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Summary

� CRISPR-Cas9 has proven to be highly valuable for genome editing in plants, including the

model plant Physcomitrium patens. However, the fact that most of the editing events pro-

duced using the native Cas9 nuclease correspond to small insertions and deletions is a limita-

tion.
� CRISPR-Cas9 base editors enable targeted mutation of single nucleotides in eukaryotic

genomes and therefore overcome this limitation. Here, we report two programmable base-

editing systems to induce precise cytosine or adenine conversions in P. patens.
� Using cytosine or adenine base editors, site-specific single-base mutations can be achieved

with an efficiency up to 55%, without off-target mutations. Using the APT gene as a reporter

of editing, we could show that both base editors can be used in simplex or multiplex, allowing

for the production of protein variants with multiple amino-acid changes. Finally, we set up a

co-editing selection system, named selecting modification of APRT to report gene targeting

(SMART), allowing up to 90% efficiency site-specific base editing in P. patens.
� These two base editors will facilitate gene functional analysis in P. patens, allowing for site-

specific editing of a given base through single sgRNA base editing or for in planta evolution of

a given gene through the production of randomly mutagenised variants using multiple sgRNA

base editing.

Introduction

Modification of the sequence of a protein is a powerful approach
to decipher the protein’s sequence–function relationship and
understand its biological roles. In addition, production of differ-
ent variants for a given gene and its corresponding protein also
has practical applications and is a way to go beyond what evolu-
tion has shaped in terms of function for this protein. For a long
time, intracellular protein engineering through substitution,
insertion or deletion of nucleotides in its corresponding gene,
was restricted to unicellular eukaryotes. One possible way to
modify a gene in planta is the TILLING strategy, based on EMS-
induced mutations in the genome (Jacob et al., 2018). However,
such in vivo mutagenesis is not targeted to a specific locus and,
for this reason, needs first a thorough selection system to find the
desired mutation in the target gene. In addition, TILLING will
only very rarely allow the selection of simultaneous mutations in
a given gene. Finally, such a strategy will necessitate the

elimination of background mutations that could interfere with
the functional analysis of the modified protein.

For a few years now, the CRISPR-Cas9 system has been effi-
ciently applied to induce targeted mutagenesis in plant genes.
Guided by an sgRNA, the Cas9 nuclease produces a targeted
DNA double-stranded break (DSB) by site-specific cleavage,
which typically results in insertion or deletion mutations after
error-prone NHEJ DNA repair (Jiang & Doudna, 2017). In
many cases these mutations correspond to loss of function due to
out-of-frame mutations, premature terminations or aberrant
splicing variants. By contrast, gene function analysis and the
development of new traits of interest in crops need a more precise
mutation system delivering more predictable mutations, includ-
ing modification of one or more bases in a given gene. Such
mutations that facilitate basic research can be achieved through
different CRISPR-derived tools, as recently reviewed (Manghwar
et al., 2019; Veillet et al., 2020a), but also accelerate plant breed-
ing (Zhang et al., 2019; Gaillochet et al., 2020). While
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modification of one or more bases via CRISPR-mediated gene
targeting constitutes an elegant strategy, its efficiency remains
low in flowering plants (Huang & Puchta, 2019).

Recently, a strategy named Prime editing, has been developed
in human cells (Anzalone et al., 2019) and then adapted to wheat
and rice (Lin et al., 2020). Prime editing is based on the fusion of
a Cas9 nickase to a reverse transcriptase that, guided by a Prime
editing guide RNAs (pegRNAs), enables point mutations, inser-
tions and deletions. This strategy is highly promising but still
needs refinement to achieve editing that is efficient enough for
routine use (Marzec & Hensel, 2020). As an alternative to gene
targeting, and before the development of the promising Prime
editing strategy, CRISPR-mediated base editors (BEs) have been
developed, to induce targeted base modification, first in human
and murine cell lines (Komor et al., 2016) and then in rice (Li
et al., 2017; Lu & Zhu, 2017). Like Prime editing, base editing is
a gene editing strategy free of donor DNA and double-stranded
breaks. Two types of BEs exist, cytosine base editors (CBEs) and
adenine base editors (ABEs) that correspond to a Cas9 nickase
(nCas9) or a catalytically inactive Cas12a (dCas12a) (Komor
et al., 2016; Li et al., 2018a) that is fused to either a cytosine- or
an adenine-deaminase domain, respectively. BEs generate tar-
geted nucleotide substitutions on ssDNA in a small editing win-
dow that is accessible during the CRISPR-mediated R-loop
formation. The action of the cytidine deaminase of the CBE
complex on a cytosine can generate transition (C-to-T) and
transversion (C-to-A and C-to-G) substitutions, however addi-
tion of a uracil DNA glycosylase inhibitor (UGI) to the CBE will
permit the production mostly of transition (C-to-T) substitutions
(Evanoff & Komor, 2019). ABEs almost exclusively result in A-
to-G substitutions (Evanoff & Komor, 2019).

BEs using nCas9 fusions have been used in different model
and crop plants including rice, wheat, maize, potato and tomato
(Lu & Zhu, 2017; Shimatani et al., 2017; Zong et al., 2017; Li
et al., 2018b; Bastet et al., 2019; Veillet et al., 2019a,b). These
studies have shown that CBE or ABE activities can vary between
plants, but also between target sites in term of editing efficiency
of an effective deamination window and of occurrence of byprod-
ucts (insertions, deletions or unpredicted substitutions). In the
model plant bryophyte Physcomitrium (Physcomitrella) patens, the
use of CRISPR-Cas9 or CRISPR-Cas12a strategies has permitted
efficient gene knock-out (Nomura et al., 2016; Lopez-Obando
et al., 2016; Pu et al., 2019; Mallett et al., 2019) or gene knock-
in (Collonnier et al., 2017a; Yi & Goshima, 2020), but no base-
editing strategies have been reported so far.

Physcomitrium patens is a well recognised model to study evo-
lutionary developmental biology questions, stem cell reprogram-
ming, and the biology of nonvascular plants (Rensing et al.,
2020). In order to expand the toolbox for gene function analysis
in P. patens, we explored the possibility of editing specific bases
of the genome through CBE and ABE in this model plant. For
this purpose, we used the APT gene that we and other groups
had previously used as a reporter of gene modification or modu-
lation in P. patens (Trouiller et al., 2006; Holá et al., 2013; Orr
et al., 2020). We demonstrate here for the first time that the
CRISPR-Cas9 deaminase systems CBE and ABE are very

efficient tools for base editing, including multiplex editing, in
P. patens. We characterised the respective efficiencies and deami-
nation windows for CBE and ABE and demonstrated that they
can be useful tools for gene function analysis. In addition, data
gained from this study can be translated to drive directed in
planta evolution of other targets. Finally, we propose here an
original co-editing selection strategy, named selecting modifica-
tion of APRT to report gene targeting (SMART), based on the
restoration of the APT gene function, for efficient and easy-to-
screen base editing of any gene of interest in P. patens.

Materials and Methods

Molecular cloning

Guide RNA (sgRNA) sequences specific to the APT
(Pp3c8_16590), Pp3c3_13220, Pp3c14_9040 and
Pp3c17_3870 genes were chosen using the webtool CRISPOR
4.97 (Concordet & Haeussler, 2018). Expression cassettes
sgRNA#5, sgRNA#7, sgRNA#21, sgRNA#23, sgRNA#24 and
sgRNA#25, comprising the promoter of the P. patens U6 snRNA
(Collonnier et al., 2017a), the 50-G-N(19)-30 guide sequences
targeting the APT gene and the tracrRNA scaffold were synthe-
sised by Twist Bioscience (San Francisco, California, USA; Sup-
porting Information Table S1). The sgRNA expression cassette
sgRNAPp3c14, based on the same backbone but targeting the
Pp3c14_9040 gene was synthesised by Twist Bioscience.
sgRNA#5 and sgRNA#7 were subcloned into the pDONR207
vector by GatewayTM BP reaction (Invitrogen) to give
psgRNA#5 and psgRNA#7. sgRNA#21, sgRNA#23,
sgRNA#24, sgRNA#25 and sgRNAPp3c14 were cloned into the
pDONR207-neomycin resistance (NeoR) vector using a Gate-
wayTM BP reaction (Invitrogen) to give psgRNA#21,
psgRNA#23, psgRNA#24, psgRNA#25 and psgRNAPp3c14.
pDONR207-NeoR was obtained by cloning the 35S::neoR frag-
ment (SmaI–ApaI, 1824 pb) from pBNRF (Schaefer et al., 2010)
into pDONR207. The sgRNAPp3c3, sgRNAPp3c17 and
sgRNArestor expression cassettes, targeting the Pp3c3_13220
gene, the Pp3c17_3870 gene and a mutated version of the APT
gene respectively, were synthesised and cloned in the pTwist
Amp vector by Twist Bioscience to give psgRNAPp3c3
spgRNAPp3c17and psgRNArestor. psgRNA#2 containing the
expression cassette sgRNA#2 has been described previously (Col-
lonnier et al., 2017a). All the expression cassettes used in this
study are described in Table S1.

For the CBE system we used a CRISPR-nCas9 cytosine deam-
inase consisting of a fusion of nCas9 (D10A) to the Petromyzon
marinus cytosine deaminase (PmCDA1). The pnCas9-CBE1 vec-
tor expressing this fusion enzyme is based on the
pDicAID_nCas9-PmCDA_NptII_Della vector (Shimatani et al.,
2017), from which the sgRNA expression cassette targeting the
tomato DELLA gene was dropped out (AanI digest). For The
ABE system we used a CRISPR-nCas9-adenine deaminase con-
sisting of a heterodimer of a wild-type bacterial tRNA adenosine
deaminase (TadA) and a mutated version (TadA*), fused to
nCas9 (Gaudelli et al., 2017). For this purpose, using Invitrogen
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Platinum SuperFi DNA polymerase (Thermo Fisher Scientific),
we PCR amplified the ABE7.10-nCas9 gene fusion from pCMV-
ABE7.10 (Addgene plasmid #102919) with AttB1 and AttB2
flanking sequences using the ABE7.10-AttB1 and ABE7.10-
AttB2 primers. The PCR fragment was cloned into pDONR207
using the GatewayTM BP reaction and then subcloned into pBS-
TPp-B (Thévenin et al., 2012) using the GatewayTM LR reaction
(Invitrogen) to give the pnCas9-ABE1 plasmid, in which
ABE7.10 is flanked by the rice Actin 1 promoter and CaMVter
terminator. The pAct-Cas9 plasmid used in this study has been
described previously (Collonnier et al., 2017a). Sequences of the
plasmids used in this study are listed in Table S2.

Moss culture and transformation

P. patens wild-type Gransden strain was propagated vegetatively as
previously described (Cove et al., 2009). Plants were grown on
PpNH4 medium (PpNO3 medium supplemented with 2.7 mM
NH4-tartrate) in growth chambers set at 60% humidity with 16 h
of light (quantum irradiance of 80 μmol m−2 s−1) at 24°C and 8 h
of dark at 22°C. Moss protoplast isolation and transfection were
performed as previously described (Schaefer & Zryd, 1997).
Protoplasts were transfected with a total of 20 µg of circular
DNA divided as follow: 8 µg of the pAct-Cas9, pDIC-AID-
APTgRNA#21, pnCas9-CBE1 or pnCas9-ABE1 plasmids and a
mix of 12 µg of sgRNA plasmids. Regenerating protoplasts were
spread on cellophane disks on PpNH4 medium supplemented with
0.33 M mannitol for 1 wk. Plants on cellophane disks were then
selected either on PpNH4 supplemented with 50 mg l−1 G418
(Duchefa) to select clones that were transiently transfected (Lopez-
Obando et al., 2016) or directly on PpNH4 supplemented with
10 μM 2-FA (Fluorochem) to select clones that were mutated at
the APT locus (Collonnier et al., 2017a). For the experiment con-
sisting of the restoration of the APRT activity of the apt mutant
ABEv#1, protoplasts isolated from this mutant were transfected
with 10 µg of each of the pnCas9-CBE1 and psgRNArestor plas-
mids. Regenerating protoplasts were spread on cellophane disks on
PpNH4 medium supplemented with 0.33 M mannitol and 1.75
mM adenine (Sigma A8626) for 1 wk and then transferred onto
PpNH4 supplemented with 1.75 mM adenine for 3 wk for selec-
tion of clones in which APRT function was restored.

PCR and sequence analysis of the edited plants

For PCR analysis, genomic DNA was extracted from 50 mg of
fresh tissue as previously described (Lopez-Obando et al., 2016).
The quality of the DNA samples was controlled using primers tar-
geting the P. patens RAD51-1 gene, PpRAD51-1#6 and
PpRAD51-1#7. Molecular analysis was based on Sanger sequenc-
ing (Genoscreen, Lille, France) of PCR fragments using primers
surrounding the targeted locus. For edited plants obtained using a
single sgRNA, PpAPT#25 and PpAPT#5 were used for APT,
Pp3c3#1 and Pp3c3#2 for the Pp3c3_13220 locus, Pp3c14#1
and Pp3c14#2 for the Pp3c14_9040 locus, Pp3c17#1 and
Pp3c17#2 for the Pp3c1783870 locus. For edited plants obtained
using multiple sgRNAs, molecular analysis was carried out using

primers PpAPT#8 and PpAPT#10 primers for the sgRNA#7
locus, primers PpAPT#60 and PpAPT#61 for the sgRNA#5 and
primers PpAPT#25 and PpAPT#5 for sgRNA#2 and sgRNA#21
loci. PCR primers used in this study are listed in Table S3.

Structural analysis of mutations in P. patens APRT

Nine APRT templates were selected with Modeller 9.18 (Webb &
Sali, 2017), based on sequence identity (>20%) from: Escherichia
coli (PDB:2DY0), Saccharomyces cerevisiae (PDB:1G2Q), Giardia
intestinalis (PDB:1L1Q), Thermoanaerobacter pseudethanolicus
(PDB:4LZA), Rhodothermus marinus (PDB:4M0K), Yersinia
pseudotuberculosis (PDB:4MB6) and Homo sapiens (PDB:4X45).
Multiple alignment was used to develop high quality models and
the best model was chosen using the discrete optimised protein
energy (DOPE) method (Shen & Sali, 2006) and/or the GA341
method (John & Sali, 2003; Melo et al., 2009). Optimisation of
the model was achieved using energy minimisation protocols
available at YASARA software (Elmar et al., 2010). The visualisation
of the multiple alignment with the secondary structure was made
using the ESPript3 server (Robert & Gouet, 2014).

In vivomeasurements of chlorophyll fluorescence

Here, 10-d-old plants grown on PpNO3 medium were probed
for chlorophyll fluorescence with the modular version of the Dual
PAM-100 fluorometer (Walz). Plants were dark adapted for 40
min and then induction curve analyses were performed using 850
µmol of photons m−2 s−1 red actinic light for 8 min followed by
8 min of dark recovery. Chlorophyll fluorescence was measured
in plants dark adapted for 30 min that were then exposed to
actinic light of 800 μmol of photons m−2 s−1 for 8 min. Fm and
Fm0 are the fluorescence values after exposure to saturating pulses
(6000 μmol of photons m−2 s−1, duration 600 ms) in, respec-
tively, dark adapted plants and plants exposed to actinic light.
Non-photochemical quenching (NPQ) was calculated as Fm/
Fm0 − 1 (Klughammer & Schreiber, 1994).

Results

Efficient base editing in P. patens via RNA-guided cytosine
or adenine deaminases

The APRT enzyme is a member of the Type I phosporibosyltrans-
ferase family and is involved in the nucleotide salvage pathway, by
which organisms, including plants (Ashihara et al., 2018), convert
adenine to adenosine monophosphate (AMP). APRT enzyme,
encoded by the APT gene, is also able to convert some adenine
analogues into toxic compounds and this has been used for effi-
cient selection of APRT-deficient mutants in many organisms
(Taylor et al., 1985). For this reason, we hypothesised that base
modifications of the P. patens APT gene (Fig. 1a) could be easily
monitored by selection on 2-FA in order to quickly assess the effi-
ciency of base editing (Fig. S1). To determine whether pro-
grammable BEs could catalyse site-specific base editing in the
genome of P. patens, we used both a CBE based on the cytosine
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Fig. 1 Relative efficiency of mutagenesis and the nature of editing by CBE and ABE in Physcomitrium patens. (a) Structure of the PpAPT gene and sgRNAs
positions. Boxes in white represent the exons and black lines represent the introns. The eight sgRNAs positions are indicated in orange, at the top for
sgRNAs that target forward strand, and at the bottom for sgRNA that target reverse strand. Green arrows represent the primers used for PCR and
sequencing. (b) Schematic representation of the native Cas9 and the two base editors. Linker sequences are in light blue, NLS sequences are in red. (c)
Mutation rates using pnCas9-CBE1 or pnCas9-ABE1 (in black) vs active Cas9 (in grey). (d) Nature of the base editing was characterised by sequence
analysis of 2FA-resistant plants. (e) Sequence chromatograms from wild-type and CBE or ABE edited clones. Target sequence (in red) and PAM (in blue)
are highlighted in the wild-type (WT) sequence; red arrows point to the positions with edited base. Primers used for amplification and Sanger sequencing
can be found in the Materials and Methods section. Number of analysed plants is indicated.
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deaminase from P. marinus (PmCDA1) and an ABE based on
tRNA adenosine deaminase from E. coli (TadA) (Fig. 1b).
We selected eight different sgRNAs targeting the APT reporter
gene that contained cytosine or adenine residues in the predicted
editing windows (Fig. 1a).

First, in order to validate the CBE and ABE constructs, we
compared their respective editing efficiencies to that of the native
Cas9 (pAct-Cas9). psgRNA#1 was transfected with pnCas9-
ABE1 (for ABE) or pAct-Cas9 (for native Cas9) and psgRNA#2
was transfected with pnCas9-CBE1 (for CBE) or pAct-Cas9 (for
native Cas9) respectively, in P. patens protoplasts. Regenerating
protoplasts were transferred onto a medium containing 2-FA in
order to detect plants that had been mutated at the APT locus.
The relative efficiencies of APT mutagenesis, estimated by divid-
ing the number of 2-FA-resistant plants by the number of ini-
tially regenerating plants, were 0.8% for ABE using sgRNA#1
and 1.6% for CBE using sgRNA#2 (Table S4; Fig. 1c). Using
the same two guides, these values were, respectively, 2.7 and
2.9% when mutagenesis was performed with the native Cas9 sys-
tem (Fig. 1c). Analysis of the type of mutations obtained with
the two different BE strategies showed that a majority of mutant
plants obtained with the CBE strategy corresponded to precise
base-editing events (89%), and the remaining mutants corre-
sponded to short insertions or deletions (hereafter called byprod-
ucts) (Fig. 1d,e). For the ABE strategy, 100% of the mutant
plants corresponded to precise base editing (solely A-to-G substi-
tution, Fig. 1d,e). This showed that CBE and ABE can be used
to precisely modify cytosine or adenine bases in P. patens.

Multiplex base editing is efficient in P. patens

In order to evaluate the possibility of multiplex editing using the
BE systems we co-transfected P. patens protoplasts with plasmids
psgRNA#2, psgRNA#5, psgRNA#7, psgRNA#21 (Fig. 1) and
pnCas9-CBE1 plasmids (for the CBE system), and with plasmids
psgRNA#1, psgRNA#21, psgRNA#23 and pnCas9-ABE1 plas-
mids (for the ABE system) (Fig. 1). As before, regenerating pro-
toplasts were grown on medium containing 2-FA, and plants that
survived (apt mutants) were analysed. Sequence analysis of the
apt mutants showed that, under these conditions, the relative effi-
ciencies of mutagenesis (2.8% for CBE and 0.7% for ABE,
Table S4) were comparable with those observed with the simplex
strategy (1.6% for CBE and 0.8% for ABE, Table S4). For CBE,
predictability of base editing was decreased, compared with the
simplex strategy, as 47% (89% for the simplex) of the mutations
corresponded to precise editing of a cytosine (Figs 2a, S2). Analy-
sis of the mutations showed that the decrease observed was due to
byproducts corresponding to small indels (Fig. S2), but also to
the occurrence of deletions between the sgRNAs used for multi-
plexing. As expected, these deletions always involved sgRNAs
that were in opposite orientation on the DNA (Figs 1a, S2), as
nicking of both DNA strands by a pair of Cas9 nickases is known
to lead to site-specific DSBs and NHEJ, and by contrast nicks on
the same DNA strand were predominantly repaired through the
high-fidelity base excision repair pathway (BER) (Ran et al.,
2013). Analysis of the mutations generated by the CBE system at

the different targets in a given plant showed that precise multi-
plex base editing could be achieved, as 40% of the precisely
edited plants (C substitutions with no byproducts and no guide-
to-guide deletions, n = 30) were modified at the four targeted
loci (Fig. 2b,c). For ABE multiplexing, the predictability of base
editing was comparable with the simplex strategy, as 98% (100%
for the simplex) of the mutations corresponded with the precise
editing of an adenine (Figs 2a, S2). In addition, 14% of the pre-
cisely edited plants (A substitutions with no byproduct) (n = 43)
showed concomitant mutations at the three targeted loci (Fig.
2b,d). These data showed that, when a cell is subjected to the
CBE or ABE systems with multiple sgRNAs, concomitant edit-
ing of the targeted loci is possible, making multiplexing a power-
ful tool in P. patens.

Characteristics of BE and nature of the substitutions

First, in order to check that selection of the edited plants on 2-
FA did not create a bias in the type of mutations that could be
observed using BE, we aimed at analysing plants that were trans-
fected with the CBE system without the a priori knowledge that
editing would result in an alteration of APRT activity. For this
purpose, protoplasts were transfected with the CBE system and
sgRNA#2 or sgRNA#21. The regenerating protoplasts were
transferred onto a medium containing the antibiotic G418 in
order to select clones that expressed the transfected plasmids that
contained a NeoR gene cassette (Table S5). We observed that
34.8% for sgRNA2 and 52.3% for sgRNA#21 of the G418 resis-
tant transfected clones were mutated at the APT locus (Fig. 3).
Of these mutated clones, 32.6% for sgRNA#2 and 20.9% for
sgRNA#21 corresponded to precise base-edited plants, the other
mutants corresponded to deletions (Fig. 3). Interestingly, a small
fraction of the G418-resistant clones (2.2% for sgRNA#2 and
4.7% for sgRNA#21, Fig. 3) corresponded to chimeric clones
composed of a mixture of wild-type and mutated cells (Fig. S3).
Such chimeric clones were not observed using direct 2-FA selec-
tion. This suggests that, even if the BE system is preferentially
active very early after protoplast transfection, it can still be active
after multiple divisions of the originally transfected cell thanks to
episomal replication of the vector (Muren et al., 2009). Even if
illegitimate integration of a nonhomologous supercoiled plasmid
is low in P. patens (Schaefer & Zryd, 1997), episomal persistence
of the vector in the clones in the presence of G418 could, in the-
ory, lead to stable integration in the genome. In order to check
for the level of unexpected integration of the ABE or CBE vectors
in the selected plants, we tested the sensitivity of 288 ABE- or
CBE-transfected clones to G418. We could observe that sensitiv-
ity to G418 was restored in most of the clones as only one clone
out of 480 (0.21%) showed resistance to G418 (Fig. S4). All the
edited clones presented in this study were G418 sensitive. Finally,
in order to test whether the different mutations observed in the
APT locus would have an effect on the activity of the APRT
enzyme we sequenced the APT gene in the 132 G418-resistant
(transfected) clones obtained with sgRNA#2 or sgRNA#21 and
placed them on a medium containing 2-FA. Under these condi-
tions, 100% of the clones containing a mutation (77 out of the
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132 G418-resistant clones) were resistant to 2-FA (Table S6).
This confirmed our hypothesis that the APRT enzyme is very
constrained in terms of amino-acid changes and is therefore very
sensitive to mutations. Therefore 2-FA screening is very effective
in identifying any modification in the APT gene.

Based on the fact that a majority, if not all, of the mutations
induced by CBE or ABE lead to a nonfunctional APRT, we
decided to pool the different events of editing, obtained through
selection on G418 or directly on 2-FA, in order to analyse the
nature of the CBE or ABE editing products. For CBE, the analy-
sis of the nature of the cytosines modifications (n = 693 modi-
fied cytosines of 2005 analysed) showed that a majority
corresponded to C-to-T substitutions (75.8%), but some C-to-G
(18.6%) or C-to-A (5.8%) substitutions were also observed (Fig.
4a). Analysis of the positions of the cytosines that could be substi-
tuted in eight different sgRNAs targets showed that cytosines pre-
sent in the 5-bp editing window (positions −19 to −15 from the
PAM) previously described (Nishida et al., 2016), are efficiently
edited also in P. patens. However, a significant number of C sub-
stitutions (17%) could also be observed outside this editing win-
dow, including a cytosine in position −21 from the PAM that
was outside the 20-bp target sequence of sgRNA (Fig. 4c;
Table S7). For target sequences presenting more than one C in
the editing window, as is the case for sgRNA#21, at least two Cs
and up to five Cs could be modified simultaneously (Fig. S3). In
addition, important variation of the efficiency and nature of the
substitutions could be observed for a cytosine in a given position
from one targeted locus to another (Figs 4b, S5a, S5), confirming
the influence of the environment of the cytosine on the efficiency
and nature of its modification. Finally, we observed that the

existence of multiple Cs in the editing window, as is the case for
sgRNA#21, favoured the occurrence of deletion byproducts at
the targeted locus, that in this case corresponded to 31.4% of the
mutations (Fig. 3a). For ABE, analysis of the nature of the
adenine modifications (n = 156 modified adenines) showed that,
as observed in other organisms, all the modifications corre-
sponded to A-to-G substitutions (Figs S5b, S7). It has been
shown recently in animal cells that, in addition to converting
adenine to guanine, ABEs could also convert cytosines that are in
a narrow editing window (positions −16 to −14) and in a con-
fined ‘TCN’ nucleic-acid sequence context, into guanine or
thymine (Kim et al., 2019). In order to check whether this unpre-
dicted activity was present in P. patens, we designed two sgRNAs,
sgRNA#24 and sgRNA#25 containing a ‘TCN’ sequence context
with the C present in the narrow editing window (Fig. S7). Anal-
ysis of 75 plants that were modified by the ABE editor at the
sgRNA#24 or #25 targets showed efficient substitution of the A
in the editing window with no co-substitution of the C in the
‘TCN’ sequence context (Fig. S7), suggesting that the phe-
nomenon observed in animal cells could not be generalised. Con-
cerning the positions of the adenines that could be substituted,
analysis in five different sgRNAs targets showed that adenines
present in the 4-bp editing window (positions −17 to −14) previ-
ously reported (Eid et al., 2018), were efficiently edited also in
P. patens. Interestingly, exclusive substitution of an A in position
−13 could also be observed (sgRNA#1 and sgRNA#24, Figs
S5b,S7). Finally, for target sequences presenting more than one
A in the editing window, as was the case for sgRNA#23
(Fig. S5b), at least two As could be modified simultaneously.

Predicted potential off-target sites are not affected by
base-editing activity in P. patens

The sgRNAs used in this study were designed to minimise poten-
tial off-target cleavage in the P. patens genome (Phytozome 3.1)
using the CRISPOR software package (Concordet & Haeussler,
2018). We focused our analysis on two sgRNAs (sgRNA#1 and
sgRNA#2) for which no perfect 20-bp matches were found, but
potential off-target sequences presenting three to six mismatches
were identified: nine for sgRNA#1 and four for sgRNA#2
(Table S8). All these potential off-target loci were amplified with
surrounding primers and sequenced in 39 clones transformed
with pnCas9-ABE1 and psgRNA#1, and 39 clones transformed
with pnCas9-CBE1 and psgRNA#2 that were all previously iden-
tified as mutated at the APT locus. No mutation could be
detected in the potential off-target sequences for any of the tested
clones, suggesting that Cas9-dependent predicted off-target activ-
ity may be low in P. patens.

BE allows the generation of multiple variants of the APRT
enzyme

Altogether, use of CBE and ABE strategies with multiple sgRNAs
allowed the selection of 38 plants containing different variants of
the APRT enzyme and showing combinations of one to four
amino-acid modifications (Table S9; Fig. S8). To understand
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how CBE- and ABE-induced substitutions were associated with
APRT loss of function, we focused our analysis on apt mutants
showing one amino-acid change, and investigated the role of
these single mutations on the APRT 3D structure. Because of the
high level of identity of the P. patens APRT to the APRT pro-
teins from different kingdoms (45% and 42% to E. coli and
human APRT proteins, respectively) and the availability of sev-
eral APRT 3D structures, we used homology modelling to build
a P. patens APRT 3D model. All the sequences were aligned
using Modeller 9.18 (Fig. S8). Based on multiple alignments of
the APRT sequences, a model was created for the P. patens APRT
(Fig. 5). The P. patens APRT monomer model is a single-do-
main structure composed of eight α-helices and nine β-strands
that can be divided further into the ‘hood’ (residues 1–39)
responsible primarily for base recognition and the definition of
substrate specificity, the ‘flexible loop’ (residues 98–115) and the
core (residues 40–184) (Fig. S8) that corresponds to the con-
served type I PRTase fold (Phillips et al., 1999; Shi et al., 2001).

The four mutated residues (single mutations) associated with
APRT loss of function were reported on the APRT 3D model,
where they were all in important structural or functional domains
(Figs 5,S9). Arginine 54 (Arg54) at the end of the helix H3,
isoleucine 63 (Ile63) in β-strand S3, proline 75 (Pro75) in the

helix H4, are all located in the core subdomain, and tyrosine 103
(Tyr103) is at the end of β-strand S5. Arg54 is surrounded by
residues implicated in intraside-chain polar contact (Tyr55–-
Glu154–Gln58/Asp6–Tyr176) and the R54C mutation could
impair the formation of this interaction, and therefore the correct
folding of the protein. It is highly likely that the mutation at posi-
tion 75 could disturb the helix H4 and lead to abnormal protein
folding. Tyr103 is highly conserved in the eight APRT enzymes of
the different kingdoms, and is thought to be involved in the con-
formation of the flexible loop that is proposed to close the active
site during catalysis (Shi et al., 2002).

Efficient base editing of a gene of interest in P. patens using
CBE and ABE

We have shown before that APT-base-edited plants could be iso-
lated after selection on G418 of CBE-transfected protoplasts. In
order to test the portability of this BE strategy based on selection
on G418, for genes for which the mutations cannot be positively
selected we decided to target three genes located on three differ-
ent chromosomes in the P. patens genome (Fig. S10) and encod-
ing respectively, violaxanthin de-epoxidase (VDE) protein
(Pp3c3_13220), a C2H2 zinc finger transcription factor
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(Pp3c14_9040), and the tetratricopeptide-repeat protein 39C
(TTC39C) protein (Pp3c17_3870). Protoplasts were transfected
with the pnCas9-CBE1 plasmid and either of the sgRNAs expres-
sion vectors targeting the three genes. The regenerating proto-
plasts were transferred onto a medium containing the antibiotic
G418 in order to select clones expressing the transfected plas-
mids. Sequence analysis of the targeted genes showed that 55%
for sgRNAPp3c3, 23% for sgRNAPp3c14 and 51% for
sgRNAPp3c17 of the transfected (G418 resistant) clones showed
a cytosine edited at the targeted locus (Fig. 6a). As observed for
the sgRNAs targeting the APT gene, the ratio of C-to-T, C-to-A
and C-to-G varied from one sgRNA to the other, but with a
majority of C-to-T substitutions (Figs 6b, S6). Analysis of the
mutations induced at the three different loci showed that editing
of the cytosines present in the editing window led to the produc-
tion of different amino-acid changes and premature stop codons
for the three different proteins.

The genomic region targeted in the P. patens VDE gene has a
key role in regulation of photosynthesis. When plants are exposed
to excess light, VDE catalyses the conversion of the carotenoid
violaxanthin into another one, zeaxanthin (Baroli et al., 2000).
The VDE-dependent zeaxanthin synthesis contributes to the dis-
sipation of excess energy through a mechanism called NPQ. The
assessment of NPQ levels, calculated from the measurement of
chlorophyll a fluorescence, therefore allows inferring VDE activ-
ity in vivo (Pinnola et al., 2013). The availability of structural
data on VDE allows the identification of key residues for its activ-
ity (Arnoux et al., 2009) such as amino acids involved in violax-
anthin binding that have been shown to be essential for protein
activity in Arabidopsis VDE thanks to in vitro assays (Saga et al.,
2010) (Fig. S11). Base editing of the three cytosines present in
this catalytic region led to the production of six variants. Variant
vde#20 contains a premature stop codon leading to a truncated
VDE, the other variants are modified on one or two of amino
acids D177, W178 and Y179 (Table S10; Fig. S11). All vde-edited
plants showed an impaired NPQ response, with a phenotype

similar to vde KO plants (Fig. 6c,d). These results confirmed on
one side the essential in vivo role of the targeted amino acids in
VDE activity in P. patens, and more importantly in this context,
provided an in vivo demonstration of the specific alteration of
protein activity using gene editing of selected amino acids (Fig.
6).

These data showed that selection of transfected clones on
G418 can be used to detect base-editing events in the three tar-
geted genes of this study leading to efficiencies ranging from
23% to 55%. However, it must be noted that 12–16% of the
edited clones were chimeric (Fig. 6a).

The SMART strategy for efficient base co-editing of a gene
of interest in P. patens

In order to increase the efficiency of selection for base-edited
clones and reduce the risk of chimerism we used the APT gene as
a reporter of editing efficiency. Because the apt mutants show a
developmental phenotype (decreased number of gametophores,
see Fig. S8b) that could potentially interfere with phenotyping of
a mutant in a given gene of interest, we could not use a strategy
based on co-editing of the wild-type APT gene and the gene of
interest. For this reason, we based our strategy on the reversion of
an existing apt mutation toward the wild-type allele of the APT
gene. Co-editing of this apt mutation and of a gene of interest
should permit the selection of individuals mutated in the gene of
interest but wild-type for the rest of their genome. For this pur-
pose, we took advantage of the hypersensitivity of the apt
mutants, compared with the wild-type, to the substrate of APRT,
the adenine (Figs S1, S8b). We selected the apt mutant ABEv#1
obtained in this study (Fig. S8b) and tried to suppress the sensi-
tivity to adenine in this mutant by reverting the initial mutation.
In ABEv#1, the Y103C substitution that confers resistance to 2-
FA and hypersensitivity to adenine, can be restored to the wild-
type sequence via a C103Y substitution. We designed an sgRNA,
sgRNArestor, that through a C-to-T base editing with the CBE
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Fig. 5 Single amino-acid modifications by CBE or ABE in the Physcomitrium patens APRT. View of the Physcomitrium patens APRT 3D model. The APRT
protein consists of eight α-helices (in red) and nine β-strands (in yellow) which can be divided further into the hood (residues 1–39), the flexible loop
(residues 98–115; β5 and β6) and the core (residues 40–184). Amino acids that could be modified as single substitutions using CBE or ABE are indicated.
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system could cause this mutation. This reversion should lead to
clones that are sensitive to 2-FA but resistant to adenine (Figs 7,
S12).

Based on this, protoplasts from the ABEv#1 mutant were co-
transfected with the CBE system and two different sgRNAs,
sgRNArestor and sgRNAPp3c3 used previously to target the VDE
gene. The regenerating protoplasts were transferred onto medium
containing adenine in order to select clones of the ABEv#1 mutant
that were edited and in which function of the APRT enzyme was
restored. Sequence analysis of the APT gene in these clones
(Table S11) showed that sgRNArestor can efficiently restore a
wild-type APRT activity by reverting the Y103C mutation to
C103Y. This reversion was sufficient to restore a perfect wild-type
APRT sequence (38% of the clones), or it could be accompanied
by the replacement of the glutamic acid in position 102 by an
aspartic acid, a lysine or a glutamine. Interestingly, restoration of a
wild-type APRT activity could also be obtained by replacement of
the cysteine in position 103 by a phenylalanine (C103F) accompa-
nied or not by the replacement of the glutamic acid in position
102 by an aspartic acid. Sequence analysis of the VDE gene show
that its concomitant editing with the APT gene was very efficient
(Table S11; Fig. 6a). Using this strategy of selection on adenine
for co-editing of the gene of interest and of the APT reporter gene,
the efficiency of base editing of the VDE gene reached 90%, com-
pared with the 55% efficiency observed using selection on G418,
and furthermore increased the number of VDE variants. In addi-
tion, the number of chimeric clones was decreased more than
three-fold (Fig. 6a), making this system of selection, that we
named SMART, a very powerful tool for base editing of genes of
interest in P. patens.

Discussion

A wide range of gene function analysis tools is available for the
model plant P. patens, such as gene replacement through homol-
ogous recombination, gene knock-down through RNA silencing
or gene knock-out through CRISPR-Cas (Rensing et al., 2020).
Here, we adapted the plant CBE and ABE systems to efficiently
and specifically achieve targeted modification of single or multi-
ple cytosines and adenines in P. patens. We showed that CBE
and ABE strategies are efficient in P. patens and deciphered their
different characteristics and outputs.

The results presented here show that, in P. patens, the
PmCDA1-based CBE strategy allows substitution of one or more
cytosines in an editing window slightly larger than the one previ-
ously described (Nishida et al., 2016) including nucleotides −20
to −14 from the PAM. The majority of the modifications corre-
sponded to C-to-T substitutions but, depending on the sgRNA
used, the ratio of edited plants showing indel mutations at the tar-
geted site could reach almost 50%. This is in line with what can be
observed in rice, for which the different CBE strategies gave rise to
22% to 71% of plants showing indel mutations (Li et al., 2017;
Ren et al., 2018). The observed byproducts occurred in the editing
window, and were more frequent when the editing window con-
tained more than one cytosine. These are likely to be due to the
unfaithful BER of the uracil through nonhomologous end joining.
As previously observed in other plants or animal cells, the TadA-
based ABE strategy allows efficient substitution of one or more
adenines present in the predicted editing window by guanines
with very few byproducts, which were observed only when multi-
ple nearby sgRNAs were used at the same time. These byproducts
are close to the predicted cutting site of the nickase, and are proba-
bly due to Cas9 nickase activity. For ABE, only very few byprod-
ucts could be found with more than 98% of the modifications
corresponding to A-to-G substitutions. In animal cells, ABE has
been shown to be able to convert cytosines that are in a confined
‘TCN’ nucleic-acid sequence context into guanine or thymine
(Lee et al., 2018; Kim et al., 2019). We could not detect this addi-
tional activity in P. patens, reinforcing the high level of precision
of the ABE strategy in this organism.

Because BE strategies are based on dead or nickase Cas9, and
as such do not produce double-stranded breaks, a theoretical
major advantage of BE over classical editing via Cas9 is the recov-
ery of a more precise edited product with few or no off-targets.
Low levels of gRNA-dependent off-target DNA base-editing
activity for CBE or ABE editors have been shown in animals (for
a review see Molla & Yang, 2019) and in plants such as rice or
tomato (Shimatani et al., 2017; Hua et al., 2018). However,
unbiased whole genome analyses (WGA) in rice, oilseed rape and
mouse embryos (Jin et al., 2019; Zuo et al., 2019; Cheng et al.,
2021), have shown that CBEs derived from the rat APOBEC1
deaminase can induce substantial genome-wide Cas9-indepen-
dent off-target mutations. Interestingly, this gRNA-independent
off-target DNA base-editing activity was not observed for the

ABEv#1(2-FAR AdeS) 
Wild type GOI

Restored APT (2-FAS AdeR)

Base-edi�ng
PpCBE1 + 

sgRNArestor + 
sgRNA-GOI apt

GOI

APT

GOI

APT

goiSelec�on 
on adenine 

GOI editedGOI not edited

Fig. 7 The SMART strategy for efficient base co-editing of a gene of interest in Physcomitrium patens. Principle of selection of base-edited events using
adenine selection. The ABEv#1 mutant is co-transfected with the CBE system and two different sgRNAs, sgRNArestor and a sgRNA targeting a gene of
interest (GOI). Base editing at the apt locus with sgRNArestor can restore APRT function and confer resistance to adenine. Adenine-resistant clones can be
co-edited or not at the GOI locus.
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ABE editor in rice (Jin et al., 2019). Such unpredicted off-target
activity of CBEs was also demonstrated for alternate cytosine
deaminase domains in E. coli, and motivated the production of
engineered CBEs with low levels of Cas9-independent off-target
activity (Doman et al., 2020). We have shown in this study that
the PmCDA1-based CBE and TadA-based ABE editors used in
this study have a low or null predicted gRNA-dependent off-tar-
get activity. Concerning a possible unpredicted off-target activity
of these BEs, it must be noticed that no such activity could be
detected in rice for the ABE used in our study (Jin et al., 2019).
For CBE, if the PmCDA1-based CBE showed only low levels of
Cas9-independent deamination in E. coli compared with other
cytosine deaminases, this activity was significantly higher in
mammalian cells (Doman et al., 2020). Only an unbiased WGS
analysis would address the possible unpredicted off-target activity
of these BEs in P. patens and permit a conclusion on the preci-
sion of these BEs in this plant.

Using selection on G418 for CBE- or ABE-transfected proto-
plasts we could demonstrate efficient editing of genes of interest.
This allowed us to produce multiple variants of the APRT
enzyme. In humans, alterations of APRT activity can lead to kid-
ney stone disease (nephrolithiasis), and more than 40 mutations
have been described to date leading to this metabolic defect
(Rumsby, 2016). Some of these mutations are present in domains
that were affected in our P. patens APRT variants. For instance,
the common D65V mutation found in British, Icelandic and
Spanish patients affected by nephrolithiasis modifies APRT helix
H4, as do our variants P75I, P75L and P75R. Mimicking in the
P. patens the APRT mutations causing human nephrolithiasis
could be potentially informative in terms of conservation
between kingdoms of APRT functions. Taking into considera-
tion the potential sgRNAs (using an NGG PAM) present in the
APT gene, 40% of the APRT amino acids could theoretically be
modified using a combination of the two ABE and CBE editors
used in this study. Recently, we have shown that the SpCas9 vari-
ant, SpCas9-NG, is active in P. patens for CRISPR-mediated
gene knock-out applications (Veillet et al., 2020b). Because this
variant recognises NGN PAMs, setting up a BE strategy based on
a SpnCas9-NG variant should theoretically permit the modifica-
tion of 100% of the amino acids encoded by the APT gene, rein-
forcing the usefulness of these ABE and CBE strategies. The
great potential of these BE strategies for functional analysis was
confirmed for three other genes, including the VDE gene. The
latter allowed us to demonstrate in vivo the essential role of the
targeted amino acids in VDE activity in P. patens. Nevertheless,
analysis of the edited clones obtained after selection on G418
showed that significant numbers of edited clones were chimeric.
This should be taken into consideration when P. patens proto-
plasts clones were selected for transient transfection of BE editors
using antibiotics. The possibility of the existence of such chimeric
clones in other protoplast-based BE editor transfection systems
(e.g. potato or tomato) would probably deserve attention.

Finally, by using APT as a reporter gene, we propose the SMART
approach to efficiently select base editing in target genes. Using the
SMART selection system, based on co-editing of a gene of interest
and of a mutated version of the APT, and selection on the APRT

substrate adenine, we could both diminish the proportion of chimeric
clones and increase the efficiency of precise cytosine base editing sig-
nificantly, reaching an efficiency of editing of 90%. This strategy is
also possible for ABE starting from an apt mutant obtained via the
CBE strategy. Furthermore, as multiplex base editing has been
reported in dicot and monocot plants (Shimatani et al., 2017, 2018;
Hua et al., 2018) and because the APRT function is a very conserved
enzymatic function in all kingdoms, the SMART strategy presented
here should be applicable to different flowering plants. It would
potentially be an additional tool for transgene free editing in crops,
already obtained using the ALS gene for example (Veillet et al.,
2019b), but would present the advantage of not including a selection
step on herbicides or antibiotics.

In conclusion, we demonstrated here that CBE and ABE edi-
tors can be very useful tools for in-depth gene function analysis
in P. patens. We provide information on the nature of the edited
products, windows of editing, simplex versus multiplex systems
and selection strategies, which should facilitate their use in this
model plant. BE editors extend the already imposing tool box for
precise genome editing in P. patens, such as gene replacement
through homologous recombination (Schaefer, 2001), that could
be made more efficient and precise using a CRISPR-Cas9 strat-
egy (Collonnier et al., 2017b), or via an elegant recent strategy
also based on CRISPR-Cas9 but using oligonucleotide templates
(Yi & Goshima, 2020). In theory, all these strategies could bene-
fit from the SMART co-editing selection system described here.
Finally, in addition to being an easy-to-implement alternative to
these base modification strategies, the BE system described here
makes possible the in vivo random mutagenesis of a given gene, a
powerful new tool for gene function analysis in P. patens that
should reinforce the status of P. patens as a powerful platform for
functional analysis of plant genes.
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