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Abstract

During the design phase of a control chart, the determination of its
exact Run Length properties plays a vital role for its optimal operation.
Markov chain or integral equation methods have been extensively ap-
plied in the design phase of conventional control charts. However, for
distribution-free schemes, due to the discrete nature of the statistics be-
ing used (such as the Sign or the Wilcoxon Signed Rank statistics, for
instance), it is impossible to accurately compute their Run Length prop-
erties. In this work, a modified distribution-free Phase II EWMA-type
chart based on the Wilcoxon Signed Rank statistic is considered and its
exact Run Length properties are discussed. A continuous transformation
of the Wilcoxon Signed Rank statistic, combined with the classical Markov
Chain method, is used for the determination of the Average Run Length
in the in- and out-of control cases. Moreover, its exact performance is
derived without any knowledge of the distribution of sample observations.
Finally, an illustrative example is provided showing the practical imple-
mentation of our proposed chart.

Keywords:Nonparametric control chart; Wilcoxon signed rank statistic;Markov
chain; EWMA control chart.

1 Introduction

SPM (Statistical Process Monitoring) techniques are of high importance for
manufacturing and non-manufacturing applications as they aim to identify the
presence of possible assignable causes in processes. Control charts are one of
the major tools of SPM. They are on-line process monitoring techniques whose

∗psarakis@aueb.gr(corresponding author)

1



purpose is to detect shifts in processes as fast as possible. One of the most com-
monly used type of control chart is the Shewhart-type control chart (see She-
whart 1). A significant improvement in charting techniques was the introduction
of memory-type methods like the EWMA (Exponentially Weighted Moving Av-
erage) by Roberts 2 and the CUSUM (Cumulative Sum) by Page 3 . It is well
known that Shewhart-type control charts are preferable in cases where large
mean shifts need to be detected. On the other hand, EWMA and CUSUM
schemes are able to detect small to moderate shifts in processes, faster than
conventional standard control charts, due to the fact that, at each sampling
point, they take into account previous measurements.

In general, during the design phase of a measurement control chart, its design
parameters are obtained based on the assumption that the observations, col-
lected over time, are normally distributed random variables or, at least, they
follow some known distribution. However, in practice, this assumption is com-
monly violated, since the underlying distribution of the characteristic to be
monitored is generally unknown. As a result, a new class of monitoring schemes
called distribution-free (or nonparametric) control schemes has been introduced
into the literature. For nonparametric control charts, the chart’s design param-
eters as well as the Run Length properties are derived based on the distribution
of the corresponding nonparametretric statistics which are used (such us the
Sign or the Wilcoxon Signed Rank statistics) with only a minimal knowledge
of the form of the underlying distribution for the characteristic to be moni-
tored. For a comprehensive overview of the literature regarding the design and
operations of several univariate and multivariate nonparametric control charts
the reader is advised to refer to Chakraborti et al. 4 , Qiu 5 , Chakraborti and
Graham 6 . Concerning distribution-free EWMA control charts, two of the most
commonly used nonparametric statistics that have been used and presented into
the literature are the Sign statistic (Amin and Searcy 7 , Graham et al. 8 , Yang
et al. 9 , Aslam et al. 10 , Riaz 11 , Lu 12 , Haq 13) and the Wilcoxon Signed Rank or
Rank-Sum statistics (Li et al. 14 , Graham et al. 15 , Chakraborty et al. 16 , Abid
et al. 17). Additionally, recent developments of distribution- free EWMA-type
schemes can be found at Raza et al. 18 , Alevizakos et al. 19 , Mabude et al. 20 .

The use of reliable metrics that can efficiently measure the performance of a
control scheme plays a vital role in its design phase. One of the most widely
used technique is to examine the performance of a control chart by evaluating its
in- and out-of- control RL (Run Length) properties such as the ARL (Average
Run Length), SDRL (Standard Deviation Run Length) or quantile-type metrics
like the MRL (Median Run Length) or the RL0.95 (0.95-quantile of the RL). For
EWMA and CUSUM-type schemes their RL properties are often obtained by
using the Markov Chain approach of Brook and Evans 21 which is based on the
discretization of the control limits interval into sub-intervals. It should be noted
that, regarding the design phase of an EWMA-type control chart a proper com-
putation of its RL properties is essential. Specifically, for the determination of
the design parameters λ (smoothing parameter) and K (control limit parame-
ter) of an EWMA-type chart, a searching algorithm needs to be conducted, for
a particular shift in the process, in order to find the optimal pair (λ∗,K∗) which
minimizes the out-of-control ARL, under the constraint ARL = ARL0 where
ARL0 is some predefined value for the in-control ARL. In the case of measure-
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ment data (usually assuming normality) as the number of sub-intervals increases
the method proposed by Brook and Evans 21 tends to give reliable approxima-
tions of the chart’s RL properties. However, in a nonparametric context, due
to the discrete nature of the statistics that is being used (for instance, the Sign
or Wilcoxon Signed Rank statistics), it is not feasible to exactly compute the
in- (ARL0) and out-of-control (ARL1) ARL by using this approach (see Weiß 22

for instance). As it will be shown in the rest of the paper, the corresponding
ARL values are actually highly affected by the number of sub-intervals. As
a consequence, robust methodologies are essential for the proper computation
of its RL properties. Castagliola et al. 23 based on the approach of Rakitzis
et al. 24 introduced a new class of distribution-free EWMA-type chart for count
data (CEWMA SN chart) in which a proper discrete Markov-chain approach
was used for the determination of the ARL for the in- and out-of control cases.
Tang et al. 25 using the same discrete Markov method extended the CEWMA
SN chart by adding an adaptive feature in the smoothing parameter. Recently,
Wu et al. 26 proposed a distribution-free EWMA-TBEA (Time Between Events
and Amplitude) control chart where they introduced a new approach called as
the “continuousify” method in which the values of the initial discrete random
variables are transformed into continuous ones based on weighted Gaussian Ker-
nels. As a result, since the Markov chain of Brook and Evans 21 performs well
in the case of continuous random variables, Wu et al. 26 showed that the above
method yields robust results without the need of setting large values for the
number sub-intervals used in the Markov chain. In this paper, based on the
approach of Wu et al. 26 we will introduce a distribution-free one-sided EWMA
control chart based on the Wilcoxon Signed Rank statistic with robust ARL
results regardless of the underlying distribution of the observations. It should
be noted that, this work aims to provide a methodology which guarantees stable
results in the chart’s RL properties.

The paper is organised as follows: In Section 2, a modified version of the non-
parametric EWMA chart based on the Wilcoxon Signed Rank statistic proposed
by Graham et al. 15 (denoted as the WSR EWMA chart) is proposed. More-
over, an extension of the former control chart (denoted as the C-WSR EWMA
chart) is presented in which the Gaussian Kernel estimation approach of Wu
et al. 26 is used. In Section 3, a numerical analysis is conducted concerning
the robustness of the “continuousify” method and optimal design parameters
(λ∗,K∗) are obtained under several shifts and sample sizes. Additionally, the
efficiency of the “continuousify” method is examined for several Kernel density
functions. In Section 4 an illustrative example is discussed to show the practical
implementation of the operation of our proposed chart. Finally, in Section 5,
some concluding remarks and suggestions for future works are discussed.

2 The distribution free one-sided WSR EWMA
chart

Graham et al. 15 introduced a new nonparametric two-sided EWMA chart based
on the Wilcoxon Signed Rank statistic (NPEWMA-SR chart). Using the Markov-
Chain approach of Brook and Evans 21 they obtained its optimal design param-
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eters and they examined its out-of-control performance under several symmet-
ric distributions. In this current work, we present a modified version of the
NPEWMA-SR chart, providing its Run Length properties for both in- and out-
of-control conditions regardless of the observations’ underlying distribution. We
will only focus on the design of an EWMA scheme capable of detecting increases
in the product’s characteristic. As mentioned above, this paper does not aim
to investigate the performance of a new EWMA-type scheme based on Signed
Ranks but to present an improved and efficient approach to compute its Run
Length properties. In this Section, a brief review of the Wilcoxon Signed Rank
statistic will be firstly presented and then our proposed modified version of the
EWMA control chart based on signed ranks will be introduced.

2.1 Theoretical background of the Wilcoxon Signed Rank
statistic

The Wilcoxon Signed Rank test statistic is one of the most commonly used
nonparametric technique for testing hypotheses about a location parameter, θ0,
of a symmetric continuous distribution. Suppose that at each sampling point
t = 1, 2, . . . a subgroup {Xt,1, Xt,2, . . . , Xt,n} of size n is collected following an
unknown continuous symmetric distribution with c.d.f. (cumulative distribution
function) FX(x|θ) where θ is the location parameter to be monitored (assumed
as known). With respect to the Phase II implementation of the control chart,
when the process is in-control, assuming θ as the median of the process we have
that P(Xt,j > θ0|θ = θ0) = P(Xt,j < θ0|θ = θ0) = p0 = 0.5. On the other hand,
let p1 = P(Xt,j > θ0|θ = θ1) = 1 − FX(θ0|θ1) be defined as the probability of
having an observation larger than θ0 when the process runs out-of-control with
median θ = θ1. By definition, the Wilcoxon signed rank statistic SRt is equal
to:

SRt =

n∑
j=1

sign(Xt,j − θ0)Lt,j ,

where sign(x) = −1, 0 or +1 if x < 0, x = 0 or x > 0, respectively. Additionally,
Lt,j ∈ {1, 2, . . . , n} denotes the rank of the absolute value of the differences
|Xt,j − θ0| , j = 1, 2, ..., n for subgroup t = 1, 2, . . . . Therefore, SRt is the sum

of the signed ranks defined on {−n(n+1)
2 ,−n(n+1)

2 + 2, . . . , n(n+1)
2 − 2, n(n+1)

2 }.
Moreover, the statistic SRt can be alternatively expressed as:

SRt = 2SR+
t −

n(n+ 1)

2
, (1)

where SR+
t is the sum of the positive ranks. More details regarding the proper-

ties and alternative expressions of SR+
t can be found in Gibbons and Chakraborti 27 .

Under the null hypothesis (i.e. for p = p0), McCornack 28 provided a method-
ology in which the p.m.f. (probability mass function) fSR+

t
(s|n) of SR+

t can

be obtained exactly, without any approximation, through the evaluation of the
number NSR+

t
(s|n) of subsets of integers in {1, . . . , n} having a sum equal to

s ∈ {0, 1, . . . , n(n+1)
2 }, i.e.

NSR+
t

(s|n) = NSR+
t

(s|n− 1) +NSR+
t

(s− n|n− 1),
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and by computing

fSR+
t

(s|n) =
NSR+

t
(s|n)

2n
.

Concerning the computation of the p.m.f. of SRt under the alternative hypoth-
esis (i.e. p 6= p0), the p.m.f. fSR+

t
(s|n, p) of SR+

t can be obtained by evaluating

firstly its p.g.f. (probability generating function) GSR+
t

(ω|n, p) (Bennett 29):

GSR+
t

(ω|n, p) =

n∏
i=1

(pωi + q),

where q = 1 − p. More specifically, the p.m.f. fSR+
t

(s|n, p) of SR+
t will be

obtained by differentiating GSR+
t

(ω|n, p), s times, for ω = 0, using the formula

fSR+
t

(s|n, p) =
1

s!
G

(s)

SR+
t

(ω|n, p)
∣∣∣∣
ω=0

,

where G
(s)

SR+
t

(ω|n, p) is the sth derivative of GSR+
t

(ω|n, p) and GSR+
t

(ω|n, p) is a

polynomial of degree n(n+1)
2 . As a result for s ∈ {0, 1, . . . , n(n+1)

2 }, G(s)

SR+
t

(ω|n, p)

is also a polynomial of degree n(n+1)
2 − s which can be expressed as:

1

s!
G

(s)

SR+
t

(ω|n, p) =

n(n+1)
2 −s∑
j=0

cs,jw
j ,

where cs,j is the coefficient of degree j corresponding to the polynomial 1
s!G

(s)

SR+
t

(ω|n, p).
It should be noted that this method can also be applied for the null hypothe-
sis. Moreover, as polynomials can be easily coded with real valued vectors, fast
arithmetic operations (addition, multiplication and power) and derivation can
be efficiently implemented with programming languages like Matlab or Python,
thus providing a very fast computation of fSR+

t
(s|n, p) for any value of p.

2.2 The upper-sided WSR EWMA chart

The upper-sided EWMA chart based on Signed Ranks (WSR EWMA chart) is
defined by the following recursive formula:

Zt = max(0, λSRt + (1− λ)Zt−1), Z0 = 0,

with a fixed asymptotic upper control limit defined as:

UCL = E(SRt) +K
√

V(SRt)×
√

λ

2− λ
.

Using the relationship between SRt and SR+
t , presented in (1), the in-control

expected value and variance of SRt are equal to:

E(SRt) =
n(n+ 1)(2p0 − 1)

2
,

V(SRt) =
2n(n+ 1)(2n+ 1)p0(1− p0)

3
.
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where p0 is the in control value. If we assume that θ is the median (i.e. p0 = 0.5)

we simply have E(SRt) = 0 and V(SR+
t ) = n(n+1)(2n+1)

6 . It should be noted
that, the upper-sided WSR EWMA chart, besides monitoring the median, can
also be used for monitoring any percentile defined on p0 ∈ (0, 1).

In order to obtain the zero-state ARL and SDRL of the WSR EWMA control
chart, the efficiency of the standard approach proposed by Brook and Evans 21

will be tested, which assumes that the operation of this control chart can be
well represented by a discrete-time Markov chain with m+2 states. Specifically,
the transition probability matrix P will be defined as:

P =

(
Q r
0ᵀ 1

)
=


Q0,0 Q0,1 . . . Q0,m−1 Q0,m r0

Q1,0 Q1,1 . . . Q1,m−1 Q1,m r1

...
...

. . .
...

...
...

Qm,0 Qm,1 . . . Qm,m−1 Qm,m rm
0 0 . . . 0 0 1


where Q is the (m+1,m+1) matrix of transient probabilities, 0ᵀ = (0, 0, . . . , 0)
and r = 1−Q1. In addition, the transient probabilities, Qk,i will be computed
as:

• if i = 0,

Qk,0 = FSRt

(
− (1− λ)Hk

λ
|n, p1

)
.

• if i = 1, 2, . . . ,m,

Qk,i = FSRt

(
Hi + ∆− (1− λ)Hk

λ
|n, p1

)
−FSRt

(
Hi −∆− (1− λ)Hk

λ
|n, p1

)
.

where FSRt(x|n, p1) =
∑x
s=0 fSRt(s|n, p1) and fSRt(x|n, p1) are the c.d.f. and

p.m.f. of SRt which both depend on the sample size n and shift p1. Let
q = (q0, q1, . . . , qm)ᵀ be the (m + 1, 1) vector of initial probabilities associ-
ated with the m+ 1 transient states. In our case, we assume q = (1, 0, . . . , 0)ᵀ,
i.e. the initial state corresponds to the “restart state”. When the number m
of subintervals is sufficiently large (say m ≥ 200), this approach provides an
effective method that allows the ARL and SDRL of continuous statistics to be
accurately evaluated by using the following classical formulas from the theory
of Markov chains (see, for instance Neuts 30 or Latouche and Ramaswami 31)

ARL = qᵀ(I−Q)−11,

SDRL =
√

2qᵀ(I−Q)−2Q1 + ARL(1−ARL).

Using the “standard” Markov Chain method presented above, Figure 1 shows
several plots of ARL0 (plain lines) in function of the number of sub-intervals m ∈
{100, 110, . . . , 500} used in the Markov chain for the upper-sided WSR EWMA
chart with parameters (λ = 0.2,K = 2.7) and n ∈ {5, 10, 15, 20}. In addition,
ARL0 values obtained using 105 Monte Carlo simulation runs are also depicted
with dashed lines. From these plots, it can clearly be concluded that the ARL0

values of the upper-sided WSR EWMA chart obtained using the “standard”
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Markov Chain method of Brook and Evans 21 heavily fluctuate depending on
the value of m and they do not exhibit any obvious monotonic convergence
when the number of sub-intervals m increases. In general, as the number of sub-
intervals m increases, the results tend to be more “steady”, but still, as it can
be seen, even for m ≈ 500, there are cases where the results differ significantly
from the ones obtained using simulations. An immediate consequence of these
results is that it is almost impossible to “optimize” (i.e. find optimal pairs
(λ,K)) the upper-sided WSR EWMA chart if ARL0 values are computed using
the standard Markov Chain method of Brook and Evans 21 . Therefore, a more
efficient technique is needed for the exact and robust determination of ARL
values regardless the values of m, n or the pair (λ,K). In the following sections
we will provide an efficient and simple approach in which the ARL values are
no longer affected by the number of sub-interval m and become almost stable
even for m < 200.

2.3 The upper-sided C-WSR EWMA control chart

As it has been illustrated in the previous section, ARL values are highly affected
by the number of sub-intervals m. For this reason, Wu et al. 26 suggested to use
a transformation (called “continuousify”) of the discrete nonparametric statis-
tic to be monitored in order to make the results, obtained by the traditional
approach of Brook and Evans 21 , more robust. More specifically, they proposed
a transformation of the discrete statistic as a mixture of Normal distributions
(or kernels). In particular, suppose that Xt, t = 1, 2, . . . represents a sequence
of i.i.d. discrete random variables, each of them defined on Ψ = {ψ1, ψ2, . . .}
with corresponding p.m.f. function fX(ψ|θ) where θ represents a vector of pa-
rameters. Then, according to Wu et al. 26 a new continuous random variable
denoted as X∗t can be defined as a mixture of normally distributed random
variables Y ∗t where, for each ψt ∈ Ψ, Y ∗t ∼ N(ψt, σ). Then, the corresponding
p.m.f. fX∗(x|θ) and c.d.f. FX∗(x|θ) of X∗t will be computed as:

fX∗(x|θ) =
∑
ψ∈Ψ

fX(ψ|θ)fN(x|ψ, σ),

FX∗(x|θ) =
∑
ψ∈Ψ

fX(ψ|θ)FN(x|ψ, σ),

where fN(x|ψ, σ) and FN(x|ψ, σ) are the p.d.f. and c.d.f. of the Normal (ψ, σ)
distribution, respectively, in which σ > 0 is the so-called“continuousify” pa-
rameter to be fixed (which has nothing to deal with the original distribution
of X). Therefore, for our proposed scheme based on the Wilcoxon Signed Rank

statistic, since the domain in which SRt is defined is Ψ = {−n(n+1)
2 ,−n(n+1)

2 +

2, . . . , n(n+1)
2 − 2, n(n+1)

2 }, we suggest to transform the statistic SRt into a new
continuous one denoted as SR∗t with corresponding p.d.f. fSR∗

t
(s|n, p1) and c.d.f.

FSR∗
t
(s|n, p1) defined for s ∈ Ψ as:

fSR∗
t
(s|n, p1) =

∑
ψ∈Ψ

fSR+
t

(
ψ + n(n+1)

2

2
|n, p1

)
fN(s|ψ, σ), (2)

FSR∗
t
(s|n, p1) =

∑
ψ∈Ψ

fSR+
t

(
ψ + n(n+1)

2

2
|n, p1

)
FN (s|ψ, σ), (3)
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where fSR+
t

(. . . |n, p1) is the p.m.f. of the SR+
t statistic as defined in Section 2.1.

Therefore, the charting statistic of the “continuousified” one-sided WSR EWMA
(denoted as C-WSR EWMA chart) will be defined as:

Z∗t = max(0, λSR∗t + (1− λ)Z∗t−1), Z∗0 = 0,

with fixed asymptotic control limits:

UCL = E(SR∗t ) +K
√

V(SR∗t )×
√

λ

2− λ
.

For the computation of the mean E(SR∗t ) and variance V(SR∗t ) of SR∗t it can be
easily proved that (see Appendix):

E(SR∗t ) = E(SRt),

V(SR∗t ) = V(SRt) + σ2.

In order to obtain the RL properties of the upper-sided C-WSR EWMA control
chart, the standard discrete-time Markov chain approach of Brook and Evans 21

presented in Section 2 will be used with the only difference that the p.m.f. of
SRt will be replaced by the p.m.f. of SR∗t in the computation of the transient
probabilities Qk,i.

For a better understanding of the design of the C-WSR EWMA chart a brief
example is presented in Table 1. The first column of this table represents the
sample number, t = {1, 2, . . . , 10}, the second column contains the observed
(simulated) values SRt for a sample size n = 10 and p0 = 0.5, while the third
column contains the corresponding transformed SR∗t . Finally, the correspond-
ing values of the charting statistics Z∗t are presented in the rightmost column.
For illustrative purposes the following parameters have been fixed: λ = 0.2
(smoothing parameter), σ = 0.2 (“continuousify” parameter) and Z∗0 = 0 (no
head-start feature). More specifically:

• For t = 1 we have SR1 = −11. The corresponding value for SR∗1 is
computed by generating a N(−11, 0.2) random variable. The value of the
charting statistic is Z∗1 = max(0, 0.2×(−10.6823)+0.8×0) = max(0,−2.1365) =
0.

• For t = 2 we have SR2 = 21. The corresponding value for SR∗2 is computed
by generating a N(21, 0.2) random variable. The value of the charting
statistic is Z∗2 = max(0, 0.2×20.9128+0.8×0) = max(0, 4.1826) = 4.1826.
...

• For t = 10 we have SR10 = 5. The corresponding value for SR∗10 is com-
puted by generating a N(5, 0.2) random variable. The value of the charting
statistic is Z∗10 = max(0, 0.2× 5.2996 + 0.8× 5.2678) = max(0, 5.2742) =
5.2742.

It should be pointed out that even though the operations of this chart requires
random numbers to be generated, its Run Length properties (ARL, SDRL, . . .),
are obtained directly through the distribution of the SR∗t with the exact Markov
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chain method shown above without the need of perfoming any simulations. This
fact has also mentioned by Wu et al. 26 .

In order to show the efficiency of the “continuousify” method, Table 2 presents
ARL values of the WSR EWMA (without “continuousify”) and C-WSR EWMA
(with “continuousify”) charts for λ = 0.2, K = 2.7 and for several combinations
of (n, p1). In Table 2, the value σ = 0.2 has been fixed but, as it will be
highligthed in the next Section, the results are are not significantly affected by
this choice. Based on the results in Table 2 we draw the following conclusions:

• as this has been already shown in Figure 1 (but only for the in-control
case), the ARL values obtained without “continuousify” (i.e. the WSR
EWMA chart) strongly fluctuate depending on the value of m. Clearly,
they do not exhibit any monotonic convergence when the number of sub-
intervals m increases. For instance, in the case (n, p1) = (7, 0.53), the ARL
values obtained without “continuousify” fluctuate from 112 to 354.4.

• on the contrary, for m ≥ 100, the ARL values obtained with the “continu-
ousify” method (i.e. the C-WSR EWMA chart) exhibit a strong stability
and they seem to converge rapidly to a reliable value. Even for m = 100
the results obtained with the “continuousify” approach are very reliable.
For instance, using the same case (n, p1) = (7, 0.53), the ARL values ob-
tained with “continuousify” converge rapidly to 150.4.

We have also computed the ARL values of the WSR EWMA chart using 106

Monte-Carlo simulation runs (see bottom of Table 2). What can be seen is that
the out-of-control ARL values obtained with the “continuousify” method (see
for example the case m = 400), i.e. 150.4, 28.4, 109.2, 328.0 are almost the same
or just a bit larger to the ones obtained using simulations, i.e. 150.4, 28.3, 109.0,
326.7.

3 Numerical analysis

In this Section we will investigate the impact of the choice of i) the parameter σ
and ii) the kernel used in the “continuousify” method (for the moment, only the
normal kernel has been considered), on the ARL of the C-WSR EWMA chart.
We will also present optimal design parameters for this control chart.

3.1 Effect of σ

In Table 3, setting λ = 0.2 andK = 2.7, we present the ARL values under several
scenarios for fixed values of σ = {0.1, 0.15, . . . , 0.25} and different combinations
of (n, p1). It is clear from these results that regardless the value of σ ∈ [0.1, 0.25],
the ARL values obtained for the C-WSR EWMA chart are i) very stable, even
for small values of m ≈ 100 and ii) not seriously affected by the choice of σ with
some tiny differences occuring in the first point. As a consequence, as long as
σ is neither too small nor too large, the results are not affected. Therefore we
suggest to set σ = 0.2 as a reasonable choice for the value of the “continuousify”
parameter.
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3.2 Effect of the kernel

In this paper (as in Wu et al. 26), the distribution / kernel used for transforming
the discrete random variable SRt into a continuous one denoted as SR∗t has been
chosen to be the normal (ψ, σ) distribution (see (2) and (3)) which can be simply
derived from the N(0, 1) distribution by a straightforward standardization. A
legitimate question is what happens to the previous results concerning the C-
WSR EWMA chart if the normal kernel used in (2) and (3) is replaced by
another continuous one? Are the ARL values obtained by this modification
different from what has been obtained with the normal kernel? Therefore, the
goal is to investigate the impact of the choice of the kernel on the ARL values
of the C-WSR EWMA chart if (2) and (3) are replaced by

fSR∗
t
(s|n, p1) =

∑
ψ∈Ψ

fSR+
t

(
ψ + n(n+1)

2

2
|n, p1

)
K

(
s− ψ
σ

)

FSR∗
t
(s|n, p1) =

∑
ψ∈Ψ

fSR+
t

(
ψ + n(n+1)

2

2
|n, p1

)
K

(
s− ψ
σ

)
,

where K(. . . ) is a standardized continuous kernel as the ones listed in Table 4. In
Table 5, ARL values of the C-WSR EWMA chart are presented for parameters
λ = 0.2, K = 2.7, for σ = 0.2, n ∈ {7, 13, 15, 18, 20, 25} and for the kernels listed
in Table 4. As it can be noted, for a fixed value of n, the choice of the kernel
clearly seems to have almost no impact on the results, no matter the value of
m. This implies that the user is totally free to use the kernel of his/her choice
without having to worry much about the reliability of the result.

3.3 Optimal Design parameters for the C-WSR EWMA
chart

In this section, we present the results of a numerical study for the performance
of the C-WSR EWMA control chart. The desired in-control ARL value (ARL0)
is set equal to 370 and no head-start feature has been used (Z∗0 = 0). For
the computations, we used the Markov chain method presented in Section 2
and all the calculations were performed in R. In Table 6, we give the optimal
design parameters (λ∗,K∗) for different shifts (p) and sample sizes (n) along
with the corresponding ARL1 values setting the number of subintervals equal
to m = 200. For the determination of the optimal pair (λ∗,K∗) for the C-WSR
EWMA chart, we suggest the following procedure: Find out the optimal pair
(λ∗,K∗) such that for fixed value of n, we have ARL(n, λ∗,K∗, p = 0.5) = 370
and, for a fixed value of p, ARL(n, λ∗,K∗, p) is the smallest out-of-control ARL.
Note that p is the magnitude of the shift. If p = 0.5 the process is in-control
and, when p is larger than 0.5, the process is out-of-control.

The pairs are given in Table 6 for various combinations of n = {5, 6, 7, . . . , 20}
and p = {0.55, 0.60, 0.65, . . . , 0.95}. In each cell, the three numbers given are
λ∗,K∗ and ARL1. Apparently, these values can be used to design the chart, if
the practitioner knows at least on the average the out-of-control value p. For
example, if n = 10 and p = 0.6 the proper parameters are λ∗ = 0.07 and
K∗ = 2.523. These values give ARL1 = 20.6.
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4 An illustrative example

In this Section an illustrative example is provided to show a practical Phase II
implementation of the design and operation of our proposed chart. This example
was originally discussed by Celano et al. 32 in which the quality characteristic to
be monitored is the radial error, defined as “a quality characteristic frequently
monitored in hole drilling processes of mechanical parts and assembly processes
of printed circuit boards”. At each sampling point t, a subgroup of size n = 20
is collected in order to detect a shift in the median of the quality of interest such
that p0 = 0.5 shifts to p1 = 0.7. As shown in Table 6, the optimal parameters
to be used are λ = 0.34 and K = 2.785. In addition, as shown in Celano
et al. 32 the in-control value of the median for the radial error is θ0 = 0.338.
In Table 7 the values of the simulated radial errors Xt,j for t ∈ {1, 2 . . . , 10}
and j ∈ {1, 2 . . . , 20} are provided and the values of SRt, SR∗t , and Z∗t are
also reported. In Figure 2 the differences Xt,j − θ0 for t ∈ {1, 2 . . . , 10} are
plotted, where at each sampling point, t, more than one values correspond to
ties between the differences of Xt,j and θ0. The values of the charting statistic
Z∗t are plotted in Figure 3. It can be seen that at the 4th sampling point (t = 4)
an out-of-control signal is given stating that the process median has changed.

5 Conclusions

In this paper we proposed a modified distribution-free EWMA control chart
based on the Wilcoxon signed rank statistic called as the C-WSR EWMA chart.
We aimed to present a robust technique which guarantees steady results for its
Run Length properties. Using the “continuousify” method introduced by Wu
et al. 26 we determined its RL properties showing that the number of cutpoints
does not affect the results. Additionally, we tested the efficiency of this method
under the use of several kernels besides the Gaussian and we saw that no sig-
nificant differences exist. It should be noted that our work was mainly focused
on providing an enhanced method for the determination of the chart’s RL prop-
erties rather than examining its superiority versus other schemes. It is worth
stretching that, its in- and out-of-control performances were derived regardless
the process underlying distribution for monitoring any percentile of interest.

As a future work many things can be pursued. For instance, the “continuousify”
method could be applied in EWMA-type schemes where other nonparametric
statistics are considered such as the Mann-Whitney, and the Ansari-Bradley
statistics. Additionally, it would be interesting to examine the performance of
the C-WSR EWMA chart in the presence of ties in the population. Finally, it
would be challenging to investigate the use of similar kernel-based techniques in
distribution-free EWMA schemes designed for monitoring bivariate processes.

Appendix

Let as denote EN (X) = µ and VN (X) = σ2 as the mean and variance of a
random variable, X, from a Normal distribution. For the computation of the
mean of SR∗t we have:
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E(SR∗t ) =

∫ ∞
−∞

s× fSR∗
t
(s|n, p1)ds

=

∫ ∞
−∞

s×
∑
ψ∈Ψ

fSR+
t

(
ψ + n(n+1)

2

2
|n, p1

)
× fN(s|ψ, σ)ds

=
∑
ψ∈Ψ

[
fSR+

t

(
ψ + n(n+1)

2

2
|n, p1

)
×
∫ ∞
−∞

s× fN(s|ψ, σ)ds

]

=
∑
ψ∈Ψ

[
fSR+

t

(
ψ + n(n+1)

2

2
|n, p1

)
× EN (s)

]

=
∑
ψ∈Ψ

[
fSR+

t

(
ψ + n(n+1)

2

2
|n, p1

)
× ψ

]
= E(SRt)

Similarly, using the fact that E(SR∗t ) = E(SRt) the variance of SR∗t is computed
as:

V(SR∗t ) = E (SR∗t )
2 −

(
E(SR∗t )

)2
=

∫ ∞
−∞

s2 × fSR∗
t
(s|n, p1)ds−

(
E(SR∗t )

)2
=

∫ ∞
−∞

s2 ×
∑
ψ∈Ψ

[
fSR+

t

(
ψ + n(n+1)

2

2
|n, p1

)
× fN(s|ψ, σ)

]
ds−

(
E(SRt)

)2
=
∑
ψ∈Ψ

[
fSR+

t

(
ψ + n(n+1)

2

2
|n, p1

)
×
∫ ∞
−∞

s2 × fN(s|ψ, σ)ds

]
−
(
E(SRt)

)2
=
∑
ψ∈Ψ

[
fSR+

t

(
ψ + n(n+1)

2

2
|n, p1

)
× EN (s2)

]
−
(
E(SRt)

)2
=
∑
ψ∈Ψ

[
fSR+

t

(
ψ + n(n+1)

2

2
|n, p1

)
×
(
VN (s) + (EN (s))2

)]
−
(
E(SRt)

)2
=
∑
ψ∈Ψ

[
fSR+

t

(
ψ + n(n+1)

2

2
|n, p1

)
×
(
σ2 + ψ2

)]
−
(
E(SRt)

)2
= σ2 ×

∑
ψ∈Ψ

fSR+
t

(
ψ + n(n+1)

2

2
|n, p1

)
+
∑
ψ∈Ψ

ψ2 × fSR+
t

(
ψ + n(n+1)

2

2
|n, p1

)
−
(
E(SRt)

)2
= σ2 + E (SRt)

2 −
(
E(SRt)

)2
= σ2 + V(SRt)
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Table 1: Implementation Example Data

t SRt SR∗t Z∗t

1 -11 -10.6823 0
2 21 20.9128 4.1826
3 27 26.5635 8.6587
4 -9 -9.2340 5.0802
5 1 0.9568 4.2555
6 -21 -21.0686 0
7 3 2.9014 0.5803
8 17 17.1334 3.8909
9 11 10.7754 5.2678
10 5 5.2996 5.2742
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Table 2: Comparison of out-of-control ARL values for the WSR EWMA (with-
out “continuousify”) and C-WSR EWMA (with “continuousify” and σ = 0.2)
chart when λ = 0.2 and K = 2.7
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Table 3: ARL values of the C-WSR EWMA chart for λ = 0.2, K = 2.7 and for
fixed values of σ = {0.1, 0.15, . . . , 0.25} and different combinations of (n, p1)

(n, p1) = (5, 0.5) (n, p1) = (7, 0.55) (n, p1) = (13, 0.52)
σ σ σ

m 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25

100 388.8 388.6 388.6 388.5 89.7 89.7 89.8 89.8 155.1 155.1 155.1 155.1
110 388.8 388.6 388.6 388.5 89.7 89.7 89.8 89.8 155.2 155.2 155.2 155.2
120 388.7 388.6 388.6 388.5 89.7 89.8 89.8 89.8 155.2 155.2 155.2 155.2
130 388.7 388.7 388.6 388.5 89.8 89.8 89.8 89.8 155.0 155.0 155.1 155.1
140 388.7 388.7 388.6 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
150 388.7 388.7 388.6 388.6 89.7 89.8 89.8 89.8 155.1 155.2 155.2 155.2
160 388.7 388.7 388.6 388.6 89.7 89.8 89.8 89.8 155.2 155.2 155.2 155.2
170 388.7 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
180 388.7 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.1 155.2 155.2 155.2
190 388.7 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
200 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
210 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
220 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
230 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
240 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
250 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
260 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
270 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
280 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
290 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
300 388.8 388.7 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
310 388.8 388.8 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
320 388.8 388.8 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
330 388.8 388.8 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
340 388.8 388.8 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
350 388.8 388.8 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
360 388.8 388.8 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
370 388.8 388.8 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
380 388.8 388.8 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
390 388.8 388.8 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2
400 388.8 388.8 388.7 388.6 89.8 89.8 89.8 89.8 155.2 155.2 155.2 155.2

(n, p1) = (10, 0.5) (n, p1) = (15, 0.53) (n, p1) = (20, 0.5)
σ σ σ

m 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25

100 346.0 346.0 346.1 346.1 100.9 100.9 100.9 100.9 328.2 328.2 328.2 328.2
110 346.2 346.2 346.2 346.1 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
120 346.3 346.2 346.2 346.2 100.9 100.9 100.9 100.9 329.6 329.4 329.2 329.0
130 346.0 346.1 346.1 346.2 100.8 100.8 100.9 100.9 327.9 327.9 328.0 328.0
140 347.4 346.6 346.3 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
150 346.2 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
160 346.2 346.2 346.2 346.2 100.8 100.8 100.9 100.9 328.1 328.0 328.0 328.0
170 346.2 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
180 346.1 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.1 328.1 328.0 328.0
190 346.2 346.2 346.2 346.2 101.2 101.0 101.0 100.9 328.0 328.0 328.0 328.0
200 346.2 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.1 328.1 328.0 328.0
210 346.2 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
220 345.9 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
230 346.3 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.1 328.1 328.0 328.0
240 346.2 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.4 328.3 328.2 328.2
250 346.3 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
260 346.3 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
270 346.2 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
280 346.2 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.1 328.1 328.0 328.0
290 346.2 346.2 346.2 346.2 100.9 100.9 100.9 100.9 327.3 327.6 327.8 328.0
300 346.2 346.2 346.2 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
310 346.3 346.3 346.2 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
320 346.3 346.3 346.2 346.2 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
330 346.3 346.3 346.2 346.2 100.9 100.9 100.9 100.9 328.1 328.0 328.0 328.0
340 346.3 346.3 346.2 346.2 100.9 100.9 100.9 100.9 328.1 328.1 328.0 328.0
350 346.3 346.3 346.3 346.2 100.9 100.9 100.9 100.9 328.1 328.1 328.0 328.0
360 346.3 346.3 346.3 346.2 100.9 100.9 100.9 100.9 328.1 328.1 328.1 328.1
370 346.3 346.3 346.3 346.3 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
380 346.3 346.3 346.3 346.3 100.8 100.9 100.9 100.9 328.1 328.0 328.0 328.0
390 346.3 346.3 346.3 346.3 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0
400 346.3 346.3 346.3 346.3 100.9 100.9 100.9 100.9 328.0 328.0 328.0 328.0

17



Table 4: Some standardized continuous kernels

Kernel Domain K(x)

Parabolic [−
√

5,
√

5] 3
4
√

5

(
1− 1

5x
2
)

Biweight [−
√

7,
√

7] 15
16
√

7
(1− x2

7 )2

Triweight [−3, 3] 35
96

(
1− x6

36 − 3x2

9 + 3x4

34

)
Cosine

[
− 1√

1− 8
π2

, 1√
1− 8

π2

] √
π2

16 −
1
2 cos

(√
π2x2

4 − 2x2

)
Normal (−∞,∞) e−x

2/2
√

2π
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Table 5: ARL values of the C-WSR EWMA chart for parameters λ = 0.2,
K = 2.7, for σ = 0.2, n ∈ {7, 13, 15, 18, 20, 25} and for the kernels listed in
Table 4
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Table 6: Optimal combinations of (λ∗,K∗) for the C-WSR EWMA chart along
with the corresponding ARL1 values
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Table 7: Radial error example: Phase II sample of t = 1, . . . 10 subgroups of
size n = 20 and the corresponding values for SRt, SR∗t and Z∗t

Xt,j

t 1 2 3 4 5 6 7 8 9 10
1 0.289 0.380 0.483 0.288 0.544 0.390 0.567 0.512 0.433 0.168
2 0.447 0.599 0.207 0.317 0.256 0.433 0.218 0.329 0.432 0.674
3 0.081 0.368 0.435 0.216 0.246 0.229 0.623 0.455 0.394 0.616
4 0.954 0.537 0.621 0.513 1.540 0.609 0.801 1.080 1.069 0.954
5 0.316 0.237 0.286 0.879 0.190 0.104 0.570 0.448 0.269 0.746
6 0.342 0.378 0.287 0.328 0.589 0.233 0.255 0.119 0.284 0.499
7 0.370 0.391 0.525 0.459 1.280 0.470 0.482 0.032 0.525 0.628
8 0.352 0.264 0.759 0.154 0.256 0.426 0.363 0.310 0.303 0.316
9 0.305 0.352 0.468 0.224 0.739 0.234 0.171 0.250 0.308 0.431
10 0.603 0.363 0.628 0.314 0.029 0.436 0.207 0.553 0.645 0.122

Xt,j

t 11 12 13 14 15 16 17 18 19 20 SRt SR∗t Z∗t
1 0.128 0.428 0.081 0.575 0.396 0.574 0.730 0.407 0.367 0.452 45 45.0453 15.3154
2 0.233 0.570 0.748 0.364 0.372 0.798 0.218 0.405 0.060 0.632 27 26.9181 19.2603
3 0.116 0.611 0.666 0.262 0.410 0.234 0.692 0.719 1.033 0.376 44 43.8633 27.6253
4 0.852 0.425 1.389 0.794 1.081 0.900 0.521 0.576 0.761 0.535 210 210.1701 89.6906
5 0.344 0.191 0.366 0.315 0.408 0.522 0.598 0.232 0.671 0.448 0 -0.0792 59.1688
6 0.410 0.668 0.385 0.594 0.390 0.265 0.409 0.434 0.628 0.316 -11 -10.8336 35.3680
7 0.686 0.584 0.300 0.245 0.555 0.113 0.194 0.932 0.597 0.523 84 84.0995 51.9367
8 0.807 0.235 0.173 0.183 1.105 0.068 0.368 0.736 0.097 0.060 -54 -53.9357 15.9401
9 0.092 0.326 0.455 0.569 0.354 0.475 0.530 0.312 0.102 0.651 -31 -31.0695 0
10 0.759 0.296 0.691 0.425 0.441 0.323 0.287 0.310 0.194 0.582 18 17.9971 6.1190
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Figure 1: ARL0 (plain lines) in function of the number of sub-intervals m ∈
{100, 110, . . . , 500} for the upper-sided WSR EWMA chart with parameters
(λ = 0.2,K = 2.7) and n ∈ {5, 10, 15, 20} using the standard Markov Chain
method
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Figure 2: Radial error example: individual value plot of the observations
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Figure 3: Radial error example: the C-WSR EWMA chart for the Phase II data
presented in Table 7
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