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Abstract

In the automotive industry, crack prediction is an important step of the design: its ac-

curacy is crucial to avoid additional development costs and delays. However, its simulation

is not always reliable yet which could be explained by the use of too simple fracture criteria.

A possible solution could be the improvement of the fracture behavior prediction through

the use of coupled damage models. Unlike the fracture criteria, damage models consider

the loss of resistance on the elements behavior, which gives a better definition of the strain

localization and crack path. However, due to stress softening, the problem becomes ill posed,

generating damage localization on a single row of elements. The results are then dependent

on the mesh size and the mesh orientation. To obtain mesh independent results, a possible

solution is to resort to regularization methods, but only a few of them are compatible with

dynamic explicit simulations, especially for ductile failure. This paper proposes to extend

the implicit second gradient non-local regularization approach to crash simulations. This is

achieved by modifying the second gradient equation to ensure its robustness for dynamic

explicit simulations. This extended second gradient approach is implemented by enrich-

ing under-integrated continuum elements so as to naturally preserve the parallel computing

ability. A comparison between simulations and experimental results obtained with speci-

mens machined in a dual-phase steel sheet is realized to validate the proposed approach.

Numerical results obtained with different mesh sizes and mesh orientations illustrate the

mesh independence and are in very good agreement with the experiments in terms of both
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load-displacement curves and crack path.

Keywords: Mesh-dependency, non-local damage, dynamic explicit simulation, crash,

parallel computing

1. Introduction

Numerical crack prediction in car crash simulations has been a major issue for automotive

industry over the last decades. Indeed, structures are becoming increasingly thinner due to

ecological concern and thus can be subjected to tearing in crash conditions. For safety and

structural integrity reasons, tearing must be prevented. To do so finite element simulations

are used for dimensioning during the car design process. However, ductile failure is not yet

reliably predicted by the numerical computations. Then, when cracking is not numerically

predicted but detected by the certification tests, parts and tools have to be re-designed,

which increases the development cost and entails delays.

A previous work [1] has proposed to improve the numerical prediction of crack initiation

and propagation with the use of a fully coupled damage model instead of fracture criteria.

The computed damage variable causes a decrease of the local element resistance, offering a

better modelling of strain localization. In the same work, simulations of several geometries

with different stress triaxialities tested at different loading rates have validated the perfor-

mance of the proposed Gurson type model, in terms of both simulated load-displacement

curves and crack path.

However, stress softening associated with coupled damage models is responsible for the

localization of the damage variable on a row of integration points. The numerical prediction

of cracking is thus strongly dependent on mesh size, mesh orientation and element type.

This well-known difficulty requires to always use the same mesh size, then considered as

constitutive model parameter, and sometimes to know and prescribe beforehand the crack

path [2] so as to obtain the experimentally observed macroscopic response. The prediction
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capability of the model is therefore limited. Applying this strategy is not satisfactory for

an industrial application since car parts may present very complex geometries. As the

corresponding meshes are automatically generated, it becomes difficult to obtain a constant

mesh size and to prescribe mesh orientation. In addition these meshes may use different

types of elements (e.g. hexahedrons, prisms and tetrahedrons).

To obtain mesh-independent results, several regularization methods are proposed in the

literature. For example, [3, 4] suggest to maintain a constant fracture energy Gc, which is a

material parameter, by adapting the elementary fracture energy according on the elements’

size (Le). However, this well-known Crack-Band method is more suitable for brittle mate-

rials, since fracture energy is difficult to estimate for ductile materials. Moreover, damage

remains localized and results may still depend on the mesh orientation.

Other papers [5, 6, 7] have proposed, from a mathematical analysis of localization in

dynamic simulations, a delayed damage approach. This method suggests computing a new

damage variable, delayed with respect to the original one, with a rate bounded [8] by a

given value to identify. Despite its easy implementation, since it only requires a rather

simple modification of the constitutive model, this approach strongly influences the material

behavior. In addition, the regularized band width depends on the loading rate. Thus, there

is no direct control on the dissipated energy and material ductility may be overestimated at

very high velocity if damage is over-delayed.

The last type of regularization approach groups the so called non-local methods. They

consist in computing non-local damage variables at a given material point from the values in

its neighborhood. These methods introduce a material characteristic length (referred to as

ℓ in this paper) which affects the regularization band width (Lr) and enables the control of

the dissipated energy independently of the loading rate. Results are thus mesh-independent

as long as the mesh size is smaller than the regularization band width (3Le / Lr see [9]).

A first non-local approach [10] consists in replacing the usual damage variable with its

weighted spatial average over a representative volume (Ωc) of the same size as the material

characteristic length (ℓ). The weighting function is often a Gaussian function but other

forms can be used [11]. However, these non-local integral methods necessitate establishing
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a dialogue between Gauss points considering neighboring elements. These operations may

compromise parallel computing, and necessitates a specific treatment at boundaries to ac-

count for the fact that the integration volume is truncated. They are believed to be very

detrimental in the case of explicit computations with respect to the computation time as

they do not follow the “element by element” treatment required to achieve efficiency.

To solve the numerical and algorithmic problems associated with the previous integral

non-local method, it was proposed to use a Taylor expansion of the integral used to com-

puted the non-local variables [12, 13]. This leads to an equation introducing the second

order derivative (Laplacian ∇2) of the non-local variable. The explicit form [14, 15] uses

the Laplacian of the local variable to define its non-local counterpart, which limits the

non-locality to an infinitesimal volume and is not suited to realistically describe dynamic

problems and fracture problems according to Peerlings et al. [16]. In contrast, the implicit

form [12] involves the gradient of the non-local variable and is thus truly non-local. It has

been found to be equivalent to the integral non-local method [16], but with the advantage

of preserving the “element by element” treatment, so that algorithms for parallel computing

remain unchanged.

Other solutions consider the enrichment of the free energy with the gradient of a variable

which plays a non-local role. The internal variable gradient method [9] considers one (or

several) variable(s) of the local model, while the micromorphic approach [17, 18] introduces

one (or several) new variable(s) related to an already existing variable through an additional

term in the free energy. If this additional term plays a penalization role to impose equality

between an internal variable and its non-local counterpart, then the micromorphic model

tends to be equivalent to the internal variable gradient method. In both cases, differentiation

of the free energy leads to the same partial differential equation as the implicit second

gradient methods for the non-local variable. Besides, for both methods, the adaption of the

constitutive behavior ensues directly from the differentiation of the free energy, whereas the

adaption is user-dependent for the implicit gradient method.

In this paper, non-local methods are preferred to regularize the constitutive model pre-

sented in [1]. Indeed, with these methods, the damage variable is not localized on a single
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row of elements which ensures independence on mesh orientation, unlike the Crack Band

approach. Also, they should offer a better control of the dissipated energy via the internal

length ℓ, independently to the loading rate, contrary to the delayed damage approaches.

Among the non-local methods, both the implicit gradient approach and the micromorphic

approach enable to preserve the parallel computing, which is a crucial point for an industrial

application. Extension of the micromorphic formulation to the explicit dynamics framework

has recently been proposed by Diamantopoulou et al. [19]. Although these two non-local

methods share some similarities regarding the discretized balance equations, it is worth not-

ing that they lead to significant differences regarding the constitutive model. Comparison

of the numerical responses with experimental results [20] has eventually led the authors to

focus this paper on the implicit gradient approach for which parameter identification is more

straightforward, at least for the considered constitutive model.

Besides, contrary to the work of Diamantopoulou et al. [19] which deals with slow loadings

problems (metal forming), this work considers faster loadings (crash simulations). For this

loading rate range, the authors propose to improve the robustness of the considered regu-

larization methods by introducing, in the non-local balance equation, a damping term.

The implicit gradient method has then been implemented by enriching classical linear under-

integrated continuum elements of the Europlexus dynamic explicit solver. Since considering

crash simulations, the updated lagrangian version of these Europlexus elements has been

used. This enables to express the constitutive relations within the small strain framework.

In this paper, 3D solid elements (i.e. hexahedrons, prisms, and tetrahedrons) are considered,

whereas Diamantopoulou et al. [19] used 2D plane strain elements.

In section 2 the local constitutive model obtained for the DP450 steel in [1] is presented

and used to illustrate the mesh-dependency problem on two practical examples. Then, the

extended implicit second gradient method and its numerical implementation are described

in section 3. The introduction of the additional non-local variable in the constitutive model

is detailed in section 4. Finally, the implicit gradient formulation is used in section 5 to

successfully simulate experimental results for five different specimens. Limits of the model

are also discussed based on the comparison with a sixth case.
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Note that all the simulations presented in this work use multi-domain parallel computing.

2. Damage constitutive model and mesh dependency

In this section, the constitutive model proposed in [1], which will be regularized later

in this paper, is briefly described. The mesh dependency problem is then illustrated with

several simulations realized with different mesh sizes and mesh orientations on specimens

taken from the experimental campaign presented in the same paper.

2.1. Damage constitutive model

In a previous paper [1], a Gurson type damage model was proposed to describe the

behavior of dual-phase DP450 steel sheets. It uses the Gurson-Tvergaard-Needleman (GTN)

yield criterion [21, 22, 23] accounting for the effect of damage and pressure which is expressed

as:

φ(¯̄σ, σF , f
∗) =

(
σ̄

σF

)2

− 1

︸ ︷︷ ︸

Plasticity

+2q1f
∗cosh

(
q2
2

Tr(¯̄σ)

σF

)

− (q1f
∗)2

︸ ︷︷ ︸

Effect of damage

(1)

This yield criterion can be seen as composed of two parts. The plasticity part corresponds

to an elasto-plastic criterion that compares an equivalent stress σ̄ to the flow stress σF . The

Drucker equivalent stress [24] is used in this case, and its expression is given below:

σ̄(¯̄σ) =
6

√
(
1

27
− c

4

729

)
−1

(J3
2 − cJ2

3 ) (2)

where J2 is the second deviatoric invariant and J3 the third deviatoric invariant of the stress

tensor. The expression of the flow stress describes the effect of work-hardening [25], strain-

rate dependency [26] and thermal softening [27] due to quasi-adiabatic self-heating at high

loading rates. It is expressed as:

σF (p, ṗ, T ) = (Re +Hp+Q(1− exp(−bp)))
︸ ︷︷ ︸

Work hardening

(

1 + C

〈

ln
ṗ

ε̇0

〉

+

)

︸ ︷︷ ︸

Viscosity

(1− µ(T − Tref))
︸ ︷︷ ︸

Thermal softening

︸ ︷︷ ︸

Strain-rate effects

(3)

where p designates the effective plastic strain, Re is the initial yield stress, H the linear

hardening, Q and b the two Voce [28] parameters, C the Johnson–Cook [26] parameter, ε̇0 the
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inviscid limit strain-rate, µ the Zhao [27] thermal softening parameter, T the temperature,

and Tref the reference temperature chosen as the room temperature (20◦C). The temperature

evolution [29] is governed by a quasi-adiabatic conversion [30] of the plastic work into heat:

Ṫ = ω(ṗ)
ηk
ρCp

¯̄σ : ˙̄̄εp (4)

The weight function ω is used to obtain a continuous transition between, on the one hand,

isothermal conditions at low strain rates and, on the other hand, quasi-adiabatic conditions

at high strain rates with purely adiabatic heat generation. Its expression is:

ω(ṗ) =







0 if ṗ < ε̇is
(ṗ− ε̇is)

2(3ε̇ad − 2ṗ− ε̇is)

(ε̇ad − ε̇is)3
if ε̇is ≤ ṗ ≤ ε̇ad

1 if ṗ > ε̇ad

(5)

The second part of the GTN yield criterion represents the effects of damage on the material

behavior. The evolution of the damage variable ft is given by:

ḟt = AH(p− εd)ṗ
︸ ︷︷ ︸

Nucleation ḟn

+(1− ft)Tr( ˙̄̄εp)
︸ ︷︷ ︸

Growth ḟg

+ kwft[1− (cos(3θ))2]
¯̄s : ˙̄̄εp
σ̄

︸ ︷︷ ︸

“Shear damage” ḟsh

(6)

It incorporates a nucleation term using the Heaviside function H. Nucleation starts at a

plastic strain equal to εd. The nucleation rate is then constant (A). The void growth term is

directly obtained from the plastic flow rule (mass conservation). Finally the model also uses

the Nahshon and Hutchinson “shear damage” term [31], enabling failure prediction under

near pure shear conditions. The effective void volume fraction f ∗ in the GTN criterion (see

eq. (1)) is defined from ft and represents the coalescence of cavities that starts when ft

exceeds a critical value fc:

f ∗ =







ft if ft < fc

fc +
1/q1 − fc
fr − fc

(ft − fc) if ft ≥ fc
(7)

Material failure is obtained when ft = fr which is the void volume fraction at failure.
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2.2. Numerical implementation

The presented constitutive model is implemented in the Europlexus dynamic explicit

finite element code using the NICE1 “Next Increment Correct Error” explicit numerical

scheme for plasticity proposed by Halilovič et al. [32].

The constitutive law is called to compute the new stress tensor ¯̄σn from the strain incre-

ment ∆¯̄εn. At the beginning of the time step, the strain increment is supposed to be purely

elastic, and the trial stress is computed as follows:

¯̄σtrial = ¯̄σn−1 +
¯̄̄̄
C : ∆¯̄εn (8)

Where
¯̄̄̄
C is the assumed isotropic stiffness tensor defined with the Young modulus E and

the Poisson ratio ν. The corresponding value of the yield function is then evaluated: φpred =

φ(¯̄σtrial
n , σn−1

F , f ∗n−1). If φpred ≤ 0, the material behavior is linear and elastic. Otherwise,

i.e. φpred > 0, a plastic correction must be applied to bring the yield function back to a

value close to zero by updating the stresses and the internal variables. In this case, the

NICE1 scheme proposes to explicitly compute the plastic multiplier ∆λ by verifying an

enhanced consistency condition:

φn−1 +∆φn = 0 (9)

with:

∆φn =
∂φ

∂ ¯̄σ

∣
∣
∣
∣
n−1

: ∆¯̄σn +
∂φ

∂p

∣
∣
∣
∣
n−1

∆pn +
∂φ

∂f ∗

∣
∣
∣
∣
n−1

∆f ∗n +
∂φ

∂T

∣
∣
∣
∣
n−1

∆Tn (10)

It has to be noted that this modified consistency condition introduces the previous value

of φ to take into account the remaining error after correction created at the previous time

step ∆tn−1. The plastic multiplier at the current time step ∆tn will thus be computed by

“correcting” this residual error. This self-correcting property helps to prevent the drift of the

solution usually encountered with explicit plasticity algorithms. This drift is often corrected

by performing costly iterations to ensure that the yield function remains close to zero. As

drifting is prevented using the NICE scheme, no iterations are needed which helps to reduce

the computation time.

8



Applying the normality rule, one has: ∆¯̄εp = ∆λ
∂φ

∂ ¯̄σ
= ∆λ¯̄n where ¯̄n is the normal to

the yield surface. Following the GTN model, the plastic work is expressed as:

(1− ft)σF∆p = ¯̄σ : ∆¯̄εp (11)

The effective plastic strain increment is therefore related to the plastic multiplier by a linear

function involving a scalar parameter denoted ap:

∆p =
¯̄σ : ¯̄n

(1− ft)σF

∆λ ≡ ap∆λ (12)

All the internal variable increments depend either on the plastic strain increment tensor ∆¯̄εp

or on the effective plastic strain increment ∆p and can thus be rewritten introducing the

plastic multiplier:

∆¯̄σ =
¯̄̄̄
C : (∆¯̄ε−∆λ¯̄n), ∆p = ap∆λ, ∆f ∗ = af ∆λ, ∆T = aT ∆λ (13)

Where the scalars af and aT can be derived from eq. (6) and eq. (7) on the one hand, and

eq. (4) on the other hand, i.e.:

af =
∂∆f ∗

∂∆ft

[

AH(p− εd)ap + (1− ft)Tr(¯̄n) + kwft[1− (cos(3θ))2]
¯̄s : ¯̄n

σ̄

]

(14)

and

aT = ω(ṗ)
ηk
ρCp

¯̄σ : ˙̄̄n (15)

Using eq. (9), the expression of the plastic multiplier can thus be obtained as:

∆λ =
φn−1 + ¯̄n :

¯̄̄̄
C : ∆¯̄ε

¯̄n :
¯̄̄̄
C : ¯̄n− ap

∂φ

∂p
− af

∂φ

∂f ∗
− aT

∂φ

∂T

(16)

Once ∆λ is calculated, the stress tensor and the internal variables are updated by computing

the corresponding increments for time step ∆tn using eq. (13).

Due to mesh dependency, the implemented constitutive model was identified in [1] for a

constant mesh size of Le = 0.2 mm. The corresponding parameters are given in tab. 1.
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E [GPa] ν Re [MPa] H [MPa] Q [MPa] b c

192.0 0.3 283.0 587.0 208.0 23.9 1.45

ε̇0 [s
−1] C µ [◦C−1] ηk ρ

[kg.m−3]

Cp

[J.kg−1.◦C−1]

ε̇is [s
−1]

0.00361 0.0236 0.00134 0.9 7850.0 420.0 0.002

ε̇ad [s
−1] εd A kw fc fr fu

0.04 0.3 0.11 2.65 0.16 0.2 1/q1

q1 q2

1.5 1.0

Table 1: Identified parameters for a fixed mesh size of Le = 0.2 mm.

2.3. Mesh-dependency phenomenon

2.3.1. Theory

If the simulations are performed with a mesh size different from the one used for iden-

tification (i.e. Le = 0.2 mm), a poorer numerical prediction might be observed. This

phenomenon is due to the softening nature (due to damage or temperature increase) of the

constitutive model which leads to the localization of strains in one row of elements or inte-

gration points. From a mathematical point of view, this localization can be explained, in the

case of dynamic explicit simulations, by a loss of hyperbolicity of the discretized equilibrium

equations [33, 34, 35]. To illustrate it, a one-dimensional case problem is considered. The

discretized equilibrium equation is in this case:

∂∆σ

∂x
= ρ

∂2∆u

∂t2
with ∆σ = κ∆ε (17)

where κ is the tangent modulus (κ = E for a purely linear elastic behavior). Considering

that ∆ε = ∂∆u/∂x, this equation can be rewritten as follows:

κ

ρ

∂2∆u

∂x2
=

∂2∆u

∂t2
(18)
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If the tangent modulus κ is positive (elasticity, work-hardening...), the equation above is

hyperbolic and its solution is a wave that propagates at the speed
√

κ/ρ. When the tangent

modulus becomes negative (softening due to damage, self-heating ...), the equation becomes

elliptic and its solution gets stationary. The propagation speed vanishes and the deformation

wave is then trapped [36] in the first weakening element. This wave is no longer transmitted

to neighboring elements. The damage variable will only evolve in the weakening element

and damage localization is observed. As the elementary fracture energy depends on the

elements size, the smaller the mesh size, the less “ductile” the material macroscopic response.

Therefore, spurious results might be obtained for different mesh sizes or mesh orientations.

Note that some works [34, 35] have shown that introducing a plastic strain-rate dependency

in the constitutive model helps to regularize the solution. The examples presented below

will illustrate that the rate dependency introduced by the Johnson-Cook model [26] is not

sufficient in this case.

2.3.2. Examples of mesh dependency

In the presented constitutive model, two softening variables may introduce mesh depen-

dency: the damage variable ft and the temperature T at high velocities. To illustrate this

phenomenon on practical examples, two specimens taken from the experimental campaign

presented in [1] are used: FN and V45 (sketches of the tests specimens are shown in sec-

tion Appendix A). The FN specimen is relevant to see the mesh-dependence on both crack

initiation and crack bifurcation due to its specific “S-shape” crack path. The V45 specimen

is more interesting to observe the mesh-dependency on crack propagation. These specimens

were tested with a high speed tensile machine at loading rates of respectively 1.0 m.s−1and

3.0 m.s−1, at room temperature. Simulations are performed using the dynamic explicit soft-

ware Europlexus with the identified parameters presented in tab. 1 on three different mixed

(hexahedrons and prisms) meshes for both specimen (see fig. 1).

The first mesh for each specimen (see fig. 1a and fig. 1d) is a regular mesh with a constant

mesh size of Le = 0.2 mm corresponding to the identification size. For these meshes, the

results are supposed to give the best predictions. The second mesh (see fig. 1b and fig. 1e)
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uses a smaller mesh size of Le = 0.15 mm and are disoriented on purpose (30◦ for FN

specimen and 50◦ for V45 specimen) to observe a potential dependency to mesh orientation.

Finally, the third mesh (see fig. 1c and fig. 1f) is regular and uses a very small mesh size

equal to Le = 0.1 mm. Usual symmetry conditions are used so that only half the thickness of

the specimen is represented. For the three mesh designs, this half thickness is respectively

divided in 3, 4 and 6 elements. Simulations are performed using under-integrated linear

hexahedrons (CUBE) with viscous hourglass control and prisms (PRIS).

4
0

m
m

(a) Regular - Le = 0.2 mm.

30o

(b) Disoriented - Le = 0.15 mm. (c) Regular - Le = 0.1 mm.

2
4

m
m

(d) Regular - Le = 0.2 mm.

50o

(e) Disoriented - Le = 0.15 mm. (f) Regular - Le = 0.1 mm.

Figure 1: Meshes of FN specimen (top) and V45 specimen (bottom) used to illustrate mesh dependency.

Damage fields obtained by simulation are given in fig. 2. It is chosen to print them at

time t = 6.9 ms for FN and t = 0.91 ms for V45, for which the finest meshes (0.1 mm) are

the firsts to show complete failure of both specimens (see fig. 2c and fig. 2f). At the same
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moments, the two other meshes are not completely broken (see fig. 2a and fig. 2b, fig. 2d

and fig. 2e). As expected the total crack length is larger for the 0.15 mm mesh compared to

the 0.2 mm mesh for the FN specimen. Regarding the FN disoriented mesh (see fig. 2b), the

crack path shape seems to be in good agreement with the experiment, which leads to think

that the local results are not influenced by the mesh orientation in this particular case. It is

important to note, for the rest of the study, that this specimen has 3 crack initiation spots

(see fig. 2a), which is also observed experimentally: two on the edges of the specimen, and

one at the center. This gives a specific “S-shape” crack path. The fact that this crack path

does not have the same orientation for the disoriented mesh cannot be attributed to mesh

dependency. This is only due to small defects in the mesh that induce the crack to choose

one orientation or the other. The scatter of crack path orientation with meshes could be

fixed by using exact boundary conditions extracted from DIC pictures (as presented in [1]),

that take into account a possible dissymmetry of the loading. In this work, nominal imposed

displacement is used as DIC measurements are not available for these high velocities tests.

Regarding the V45 disoriented mesh (see fig. 2e), even if the crack path seems to be

globally straight as expected, it shows local small deviations (zig-zag between element rows).

Moreover, the crack progression (i.e. its horizontal length) is surprisingly smaller for this

disoriented mesh with Le = 0.15 mm than for the coarsest mesh with Le = 0.2 mm (see

fig. 2d). A higher dependence to the mesh-orientation is therefore observed on the V45

specimen.

The load–displacement curves (see fig. 3) also show different results at failure for both

specimens, particularly visible for the V45 specimen. The finest mesh presents an earlier

crack initiation for the FN specimen than the two others (see fig. 3a). The displacement at

failure (and thus the dissipated energy) tends to decrease with the increasing mesh fineness.

The same observation is made on the V45 curves (see fig. 3b). However, for this specimen, the

disoriented 0.15 mm mesh shows a higher dissipated energy than observed for the 0.2 mm

mesh, despite a quasi-identical final notch opening. This indicates that more energy is

dissipated for the disoriented 0.15 mm mesh due to the zig-zag path (see fig. 2e).
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3 crack initiation spots

(a) FN - Le = 0.2 mm. (b) FN - Le = 0.15 mm. (c) FN - Le = 0.1 mm.

(d) V45 - Le = 0.2 mm. (e) V45 - Le = 0.15 mm. (f) V45 - Le = 0.1 mm.

0

0.10

0.20

ft

Figure 2: Damage fields obtained on FN specimen (1.0 m.s−1at t = 6.9 ms) and V45 specimen (3.0 m.s−1and

t = 0.91 ms) with the local constitutive model (i.e. without regularization).
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(a) FN specimen.
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Figure 3: Load-displacement curves obtained with different meshes on FN and V45 specimens illustrating

the mesh dependency.

3. Implicit second-gradient non-local approach

Mesh dependent results have been observed for both FN and V45 specimens. In order to

obtain mesh-independent results, it is proposed in this section to use the recently proposed

idea of [19] to obtain a modified version of the implicit second gradient equation suitable

for dynamic explicit computations. Since the damage variable ft and the temperature T

both depend on the plastic strain, it is chosen to regularize the effective plastic strain p.

The theory of the presented implicit second-gradient non-local approach is detailed. Its

numerical implementation for continuum elements is then presented and illustrated.

3.1. Theory

In this paper, the following non-local implicit second gradient formulation is proposed:







ℓ2∇2pnl − γṗnl + (p− pnl) = ζp̈nl on Ω

~∇pnl.~n = 0 on Γ
(19)

where pnl is the non-local value of the effective plastic strain and ~n is the external normal

unit vector. The factor ζ is a non-local “density” (unit s2). This term is not in the initial

formulation of Peerlings et al. [12] which only describes a “quasi-static” evolution on a non-

local variable. Its addition follows the proposition of Diamantopoulou et al. [19] to take into
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account inertia effects for a micromorphic model. It makes the formulation compatible with

the Newmark central differences scheme since it enables to evaluate the acceleration of the

non-local degrees of freedom pnl. This formulation implies that the solution pnl is a wave (as

the displacements) that might oscillate in the case of sudden variations of the local variable

p, especially in the case of crash simulations. In order to avoid parasite oscillations in the

pnl field, it is proposed in this work to introduce a non-local damping parameter γ (unit s)

as a factor of the non-local variable velocity.

Non-local implicit second gradient methods are based on a rewriting [13, 37] of the

non-local weighted integral models proposed by Pijaudier-Cabot et al. [10, 38]. The main

advantage of gradient methods is that there is no longer a need to perform integrals over a

patch of elements for each integration point. However new degrees of freedom are introduced

which correspond to the “non-local” counterpart of the local variable. A standard finite el-

ement implementation is then possible as it preserves the “element by element” evaluation

of internal forces. This approach also enables to preserve parallel computing which is an

important issue for large size simulations performed in the automotive industry.

The implementation of this set of equations in an explicit finite element solver (Euro-

plexus [39] in this case) is detailed in the following. Simulation are still performed with

under-integrated linear continuum elements, but with additional degrees of freedom for the

non-local variable pnl.

3.2. Numerical implementation for continuum elements

The weak non-local formulation is obtained by multiplying eq. (19) by a test function p∗nl

and integrating the result on the structure Ω. The result is analogous to the one obtained

with the local mechanical equilibrium equation:

∫

Ω

[

ℓ2~∇pnl.~∇p∗nl + pnlp
∗

nl

]

dV

︸ ︷︷ ︸

Internal forces

+

∫

Ω

γṗnlp
∗

nl dV

︸ ︷︷ ︸

Damping forces

−
∫

Ω

pp∗nl dV

︸ ︷︷ ︸

External forces

= −
∫

Ω

ζp̈nlp
∗

nl dV

︸ ︷︷ ︸

Inertial forces

(20)
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The “non-local equilibrium” above shows the balance between the different non-local forces.

The non-local external forces contain the variable at the integration points to be regularized,

i.e. p in this case. This external solicitation will induce the evolution of the non-local degree

of freedom pnl.

Using the standard finite element procedures, the previous integrals can be expressed as

a sum over all elements of the structure. For each element, the integral is evaluated using

Gauss quadrature (1 Gauss point per element in the present case). Let {penl} be the vector
of the nodal values for the non-local plastic strain. The values at the Gauss points of pnl

and its gradient ~∇pnl are evaluated as:

pnl = {Ne}.{penl} ~∇pnl = [Be].{penl} (21)

where matrices {Ne} and [Be] contain respectively the shape functions and their spatial

derivatives. As usual, an appropriate choice of the test functions among the shape functions

in eq. (20) leads to the following elementary contributions:

[∫

Ωe

[
ℓ2[Be]

T .[Be] + {Ne}T .{Ne}
]
dΩ

]

.{penl}+
[∫

Ωe

γ{Ne}T .{Ne}dΩ
]

.{ṗenl} −
[∫

Ωe

{Ne}TpdΩ
]

=

−
[∫

Ωe

ζ{Ne}T .{Ne}dΩ
]

.{p̈enl}
(22)

Standard assembly procedures are then used to obtain “forces” associated to each degree of

freedom.

3.3. Description of the equilibrium procedure

The presented non-local equilibrium equation is used to compute the acceleration of

the non-local variable, as shown in fig. 4 (and detailed below), which causes the non-local

variable to evolve (as with any kinematic degree of freedom). Each node of the discretized

structure now has a extra degree of freedom pnl in addition to to the nodal displacements.

Three steps are then necessary to calculate both sides of the equilibrium equation:

1. In the initialization of the computation (step 0. in the flow chart presented below in

fig. 4), the global “mass matrix” is computed for the non-local variable considering
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elementary mass matrices. Considering eq. (22), the non-local elementary mass matrix

is expressed as:

[Mnl
e ] = ζ

∫

Ωe

{Ne}T .{Ne}dΩ (23)

Note that in dynamic explicit codes the mass matrix is often lumped to make it

diagonal and so easier to inverse. The elementary non-local lumped mass matrix is

defined as follows:

[Mnl
e ]

L
i,i =

n∑

j=1

[Mnl
e ]i,j (24)

where n is the number of nodes for the considered element. For the rest of the study,

the mass matrix is supposed to be lumped, and the subscript L will be omitted. The

non-local global mass matrix, which is lumped and so diagonal, will eventually be

inverted to compute the acceleration of the additional degree of freedom in step 8.

The mass matrix associated to displacements (denoted [M ]) is also computed and

lumped.

2. At every time step, non-local forces are computed in each element (step 3. to 5. in

fig. 4). As step 4. corresponds to the introduction of the non-local variable into the

constitutive model, this step will be detailed in section 4. The local variable p is then

supposed to be known at step 5. As the inertial forces shown in eq. (20) are not

computed at the element level, the non-local elementary forces are defined so as to

gather the internal, damping and external non-local forces:

{fnl
e } =

∫

Ωe

[
ℓ2[Be]

T .[Be] + {Ne}T .{Ne}
]
.{penl}+ γ({Ne}T .{Ne}).{ṗenl} − {Ne}Tp dV

(25)

When all the elementary contributions {fnl
e } are computed, they are assembled in

the same way as described for the mass matrix to obtain the global non-local forces

vector {fnl} (see step 7.). Note that the dialogue between elements is realized at this
step. Indeed, all elements with a common non-local degree of freedom will add their

contribution to its evolution.

3. To finish, as the non-local variable pnl evolution is computed following the numerical
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scheme of Newmark central differences, it must respect a stability condition. A specific

non-local critical time step must not be exceeded to preserve the numerical stability.

A stability analysis (see section Appendix B) on a one dimensional wire element leads

to the following expression for the non-local critical time:

∆tnl = min
e

(

2Le

√
3ζ

√

12ℓ2 + L2
e

)

(26)

For the global computation stability, the minimum between the local mechanical equi-

librium critical time step, referred to as ∆tmeca, and the non-local critical time step

∆tnl is retained. In addition a safety factor (Cstab < 1) is applied to this minimum

time increment. In the following, Cstab = 0.8 will be used.

∆tc = min(∆tmeca,∆tnl) with ∆tmeca =
Le

√

E/ρ
(27)

It is important to note that the non-local critical time step depends on the value of the

non-local parameters. From a physical point of view, the internal length ℓ generally

remain of the order of magnitude of a few hundreds of micrometers and is thus not

very critical. However, the parameter ζ must remain very low in order to prevent the

“filtering” of the non-local variable evolution especially for very fast variations of p.

A very low value of ζ might increase the computation time. As the minimum between

mechanical and non-local critical time steps is retained, it is chosen to fix ζ so that

it does not penalize the computation time in comparison with a classical simulation

without non-local regularization:

∆tnl ≥ ∆tmeca =⇒ ζ ≥ ρ(12ℓ2 + L2
e)

12E
(28)

Considering a given value for ℓ and a possible range for Le (i.e. considering several

meshes with different minimum mesh sizes), ζ must be computed using the largest

value for Le if one wants a constant value for ζ. In the following, one uses ℓ = 0.4 mm

and a maximum value for Le of 0.2 mm. This corresponds to a value for ζ equal to

6.67× 10−15 s2. However, in case of a large elongation due to loading, the element size

19



Le might be increased. In this case, the critical value of ζ is also increased. That is

why, as ζ is chosen as a constant, a conservative value of ζ = 1.0× 10−13 s2 is retained
for all the computations.

No other modifications are required for a non-local parallel computation. The additional

degrees of freedom are exchanged at the boundary of every domains like displacements. To

summarize the implementation of the proposed method, fig. 4 shows the global algorithm

including the modifications regarding a classic element necessary to introduce the implicit

second gradient non-local approach. Standard procedures are used to time integrate dis-

placements ({u}). The strain tensor increments are computed from the elementary nodal

displacements thanks to the matrix [Ge] build from the shape functions’ spatial derivatives

as follows: ∆¯̄ε = [Ge].{∆ue}.
This second gradient non-local approach is then implemented in the Europlexus solver by

modifying some classical under-integrated linear continuum elements: hexahedral (CUBE),

prisme (PRIS) and tetrahedral (TETR). The non-local version of these three element types

will be referred to as CBNL, PRNL and TTNL (see fig. 5). Note that because of the

under-integration, a viscous hourglass treatment is used for hexahedral elements.

4. Non-local constitutive model

In this section, step number 4. of the algorithm presented in fig. 4 is detailed. For

each element of the structure, the constitutive law (denoted F) is called to compute the

stress tensor and the local effective plastic strain from the increment of total strain and the

increment of non-local plastic strain:

(¯̄σ, p) = F(∆¯̄ε,∆pnl) (29)

Compared to a use with a classical element, the constitutive equations must then be mod-

ified to introduced the non-local plastic strain pnl. To do so, it is proposed to follow the

Peerlings et al. [12] approach. This method has also been used considering a non-local ef-

fective plastic strain by Engelen et al. [13] and Feld-Payet et al. [40], in combination with
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0. Computation of the global lumped mass matrix: [M] =
∑

[Me ] , [Mnl ] =
∑

[Mnl
e ]

Initialization of d.o.f.s: {ü}0 = [M]−1.{f ext}0, {u̇}1/2 = {u̇}0 + {ü}0∆t0/2

{p̈nl}0 = 0, {ṗnl}1/2 = 0, {pnl}0 = 0

For each element:

1. {∆u}n = {u̇}n−1/2∆tn {∆pnl}n = {ṗnl}n−1/2∆tn

2. New configuration: {u}n−1 + {∆u}n, {pnl}n−1 + {∆pnl}n

3. Computation at Gauss point: ∆¯̄εn = [Ge ].{∆ue}n, ∆pn
nl

= {Ne}.{∆pe
nl
}n

4. Calling constitutive law : (¯̄σn, pn) = F(∆¯̄εn,∆pn
nl
)

5. Computation of element forces:

{f inte }n = Ve [Ge ]T .¯̄σn (⋆)

{f nle }n = Ve

(

[

ℓ2[Be ]T .[Be ] + {Ne}T .{Ne}
]

.{pe
nl
}n + γ({Ne}T .{Ne}).{ṗenl}

pred
n − {Ne}Tpn

)

6. Computation of ∆tec = min(∆temeca, ∆te
nl

)

7. Assembling global forces: {f int}n =
∑

{f inte }n {f nl}n =
∑

{f nle }n

8. {ü}n = [M]−1.({f ext}n − {f int}n) {p̈nl}n = −[Mnl ]−1.{f nl}n

9. {u̇}n+1/2 = {u̇}n−1/2 + {ü}n(∆tn+1 +∆tn)/2

{ṗnl}n+1/2 = {ṗnl}n−1/2 + {p̈nl}n(∆tn+1 +∆tn)/2

{ṗnl}
pred
n+1 = {ṗnl}n+1/2 + {p̈nl}n(∆tn+1)/2

∆tn+1 = Cstabmin(∆tec )

Figure 4: Global algorithm used for non-local dynamic explicit simulations. Nodal data are in red and

Gauss points data in blue. (⋆: using under-integrated continuum elements, internal forces are computed

using stresses at the single Gauss point and the element volume (Ve).)
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Figure 5: Non-local modified under-integrated elements.

a solution to volumetric locking in the latter case. This practical method consists in the

introduction of the non-local plastic strain pnl in the rate equations of the softening vari-

ables: i.e. damage ft and temperature T . Consequently eq. (6) and eq. (4) are modified to

respectively compute the rates of the non-local damage and of the non-local temperature as

follows:

ḟnl
t = AH(pnl − εd)ṗnl + (1− fnl

t )Tr(
˙̄̄εnlp ) + kwf

nl
t w(θ)

¯̄s : ˙̄̄εnlp
σ̄

(30)

Ṫnl = ω(ṗnl)
ηk
ρCp

¯̄σ : ˙̄̄εnlp (31)

To calculate the non-local plastic strain rate tensor ˙̄̄εnlp from the non-local effective plastic

strain ṗnl, a non-local plastic multiplier is computed using the Gurson energy equivalence:

(1− ft)σF ṗnl = λ̇nl ¯̄σ : ¯̄n =⇒ λ̇nl =
(1− ft)σF ṗnl

¯̄σ : ¯̄n
(32)

Note that this non-local plastic multiplier is only used to compute a non-local plastic strain

tensor and remains different from the one computed with the NICE method for return

mapping correction (see eq. (16)). The non-local plastic strain-rate tensor is then obtained

using the normality rule:

˙̄̄εnlp = λ̇nl ¯̄n =
(1− ft)σF ṗnl

¯̄σ : ¯̄n
¯̄n (33)

The local effective damage f ∗ and the local temperature T are then replaced by their non-

local counterparts f ∗nl (obtained from fnl
t using eq. (7)) and Tnl in the yield criterion eq. (1)
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and the flow stress eq. (3):

φ(¯̄σ, σF , f
∗

nl) =

(
σ̄

σF

)2

− 1 + 2q1f
∗

nlcosh

(
q2
2

Tr(¯̄σ)

σF

)

− (q1f
∗

nl)
2 (34)

σF (p, ṗ, Tnl) = (Re +Hp+Q(1− exp(−bp)))
(

1 + C

〈

ln
ṗ

ε̇0

〉

+

)

(1− µ(Tnl − Tref)) (35)

In the expression of the flow stress, the work-hardening and the rate-dependency, are not

modified and still depend on the local plastic strain p. This implies that only the softening

behavior due to heating or damage is modified. Plasticity and rate-dependency remain

unchanged.

Using this approach, the numerical plastic algorithm scheme (presented in section 2.2)

needs to be adapted with the following two steps:

1. As the non-local plastic strain is computed outside the element, it is an input variable

of the constitutive law and is considered as constant during material computation. The

non-local damage and temperature are then updated at the beginning of the increment.

This operation is realized whether the material behavior is elastic or plastic.

fnl
t = fnl

t +∆fnl
t (∆pnl,∆¯̄ε

nl
p ) and Tnl = Tnl +∆Tnl(∆pnl,∆¯̄ε

nl
p , ṗnl) (36)

2. As these two softening variables are not updated during the plastic correction but

remain constant through the entire material computation process, they become weakly

coupled with the element behavior. This is acceptable since dynamic computations use

very small time steps. In case of plastic flow, the computation of the plastic multiplier

is then modified since the only remaining internal variable is the local plastic strain p:

∆λ =
φn−1 + ¯̄n :

¯̄̄̄
C : ∆¯̄ε

¯̄n :
¯̄̄̄
C : ¯̄n− ap

∂φ

∂p

(37)

The stress tensor ¯̄σ and the local plastic strain p can be updated using eq. (13). This couple

of outputs variables is then used for the computation of elementary forces (see step 5. of

the flow chart given in fig. 4).
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5. Simulation of experimental results

5.1. Parameters’ choice

As explained in section 3.3, using the non-local approach, the width of the localization

band should be greater than the largest considered element size within the investigated range

(i.e. Le ≤ 0.2 mm). This guides the choice of the non-local parameter ℓ = 0.4 mm. The

choice of the non-local parameter ζ is made so that it does not penalize the computation

time: ζ = 1.0 × 10−13 s2. Finally, to limit parasite oscillations, the non-local damping

parameter γ is set to γ = 1.0× 10−6 s.

The parameters of the local constitutive model which gave results in agreement with the

experiments with a mesh size of Le = 0.2 mm must be adapted to preserve this agreement.

In [1], it has been mentioned that the main parameter that must be modified in the event

of a change in localization bandwidth/element size is the nucleation slope A proportionally

to the size of the localization band. The value A = 0.37 (instead of 0.11) is then retained.

The considered parameters of the entire non-local Gurson — implicit gradient constitutive

model are then summarized in tab. 2.

In the end, the adaptation of the implicit gradient model parameters from the values

identified for the local model remains straightforward, with only two different parameters

that can be identified based on the load-displacement curves: the non-local internal length

ℓ and the nucleation slope A, and two purely numerical parameters associated with the

explicit framework: ζ and γ.

5.2. Simulation of experimental results for the FN and V45 specimens

To illustrate the performance of this approach, let us first consider the test cases of the

FN and V45 specimens with different mesh sizes and orientations as presented above (see

2.3.2).

Similarly to the local formulation, when an element has reached complete failure, its

mechanical internal forces are null. The explicit resolution with the Newmark algorithm then

enables to naturally deal with the corresponding degrees of freedom for the displacements.
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E [GPa] ν Re [MPa] H [MPa] Q [MPa] b c

192.0 0.3 283.0 587.0 208.0 23.9 1.45

ε̇0 [s
−1] C µ [◦C−1] ηk ρ

[kg.m−3]

Cp

[J.kg−1.◦C−1]

ε̇is [s
−1]

0.00361 0.0236 0.00134 0.9 7850.0 420.0 0.002

ε̇ad [s
−1] εd A kw fc fr fu

0.04 0.3 0.37 2.65 0.16 0.2 1/q1

q1 q2 ℓ [mm] ζ [s2] γ [s]

1.5 1.0 0.4 1.0×10−13 1.0×10−6

Table 2: Identified parameters for a non-local constitutive model using implicit second gradient approach

enabling convergence for Le ≤ 0.2 mm.

However, with the proposed non-local formulation, the evolution of the non-local degrees of

freedom is still computed even for the failed elements.

The obtained damage fields for the three investigated mesh sizes are shown in fig. 6 at

simulation time t = 6.95 ms for the FN specimen and t = 1.03 ms for the V45 specimen.

In the case of the FN specimen, the same damage field is obtained so that complete failure

occurs at the same time for all mesh sizes and orientations. It must be noticed that the

“S-shape” crack path of the FN specimen is preserved as well as the three crack initiation

spots (two on the edges, one in the middle, see fig. 6a). In the case of the V45 specimen, the

mesh orientation dependence appears to be corrected so that small deviations are no longer

observed on the crack path (see fig. 6e). In both cases, the damage variable is much less

localized than for the local model (see fig. 2). Maximal damage is reached on more than one

row of integration points which is consistent with the non-local approach principle detailed

in section 3.

Regarding the load–displacement curves fig. 7, numerical results with different mesh
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3 crack initiation spots

(a) FN - Le = 0.2 mm. (b) FN - Le = 0.15 mm. (c) FN - Le = 0.1 mm.

(d) V45 - Le = 0.2 mm. (e) V45 - Le = 0.15 mm. (f) V45 - Le = 0.1 mm.

0

0.10

0.20

ft

Figure 6: Damage fields obtained on FN specimen (1.0 m.s−1and t = 6.95 ms) and V45 specimen

(3.0 m.s−1and t = 1.03 ms) with the non-local implicit second gradient approach.
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Figure 7: Load-displacement curves obtained with different meshes on FN and V45 specimens with the

non-local implicit second gradient approach.

sizes are also quasi-identical for both crack initiation (see FN results in fig. 7a) and crack

propagation (see V45 results in fig. 7b). The displacements at failure and dissipated energy

are very close. The mesh size dependence as well as mesh orientation dependence (for V45

specimen) have thus been solved. Moreover, the simulated curves are in very good agreement

with the experimental results.

5.3. Simulation of experimental results for additional specimens

To validate the proposed non-local modeling strategy, additional experimental results

taken from [1] are simulated. Simulations are then compared with experimental results.

Sketches of these specimens can be found in section Appendix A. These specimens have

been chosen to assess the performance of the non-local model for different stress triaxialities

and strain-rates for both crack initiation and propagation. In all cases, simulations using

mesh sizes equal to 0.1, 0.15 and 0.2 mm were investigated. The meshes having a minimum

element size equal to 0.15 mm are disoriented similarly to what has been done for the FN

and V45 specimens (see fig. 1).

The large flat tensile specimen tested at a loading rate of 1.0 m.s−1 is first investigated.

This specimen has a large central area where strain remains homogeneous up to necking. A

large portion of the specimen is therefore affected by adiabatic heating. This specimen is
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interesting to verify that the overall plastic behavior (which was fitted in [1] assuming no

damage) is not modified using the non-local model. The damage fields given in fig. 8a, fig. 8b

and fig. 8c show complete failure for the three meshes for the same simulation time, i.e. t =

9.0 ms. Maximal damage occurs on several rows of elements. The corresponding load-

displacement curves (see fig. 10a) show a very good mesh convergence and good agreement

with experiment.

The NT1 specimen tested at a loading rate equal to 3.0 m.s−1 is then considered. This

specimen has the same cross section as the V45 specimen but has a larger notch radius equal

to 1 mm. Its stress triaxiality is therefore higher than the flat specimen triaxiality but lower

than the V45 specimen triaxiality. The NT1 specimen is particularly interesting to evaluate

both crack initiation and crack propagation. Moreover, the original local constitutive model

was identified using this specimen [1]. Damage fields (see fig. 8d, fig. 8e and fig. 8f) at

t = 0.9 ms show quasi-identical crack lengths for the three meshes. The load-displacement

curves for the different mesh sizes and orientations (see fig. 10b) are also very close and in

relatively good agreement with experimental results.

To evaluate the performance of the non-local model over large crack propagation, a

Central Crack Panel (CCP) specimen is used. The loading rate is in that case equal to

7.0 m.s−1. Crack lengths at t = 0.658 ms (see fig. 8g, fig. 8h and fig. 8i) are quasi-identical

for the different mesh sizes and orientations. In particular, the results for the disoriented

mesh (0.15 mm) are in good agreement with the other results. Displacement at failure and

dissipated energy (see fig. 10c) are very close illustrating a proper regularization in this case

too. Relatively good agreement with experiment is also obtained.

Finally, the M-shape specimen [41] is simulated for a loading rate equal to 3.0 m.s−1.

This specimen enables testing the material at low triaxiality under shear. Damage fields at

t = 1.0 ms (see fig. 9) and load-displacement curves (see fig. 10d) are almost identical for

all three meshes. However a significant difference in terms of displacement at failure and

dissipated energy is observed in comparison with experimental results. In the case of the

M-shape specimens, the ligament between the notches is only 3 mm long. These notches

also somehow constrain strain localization to occur in a band having a thickness of 0.5 mm
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(see fig. A.11) in which stress/strain gradients are very high even before damage is nucleated

and starts to grow. The size of the highly deformed zone is of the same order of magnitude

than the internal length ℓ used to regularize the problem, so that a size effect is observed.

The fact that ductility is overestimated indicates that a smaller internal length should have

been chosen in order to closely reproduce the tests on the M-shape specimens. This is one of

the drawbacks of regularized models which have difficulties capturing the physics of failure

up to cracking which ultimately occurs in a very narrow band with regard to the internal

length. Using a smaller internal length also implies using smaller elements (so as to obtain

convergence) so that the size and duration of the calculations would be strongly increased.

A compromise needs to be found. The case of the M-shape specimen illustrates the fact

that the failure of parts in which the failure zone size is constrained by the geometry will

not be well described if their sizes is not large enough compared to the internal length. One

possible way to determine ℓ would be to use homothetic specimens. As size effect should be

observed for very small specimens and could be used to tune the internal length.
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Figure 8: Damage fields obtained on Large flat, NT1 and CCP specimen with the non-local constitutive

model using the implicit second gradient approach.
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(a) M-shape - Le = 0.2 mm. (b) M-shape - Le = 0.15 mm. (c) M-shape - Le = 0.1 mm.

Figure 9: Damage fields obtained on M-shape specimen at the same simulation time t = 1.0 ms with the

non-local constitutive model using the implicit second gradient approach.
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Figure 10: Load-displacement obtained with the non-local constitutive model using the implicit second

gradient approach on several specimens.
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6. Conclusion

To improve the numerical prediction of metal sheets ductile tearing in crash simulations,

the use of a coupled Gurson-type model was proposed in [1]. However, the strong mesh

dependency (size, orientation) due to the softening behavior was an important shortcoming.

This had to be solved to propose a reliable numerical crack prediction method that could

be used for crash simulations in the automotive industry.

To obtain mesh-independent results, the implicit second gradient model was considered.

This method requires an enrichment of under-integrated continuum elements with an ad-

ditional degree of freedom, i.e. the non-local variable. For the considered model, it was

proposed to compute a non-local effective plastic strain that can be used in the constitutive

model to derive non-local counterparts of the two softening variables: damage and temper-

ature. Compared to the original quasi-static formulation, two terms have been added in the

non-local equation in order to comply with the dynamic explicit framework and deal with

the possibly significant accelerations. With this method, parallel computing is automatically

preserved, which is another important point for an industrial application.

Simulations with the implicit second gradient model were carried out on six geometries

for which mesh independence (size or orientation) was indeed demonstrated. In addition,

simulations were shown to be in good agreement with the corresponding experimental results,

except for the M-shape shear specimen. In this particular case, discrepancy was attributed

to the size of the highly deformed area in the M-shape specimen which was comparable to the

internal length. This means that in the case of car crash simulations, which demand relatively

coarse mesh sizes (since for explicit calculations the allowed time increment decreases as the

mesh size gets smaller), the internal length ℓ may be adapted to the mesh size, but failure

of zones relatively small compared to ℓ will no be properly described. This also suggests

that a more physically based intrinsic internal length could be determined using homothetic

specimens having very small sizes.

As thin metal sheets are often modeled using shell elements in car crash simulations, it

would be interesting for further work to address the adaption of the non-local method so it
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is compatible with these elements.
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Appendix A. Sketches of the various test specimens
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Figure A.11: Sketches of the various test specimens. The following boundary conditions were applied :

U2 = 0 on the face in blue and U2 = V × t on the face in red, where V is the imposed test velocity. Blue

dots correspond to virtual extensometers defined for DIC measurements.
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Appendix B. Stability condition for the non-local problem

In this appendix, the numerical stability analysis of the non-local equilibrium equation

is studied. To find the expression of the non-local eigenfrequencies, the undamped (i.e. γ =

0) homogeneous form of equation is considered (i.e. p = 0):

∫

Ωe

ζ({Ne}T .{Ne}).{p̈nl} dV +

∫

Ωe

[
ℓ2[Be]

T .[Be] + {Ne}T .{Ne}
]
.{pnl} dV = 0 (B.1)

The equation above can be rewritten in matrix form as follows:

[Mnl
e ].{p̈nl}+ [Knl

e ].{pnl} = 0 (B.2)

with:

[Mnl
e ] =

∫

Ωe

ζ{Ne}T .{Ne}dV and [Knl
e ] =

∫

Ωe

ℓ2[Be]
T .[Be] + {Ne}T .{Ne} dV (B.3)

Using the Newmark central differences scheme to solve this equation imposes to respect a

stability condition on time step:

∆t ≤ 2

ωmax

(B.4)

where ωmax is the highest eigenfrequency that can be found by solving the following char-

acteristic equation:

det
(
[Knl

e ]− ω2
n[M

nl
e ]

)
= 0 (B.5)

with notation ωn designating the eigenfrequencies.

The stability is then studied on a 1D linear wire element with two nodes located at the

global coordinates x = 0 and x = Le. The section of the wire is referred to as Ae. The

corresponding reference element geometry expressed with the local coordinate ξ is shown in

fig. B.12. Its two nodes are located in ξ = −1 and ξ = 1, giving the following transformation

between the global and local coordinates:

x =
Le

2
(ξ + 1) and J =

∂x

∂ξ
=

Le

2
(B.6)

The shape functions of the reference element are:

N−1(ξ) =
1− ξ

2
and N1(ξ) =

1 + ξ

2
=⇒ {Ne} = {N−1 N1} (B.7)
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To compute the mass matrix, these shape functions are computed at the two Gauss points

which are located in ξ = −
√
3/3 and ξ =

√
3/3. Their integration weights are both equal

to one. The non-local mass matrix [Mnl
e ] is then computed and lumped a follows:

[Mnl
e ] = ζ

LeAe

6




2 1

1 2




lumping
=====⇒ [Mnl

e ] = ζ
LeAe

2




1 0

0 1



 (B.8)

The matrix [Be] contains the derivatives of the shape functions with respect to the global

coordinate:

[Be] =

[
∂N−1
∂x

∂N1

∂x

]

=
1

J

[
∂N−1
∂ξ

∂N1

∂ξ

]

=⇒ [Be] =
1

Le

[−1 1] (B.9)

The rigidity matrix [Knl
e ] is then computed:

[Knl
e ] =

ℓ2Ae

Le




1 −1
−1 1



+
LeAe

6




2 1

1 2



 (B.10)

and:

[Knl
e ]− ω2

n[M
nl
e ] =






ℓ2

Le

+
Le

3
− ω2

nζ
Le

2
− ℓ2

Le

+
Le

6

− ℓ2

Le

+
Le

6

ℓ2

Le

+
Le

3
− ω2

nζ
Le

2




 (B.11)

The characteristic equation (see eq. (B.5)) can be developed and the maximal eigenfrequency

can be found by solving:

ζ2
L2
e

4
︸ ︷︷ ︸

A

ω4
n +

[

−ζ
(

ℓ2 +
L2
e

3

)]

︸ ︷︷ ︸

B

ω2
n + ℓ2 +

L2
e

12
︸ ︷︷ ︸

C

= 0 (B.12)

By variable changing X = ω2
n, this equation corresponds to a classical second order equation

and the maximal solution is obtained for:

Xmax =
−B +

√
∆

2A
= ω2

max with ∆ = ζ2
(

ℓ2 − L2
e

6

)2

(B.13)

Which gives:

ωmax =

√

12ℓ2 + L2
e

Le

√
3ζ

(B.14)

The stability condition on time step (see eq. (B.4)) can be rewritten using the equation

above. The following “non-local” critical time step is obtained:

∆tnl =
2

ωmax

=
2Le

√
3ζ

√

12ℓ2 + L2
e

(B.15)
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Figure B.12: Referential wire element used for stability analysis. Nodes are in red, and Gauss points in blue.
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