — Rya(0))%e ke
1 — Ri2(0)Ro1(0)e2ke ’

§7(0) = Ria(0) + o= (42)

. 1— Ri2(0 1_3196—21%
T | 1 ;;12)2;)321(;)2)2)’“ , 9=0 (43)

with R;;(0) the reflectivity for a smooth surface calculated with Fresnel equations, k the imaginary part of
the complex refraction index and e the thickness of the sample. The transmittance and reflectance data of
the sample are obtained from the bidirectional measurements, Eq. (29) for an beam normally incident on
the sample surface. The results including experimental uncertainties are compiled in the table below.

21



Table A.1: Reflectance and transmittance for an beam normally incident on the sample obtained by calculation
(calc) and from the bidirectional setup (bidi) at different wavelength.

n k 77 (e)calc 77 (a)bidi P” (e)calc p”(o)bidi

A =2000 nm || 1.4990 92.23 92.48 + 1.31 8.09 8.41 £+ 0.63
A =1700 nm || 1.5035 92.16 92.67 £ 1.17 8.17 8.55 £ 0.73
A = 1400 nm || 1.5075 92.09 92.66 + 1.61 8.25 8.47 £+ 0.90
A =1100 nm || 1.5115 91.99 91.90 + 1.08 8.35 8.59 £+ 0.36
A =800 nm 1.5164 91.92 91.69 £ 0.60 8.43 8.35 £ 0.37

o] Hen) Hen] Hao] Ban}

The measurements and calculation give equivalent results. However, it should be noted that as the wavelength
increases, the calculation method loses precision as the glass begins to absorb partially radiation, from around
1600 nm, while in our calculation the absorption index k is fixed to be equal to zero due to lack of accurate
data. The small differences observed fall entirely within the experimental errors.

A.1.1. Validation of the experimental method for rough boundaries

In order to assess the validity of bidirectional measurements and also to evaluate the suitability of the az-
imuthal asymmetry hypothesis, the hemispherical measurements obtained with an integrating sphere (sphere
of a diameter of 150 mm with an operational wavelength range from 400 to 2500 nm, equipped with a
PMT and a TE Cooled PbS detector) and the hemispherical data obtained from bidirectional measurements
through Eqs. (32) and (33) were analysed. These measurements are obtained from the same spectrophotome-
ter described in 3.3.1, and they differ only by the signal acquisition devices (i.e. integrating sphere versus
goniometry system). The comparison is reported in the following table.

Table A.2: Hemispherical reflectance and transmittance obtained with the integrating sphere p?phera’TQ;here
and from the bidirectional measurements pi! ,7/! =~ at 1070 nm.

N N B N N :
psphere Phidi diff Tsphere Thidi diff

e =0.76 mm || 0.2370 | 0.2016 | 14.93% 0.521 | 0.4918 | 5.60%
e =1.50 mm || 0.1871 | 0.1825 | 2.46% 0.467 | 0.4562 | 2.31%
e=3.10mm || 0.1499 | 0.1524 | 1.64% 0.341 | 0.3377 | 0.96%

The hemispherical reflectances and transmittances retrieved from bidirectional measurements along with
azimuthal symmetry hypothesis agree globally well with those from direct measurements with the integrat-
ing sphere. The discrepancy is only significant for the thin sample and more especially on hemispherical
reflectance data.

A.1.3. Study of the azimuthal symmetry hypothesis

Figure A.1 reports the bidirectional transmittances and reflectances obtained for different rotation angles
of the sample with respect to the incident light direction. The effect of the sample orientation with respect to
the incident light direction is only meaningful for the thin sample (0.76 mm thickness). It is known that the
scattering by a single fiber or a cylinder is orientation dependent. For the thin sample, the incident radiation
undergoes few scattering before crossing the sample and this explains the orientation dependent properties
of fibers composing the sample. Inversely, for thick samples, multiple scattering by the presence of various
plies takes place and tends to smooth out the fiber orientation effect.
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Figure A.1: Bidirectional measurements at 1070 nm at different angles of inclination of the three samples of thicknesses (a) 0.76
mm, (b) 1.50 mm, and (c) 3.10 mm.

This analysis points out the limit of the azimuthal symmetry assumption in the case of thin woven
reinforced composite materials. In such a case, the inverse analysis could be conducted on samples of different
inclinations with respect to the incident light direction.

A.2 Verification of the implemented Monte Carlo simulation

To assess the accuracy of the current MC method, we conducted a comparative study against the well-
established DOM using a high order Gaussian quadrature schema with 60 points [24].We considered the case
of absorbing and scattering plane parallel slabs exhibiting non-participating (i.e. transparent) or Fresnel (i.e.
optically smooth) boundaries for which the accuracy of DOM has been widely proven. For simplicity reason,
the samples with optically smooth boundaries are characterized by a refractive index n = 1.5 and surrounded
by a vacuum.
Table A.3 summarizes the hemispherical results for media having different couples of radiative properties
(optical thickness, 7, scattering albedo, w, and asymmetry parameter, g) relevant to composite samples but
with non-participating boundaries (i.e. Ria(p) = Ra1(p) = 0 for any value of p in Eq. (11)). Table A.4
shows the results for the same semitransparent media but with Fresnel boundaries (i.e. Cfis = Cfo; = 1
and p(u) = 1 for p = p/ and 0 otherwise in Eq. (11)). Clearly, the two computation methods show very
good agreement for both types of boundaries. The comparison of the MC bidirectional data to the reference
results, depicted in figure A.3, is also very satisfying. These comparisons allow to confirm the suitability of
the implemented MC simulation especially for samples with transparent or Fresnel boundaries.
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Table A.3: Hemispherical reflectance and transmittance calculated with the MC method and the DOM for
different parameters with n =1 and the difference between the two methods.
case 1 case 2 case 3 case 4
w=05,g=0 w=20.5,9=0.9 w=09,g=0 w=0.9,g=0.9
s .y o’ N o0 N P N
7=0.15 MC 0.0306 | 0.8919 || 0.0014 | 0.9253 || 0.0613 | 0.9215 || 0.0029 | 0.9819
7=0.15 DOM || 0.0311 | 0.8915 || 0.0014 | 0.9257 || 0.0613 | 0.9215 || 0.0029 | 0.9819
difference [%] 1.61 0.04 0 0.04 0.16 0 0 0
T=1MC 0.0997 | 0.4448 || 0.0050 | 0.5894 || 0.2683 | 0.5894 || 0.0184 | 0.8775
7=1DOM 0.0995 | 0.4445 || 0.0050 | 0.5895 || 0.2687 | 0.5900 || 0.0181 | 0.8779

difference [%] 0.20 0.07 0 0.02 0.15 0.10 1.66 0.05

Table A.4: Hemispherical reflectance and transmittance calculated with the MC and the DOM method for
different parameters with n = 1.5 and the difference between the two methods.
case 1 case 2 case 3 case 4
w=05,g=0 w=20.5,9=0.9 w=09,9g=0 w=0.9,g=0.9
o N o N o0 "y o N
7 =0.15 MC 0.0786 | 0.8086 || 0.0710 | 0.8509 || 0.1129 | 0.8418 || 0.0769 | 0.9006
7=0.15 DOM || 0.0812 | 0.8071 || 0.0720 | 0.8492 || 0.1144 | 0.8403 || 0.0774 | 0.9000
difference [%] 3.20 0.18 1.39 0.20 1.31 0.18 0.65 0.07
T=1MC 0.0838 | 0.3734 || 0.0527 | 0.5282 || 0.2212 | 0.5052 || 0.0818 | 0.7679
7=1DOM 0.0846 | 0.3736 || 0.0545 | 0.5273 || 0.2218 | 0.5050 || 0.0845 | 0.7660

difference [%] 0.95 0.05 3.30 0.17 0.27 0.04 3.20 0.25
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Figure A.2: Bidirectional reflectances and transmittances computed from MC simulation (symbols) and DOM (curves) for media
with transparent (a and b) and Fresnel boundaries (¢ and d). n=1 and 7=0.15 (a); n=1 and 7=1 (b); n=1.5 and 7=0.15 (c);
and n=1.5 and 7=1 (d).
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To assess the suitability of the MC method for samples with rough boundaries, we analyze the influence of each
boundary scattering parameter, especially C'f;; and o involved in Eqgs. (11) and (13), on the bidirectional
reflectance and transmittance. The parameter values of interest fall in the range 0.5 < Cf1o = Cfo; < 1
and 0 < o5 < 0.3). Note that the combination C'f15 = C fo; = 1 and o = 0 allow to retrieve the results of
optically smooth boundaries. The figure A .4 shows the bidirectional data corresponding to different couples
of scattering parameters. In all cases, the sample are characterized by the following radiative properties,
which are relevant to the investigated composite materials: 7 =1, w = 0.9,¢9 = 0.9,n = 1.5. As expected,
the case with the boundary scattering properties (C'f;; = 0.9 and o¢ = 0.1) exhibits a behaviour similar to
that of smooth boundaries (C'f;; = 1 and og = 0). The main difference occurs around the peaks of forward
and backward directions where the parameters C'f;; = 0.9 and og = 0.1 lower and broader these peaks and
lead to forward and backward scattering lobes. Increasing the og (e.g. from 0.1 to 0.3) broadens significantly
the forward and backward scattering lobes. On the other hand, decreasing C'f;; (typically from 0.9 to 0.5)
similarly enhances the scattering out of the forward and backward scattering lobes. It can be seen clearly
that the boundary scattering parameters affect differently the bidirectional response of the sample while they
enable to retrieve the limiting response of optically smooth slabs. This additional study tends to demonstrate
the ability of the Monte Carlo simulation to dissociate quantitatively the contribution of boundary scattering
from the overall bidirectional response of rough samples.
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Figure A.3: BRDF and BTDF of semi-transparent samples (t = 1, w = 0.9,g = 0.9,n = 1.5) having different boundary
scattering properties.
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