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Abstract

This paper presents the use of a kernel-based machine learning strategy targeting classification
and regression tasks in view of automatic flaw(s) detection, localization and characterization. The
studied use-case is a structural health monitoring configuration with an array of piezoelectric
sensors integrated on aluminum panels affected by flaws of various positions and dimensions. The
measured guided wave signals are post processed with a guided wave imaging algorithm in order to
obtain an image representing the health of each specimen. These images are then used as inputs
to build classification and regression models. In this paper, an extensive numerical validation
campaign is conducted to validate the process. Then the inversion is applied to an experimental
campaign, which demonstrate the ability to use a numerically-built model to invert experimental
data. DOI: https://doi.org/10.1016/j.ultras.2021.106372

Keywords: Support vector machine, Structural health monitoring, Guided wave imaging, Flaw
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1. Introduction

Structural Health Monitoring (SHM) relies on the permanent integration of sensors on or inside
a structure to monitoring its health. Unlike in Non Destructive Testing (NDT), in which planned
maintenance operations must occur periodically, the integration of sensors allows a continuous
monitoring of the structure, potentially conducted during its regular exploitation. This leads to
substantial benefits of SHM, including a significant cost reduction by shifting from a scheduled-
maintenance paradigm to a condition-triggered maintenance, along with the creation of a wealth of
information concerning the evolution of the structure overtime and its damage mechanisms, which
might then be exploited to lead to more optimized designs and usages. However, the integration of
sensors leads to specific difficulties to overcome, among them, ensuring sufficient area coverage with
fixed sensors has received significant attention from the literature in the past couple of decades [1].

A widely studied solution to inspect large areas with a limited number of sensors while insuring
reasonable defect sensitivity and system reliability, is to use Guided elastic Waves (GW). Indeed,
GW propagate over large distances, require low voltage excitation and can be easily measured.
Usually in GW-SHM, both actuation and sensing are conducted by lightweight and affordable
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piezoelectric transducers [2]. The main characteristic of interest of GWs is their highly sensitive
propagation behaviour, ensuring that propagated wave-packets will be influenced by defect present
on the GW propagation path, but making it potentially difficult to isolate from the other features
and characteristics.

To provide both flaw detection and localization of defects, Guided Wave Imaging (GWI) tech-
niques have been developed, leading to images representing the health of the inspected structure.
The most common configuration is the following: a plate-like structure is instrumented by a sparse
array of P piezoelectric transducers. Each transducer is sequentially harmonically excited to gen-
erate GW at a specific frequency, or frequency range. The propagated wave-packets are then
measured at every transducer, leading to P 2−P measurements. This scan is usually compared to
a baseline scan, i.e. an identical scan obtained while the structure is known to be pristine. This
baseline comparison is a significant limitation for multiple reasons: first, it means that an already
damaged structure can not be retrofitted since the first measurement must be taken in a pristine
state and second, the evolution of the signals not induced by defects (e.g. temperature variation,
sensor degradation, etc.) must be taken into account to avoid false alarms. Multiple GWI using
baseline have been proposed. The simplest of them is RAPID [3] and does not use any knowledge
of the inspected material or geometry, allowing for a quick but rough integrity estimate. Taking
into account GW propagation speed to triangulate the defect echo to its location, the Delay And
Sum (DAS) [4] leads to consistent and reliable imaging results, but neglect the dispersive behav-
ior of the GWs, limiting the resolution. DAS is later upgraded to the Minimum Variance (MV)
algorithm [5] by making assumptions on the reflectivity pattern of the inspected defect to better
resolve it. The assumption of the defect reflectivity is however quite significant, and the perfor-
mances of MV are degraded (to the point at which a defect detected by DAS could be missed by
MV) if the wrong defect reflectivity pattern is assumed. Finally, using the full knowledge of the
dispersion curves, the Excitelet [6, 7, 8] algorithm provides usually the most resolved and reliable
GWI results, but requires the whole propagation Green’s function, which depends mainly on the
inspected media and the sensor.

To ensure reliable baseline subtraction, Baseline Signal Stretch (BSS) [9] has been proposed
to compensate temperature effects by stretching the phase of the signals, but is limited to small
temperature differences. It can be used conjointly with Optimal Baseline Subtraction (OBS) [10]
to compensate larger temperature differences. OBS requires however to scan the structure multiple
times to create a dictionary of baseline signal at various temperatures, which is often unpractical
and not necessarily representative of all the potential signal variations. Progress is regularly made
on temperature compensation with for example the Dynamic Time Warping (DTW) [11] algorithm,
allowing to compensate both phase and amplitude of the signals on a larger temperature interval.

On the other hand, baseline-free GWI techniques exist and consist of attempting to interpret
every wave-packet and is therefore limited to fairly simple geometries. For example, GW tomogra-
phy reconstruction algorithms provide an image quantifying the residual thickness of a potentially
corroded area but require a large number of sensors [12, 13]. Non quantitative imaging can also
be achieved with Compressed Sensing based GWI [14, 15]. Overall, baseline-free GWI techniques
are very promising but require more sensors than baseline-reliant techniques.

In this work, the baseline GWI technique DAS, being the most common baseline-GWI technique
in the literature, is used. However this algorithm (and baseline-reliant GWI in general) provides
only the detection and the localization of flaws while no information is directly provided about
the size of the defect, which is however essential to keep track of its evolution and raise a red flag
when a detected defect reaches a critical size. It has been demonstrated that the DAS images
are sensitive to defect size [16] but no analytical link can be identified between the damage index
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values of a DAS image and the defect size. Furthermore, the detection and localization steps are
always done manually and visually, meaning that a trained operator must analyze the GWI results
to provide a diagnostic.

In the NDT community, there have been various efforts aiming at applying Machine Learning
(ML) classification and regression tasks based on ultrasounds testing signals [17, 18] and eddy
current testing signals [19, 20]. Nevertheless, the application of ML strategy to post-processed
GW-SHM signals targeting flaw(s) localization and sizing has been not deeply studied yet.

This paper proposes a model-driven supervised ML inversion strategy trained on numerical
simulations degraded by an ad-hoc noise model to account for the sensor degradation, variation
of temperature and measurement noise. Multiple ML classifiers are assessed to compare detection
performance. Quasi-real time inversion of both defect localization and sizing is performed on
experimental data, thus showing the capacity of the method to invert experimental data while
being exclusively trained on numerical data.

The developed method is applied to an aluminium panel instrumented by 8 piezoelectric trans-
ducers and damaged by a through-hole. The authors acknowledge the simplicity of the use-case
under consideration, which serves the sole purpose of illustrating the application of the method
without constraining its genericity. At the likely cost of a larger training database and a different
hyper-parameters choice, the method is largely applicable to more complex structures. Actual
performance of the method would then vary depending on the capacity of the method to extract
the relevant features from the data for each specific use-case.

The outline of the paper is as follows. Firstly, the forward model used to generate the data
is presented along with a synthetic model of noise aiming at introducing degradation in the raw
simulated GW signals which mimics the behaviour of noisy measurements and degrading piezo-
electric (PZT) sensors. Then, a quick description of the DAS GWI technique is provided and
discussion on the sensitivity of the GW signals with respect to the simulation parameters under
consideration (e.g., flaw size and position) is provided. Subsequently, is introduced the supervised
learning strategy adopted in this paper by providing a detailed description of the dimensionality
reduction and the model fitting procedures adopted. In the last part, an exhaustive numerical val-
idation campaign is provided along with experimental measurements carried out in a laboratory
is provided and discussed. Conclusions and further research perspectives close the paper.

2. Guided Wave Imaging

Guided Wave Imaging (GWI) is a fast, reliable and efficient method for the damage detection
and localization in plate-like structures. It can be implemented using a sparse embedded array
of inexpensive and low energy consumption piezoelectric transducers. As such, this method is a
natural choice for GWs-based SHM system, but the knowledge of the pristine state of the structure,
e.g. baseline, is often required.
Baseline approaches are based on the comparison between reference signals and signals at the
current time, in which the state of the structure is unknown. Such comparison can be performed
in several ways, including GWs signals subtraction where residual signals are computed as the
difference between current and baseline signals. Residual signals are then processed by GWI
algorithms in order to compute an image representing the integrity of the structure. In this work,
piezoelectric transducers are placed in a circle surrounding the region of interest to be interrogate
defects from multiple directions and, therefore, to maximize its detectability.
This section starts with an explanation of the numerical model, herein called the forward model
and integrated to the CIVA software, which is used to generate the GWs signals database. It is
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followed by the GWI algorithm Delay-And-Sum [4] that is used for processing GWs signals in order
to compute a dataset of images representing the integrity of the structure. Finally, a parametric
noise model for GWs signals deterioration is presented.

2.1. Forward model

Regardless of the problem, machine learning methods generally require a significant amount of
data to build an accurate model. Obviously, an experimental database of GWI samples would be
advantageous in comparison with a simulated one as it would reproduce operational disturbances,
but its generation cost is prohibitive due to the large number of samples required. Therefore, it is
chosen to generate a numeric database of GWs signals that are then deteriorated using a synthetic
noise model in order to assimilate numeric GWs signals with their experimental counterparts.
The Finite Element (FE) GWs simulations methods are usually time consuming due to the small
element size and time step requirements [21]. In this work, the forward model is based on the tran-
sient Spectral Finite Element (SFE) method implemented in the CIVA software as this method
allows to overcome the aforementioned limitations while being computationally efficient [22, 23].
For the sake of brevity, only the main steps of the SFE method are presented here but more
details can be found in [24]. The SFE method relies on two main concepts to decrease the com-
putational time and the memory footprint. First, a high order spectral finite element method
is implemented to significantly reduce the number of elements [25]. Secondly, a macro-element
pre-meshing strategy is used to optimize the mesh considering its identical regions and an implicit
element orientation. This leads to a significant reduction of CPU load and memory footprint, which
allows running multiple simulations either in parallel or sequentially and enables the generation of
an extensive database of GWs signals in a reasonable amount of time.
The studied configuration is a square aluminum plate of 600 × 600 × 3 mm3 instrumented by
eight circular piezoelectric transducers 18 mm in diameter that are evenly located on a circle of
300 mm in diameter. The excitation frequency is 40 kHz and it is assumed that the transducer
applies an axisymmetric radial load at the surface of the panel according to Crawley’s model [26].
The studied defect is a single circular through-hole of various positions and sizes for each sample.
For this study the position of the defect is limited to being inside the circle of transducers. The
simulation is conducted for every transducer excitation sequentially and on a duration of 300 µs.
The total simulation time of the eight sequential transducers excitations is about five minutes on
a standard laptop, equipped with Intel Xeon E3− 1505M processor with 32 GB of RAM, and
requires a memory footprint of about 100 MB.

2.2. Parametric synthetic noise model

The forward model accurately simulates GWs propagation and GWs-defect interaction but does
not reproduce operational disturbances. Hence, GWI samples computed using numeric database
might not completely be representative of experimental GWI process. In order to overcome this
limitation, a parametric noise model is developed and applied in order to deteriorate the database
of simulated GWs signals in coherence with the operational conditions. Taking into consideration
that GWI method used in this work relies on residual signals, the synthetic noise model is applied
to GWs signals representing both pristine and damaged states.
This model assumes that a GW signal sk(t) can be distorted by several factors, including the
temperature variation, transducers bounding degradation and acquisition noise. It is expressed as
follows:

skdeg(t) = γskorig(t(1 + χ)) + ν, (1)
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where ν represents the acquisition noise, χ is a stretching factor of time axis t, γ is amplitude
variation parameter, skorig(t) is the original and skdeg(t) is the deteriorated GWs signals for the k-th
transducers pair.
The temperature difference between pristine and current states modifies the group and phase
velocities of propagating guided modes. In a first order approximation, this effect consists in linear
time vector stretching, which is controlled by the χ parameter. The amplitude of GWs signals
may vary over time due to transducers bounding degradation and is modelled by the parameter
γ. Finally, acquisition noise is considered as the white noise and is controlled by the parameter
ν. On the basis of experimental observations, all the three deterioration parameters are supposed
to vary in the following ranges complying with random uniform distributions: γ ⊂ [0.875, 1.125],
χ ⊂ [−5e−4, 5e4] and ν ⊂ [0, 2e−2]. These parameter ranges were selected to approximately cover
a degradation range of GWs signals that were observed experimentally while performing defect
imaging under varying temperature with a maximal temperature difference of about 20 °C [27].

Note that the degradation model does not modify the modal content of the wavepackets,
which is dependent in the forward model of the dimension of the transducer and the propagating
wavelength [26, 28]. In addition, for the configuration under study, both A0 and S0 modes coexist at
comparable amplitudes in the signals. Even though the imaging process described in the following
section assumes the presence of a single A0 mode, the S0 does not significantly degrade the results
as it interfere destructively with itself in the imaging process. Hence, it is expected that a minor
mode amplitude variation would not alter the results significantly.

2.3. Delay and sum imaging

Consider a set of P piezoelectric transducers distributed over the structure. Following the
round-robin process, each transducer is driven with harmonic excitation for GWs generation in
the structure while all the others are used for sensing. In total P × (P − 1) signals are collected,
and residual signals are obtained for each k pair of transducers by subtracting the current state
skc (t) from the baseline skb (t). It is expressed as follows:

skr(t) = skc (t)− skb (t) (2)

For every material point (x, y) of the inspected area, a Damage Index (DI) value is computed
as follows. First, the envelopes of the analytical residual signals are calculated via the Hilbert
transform:

rk(t) =

√
skr(t)2 + Ĥ(skr(t))2 (3)

where rk(t) is the envelope of the residual signal and the operator Ĥ denotes then Hilbert transform.
Then, the time of flight of the GWs is computed as follows:

tk(x, y) =

√
(x− xi)2 + (y − yi)2

Cg

+

√
(x− xj)2 + (y − yj)2

Cg

(4)

where tk(x, y) is the time of flight of the GW that propagates with a group velocity Cg from the
transmitting transducer i located at (xi, yi) to the inspected point (x, y) and from the latter to the
receiving transducer j at (xj, yj). The guided mode’s group velocity Cg can be determined using
various simulation frameworks, such as the semi-analytical finite elements method [29], or it can
be experimentally measured. Finally, each residual signal is delayed by the corresponding time of
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a) b) c)

Figure 1: Examples of GWI results in a aluminium plate at 40 kHz using GWs signals simulated by the SFE
method. GWIs computed results for a 4.72 mm radius through-hole are given in a) based on the raw numerical
signal, in b) accounting the parametric synthetic noise model and in c) results of a pristine aluminium panel when
the parametric synthetic noise model is employed.

flight, so that each point of the image can be associated with a value of the envelope. For each
material point, the DI value is computed as follows:

DIDAS(x, y) =

P (P−1)∑
k=1

rk(tk(x, y)). (5)

Since guided waves are dispersive, this algorithm is better suited to narrow-band signals to limit the
dispersion effects. In practice, a compromise must be found between narrow-band and temporal
resolution.
For illustration purposes, GWI results computed with simulated GWs signals in the studied con-
figuration without application of the degradation model is show in Figure 1a. In this image, the
defect imaging is performed at 40 kHz by the DAS algorithm using the A0 mode and the struc-
tural flaw is a through-hole 4.72 mm in radius. The GWI results using the original simulated GWs
signals, shown in Fig. 1a, is compared to the same use-case where the synthetic noise model has
been applied to deteriorated GWS signals in Figure 1b. It can be observed that the imaging qual-
ity has significantly decreased and the defect is partly concealed by imaging artifacts. Figure 1c
presents the GWI result where the synthetic noise model is applied on GWs signals that represent
a pristine structure. In other words, it represents what could be obtained experimentally while
imaging pristine plate and might lead to false alarms.

2.4. Inverse problem analysis

While a single DI value does not provide sufficient information about the integrity of the
structure, the spatial distribution of the DI values can be interpreted for determining the presence
of the defect, its location and size. Damage detection and localization are straightforward from
the visual analysis of the intensity distribution in GWI results based on noise-free signals. On
the other hand, with noisy signals, flaw(s) detection and localization can be trickier to perform.
Moreover, damage sizing is a more complex problem that cannot be solved visually.
Consider the same GWI configuration as presented in Section 2.1. The SFE method is used to
simulate GWs propagation and GWs-defect interaction in the plate whereas the structural damage
is represented by a through-hole located at (x = 250 mm and y = 280 mm), that progressively
grows from 2.5 mm to 8.0 mm in radius with increments of 0.5 mm. The inspection is conducted at
40 kHz corresponding to a interrogating wavelength of λ40 kHz

A0
= 24.8 mm. The corresponding GWI
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a) b) c)

Figure 2: Demonstration of GWI sensitivity to the damage size at 40 kHz. In a) normalized defect DI values profiles
and in b) normalized maximum of DI (Max DI) and Full Width Half Maximum (FWHM) versus hole radius. In
c), Third order polynomial interpolation of the normalized maximum of DI values distribution over the plate for
defects 5 mm in radius at various locations.

results are normalized with respect to the highest DI value, and the DI profiles through the damaged
region are presented in Figure 2a. It can be observed that for small defects (R ⊂ [2.5, 5.5] mm) DI
values increase] progressively and sharpen with the radius of the through-hole but for larger ones
reach a plateau and even decrease in magnitude a little.
It is worth noting that there are regions where the defect size versus maximal DI relation is almost
linear (DI ⊂ [2.5, 4.5] mm and DI ⊂ [6.0, 8.0] mm) but overall, these variations are non-linear in
both height and width.
It should also be pointed out that DI values distribution is not spatially homogeneous, meaning
that DI values differ for the same size defects located at various positions. To demonstrate this
effect, thirty two SFE simulations representing transverse holes 5 mm in radius at different locations
are run and post-processes by means of the DAS algorithm. The maxima of DI values are then
collected for the corresponding locations and interpolated using 3rd order polynomial interpolation
in order to construct a map representing the maximum DI for each defect position, as represented
in Figure 2c). Furthermore, it can also be observed that DI values’ distribution is conditioned by
the geometry of the structure and transducers’ arrangement.
Taking into account these two non-linear geometrical behaviors of DI values distribution regarding
the defect location and size variations, the defect sizing problem cannot be inverted directly from
GWI results.
In the next section a data-driven approach, i.e. a supervised machine learning strategy, is proposed
in order to handle such a complex non-linear relationship in view of performing classification and
regression tasks.

3. Supervised learning schema

Numerical software can be exploited to simulate a collection of input-target couples, i.e. la-
belled data, that can be employed in a learning procedure avoiding as much as possible expensive
measurement campaigns. A ML paradigm based on the use of inputs-targets relationships is known
under the name of supervised learning. The set of input-target couples employed to fit the model
is known as training set. In this paper, the developed ML strategy considers as inputs a set of
post-processed guided wave signals and as targets the respective classes or parameters (e.g., flaw
types, flaw(s) size/position, specimen, geometry, etc.). In the following, we refer to it as ML-based
classification or inversion/regression procedure, respectively. That is, depending on the target
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type, classification or regression tasks can be distinguished. In the framework of NDT, classifi-
cation algorithms provides discrete-valued predictions such as damage detection and flaw(s) type
discrimination, for instance. On the other hand, when regression tasks in view of inversion are
performed, the outcome of the ML algorithm is a continuous set of values that can be exploited
in order to perform flaw(s) localization or characterization.

The training set is composed of N samples having as input a matrix of N ×M items where M
stands for the size of the guided wave images (i.e., the inputs) whereas the outputs or targets (i.e.,
the classes or parameters) are given by a set of N ×O values. For classification tasks, O is a scalar
value, while for regression, O is a vector which dimensions correspond to the space of parameters
to be retrieved in the inversion procedure. More into details, the input space is denoted through
the vector x such that x ⊆ RM while the target space is described through the vector y with
y = {−1, 1} or y ⊆ RO in the case binary classification or regression, respectively. The training
set is defined as the collection of inputs-targets pairs as

Strn = {(x1,y1) , ..., (xN ,yN)} ⊆ (Xtrn×Ytrn)N , (6)

where the i-th couple (xi,yi) represents the i-th inputs vector (also known as example or instance)
and the associated i-th target (also known as label) within Strn, respectively [30].

The envisaged learning procedure should be carefully considered to get the best-possible per-
formance. For example, in the studied configuration, the number of M pixels for each image is
very large and it is, for regression cases, associated to a vector of O components. Therefore, the
ML strategy should be able generalize on unseen examples i.e., avoid under- or over- fitting and it
should be as efficient as possible in both the training and the testing phases. In the next sections,
the strategy developed in order to obtain an efficient and robust classification and regression ML
procedure applied on GWI data is introduced.

4. Dimensionality reduction stage via principal components analysis

Due to the nature of the input of the training phase, the size of the training set N ×M is
large, which can lead to a slow training and an accurate solution (i.e., model) might be hard to
find. This problem is known in the ML community under the name of curse of dimensionality.
In order to tackle this issue, the dimension of the data is reduced by projecting them onto the
space of the extracted or projected features which spans a smaller cardinality. This procedure is
commonly referred as dimensionality reduction or data decomposition. In this paper, the Principal
Component Analysis (PCA) is employed in order to project the original data associated to the
imaging results into a subspace of J � M principal components also called latent or extracted
components. In such a subspace, the variance of the data is maximized [31, 30].

Let us consider the inputs of the training set (6) associated to the set of N images of M pixels.
The matrix Xtrn ∈ RN×M represents the whole set of images after vectorization. For sake of
simplicity it is assumed that Xtrn is a zero-mean matrix. In order to obtain the PCA projection
of the training set input samples the covariance matrix of the training is built as in [31].

C =
X>trnXtrn

N
, (7)

The eigen-decomposition of (7) is then performed such that :

[U, Λ] = eig (NC) , (8)
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where the pair of matrices on the right hand side of the equation are the results of the eigenvalue
decomposition such that the columns of matrix U represent the eigenvectors and Λ is the diagonal
matrix that has for elements the eigenvalues of C such that CU = UΛ. Therefore, in (8), each
element of the training set is projected onto the subspace spanned by the first J eigenvectors as

x̃i = U>J xi, (9)

with i = 1, ..., N , thus the training set projected onto the feature space is given as X̃trn =
{x̃1, ..., x̃N} ∈ RN×J . Since the eigenvalues contained into the columns of U are ordered in a
decreasing manner, the space spanned by the J-th first extracted principal components is the one
that maximize the variance of the data contained into Xtrn. The choice of J is then critical in
order to be able to capture the largest possible variance on the data providing the smallest possi-
ble J to limit dimensionality. A way to handle this trade-off consists in considering the so-called
explained variance which is defined as the ratio between the first M eigenvalues and the sum of
all the eigenvalues

explained variance =

∑J
j=1 λj∑M
j=1 λj

, (10)

where λj is the j-th eigenvalue within Λ.
The number of features is retrieved by fixing the desired explained variance value, usually set

between 0.95 and 0.99.

5. Learning and prediction phases based on support vector machine algorithm for
classification and regression tasks

In this section, the ML algorithm employed for classification and regression tasks based on
the SHM images is introduced. In Section 3, it is showed that the relationships between inputs
and DIs are non-linear as a function of both the defect size and the defect position. Since the
PCA feature extraction consists in a linear transformation of the data, the relationships between
extracted features and defect parameter remains non-linear. Therefore, the extracted features from
PCA are mapped into an alternative feature space, i.e., the space of kernels, where the inputs-
targets relation behaves linearly. In the following subsections, a mathematical overview on how the
images, with or without dimensionality reduction, are mapped into the kernel space is provided. In
the literature, the kernel space is also referred as feature space, nevertheless this nomenclature is
avoided here in order to avoid misconception as we already referred to it for the ”PCA” extracted
features. Subsequently, the kernel based extension of Support Vector Machine (SVM) algorithm
for classification and regression tasks is introduced from a theoretical point of view.

5.1. Mapping the extracted features into the kernel space

Mapping data into a high-dimensional feature space enables to perform linear pattern analysis
and thus exploit any linear classification or regression algorithm for nonlinear tasks [32]. Referring
to the PCA space associated to the training set introduced in the previous section, a mapping
function φ that projects the training set X̃trn to an inner product feature space F is defined as in
[32]:

φ : x̃ ∈ RJ 7−→ φ (x̃) ∈ F ⊆ RF , (11)

the choice of φ is such that non-linear relations in x̃ becomes linear in φ (x̃). Therefore the training
set projection into the feature space is obtained by applying on each inputs the transformation
(11). Then Equation (6) turns into
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Ŝtrn = {(φ (x̃1) ,y1) , ..., (φ (x̃N) ,yN)} ⊆
(
X̃trn×Ytrn

)N
(12)

Assuming a linear relationship in the kernel space, the most suitable pattern function fitting
this requirements is the one that minimize the discrepancy ξ between the regression results and the
ground truth i.e., |ξ| = |yi − g (φ (x̃i))| = |yi − 〈wi, φ (x̃i)〉|, where i = 1, ..., N and wi is the i-th
weight vector. One can show [30] that the calculation of w can be performed such that w = X̃ᵀ

trnα

where α =
(
X̃ᵀ

trnX̃trn

)−1
= G−1. G is referred as the Gram matrix which is a N ×N symmetric

semi-definite positive matrix. The entries of G are given by the kernel function [32]

k (x̃i, x̃j) = Gij = 〈φ (x̃i) , φ (x̃j)〉 , (13)

where 〈·, ·〉 denotes the inner product. The mapping onto the feature space that can possibly
have an infinite number of dimensions, can be performed without calculating the computationally
expensive function φ (·). Such a computational escamotage is also known as kernel trick [32]. In
this work, the Gaussian kernel function is employed and defined as

k (x̃i, x̃j) = exp

(
− ‖x̃i, x̃j‖2

2σ2

)
, (14)

where σ is the kernel hyper-parameter to be tuned. It worth mentioning that, even though the
Gaussian kernel is widely used in the ML community. Other kinds of kernels can be employed or
design to possibly better address the problem at hand [32].

5.2. Nonlinear support vector machine for classification and regression tasks

Thanks to the kernel trick, a non-linear relationship can be fitted between the inputs and targets
passing through the representation of the data in the feature space. This space is given by the inner
product between the projected samples in the space spanned by the PCA components. Different
kernel-based classification or regression models can be fit to the data but in this paper, the SVM
algorithm is employed since it guarantees good generalization performance on noisy experimental
data [30]. Moreover, due to its mathematical background rooted in the statistical learning theory,
SVM provides a deeper insight on the choice of hyper parameters than other kernel based method
such as kernel ridge regression or neural networks. Finally, SVM also enables sparse classification
and regression models that lead to a more lightweight and efficient predictions stage.

In classification problems, although the corresponding decision boundary is not linear, it may
happen that data points are separable by hyper-planes e.g., classes are slightly overlapped. SVM for
classification (referred in the following also as SVC) allows to neglect miss-classified data that are
on the “wrong” side of the boundary by introducing a slack variable ξn ≥ 0 with n = 1, ..., N . When
0 ≤ ξn ≤ 1, the data laying on the class boundaries or inside the correct class, whereas the ξn > 1
represents miss-classified samples. One can show [30] that such a kind of SVM classifier, known
as soft-margin SVM, is fit onto the feature space data by maximizing the Lagrangian in its dual
form L (α) =

∑N
i=1 αi − 1

2

∑N
i,j=1 αiαjyiyjk (x̃i, x̃j) subject to

∑N
i=1 αiyi = 0 and C ≥ αi ≥ 0 with

i = 1, ..., N [33] where C behaves as a penalty parameter. The dual variable non-zero coefficients αs

are calculated via quadratic programming minimization. Subsequently, the decision on an unseen
input vector x̃t belonging to the t-th row of the test set made of T samples X̃tst ∈ RT×J is obtained
by

10



ŷt =

NSV∑
s=1

αsysk (x̃t, x̃s) + b, (15)

where NSV represents the number of Support Vectors (SVs). The SVs represent the subset of
inputs-targets training set samples employed for prediction purposes. The SVs are associated to
the non-zero αi values. The bias parameter b in (15) is estimated as b = 1

NSV

∑NSV

s=1 (ys − x̃sw)

where w is given as w =
∑N

i=1 αiyix̃i [33].
For regression tasks, SVM provide an elegant way to obtain sparse solutions by employing the

so-called ε-insensitive error function. Particularly, starting from the primal formulation of the
Lagrangian and by exploiting the Karush-Kuhn-Tucker condition on the primal variable one can
show that the dual variable Lagrangian to be maximized for regression is given by [33]

L (α, α∗) = 1
2

∑N
i,j=1 (αi − α∗i )

(
αj − α∗j

)
k (x̃i, x̃j)

−
∑N

i=1 (ε− yi)αi −
∑N

i=1 (ε+ yi)α
∗
i ,

(16)

subject to the constraint
∑N

i=1 (αi − α∗i ) = 0 with 0 ≤ α
(∗)
i ≤ C. The learning task consists in

retrieving the (αs, α
∗
s) with s = 1, ..., NSV non-zero pairs which represents the SVs. By employ-

ing quadratic programming minimization algorithms, the SVs are retrieved and one can perform
regressions on an unseen input vector x̃t belonging to the t-th row of the test set X̃tst ∈ RT×J as
follows

ŷt =

NSV∑
s=1

(αi − α∗i ) k (x̃t, x̃s) + b, (17)

where, in practice, b can be retrieved by averaging over all estimates as b = 1
NSV

∑NSV

i=1 yi − ε −∑NSV

j=1 k (x̃i, x̃j) [33]. In the Subsection 6.1, more details will be provided about the tuning of SVM
hyper-parameters (e.g., C and ε) needed to achieve a high accuracy classification or regression
model.

6. Numerical and experimental validation

In this section, results obtained by applying the ML framework introduced in the previous sec-
tions are presented and analyzed. Firstly, a classification procedure targeting detection tasks based
on numerical data degraded by the model introduced in Section 2.1 is presented. Subsequently,
the model fitting procedure targeting the estimation of flaw position and sizing is provided.

6.1. Problem description, experimental set-up, calibration procedure and training phase procedure

The studied configuration is the one described in Section 2.1. The setup was created both
experimentally (see Fig. 3) and numerically. For the in-lab experiment, a through-hole was drilled
at the position (x, y) = [250, 280] mm. One acquisition was made for nine through-hole radius
from 2.0 to 7.5 mm. In Fig. 4, the image obtained using the DAS algorithm based on experimental
signals for the 5.0 mm radius hole is shown.

A training dataset containing 350 samples was generated using CIVA with the Latin Hypercube
Sampling (LHS) strategy for the variation ranges of the flaw coordinates x and y limited within
the sensor network. Defect diameter variation range was within the interval [2.51, 7.47] mm, which
is the result of a uniform random draw between [2.5, 7.5] mm . Since the signals from simulated
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Figure 3: SHM experimental setup with in aluminium plate with eight piezoelectric sensor encircling a hole drilled
within the plate.

Figure 4: Experimental GW-SHM signal post processed via DAS algorithm for a 5.0 mm radius hole.

and experimental data do not share the same scale, the amplitude of the simulated signals are
calibrated based on the signals from the healthy structure of the experimental data. Such a way
of calibrating signals allow them to share the same scale enabling the direct comparison of the
signals.

Referring to the quantities introduced in the section 4 the training set contains N = 350 images
made of M = 14400 pixels (i.e., Xtrn ∈ R350×14440) for the regression tasks. For classification
purposes the number of images are doubled since 350 images representative of a pristine plate
have been added to the training set via the noise model introduced in Section 2.1. In order to
fit the SVM model for classification and inversion tasks the training set is first projected into
the latent feature space via PCA algorithm by choosing an explained variance (see equation (10))
equal to 98% of the training set. That is, for classification task, the number of extracted features
J = 12 and the training set size was equal to X̃SV C

trn ∈ R700×12 (i.e., 350 pristine and 350 damage
samples). For the regression task, J = 9 thus the training set obtained was X̃SV R

trn ∈ R350×9 have
been considered for the classification and the regression tasks, respectively. The difference between
these two values is due to the fact that, for regression tasks, the laboratory measurements were
not corrupted by thermal and electronic noise as well as temperature change. Therefore, the value
ν in (1) within the training set is chosen equal to zero. On the other hand, the simulated pristine
signals added in the training set for classification were chosen with ν equal to 0.02 in order to
create images embedding artefacts appearing as flaw-like signals. The training set X̃trn is then
fitted to a SVC model by employing a 5-fold cross-validation stage to get the best possible C and
σ parameters. In the case of regression tasks, the 5-fold cross-validation was performed on ε and C
SVR parameters and on kernel parameter σ all together. Results of the cross-validation procedure
is shown in Fig. 5 for what concerns the training of the SVC model based on the f1-score. This
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Figure 5: SVM cross-validation classification results shown in terms of f1-score values provided on a the tensor grid
obtained for different values of C and σ.

figure shows that only a subset of the cross-validation grid maximize the f1-score and that, on the
boundaries of the hyper-parameters domain, the performance of the classifiers decreases.

6.2. Support vector machine classification results

Based on the above training strategy, the SVM classifier is tested for two classes problem
targeting flaw detection (i.e., flawless vs. flawed specimen) tasks. The results obtained by applying
the aforementioned ML strategy are shown in Fig. 6. In Fig. 6a), it can be observed that the
SVM classifier is able to properly classify the flawed specimens with a 96% success rate, whereas
it performs at 95% for the classification of flawless specimens. That is, following the approach
provided in [34], the confusion matrix in Fig. 6a) corresponds to the point on the Receiving
Operating Characteristic (ROC) curve in Fig. 6b) associated to the SVC classifier with true positive
and false positive values equal to 0.96 and 0.04, respectively. Still in Fig. 6b), the ROC curve is
provided along with the estimated Area Under the ROC Curve (AUC) that, for the SVC algorithm,
is equal to about 0.98. In the same plot, in order to compare the SVC results with respect a
”standard” yet effective classifier, the classifications results obtained via Naive Bayes (NB) [35] is
overlapped to the SVC ROC curve. Both these results shown that discrimination between flawless
and flawed classes obtained via SVC can be judged to perform very good [34] and SVC provides
better results compared to NB. In Section 8, we provide a further analysis on the classification
results obtained for three different flaws categories sorted in terms of flaws sizes.

6.3. Support vector machine regression results

In this section, regression results in terms of inversion to retrieve flaw position and radius size
based on both synthetic and experimental tests sets are presented. In addition to the training
set, a test set consisted in T = 141 samples is created under the same conditions. Furthermore
the T = 8 experiments previously described are also considered. After projecting of both the
test sets onto the PCA extracted feature space by employing Equation (9), the test set size for
the synthetic data and experiments are X̃tst ∈ R141×9 and X̃tst ∈ R8×9, respectively. In Fig. 7,
predictions given by the SVM regressor are provided in terms of true versus predicted values. The
predictions based on experimental data (“× ”) are overlapped to the numerical one (“ �”). As one
can notice, in the case of numerical data, the scattered points are aligned to the diagonal solid line
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a)

b)

Figure 6: Classification results obtained via SVM classifier are shown in terms of a) normalized confusion matrix
and b) ROC curve with all flaws radius sizes considered.

14



a) b) c)

Figure 7: SVM regression results obtained for flaw a) x-position, b) y-position and c) radius where “ �” indicates
prediction based on synthetic data (with ν equal to zero) whereas “ × ” stands for prediction based on experimental
data.

that represents the perfect agreement between predictions and ground truth. On the other hand,
experimental data regression is slightly more spread for flaw positions compared to the synthetic
counterpart. Nevertheless, the accuracy in radius characterization is within the scattered cloud
of points associated to the synthetic test set. Concerning the experimental test set, it worth
mentioning that predictions having the two largest outliers are associated to points that are either
on the training set boundaries (radius equal to 7.5 mm) or even outside (radius equal to 2.5 mm)
the training set data samples. This behaviour is clear in Fig. 7 for the smallest and the largest
radius.

From a quantitative point of view, the accuracy of the predictions can be quantified using the
Mean Absolute Error (MAE) defined as MAE =

∑T
i=1 |yi − ŷi|/T and the Root Mean Squared

Error (RMSE) metric defined as RMSE =
√∑T

i=1 (yi − ŷi)2 /T . In Fig. 8, is displayed a study

of robustness of the SVR model with respect to different level of arificial noise ν. Such scenario
may appear when the predictions data (i.e., the test set) are based on data acquired under slightly
different experimental conditions compared than the training set. The results in Fig. 8, showed
that increasing the value of ν increases both the MAE and RMSE. Among all parameters, flaw
diameter is the one that suffer more of such a kind of noise corruption with MAE equal to 0.29 mm
at ν = 0.0 to MAE equal to 2.66 mm at ν = 3.0e− 2. This behaviour is due to the fact that very
low changes in the ν translate in possibly heavy changes in the GWIs. A way to mitigate such
an issue, consists in considering an alternative training set containing different values of ν, and
in general, different values for the parameters of the noise model, which should lower the errors
observed in Fig. 8.

From a computational point of view, the 156 predictions are carried out in about 5 msec on an
Intel Xeon E3− 1505M processor with 32 GB of RAM laptop. Furthermore, as for the classification
tasks, the results are computed only based on the knowledge of the PCA transformation matrix (9)
and the values of the support vectors and bias in (17) matrix. Therefore, a very low computational
burden is associated to the prediction phase which leads to a CPU time of about 3 msec to predict
all test set samples. That is, the employed matrices are lightweight pre-computed numerical objects
(i.e., about 29 megabytes) that can be easily embed and handled inside latests generation portable
inspection devices or in acquisition chain enabling online automatic quasi real-time classification
and regression tasks.
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a)

b)

Figure 8: Study of robustness of SVM regression with respect to different values of the amplitude of the noise level
1. In a) in terms of MAE coefficient and in b) in terms of RMSE for flaw x-position, y-position and diameter.
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7. Conclusion and perspectives

In this paper, a machine learning framework dedicated to flaw(s) detection, localization and
characterization applied to both structural health monitoring measurements and synthetic data is
presented. In particular, performance associated to damage detection have been assessed based
on synthetic data corrupted with a realistic noise model aiming at reproducing a realistic texture
in the GW images. Concerning the regression task, i.e., flaw localization and characterization, the
proposed methodology is tested on both noisy synthetic data and experimental measurements. For
both the classification and regression tasks, good results have been found in terms of accuracy and
a high CPU time efficiency have been obtained such that the developed procedure can provide real
time predictions.

The next research axes are mainly devoted to perform a broader experimental campaign tar-
geting the validation of the ML strategy proposed on different kind of flaws possibly embedded
in different kind of medium e.g., composite materials and structures. Due to the more complex
ultrasounds propagation phenomena in such a kind of media, the proposed strategy may require
modifications in order to extract the most meaningful information from the post-processed GW
signals. In this framework, non linear feature extraction methods [36], vector valued extension of
SVM and deep learning regression [37] will be also considered.

8. Appendix 1: complementary ROC analysis

In this Appendix, a complementary classification result is presented by analysing the perfor-
mance of SVC and NB classifiers for different flaws size. Toward this end, the test set is sorted
by considering three different flaw categories based on the flaw radius size. That is, the flaws with
radius between 2.51 mm and 4.17 mm, 4.17 mm and 5.83 mm and 5.83 mm and 7.47 mm have been
considered. Through the scatter plot matrix in Fig. 9, the test set GWIs projected into the first
four PCA (latent space) dimensions for the three considered flaws categories are shown. One can
notice that the overlap between classes is higher for flaws smaller than 3.8 mm whereas it slightly
decreases for larger flaws. The absence of two distinct clusters in the PCA latent space underlines
the fact that the noise model adopted in this paper is able to reproduce pristine DAS GWIs that
”looks like” damaged one. Therefore, non-trivial separation hyperplane and classification rules
must be established for the three considered flaw categories.

In Fig. 10, the results obtained via SVC and NB algorithms are shown. Overall for both
classification methods, one can notice that larger defects (i.e. radius larger than about 4.17 mm)
are detected with high accuracy. Furthermore, SVC provide superior results than NB classifier
regardless of the flaw size considered. The higher SVC’s performance are obtained thanks to the
non-linear model capabilities thanks to the use of the kernel trick (see Section 5.2).

9. Appendix 2: classification and regression with temperature compensation

The purpose of this appendix is to study the impact on classification and regression performance
once the Baseline Signal Stretch (BSS) algorithm is applied to raw GW signals. As a reminder,
the baseline signal stretch modifies the signals in the time domain by stretching or compressing
the time axis. This is done in order to compensate the variation of the group velocity of the GW
due to a temperature change. For more information on BSS, the reader is invited to refer to [9].

In Fig. 11 the results obtained by SVC and NB trained on DAS GWIs after applying the
BSS correction on the raw signals are provided. The results obtained in Fig. 11 are very close to
the one provided in 6. That is, performing BSS correction on GW raw signals lead to almost no
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a)

b)

c)

Figure 9: ROC curves obtained via SVC and Naive Bayes classifiers are shown for flaw radius in a) between 2.51 mm
and 4.17 mm, in b) between 4.17 mm and 5.83 mm and in c) between 5.83 mm and 7.47 mm .
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a)

b)

c)

Figure 10: ROC curves obtained via SVM and Naive Bayes classifiers are shown for flaw radius in a) between
2.51 mm and 4.17 mm, in b) between 4.17 mm and 5.83 mm and in c) between 5.83 mm and 7.47 mm .
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b)

Figure 11: ROC curve results (with all flaws radius sizes considered) obtained with NB and SVC algorithms based
on raw GW signals corrected with BSS.

a) b) c)

Figure 12: SVM regression results based on BSS corrected signals before performing imaging are obtained for flaw
a) x-position, b) y-position and c) radius where “�” indicates prediction based on synthetic data (with ν equal to
zero) whereas “×” stands for prediction based on experimental data.

improvements on the classification performance. This result is not a surprise, indeed BSS is used
to obtain images with sharp flaw indications for easier human interpretation. However, the SVM
can achieve successful data interpretation even without BSS because it conducts its analysis on
more abstract features that would be meaningless for a human. In other words, with and without
BSS, the information about the defect is contained in the GWI and the SVM can analyse it in
both cases, however a human would need BSS to analyse robustly the images.

In Fig. 12, the regression results based on the use of SVM trained on GWIs generated via BSS
corrected GW raw signals are presented. Compared to Fig. 7, one can notice that the use of BSS
provides almost no improvements in the inversion performance. The MAE is equal to 16.52 mm,
15.31 mm and 0.24 mm for the hole position along x, y and the hole radius size, respectively. In
terms of RMSE, the result is 23.56 mm, 22.73 mm and 0.41 mm for the hole position along x, y
and the hole radius size, respectively.

The results presented in this section, underline that the joint use of feature extraction and
kernel-based SVM methods applied on GWIs are able to handle, up to some extent, the effects of
temperature variations and electronic noise corruptions on GW raw signals bypassing the use of
signal correction before generating GWIs.
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