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A Lightweight Depth Estimation Network for
Wide-baseline Light Fields

Yan Li, Qiong Wang, Lu Zhang, Gauthier Lafruit

Abstract—Existing traditional and ConvNet-based methods for
light field depth estimation mainly work on the narrow-baseline
scenario. This paper explores the feasibility and capability of
ConvNets to estimate depth in another promising scenario:
wide-baseline light fields. Due to the deficiency of training
samples, a large-scale and diverse synthetic wide-baseline dataset
with labelled data is introduced for depth prediction tasks.
Considering the practical goal for real-world applications, we
design an end-to-end trained lightweight convolutional network
to infer depths from light fields, called LLF-Net. The proposed
LLF-Net is built by incorporating a cost volume which allows
variable angular light field inputs and an attention module
that enables to recover details at occlusion areas. Evaluations
are made on the synthetic and real-world wide-baseline light
fields, and experimental results show that the proposed network
achieves the best performance when compared to recent state-
of-the-art methods. We also evaluate our LLF-Net on narrow-
baseline datasets, and it consequently improves the performance
of previous methods.

Index Terms—Light field, depth estimation, convolutional neu-
ral network, lightweight, wide-baseline, narrow-baseline, syn-
thetic dataset.

I. INTRODUCTION

IN practical research areas such as 3D reconstruction,
view synthesis and autonomous driving, accurate depth

estimation is crucially needed. The light field, referred to as
4D computational photography technology, has been active in
reconstructing depth in the real-world scenes. Different from
2D photography, light fields record the radiance of the lights
from diverse directions, enhancing possibilities of perceiving
depth. In this work, we focus on depth estimation for light
fields.

Existing light field datasets can be divided into narrow-
baseline and wide-baseline. Narrow-baseline light fields are
typically captured by a plenoptic camera where a grid of
micro-lenses are placed between the main lens and the image
sensor, e.g., Lytro ILLUM camera [1]. A light field image
from the camera is usually separated into the so-called sub-
aperture images, and the baseline between sub-aperture images
is very narrow. To date, traditional [2–13] and ConvNet-based
[14–20] methods have been well studied for high performance
in narrow-baseline light fields, and achieved a low percentage
of errors, e.g., EPINET [19]. For wide-baseline light fields,
they are usually captured by a camera array or gantry (i.e.,
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Fig. 1. An example of the proposed wide-baseline light fields. Our network
LLF-Net has the fewer parameters (1.8 million) but is capable of performing
more accurate depth estimation when compared to LBDE-E [25] with 198.8
million parameters and EPI-Shift [26] with 31.6 million parameters.

a conventional camera is placed onto a gantry, and then
uniformly moved by a motor in a plane). The baseline between
the recorded wide-baseline light-field images is large and the
spatial resolution of images is usually high. Compared with the
narrow-baseline scenario, the wide-baseline is more capable
of improving depth accuracy due to its large baseline [21].
Up to now, considerable efforts have been also made by
traditional methods [3, 6, 10, 13, 22–24] to solve the problem
of depth estimation in the wide-baseline scenario. However,
ConvNet-based approaches are rarely studied in this scenario.
Our objective is to explore and apply ConvNets into depth
estimation for wide-baseline light fields.

Training ConvNets requires a large amount of labelled data.
Unfortunately, there were no large-scale public wide-baseline
light field datasets to the extent that limits the development
of ConvNet-based methods. For a new dataset creation, a
straightforward way is to collect real data and label them
through physical depth sensing devices (e.g., structure light
sensor or LiDAR). However, it is difficult, tedious or even un-
suitable: structured light sensor is cheap but usually produces
inaccurate depth which may cause performance degradation
in ConvNets models, while LiDAR offers accurate depth but
is unaffordable. Similar to the narrow-baseline scenario, we
put effort into creating a synthetic wide-baseline dataset with
accurate (ground truth) depths, aiming at training and evaluat-
ing ConvNet models, inferring depth for real-world datasets,
and serving to the research community for future promising
researches. We use a 3D computer graphics software to create
a large-scale, wide-baseline synthetic dataset with diversities
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(around 0.4K light fields), called WLF. It consists of two
subsets: photo-realistic subset (Hand-designed), and nearly
photo-realistic subset (Flying-objects). Fig. 1 shows an ex-
ample scene that contains light fields and ground truth.

With respect to the ConvNet model for wide-baseline sce-
nario, we consider to develop a lightweight model toward
more practical goals, e.g., applications in mobile devices. To
date, Shi et al. [25] present a divide-and-train deep model
and Leistner et al. [26] present an end-to-end trained deep
model for wide-baseline light field depth estimation. However,
the two models have more than 198 million parameters and
31 million parameters respectively, which are so heavyweight
that they are less suitable for practical applications. Since
EPINET [19] achieves the state-of-the-art performance in the
narrow-baseline scenario with much fewer parameters (5.1
million), we made an attempt to test and re-train (denoted as
EPINET T) the proposed WLF dataset, but the performances
are too poor (cf. Fig. 10). Thus, we put forward a novel
end-to-end trained lightweight and effective network LLF-Net
by taking knowledge from stereo-based ConvNet models. As
shown in Fig. 1, our model is lightweight and the quality of
our reconstructed depth map is superior to the state-of-the-art
methods in the wide-baseline scenario.

In our network, features are extracted for each view of the
horizontal and vertical stream of light field views, and then
the cost volume is obtained by a sequence of operations, i.e.,
shift-interpolation, cost calculation and fusion operations. With
respect to the fusion, a divide-concatenate-sum operation is
adopted, allowing flexible light field inputs while maintaining
depth accuracy. An attention mechanism is proposed used in
the cost aggregation module to adaptively assign weights to the
feature maps of image views in each stream (view attention)
and to the two streams (stream attention), which helps depth
estimation at occlusion regions and preserves depth disconti-
nuities. We make evaluations of the proposed network on the
WLF test set and real-world datasets, and experimental results
show that our network outperforms state-of-the-art methods in
both quantitative and qualitative evaluations.

The main contributions of our work are summarized as
follows:

1) We introduce a large-scale and diverse synthetic dataset
with ground truth labels in the wide-baseline scenario for the
first time (to the best of our knowledge), offering possibilities
to further exploit and validate the learning-based methods.

2) We design a novel end-to-end trainable lightweight
network for light field depth estimation.

3) Our network is built with the novel cost volume module
that allows flexible light field inputs, and the attention module
for better handling occlusions and preserving depth disconti-
nuities.

4) The performance of the proposed network outperforms
state-of-the-art light field depth estimation methods in the
wide-baseline scenario, and even the narrow-baseline scenario.

We have released the training sets, comprising of part I
at https://zenodo.org/record/3931237.X1 B RT7SaF and part
II at https://zenodo.org/record/3934712.X1 CoxT7SaF. The
rest of the proposed WLF dataset, the trained models and
the source code of the proposed model are released at

https://sites.google.com/site/yanliresearch/llf-net after publica-
tion, which can be used for reproducing our results, compar-
isons and further improvements.

II. RELATED WORK

A. Deep learning-based methods

Recently, deep learning methods have gained much attention
in estimating depth from light fields. Heber et al. [14], Luo
et al. [15], Heber et al. [16] and Feng et al. [17] feed the
input of Epipolar Plane Image (EPI) to the ConvNet where
the network learns the proportional relation between the slope
of the epipolar line and depth. However, this relation is hard
to learn in wide-baseline light fields due to the absence of
the epipolar line on the EPI. Shin et al. [19] present the
EPINET where the geometric characteristic of epipolar images
is used for depth estimation. EPINET achieves top-performing
performance for the narrow-baseline scenario, but poor perfor-
mance for the wide-baseline scenario even with re-training on
wide-baseline datasets. Shi et al. [25, 27] propose to fine-tune
FlowNet 2.0 [28] for the initial depth prediction, followed
by a refinement network to improve depth quality. Leistner
et al. [26] present an EPI-Shift network, where light field
stacks are shifted from wide-baseline to narrow-baseline, and
then used to predict depths by trained models from narrow-
baseline datasets. Though these two methods can work onto
wide-baseline light fields, both models are heavyweight and
not suitable for practical applications. In contrast, our proposed
network is a lightweight network, and able to perform well on
the wide-baseline light field inputs.

B. Light Field Datasets

We review the publicly available synthetic light field dataset,
which are frequently used for training or comparing the
performance of competing ConvNet-based methods in depth
estimation.

Most of these available datasets belong to the narrow-
baseline, which are composed of a grid of 9x9 light field
image views and with the small disparity range [-4, 4] (HCI
[29], CVIA-HCI [30], and DLFD [31]). HCI [29] and CVIA-
HCI [30] are the two most frequently-used datasets for the
narrow-baseline scenario in literature. The HCI includes 7
frames/scenes with available full ground truth depths, which
are usually used for evaluation. The CVIA-HCI includes 16
frames with available ground truth depths that are provided for
training, and 8 frames with available ground truth provided
for evaluating the methods. Nevertheless, models trained on
the CVIA-HCI and/or even HCI and DLFD datasets are not
able to infer depth well on wide-baseline datasets due to the
mismatch between the source and target disparity range. Hence
we propose to build a large-scale light field dataset to train the
deep models and stimulate more future developments for the
wide-baseline scenario.

III. METHODOLOGY

The goal of the proposed method is to estimate the dense
depth map for the center view from light fields. The light field
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Fig. 2. Overview of the proposed network architecture.

inputs are parameterized by the two-plane parametrization
L(x, y, u, v), where (u, v) are the camera plane coordinates
and (x, y) are the image plane coordinates. The relationship
between the other views and center view are represented as:

L(x, y, u, v) = L(x+ (u∗ − u)d(x, y), y + (v∗ − v)d(x, y),

u∗, v∗), (u ∈ [1, N ], v ∈ [1, N ])
(1)

where N denotes the number of (angular) views along the
horizontal and vertical directions in light fields, (u∗, v∗)
represent the coordinates of the central view, and d(x, y) is
the disparity of the pixel (x, y) in the central view (i.e.
the offset between the central view and its adjacent right
view). Estimating the disparities (or depths) of the central view
corresponds to searching the offset of corresponding points in
other views.

An overview of the proposed network architecture is illus-
trated in Fig. 2 and detailed in Table I. The cross-hair of
light field images are used and fed into the proposed network.
To make image correspondence features distinguishable, deep
feature descriptors are extracted for each view from cross-
hair views in the Feature Extraction (Section III-A). Next, the
discriminative cost volume [3, 4] is constructed by operating
all extracted features in the Cost Volume Generation (Section
III-B). Afterwards, an attention mechanism is introduced to
remove disparity errors caused by the occlusion, and a 3D
encoder-decoder network is applied to regularize the disparity
space in the Cost Aggregation (Section III-C). Finally, the
disparity map is produced in Disparity Regression (Section
III-D), and the smooth L1 loss (Section III-E) is used for
training our network.

A. Feature Extraction

Our network takes as input the horizontal and vertical
streams of image views with the dimension H × W × N
from light fields, where H and W represent the height and
width of image (spatial resolution). We apply a 2D plane
convolution network to extract distinct features. It is firstly
constructed by one convolution layer and one Conv-Bn-Relu

TABLE I
THE DETAILS OF THE PROPOSED NETWORK ARCHITECTURE.

Layers Output size Input layer Output layer
Feature extraction (for each X ∈ S0◦ ∪ S90◦ )

Conv K2S2 H/2×W/2× C X C1 1
ConvBnR K2S1 H/2×W/2× C C1 1 C1 2

Conv K2S2 H/4×W/4× C C1 2 C2 1
ConvBnR K2S1 H/4×W/4× C C2 1 C2 2

Cost volume (C2 2S0◦ = {C2 2}N1 , C2 2S90◦ = {C2 2}N1 )
Shift Cost L/4×H/4×W/4× NC C2 2S0◦ SIC1
Shift Cost L/4×H/4×W/4× NC C2 2S90◦ SIC12

Div Concat L/4×H/4×W/4× 6C SIC1, SIC2 {DC}3(N−1)/2
1

Sum L/4×H/4×W/4× 6C {DC}3(N−1)/2
1 [CV0◦ , CV90◦ ]

View and Stream attention
View Attention 0◦ L/4 × H/4 × W/4 × 3C CV0◦ CV v1

View Attention 90◦ L/4 × H/4 × W/4 × 3C CV90◦ CV v2
Stream Attention L/4 × H/4 × W/4 × 6C CV v1, CV v2 CV s

Cost regularization
3DConvBnR K3S1 L/4 × H/4 × W/4 × 2C CV s 3Cbr1
3DConvBnR K3S1 L/4 × H/4 × W/4 × 2C 3Cbr1 3Cbr2
3DConvBnR K3S2 L/8 × H/8 × W/8 × 4C 3Cbr2 3Cbr3
3DeConvBnR K3S2 L/4 × H/4 × W/4 × 2C 3Cbr3 3DCbr1
3DeConvBnR K3S1 L/4 × H/4 × W/4 × 1 3DCbr1 3DCbr2

Upsampling L × H × W × 1 3DCbr2 Up1
SoftArg H × W × 1 Up1 D̃

block (a convolution layer followed by a batch normalization
layer, and a ReLU layer), in which the stride of the former
convolution layer is set to 2 for down-sampling inputs and
the latter is set to 1. Then the same structure is repeated to
produce sub-scale features. Finally, the output feature maps
are downsized to a quarter spatial resolution. The kernel of the
convolution filters is 2x2. We adopt the shared 2D network on
both streams of views since we found sharing parameters is
better than the non-sharing case in terms of disparity accuracy
and efficiency.

B. Cost Volume Generation

Given two streams of feature maps, a sequence of opera-
tions, i.e., shift-interpolation, cost calculation and fusion are
used to generate the cost volume. Note that building the cost
volume does not introduce any parameters to train.

1) Shift-Interpolation: The feature maps of the central view
Fr are regarded as the reference, and the others along the
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Fig. 3. Variants for cost fusion (best viewed in color).

stream are the target feature maps Ft. The feature maps of
target views Ft are shifted toward the reference view by each
hypothesis disparity d̂ within the disparity range (see Eq.
2). Then the bilinear interpolation is employed to calculate
appropriate values for each pixel at sub-pixel position.

d̂ = dmin + n(dmax − dmin)/L, (n ∈ {0, 1, ..., L− 1}) (2)

where dmin, dmax and L represent the minimum and max-
imum disparity in the range and the number of labels (or
discrete disparities), respectively. The dimension of (warped)
feature maps for each target view and the feature maps for the
reference view is herein (L×H l×W l×Cl), where l denotes
the scale level and C indicates the channels.

2) Cost Calculation: After obtaining the warped feature
maps from streams of target views at the scale level l, we
calculate the matching cost by using the concatenation [32]
between the reference and target feature maps to form a 4D
cost volume, as shown in Eq. (2) and Eq. (3).

Cl(d̂, y, x, c) = C{F l(y + d̂(v∗ − v), x+ d̂(u∗ − u), ci)

, (i = 1, ..., N)}
(3)

Herein, ci denotes all the feature channels of view i.
3) Fusion: At this step, we make a fusion of calculated

costs across views and streams such that neighboring views
or streams enhance capabilities of solving ambiguity problems
in correspondence matching. Actually, there exists different
strategies to perform cost fusions. From the perspective of
input sizes, strategies vary from fixed, to non-fixed or near-
fixed inputs. Hereafter we discuss fusion variants in details,
as are demonstrated in Fig. 3.

Concat is employed to concatenate all reference-target pairs
of costs or horizontal and vertical groups of costs along the
channel dimension, where the stacked size of the former is
Ll×H l×W l×4NC, and the latter is Ll×H l×W l×2NC.
Since the number of stacked feature channels is equal to that
of convolution input filters, the networks then require the fixed
inputs (i.e. the number of input views during the test should
be the same with that during the training).

Sum computes the sum of all reference-target costs in which
each cost is calculated by the absolute difference between the
reference and target view. The sum fusion produces the fixed-
length output Ll ×H l ×W l ×C regardless of the input size.

Divide, Concat, Sum (DCS) is designed to fuse costs
across multiple-baseline cost volumes. The DCS fusion is

Fig. 4. Epipolar view and stream residual attention. Global max-pooling
is used in pooling to downsize inputs, and each first 1x1x1 convolution is
followed by a ReLU activation.

presented as the combination of the Concat fusion and the
Sum fusion. Given the cross-hair light fields, all the target
views are positioned along the four directions (i.e. left, right,
top, and bottom direction) of the reference view, and there
exists a large set of target views along each direction. Actually,
the target views in each direction are located in different
camera baselines, ranging from 1 to N-1; thus there might
exist redundancy among these baselines. An intuitive idea for
eliminating this redundancy is to make fusions across the
baselines. Specifically, we propose to divide the cross-hair
light field inputs into (N-1)/2 groups with the same baseline
of views; and each group contains five views, including one
reference view and its four directional neighboring target
views. For each group, all feature maps are firstly concatenated
across the channel dimension (Concat fusion). Then we take
the sum over all groups (Sum fusion). Note that the vertical
views are not rotated by 90 degrees. Compared with the pure
Concat fusion, this fusion requires any number of groups of the
above-mentioned five input views, which is not limited to the
fixed number of input views. Compared with the Sum fusion,
this fusion maintains absolute directional information, which
might contribute to high depth accuracy. The fused output,
comprised of the horizontal part CV0◦ and the vertical part
CV90◦ (see Fig. 3), has the dimension Ll ×H l ×W l × 6C.
DCS is flexible in the number of input angular views N . Note
that when N is set to 3, DCS will be the same with the Concat
fusion.

C. Cost Aggregation

Cost aggregation is leveraged to refine the fused cost volume
since we did not take into account the potential occlusion
issues before. With respect to the occlusion, we know that
the same 3D real-world point that is visible in the reference
view might be occluded by foreground objects in the target
view, which leads to difficulties in finding correspondences.
This issue is alleviated in our input cross-hair light fields since
points might be visible in some angular views. Moreover, we
are aware that points are occluded in the horizontal stream
of views but might be less or not occluded in the vertical
stream of views, and vice versa (cf. Fig. 8). Likewise, for
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any stream that consists of multiple views, the point is not
seen in some target views, but might be visible in other
views. Thus, if all views are equally used in searching the
correspondence, the occlusion issue appearing in some views
or stream can cause trouble to find the correct disparity due to
the mismatches. This implicitly indicates that the cost features
calculated from the Cost Volume Generation are not equally
important. Note that 2D attention modules (e.g. used to change
the weights of the features on each stage of the ResNet to
enhance the consistency [33]) are increasingly used in deep
neural networks to focus on what we want. To make our
model focus on more informative features (e.g. that are more
helpful for alleviating the occlusion issue and preserving depth
discontinuity), we extend the 2D attention network to two
types of 3D attention networks (view attention and stream
attention). The view attention module is designed to exploit
the interdependencies among feature channels with the same
angular direction (0◦ or 90◦), while the stream attention mod-
ule is designed to exploit the interdependencies among feature
channels with different angular directions (cross-direction).
Thus, the input of “View Attention 0◦” is the horizontal part of
the output of “Sum” (CV0◦ ) and the input of “View Attention
90◦” is the vertical part of the output of “Sum” (CV90◦ ), cf.
Table I or Fig. 3; and the input of the “Stream attention” is
the concatenation of the output CV v1 from “View Attention
0◦” and the output CV v2 from “View Attention 90◦” along
the channel dimension. For the attention block, cf. Fig. 4, the
global average pooling is applied to capture the channel-wise
statistics of the cost volume, followed by a simple gating
mechanism capturing the channel-wise dependencies of the
cost volume. Within this gating mechanism, the softmax op-
erator in the view attention block is responsible for the output
of the attention map, containing multiple different weights for
the features in each stream; and the sigmoid operator in the
stream attention block assigns the two weights to the features
from the two streams respectively. The interdependent features
of the cost volume are thus assigned to a large weight, and
vice versa.

Followed by the attention network, a 3D encoder-decoder
network is used to regularize the output of the attention
network across the disparity dimension. This naturally involves
large context information, which enforces the smoothness at
low texture regions. This network is built by three 3D con-
volutions and two transposed convolutions. Last, the bilinear
interpolation is used to resize back to the same spatial resolu-
tion of inputs, and the output has the dimension L×H×W×1.

D. Disparity Regression
The differential soft argmin operator proposed by [32] is

employed to obtain the final disparity map. The soft argmin
operator regresses continuous disparities D̃ by calculating the
expectation of weighted disparities, as given in Eq. 4,

D̃ =

dmax∑
d̂=dmin

d̂ ∗ P (d̂) (4)

where P (d̂) is the weight probability of the pixel at disparity
d̂.

E. Training Loss

We use the smooth L1 loss for the training process, which
is computed between the predicted disparity d̂ and the ground
truth g in patch p as in Eq. 5 and Eq. 6,

L =
∑
i∈p

SmoothL1(d̂i − gi) (5)

SmoothL1(x) =

{
0.5x2 |x| ≤ 1
|x| − 0.5 otherwise

(6)

IV. WLF DATASET

We have designed a large-scale, wide-baseline synthetic
light field camera array dataset WLF. The quantity of the light
fields is 381, which is around 14 times larger than that of the
popularly-used dataset CVIA-HCI. Each light field provides
9x9 angular (RGB) images and ground truth disparities as
similar to the CVIA-HCI dataset. The light fields cover high
resolution (1920x1080) and low resolution (512x512) images.

A. Dataset Construction

To enrich the dataset diversity, the WLF dataset is con-
structed in two scenarios: Hand-designed and Flying-objects.
The scenes in Hand-designed and Flying-objects scenarios are
rendered by the Cycle engine in the open source software
Blender 1. Fig. 5 shows the rendered samples from these two
scenarios, and the statistics of the WLF dataset are given in
Table II.

Hand-designed Scenario: We carefully collect free 3D
models from different websites 2 with free licenses and elabo-
rately assemble them to create physically plausible and mean-
ingful scenes. Each scene contains more than two challenges
in depth estimation: fine structure, repetitive pattern, occlusion,
shading, and/or glossy appearance. Hand-designed scenario
counts the aesthetic impression, but the manual design of 3D
scenes is tedious and expensive, which causes difficulties to
generate a large size dataset. This subset includes 36 scenes,
and is split into 24 training scenes and 12 test scenes.

Flying-objects Scenario The richness of the dataset content
is significant, therefore we attempt to render new scenes with
flying objects in a faster way, which is inspired by recent
advances of synthetic scenes with flying objects [34–36] in
deep learning methods. Specifically, we carefully collect a
large number of 3D models from the websites2 and [37],
and collect the texture images and environmental maps from
Google Image. We then make a 3D cube in 3D space of
Blender software, and the surfaces of cube are randomly
textured. Next, a number of objects, which vary from 2 to 20,
are randomly and automatically put in the cube, including 1-15
static objects and 1-5 random moving objects. The objects are
randomly scaled, rotated and translated. Moreover, the light
intensity is random, and the light field cameras are randomly
and slightly translated. This subset includes 345 scenes, and
is provided for training models.

1 https://www.blender.org/ 2 https://chocofur.com, https://sketchfab.com,
https://free3d.com
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Hand-designed

Flying-objects

Fig. 5. Examples of WLF dataset: the central view and colored ground truth
disparity map are shown.

TABLE II
DATASETS STATICS OF WLF

Dataset #train #test spatial resolution disparity range
Hand-designed 24 12 1920 ×1080 [0, 50]
Flying-objects 345 512 ×512 [0, 50]

B. Evaluation metrics

To measure the accuracy of reconstructed disparities from
wide-baseline light fields, we adopt the widely-used metrics in
depth estimation [30, 38, 39], i.e., mean square error (MSE)
and bad pixels. The bad pixels are computed as the percentage
of errors between the predicted disparity and ground truth dis-
parity that are larger than a threshold. Considering thresholds
in [30, 38, 39], the thresholds of the bad pixels are set to 0.15,
0.3, 0.6 and 1 in the paper. Note that a lower MSE or bad pixel
percentage means a better performance.

V. EXPERIMENTS

A. Implementation details

We use Tensorflow [40] to implement the proposed network.
The training and inference are both run on a Windows PC
equipped with a Nvidia GTX 1080Ti GPU with 11GB mem-
ory and Intel i7 3.6Ghz CPU with 32GB memory. We use
randomly cropped patches of size 128x128 for wide-baseline
training set WLF and a smaller size 64x64 for narrow-baseline
training set CVIA-HCI (due to its smaller quantity). Color
scaling, 90, 180 and 270 degree rotation, etc are used for
increasing the number of the data samples to the order of
millions. We use the rmsprop optimizer [41], and start at the
learning rate 1e-4, and then divide it by two after 80k iterations
for WLF and after 150k iterations for CVIA-HCI. For each
iteration the mini-batch size is 8 for WLF and 16 for CVIA-
HCI respectively. The dmin and dmax in Eq. (2) are set to 0
and 50 for WLF, -4 and 4 for CVIA-HCI respectively. The
number of labels L is set to 128.

TABLE III
COMPARISONS OF THE BAD-0.3, BAD-0.6 AND PARAMETERS FOR THREE

FUSIONS IN Cost volume generation. THE BEST PERFORMANCE IS IN BOLD.

Fusion Parameters Adaptive Hand-designed
bad-0.3 bad-0.6

Concat 2.5M 7 7.00 3.37
Sum 1.5M X 12.72 5.33
DCS 1.8M X 7.01 3.04

Fig. 6. Comparisons of the DCS fusion and Sum fusion on flexible angular
inputs.

Central view Sum, 9x9
Bad-0.6: 5.66

Sum, 7x7
Bad-0.6: 5.30

Sum, 5x5
Bad-0.6: 19.15

GT DCS, 9x9
Bad-0.6: 2.85

DCS, 7x7
Bad-0.6: 4.01

DCS, 5x5
Bad-0.6: 5.30

Fig. 7. Visual comparisons of the DCS fusion and Sum fusion on flexible
angular inputs.

B. Ablation study

To validate the effectiveness of two proposed components
in the LLF-Net, i.e. the fusion in Cost volume generation
and the attention in Cost aggregation, the ablation studies are
conducted on the Hand-designed validation set that consists of
8 scenes split from the training set. The bad-0.3 and bad-0.6
metrics are used for measuring the depth accuracy.

1) Fusion in Cost volume generation: Firstly, we make
quantitative comparisons of different variants of fusions in
Cost volume generation on aspects of depth accuracy and
model size. Table III shows the evaluation results, and com-
pares their adaptive ability of testing various angular resolu-
tions without retraining the new angular resolution inputs. The
proposed DCS fusion gets the best performance by bad-0.6
metric with considerable parameters. Besides, it is not limited
by fixed angular resolution inputs.

Fig. 6 compares the performance results between two fusion
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TABLE IV
COMPARISONS OF THE DEPTH ACCURACY AND PARAMETERS WITH AND

WITHOUT ATTENTION NETWORKS IN Cost aggregation.

Dataset Parameters Hand-designed
bad-0.3 bad-0.6

w/o Attention 1.79 M 7.01 3.04
Attention 1.82 M 6.25 2.72

(a) Central view

(b) Horizontal and vertical views

(c) GT

(d) W/o att

(e) With att

Fig. 8. Visual comparisons of depth estimation results without and with
attention block. (a) central view with a selected patch P in pink bounding
box, (b) the patch P (the intersection) and the corresponding patches in the
horizontal and vertical views, where the red point indicates the pixel in the
central view is occluded in the current view, and the green point means visible
in the current view, (c) the ground truth disparity of patch P , (d) the estimated
disparity map without attention block and (e) the estimated disparity map with
attention block (best viewed in color).

ways (Sum and DCS) from testing variable angular resolu-
tions. The DCS fusion always produces more accurate depths
than the Sum fusion. When limiting the angular resolution, the
DCS achieves much better performance, which means that it is
more adaptive to limited input views. Fig. 7 illustrates visual
comparison results from these two fusions. The DCS fusion
undergoes a degradation in performance, but this is much less
than that from the Sum fusion where artifacts occur in the
disparity map.

2) Attention networks in Cost aggregation: To test the
necessity of the proposed attention networks, Table IV com-
pares the quantitative evaluation results with and without using
them. We find that using the attention networks considerably
improves the quality of estimated disparity maps.

Fig. 8 shows a visual comparison of disparity estimation
without and with using attention networks. For a pixel in the
selected patch P (see Fig. 8 (b)), it is occluded in all horizontal
views, but it is visible in all vertical views. With the attention
networks for selecting more meaningful views, the disparities
of pixels around occlusion regions are better estimated and the
sharp boundaries at depth discontinuities are better preserved,

TABLE V
TRAINING DATASET SCHEDULING.

Dataset Hand-designed
bad-0.3 bad-0.6

Hand-designed 10.18 5.53
Hand-designed+Flying-objects 6.25 2.72

TABLE VI
COMPARISONS OF THE DEPTH ACCURACY AND PARAMETERS WITH AND

WITHOUT WEIGHT SHARING IN Feature extraction.

Dataset Parameters Hand-designed
bad-0.3 bad-0.6

No sharing 2.02 M 11.25 5.12
Sharing 1.82 M 6.25 2.72

as shown in Fig. 8 (c-e).
3) Dataset scheduling: To check the necessity of the

Flying-Object subset in the proposed WLF dataset, we per-
formed ablation experiments under two different training set
scheduling schemes. As shown in Table V, the qualitative
performance with Flying-objects (with large-scale training
frames) in training is improved by a large margin.

4) Weight sharing in Feature extraction: We trained the
LLF-Net with and without the use of the weight sharing,
respectively. The two cases are compared in terms of the
number of parameters and the bad pixels with two threshold
values 0.3 and 0.6, cf. Table VI. We see that the weight
sharing case has two advantages. Firstly, the weight sharing
helps to reduce the number of parameters of the model (about
0.2 million less parameters compared with the non-sharing
case). Secondly, the weight sharing helps to improve the depth
estimation performance (the bad pixels are approximately
reduced by half). The weight sharing scheme, employed at the
low-level layers, learns a general feature representation model
for all input views, whereas the non-sharing scheme learns
distinct feature representation models for different input views.
The latter may lead to a situation where the corresponding
pixels are performed by different mathematical operations
so that the extracted features of all input views may not
be well-matched, which is not beneficial to the subsequent
correspondence searching.

5) Training patch size: The size of patches used in the
patch-wise training may influence the performance of Con-
vNets [42]. We thus investigated this influence on the per-
formance of the proposed LLF-Net. Specifically, four differ-
ent sizes, i.e. 96x96, 128x128, 160x160 and 192x192, were
selected for the experiments. From Fig. 9, we empirically
observe that the model with patch size 128x128 has the lowest
bad-0.3 and bad-0.6 errors. The patch size smaller than this
size will degrade the depth accuracy, whereas the patch size
larger than this size will make little difference, but requires a
larger GPU memory footprint.

C. Performance on wide-baseline datasets

To verify the effectiveness of our network LLF-Net on wide-
baseline light field datasets, we conducted experiments on
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Fig. 9. Comparisons of the depth accuracy using different size patches during
training.

the synthetic WLF dataset and real-world Google [43] and
ULB [44] datasets. The proposed LLF-Net is compared with
recent state-of-the-art depth estimation methods, comprising of
traditional light field depth estimation methods LF OCC [3]
and RPRF [13], ConvNet-based methods HSM [21], EPINET
[19] and LBDE-E [25]. With respect to ConvNet-based meth-
ods, HSM [21] is designed for stereo-based depth estimation,
EPINET [19] achieves top performance among published
methods in narrow-baseline light field datasets and LBDE-
E [25] achieves considerable performance on both narrow-
and wide-baseline light field datasets. Note that EPINET [19]
is originally trained on narrow-baseline datasets and fails to
infer depth in wide-baseline datasets, therefore we re-trained
it using their public source code, and denote it as EPINET T.

1) Synthetic dataset: Table VII shows the quantitative com-
parisons on the four exemplar scenes from Hand-designed test
set of the WLF dataset. Comparing to state-of-the-art methods,
our proposed LLF-Net achieves the lowest bad pixel errors in
all four scenes. In Fig. 10, visual comparisons of these scenes
are given, in which the first column for each scene displays the
ground truth or estimated disparity map and the second column
shows the central view and bad pixel error map. It is clear that
our estimated disparity maps are all closer to the ground truth
and have the fewest number of bad pixels. In contrast, the
estimated disparity maps from LF OCC are noisy, those from
RPRF look over-smoothed and have quantification errors, both
EPINET and EPINET T fail to predict disparities, HSM [21]
is disturbed by the ambiguous background, EPI-Shift [26] and
LBDE-E [25] both seem not able to handle the foreground
well.

Moreover, we use all test scenes (12 in total) of WLF for
further comparisons by mse, bad-0.15, bad-0.3, bad-0.6 and
bad-1 metrics. As shown in Table VIII, our end-to-end trained
model produces the lowest average errors in all metrics even
with the fewest parameters (110 times fewer than LBDE-E
[25]). We finally compare our performance to the only two
ConvNet based methods that allow adaptive angular light field
inputs (9x9, 7x7 and 5x5 light fields) during inference. Fig.
11 shows that when the angular resolution of light fields is
lower, the performance of our model that is trained from 9x9
light field inputs gradually degrades but is still much better
than HSM [21] and LBDE-E [25].

2) Real-world dataset: Fig. 12 demonstrates visual compar-
isons on Google (5x5 light fields) and ULB (9x9 light fields)
test scenes respectively. We exclude [26] for this comparison
since the models that it provided only allowed 9x9 light field
inputs. Though the proposed model is a lightweight model, it
is capable of producing the more accurate disparity maps in
real-world scenes when compared to the other ConvNet-based
methods. Specifically, for both scenes, EPINET [19] is still
not able to predict disparities, similar to their results from
synthetic datasets. Ours have few noticeable artifacts in the
foreground than that in LBDE-E [25], and in both foreground
and background than that in HSM [13]. When compared to the
traditional methods, ours have fewer artifacts than LF OCC
[3] and have fewer over-smoothness issues at occlusion regions
in RPRF [13]. Besides we can clearly see from the background
of the ”Path” scene, our model is able to capture more details
than the other methods, e.g., more details are recovered on
persons.

D. Performance on narrow-baseline datasets

Though the focus of our work is on wide-baseline datasets,
we also evaluate the performance of the proposed model
on narrow-baseline datasets. The quantitative and qualitative
comparison are further made between the proposed model and
the recent state-of-the-art methods.

1) Quantitative evaluation: For evaluations, we test
frequently-used datasets used in previous works, i.e. seven HCI
and eight CVIA-HCI test scenes, and assess by metrics (mse,
bad-0.1 and bad-0.07) defined in [29, 30, 45]. We compare
our method with state-of-the-art traditional and ConvNet-based
methods, and the results are summarized in Table IX. Our
model improves the mse and makes a decrease by a large
percentage in bad-0.1, when compared with the best published
model EPINET [19]. Our model achieves similar accuracy
with EPINET in bad-0.07 metric, however our model is end-
to-end trained in less than two days on the same training set
with EPINET that is trained more than five days. Furthermore,
our model has the smallest capacity among ConvNet models,
and runs the fastest (less than 0.5s per frame) among all top-
performing methods in the narrow-baseline scenario.

2) Qualitative evaluation: Fig. 13 shows visual comparison
results of our method with top-performing methods in Table
IX on the scenes from synthetic datasets (HCI and CVIA-
HCI) and real-world dataset (EPFL [46]). Clearly, the pro-
posed method achieves the highest quality of disparity maps,
especially on the challenging real-world scenes. Our model not
only can recover disparities of the smooth surface with less
noise, but is capable of capturing more details at occlusion
areas, e.g., chain link fences or empty circles in real-world
scenes.

E. Limitations and future work

The performance of the proposed LLF-Net is limited to
some challenging issues, i.e. large textureless regions, heavily
occluded (textureless or view-dependent) regions and non-
Lambertian regions. In fact, it is very difficult to find the
correspondences in the large textureless region since there are
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TABLE VII
BAD PIXEL ERROR PERCENTAGES OF THE FOUR EXEMPLAR SCENES OF THE WLF DATASET AGAINST THE GROUND TRUTH.

Scene Buddha2 Furniture2 Perikles Sideboards
bad-0.3 bad-0.6 bad-0.3 bad-0.6 bad-0.3 bad-0.6 bad-0.3 bad-0.6

LF OCC [3] 98.41 88.64 97.96 49.75 98.49 92.93 97.01 73.67
RPRF [13] 11.10 0.86 17.11 1.16 14.82 1.26 31.15 25.46
HSM [21] 32.32 7.27 21.98 7.96 19.09 3.48 53.27 39.90

EPINET [19] 100 100 100 100 100 100 100 100
EPINET T [19] 97.65 92.05 96.40 88.27 97.39 94.79 95.79 91.63
EPI-Shift [26] 22.22 4.51 22.09 6.57 48.81 9.36 50.67 38.16
LBDE-E [25] 14.01 7.72 16.92 8.18 46.20 32.78 45.89 39.23

Ours 1.44 0.74 1.93 1.01 3.30 0.58 21.17 14.82

Buddha2 Furniture2 Perikles Sideboards
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Fig. 10. Visual comparison results of the scenes from the WLF dataset: the central view and ground truth disparity map are shown in the first row, and the
other rows show the predicted disparity maps and bad pixel error maps from state-of-the-arts respectively (Best viewed in color).
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TABLE VIII
PERFORMANCE COMPARISON RESULTS ON THE WLF TEST SET. THE AVERAGE ERRORS OF ALL FRAMES ARE LISTED AND THE BEST PERFORMANCE IS IN

BOLD. THE QUANTITY OF PARAMETERS OF CONVNET-BASED METHODS IS IN MILLION (M).

Method Parameters End-to-end trained Hand-designed
mse bad-0.15 bad-0.3 bad-0.6 bad-1

LF OCC [3] - - 13.56 98.86 97.54 78.63 40.86
RPRF [13] - - 1.70 40.43 16.01 5.43 4.70
HSM [21] 3.1 3 1.58 62.22 36.08 14.22 8.52

EPINET [19] 5.1 3 458.13 100 100 100 100
EPINET T [19] 5.1 3 86.89 98.56 97.10 94.11 89.92
EPI-Shift [26] 31.6 3 20.76 61.55 35.95 14.65 12.59
LBDE-E [25] 198.8 7 11.12 36.86 29.02 20.86 16.09

Ours 1.8 3 0.93 15.04 7.05 3.95 2.80

Fig. 11. Performance comparisons results from testing the various angular light field inputs.

Pa
th

Central view LF OCC [21] RPRF [13] HSM [21]

EPINET [19] LBDE-E [25] Ours

U
ni

co
rn

Central view LF OCC [21] RPRF [13] HSM [21]

EPINET [19] LBDE-E [25] Ours

Fig. 12. Visual comparison results of wide-baseline real-world datasets: the central view and colored disparity map are shown (best viewed in color).

  



ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2021.3051761, IEEE
Transactions on Image Processing

JOURNAL OF LATEX CLASS FILES 11

TABLE IX
PERFORMANCE COMPARISON RESULTS ON NARROW-BASELINE LIGHT FIELD DATASETS.

Method Parameters (M) End-to-end trained mse bad-0.1 bad-0.07 Training (days) Inference time (s)
LF OCC [3] - - 3.89 17.89 30.16 - 1.05e4

LF [4] - - 5.61 10.74 16.20 - 1.01e4
RPRF [13] - - 3.37 10.32 15.93 - 34.53

EPINET [19] 5.1 3 2.68 9.06 10.54 5-6 1.98
EPI-Shift [26] 31.6 3 11.41 10.89 14.84 4 22.57
LBDE-E [25] 198.8 7 3.86 9.86 13.61 ≈ 2 1.92

Ours 1.8 3 2.13 6.60 10.66 ≈ 1.6 0.46
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Central view RPRF [13] EPINET [19] LBDE-E [25] Ours

Fig. 13. Visual comparisons of synthetic and real-world datasets: the central view and colored disparity map are shown (best viewed in color).
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a large number of similar pixels or features in the search range.
One example (Luxembourg scene) is shown in Fig. 13, where
the large textureless region, i.e. sky, is in the background.
The correct disparity should be in dark color, which is almost
not found in the disparity maps of our method and compared
methods. This may be tackled by utilizing the segmentation
technique [2] to partition the image into the textureless and
texture regions beforehand. The heavily occluded (textureless
or view-dependent) region is also a tough issue to handle, as
shown in the Sideboards scene of Fig. 10 and the Path scene of
Fig. 12. This issue is considered in our future work, in which
the ground truth occlusion data samples are created and used in
supervision. Finally, similar to most of the existing ConvNet-
based methods, the proposed LLF-Net does not pay attention
to the non-lambertian issue [47] either, such as the illumination
changes, specular reflection and transparency, while this exists
in the real-world scenes (e.g. Luxembourg scene in Fig. 13).
Thus designing a new ConvNet that precisely estimates depth
of both lambertian and non-lamertian surfaces is a promising
future work.

VI. CONCLUSION

We introduce a large-scale wide-baseline synthetic light
field dataset, which can be used for training or comparing
competing methods in wide-baseline light field scenarios. We
present a novel end-to-end trainable lightweight network LLF-
Net based on the cost volume and attention modules for
wide-baseline light field depth estimation, allowing flexible
angular inputs. Experimental results show that the LLF-Net not
only significantly improves the state-of-the-art performance in
estimating depth in wide-baseline scenarios, but also narrow-
baseline scenarios. Compared to the ConvNet-based meth-
ods on flexible angular inputs, our LLF-Net is adaptive and
achieves better depth accuracy.
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