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Abstract 25 

Light affects bivalve behavior and gaping activity, but its potential effects on bivalve filtration remain 26 

poorly investigated. In this study, clearance rates of two bivalve species: the Asian clam, Corbicula 27 

fluminea and paper pondshell, Utterbackia imbecillis were assessed in light (6.5 ± 0.5 µmol m-2 s-1) and 28 

dark (0.0 µmol m-2 s-1) conditions. We found that clearance rates remained similar between C. fluminea (50 29 

± 18 mL g-1 h-1) and U. imbecillis (41 ± 10 mL g-1 h-1) during light conditions. However, C. fluminea (110 30 

± 15 mL g-1 h-1) filtered significantly faster than U. imbecillis (24 ± 6 mL g-1 h-1) in the dark condition (p < 31 

0.05). The results indicated that light might affect the filtration activity in freshwater bivalves differently, 32 

depending on species.  33 

 34 
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Introduction 56 

North America has the highest diversity of freshwater mussel species in the world, but over the past several 57 

decades these animals have become among the most threatened group of organisms globally with over 70% 58 

of species vulnerable to extinction or already extinct  (Vaughn & Taylor 1999; Haag & Williams 2014).  59 

Bivalves are filter feeders and play important roles in freshwater ecosystems through biogeochemical 60 

cycling of nutrients and contaminants (Geist 2010; Haag 2012). Therefore, they are increasingly used as 61 

sentinels of water quality in ecological remediation of contaminated aquatic systems (Rosa et al. 2014; 62 

Otter et al. 2015). Studies on filtration rates (FRs) in freshwater bivalves under different environmental 63 

conditions are needed to assess their ecological impact and potential use in bioremediation.  64 

Current knowledge of the FRs of freshwater bivalve species in North America is based on a limited number 65 

of species. While a considerable amount of data has been published on FRs of exotic C. 66 

fluminea and Dreissena species  (Marescaux et al. 2016; Pigneur et al. 2014; Rosa et al. 2014; Viergutz et 67 

al. 2012), much less attention has been paid to native freshwater mussels, particularly Unionid species.  68 

Approximately only 8 species of freshwater mussels have been studied for FR assessment in laboratory 69 

experiments in North and South America (Table 1).  70 

C. fluminea has negatively impacted native bivalve abundance and diversity in North 71 

American freshwater ecosystems (Ferreira-Rodriguez et al. 2018). The FR of C. fluminea is often reported 72 

to explain their ability to compete with other bivalve species (Pigneur et al. 2014). Several studies, 73 

conducted mostly in the laboratory, have reported a wide range of individual FRs for C. fluminea, 74 

between 29 and < 3000 mL ind-1 h-1 (Viergutz et al. 2012) while FRs in Unionidae usually 75 

ranges between 18 and 2000 mL ind-1 h-1  although FRs up to <10,000 mL mL ind-1 h-1 were measured in 76 

large individuals (up to 259 g, Table 1). Nevertheless, very few studies assessed the FRs of the different 77 

species at the same time while using the same protocol, making it difficult to compare experimental data 78 

(Marescaux et al. 2016).  79 

Laboratory studies have highlighted that FRs in freshwater mussels vary depending on biotic and abiotic 80 

factors. These include food availability, sex and reproductive cycle (Tankersley 1996; Gatenby et al. 81 
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2013), pH, temperature, turbidity and water velocity (Loayza-Muro and Elias-Letts 2007; Mistry and 82 

Ackerman 2018; Tuttle‐ Raycraft and Ackerman 2019). Gatenby et al. (2013) found that Villosa iris 83 

adjusted FRs depending on the availability of food. More recently, Mistry and Ackerman (2018) 84 

experimentally assessed FRs in four Unionidae species and found that FR increased with water velocity and 85 

algae flux up to a saturation level.  86 

Field studies have revealed seasonal changes in FRs in several bivalve species. Viergutz et al. 87 

(2012) found that seasonal variability of FR in C. fluminea surpasses direct temperature effects. 88 

These findings demonstrate that other factors besides temperature and body mass can strongly affect FRs. 89 

Additionally, light is also known to affect the behavior of bivalves involving closure or retraction of siphon 90 

and valve adduction (Wilkens 2008). Morton (2008) reported that photoreceptors in bivalves are not 91 

uncommon. However, no experimental study has been conducted to assess the effects of light intensity on 92 

the FRs of freshwater bivalves.  93 

In this study, we aimed to determine the FRs of  an invasive species C. fluminea and a poorly studied native 94 

species U. imbecillis under controlled light conditions. Filtration activity was assessed through the 95 

determination of clearance rates of the studied species (i.e. volume of water cleared of suspended particles 96 

per unit of time (Riisgård 2001). 97 

 98 

Methods 99 

Bivalves and algae culture 100 

Adult C. fluminea and U. imbecillis were used to compare FRs in native and invasive species. All the 101 

bivalves were collected in the field in July 2018. C. fluminea (weight: 3.50 ± 0.35 g wet wt, shell length: 102 

20.2 ± 0.9 mm) were collected from Sewee Creek in Meigs county, TN, USA while U. imbecillis (weight: 103 

21.2 ± 8.2 g wet wt, shell length: 62.8 ± 7.6 mm) were collected by Tennessee Wildlife Resources Agency 104 

(TWRA) from Sumner Sportsman Club Lake in Portland, TN, USA and brought to the laboratory in a 105 

cooler with a bubbler. No mortality was recorded during transportation.  106 
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The bivalves were kept in a 450-L tank (flow-through circuit of dechlorinated tap water, water renewal: 50-107 

170 L h-1; ambient temperature: 14-28 °C; light intensity: 13-24 μmol m-2 s-1; light/dark: 14h/10h) and 108 

acclimated to laboratory conditions for four weeks prior to the experiment. Two weeks prior to each test, 109 

bivalves were fed a daily ration of a mix of the chlorophyte Chlamydomonas reinhardtii and the diatom 110 

Navicula sp. (3 - 5 x 106 cells g-1 d-1) using medical IV drip bags for continuous feeding.  111 

The unicellular green algae, C. reinhardtii (5-6 µm of diameter) was reported to be efficiently filtered by 112 

both clams and mussels (Boltovskoy et al. 1995; Gatenby et al. 1996) and was used in this clearance rate 113 

experiments. C. reinhardtii was cultured in 10-L clear Nalgene carboys containing WC medium 114 

(temperature: 23-24°C; light intensity: 150-200 μmol m-2 s-1; light/dark: 12h/12h). Algal concentrations 115 

were evaluated by counting cells using a flow imaging cytometer (FlowCam® Benchtop B3 Model).  116 

 117 

Experimental procedures 118 

Clearance rates of each species were determined following the methods of Riisgård (2001). Individuals of 119 

both species were placed in separate clear plastic containers with dechlorinated tap water (100 mL in round 120 

punch cups for C. fluminea and 500 mL in Lee’s specimen containers for U. imbecillis) with aeration. One 121 

container was kept with no bivalve and used as a control. Preliminary tests were carried out and confirmed 122 

that there was no significant difference in cell concentrations between control containers (without bivalves, 123 

n = 3), so we used only one control container for each of the experiments. Bivalves were allowed to 124 

acclimate until active filtering was observed (approx. 30 min).  125 

After the acclimation period, live C. reinhardtii was centrifuged (5000 RPM for 5 min) and spiked to each 126 

plastic container to reach the targeted initial concentrations. The use of concentrated algae allowed for the 127 

reduction of spike volume (approximately 3 mL) and to avoid significant changes of water volume and 128 

physio-chemical parameters. Subsamples of 1 mL water were taken from each plastic container five minutes 129 

after the algae spike and then at 5 to 15 min intervals (based on visual color changes in the plastic 130 

containers). The filtration was assessed for up to 1 h. The same sampling procedures were conducted for 131 
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the experiments in the dark condition where no visual observation was possible. Samples were placed in 132 

1.5-mL tubes with 200 µL of 10% formalin solution and mixed immediately. Analyses of the samples were 133 

performed using by flow imaging cytometry (FlowCam® Benchtop B3 Model). 134 

The experiments were performed for both species in the dark (0.0 μmol m-2 s-1) with the initial cell 135 

concentrations of C. reinhardtii (2.5 ± 0.2 x 105 cells mL-1) and in the light (6.5 ± 0.5 µmol m-2 s-1) with the 136 

initial cell concentrations of C. reinhardtii (4.0 ± 0.2 x 105 cells mL-1). The sample sizes, the number of 137 

individuals tested per treatment, (n = 7 in dark, 8 in light for C. fluminea and n = 6 in dark, 8 in light for U. 138 

imbecillis) followed the recommendations from (Salerno et al. 2018). Light intensity was measured using 139 

a PAR meter (Quantum Flux® Apogée). Temperature was maintained at 22 ± 0.5 °C during the experiment. 140 

Dark experiments were done in the evening, after the daily acclimated dark time began.  Likewise, light 141 

experiments were done during the day according to the acclamation period light pattern. 142 

Algae concentrations in a similar range showed no influence on growth and survival of juvenile mussels of 143 

V. iris (3.5 x 104 - 1.8 x 105 cell mL-1) (Hua et al. 2013).  However, Gatenby et al. (2013) found that high 144 

and low food concentration can affect FR of adult V. iris. So in the present study, since cell concentrations 145 

of C. reinhardtii differed for the experiments performed in light and dark conditions, the effects of light 146 

and dark condition on FRs within the same species were not evaluated statistically. Only the FRs between 147 

species within the same light condition (light and dark) were statistically tested. 148 

 149 

Data analysis 150 

Cell concentrations (cells mL-1) were analyzed in time (minutes) series. Kinetics were fitted with an 151 

exponential model and linearized by log transformation. Only regressions with R2 ≥ 0.85 were considered 152 

for clearance rate calculations (Hansen et al. 2011). 153 

Clearance rates (expressed as mL g-1 h-1) were calculated according to the following equation (Mistry and 154 

Ackerman 2018): 155 

𝐶𝑅 =  
𝑉

𝑛𝑡
 (𝑙𝑛

𝐶𝑖

𝐶𝑓
 – 𝑙𝑛

𝐶′𝑖

𝐶′𝑓
) 156 
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Where V is the volume of water in the plastic container (mL), n is the number of individual per container, t 157 

is the time of the experiment (h), Ci and Cf are initial and final cell concentrations respectively in the 158 

container with bivalves while, and C’I and C’f are initial and final cell concentrations respectively in the 159 

containers used as controls (with no bivalve). The result from this equation was then divided by the total 160 

wet weight (g) of the corresponding individual to normalize results from these two differently sized species. 161 

Kinetics of FRs were fitted using nonlinear regression routines and iterative adjustment. Nonlinear 162 

regressions and statistics were performed in R freeware 3.5.2 (R Development Core Team 2020). 163 

Data for clearance rates were first tested for normality (Shapiro’s test). A Student’s t-test was then used to 164 

assess significance of differences between the two species (α = 0.05).  165 

 166 

Results and Discussion 167 

We found that C. fluminea filtered significantly faster (110 ± 15 mL g-1 h-1, n = 7) than U. imbecillis (24 ± 168 

6 mL g-1 h-1, n = 6) in the dark condition (t = 12.64, p < 0.001). During light conditions, no significant 169 

difference was found in clearance rates in C. fluminea and U. imbecillis (t = 1.27, p = 0.23) although the 170 

average clearance rates were slightly higher in the C. fluminea (50 ± 18 mL g-1 h-1, n = 8) than those in the 171 

U. imbecillis (41 ± 10 mL g-1 h-1, n = 8) (Fig. 1).  172 

This noticeable difference of FRs in the dark was also revealed in the filtration kinetics of the two species 173 

(Fig. 2). The cell concentration of C. reinhardtii decreased rapidly in the cups with C. fluminea, while it 174 

did not show the same pattern in containers with U. imbecillis in the dark condition. During the first 20 175 

minutes, C. fluminea filtered more than 50% of algal cells while U. imbecillis only filtered less than 25%. 176 

At the end of the filtration period in the dark, only 4 ± 2% of C. reinhardtii cells remained in the cups with 177 

C. fluminea while 36 ± 8% of C. reinhardtii cells remained in the cups with U. imbecillis. Filtration patterns 178 

in the light remained very similar between the two species. The results indicated that C. fluminea had much 179 

higher FRs (over 4.5 times) than U. imbecillis during the dark condition in this study. This finding suggests 180 

that the FRs of the invasive species C. fluminea  may be advantageous at night compared to native species. 181 
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FRs of C. fluminea in this study agree with previous measurements conducted in laboratory settings (78-182 

486 mL ind-1 h-1) (see Marescaux et al. 2016 for review). The FRs in U. imbecillis (360-1169 mL ind-1 h-1) 183 

are close to those in other Unionidae species (Table 1), (Mistry and Ackerman 2018; Tuttle-Raycraft and 184 

Ackerman 2018, 2019). There are only a few studies on freshwater bivalve filtration regarding the influence 185 

of light, most of which focus on invasive species. Ortmann and Grieshaber (2003) used gaping activity in 186 

C. fluminea to estimate filtration activity in the field and reported a circadian rhythm with valves being 187 

closed in the morning and opened in the afternoon. They assumed this phenomenon was due to the food 188 

availability. The invasive golden mussel Limnoperna fortune, voluntarily detached its byssal threads, 189 

crawled, and reattached more often in darkness than in light (Duchini et al. 2015) while invasive zebra 190 

mussel Dreissena polymorpha and quagga mussel D. rostriformis bugensis showed no preference between 191 

light regimes in byssal thread production (Grutters et al. 2012). Kobak and Nowacki (2007) found that D. 192 

polymorpha tried to avoid any light. Altogether, these contrasting results indicate that response to light in 193 

FRs in bivalves is species-dependent.  194 

Limited investigations have been performed to study light effects in Unionids. Nevertheless, Haag and 195 

Warren (2000) studied mantle lure displays as an endpoint for the combined effects of light and fish 196 

presence in Villosa nebulosa and V. vibex. They found that presence or absence of fish had no effect on 197 

display, but V. nebulosi displayed mainly at night while V. vibex displayed mainly during daytime 198 

suggesting that behavior of Unionids species may be affected by light. In our study, C. fluminea exhibited 199 

higher FRs than the Unionid U. imbecillis in the dark. This exotic species was already known for its high 200 

FRs as well as for its ability to feed on smaller particles than most native freshwater bivalves such as 201 

Unionidae (Marescaux et al. 2016 and citations within).  The two species in this study can occupy the same 202 

habitat and burrowing depth.  While our organisms did not originate from the same location and competition 203 

was not analyzed in our study, food competition would be possible in their natural habitat.  Our study could 204 

provide preliminary data for light conditions under which competition might occur. 205 
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This study provides new insights regarding the influence of light on the filtration activity of two bivalve 206 

species, C. fluminea and U. imbecillis, highlighting the complexity of bivalve behavioral response to light 207 

and suggests differing niche capabilities between them.  208 

 209 
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Table 1 Filtration rates of freshwater mussels from North and South America measured in various 308 

experimental studies. 309 

Species 
Shell length 

(mm) 

Whole body 

wet weight (g) 

Filtration rates 
Reference 

(mL ind-1 h-1) 

Actinonaias ligamentina - 54-159 2700-11000*+ (Baker & Hornbach, 2001) 

Amblema plicata - 78-259 800-5000*+ (Baker and Hornbach 2001) 

Anodontites trapesialis 90-100 - 700-1000 (Loayza-Muro and Elias-Letts 2007) 

Lampsilis fasciola 

67 ± 101 - 500-2000* (Mistry and Ackerman 2018) 

51-79 - 250-650* (Tuttle-Raycraft and Ackerman 2018) 

0.3-0.4 - < 1** (Mistry & Ackerman 2017) 

Lampsilis siliquoidea 

112 ± 83 - 600-2000* (Mistry and Ackerman 2018) 

95-123 - 400-900* 
(Tuttle‐ Raycraft and Ackerman 

2018) 

80-110 - 300-1200* (Tuttle-Raycraft and Ackerman 2019) 

0.3-0.4 - < 3** (Mistry and Ackerman 2017) 

Ligumia -suta 

58 ± 62 - 200-500* (Mistry and Ackerman 2018) 

50-70 - 150-300* (Tuttle-Raycraft and Ackerman 2018) 

0.2 - < 1** (Mistry and Ackerman 2017) 

Pyganodon cataracta -11.5-15.5 - 500-2000* 
(Tankersley 1996) 

(Tankersley & Dimock 1993) 

Villosa iris 

37-51 - 18-55* (Gatenby et al. 2013) 

60 ± 45 - 250-400* (Mistry and Ackerman 2018) 

53-68 - 150-200* (Tuttle-Raycraft and Ackerman 2018) 

0.4 - < 2** (Mistry and Ackerman 2017) 

* Graphical estimation 310 
** Measured on new metamorphosed mussels 311 
+ Estimated from mL g-1 h-1 with average weight  312 
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Figure captions 313 

 314 

Fig. 1 Clearance rates assessed for the two tested species (the Asian clam Corbicula fluminea in dark gray 315 

and the paper pondshell Utterbackia imbecillis in light gray) between August 2018 and March 2019 under 316 

two light intensity conditions: (A) “Light” (6.5 ± 0.5 µmol m-2 s-1) and (B) “Dark” (0.0 μmol m-2 s-1). 317 

Whiskers indicate the minimum and maximum values, black lines indicate the median, and boxes represent 318 

25th and 75th percentile. 319 

 320 

Fig. 2 Combined kinetics of all FRs for the two tested species Corbicula fluminea and Utterbackia 321 

imbecillis under two light conditions: (A) “Light” (6.5 ± 0.5 µmol m-2 s-1) and (B) “Dark” (0.0 μmol m-2 s-322 

1).  323 
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