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Abstract
Silica nanoparticles have rapidly found applications in medicine, supercapacitors, batteries, optical fibers and concrete mate-
rials, because silica nanoparticles have tunable physical, chemical, optical and mechanical properties. In most applications, 
high-purity silica comes from synthetic organic precursors, yet this approach could be costly, polluting and non-biocompat-
ible. Alternatively, natural silica sources from biomass are often cheap and abundant, yet they contain impurities. Silica can 
be extracted from corn cob, coffee husk, rice husk, sugarcane bagasse and wheat husk wastes, which are often disposed of 
in rivers, lands and ponds. These wastes can be used to prepare homogenous silica nanoparticles. Here we review proper-
ties, preparation and applications of silica nanoparticles. Preparation includes chemical and biomass methods. Applications 
include biosensors, bioimaging, drug delivery and supercapacitors. In particular, to fight the COVID-19 pandemic, recent 
research has shown that silver nanocluster/silica deposited on a mask reduces SARS-Cov-2 infectivity to zero.

Keywords  Silica nanoparticles · Structure · Biomass · Rice husk · Sugarcane bagasse · Corn cob · Synthesis · Applications · 
Theranostic · Supercapacitor

Introduction

Silicon is a major element of earth’s crust. Silica sand, the 
primary ore source of silicon, is abundant and easy to pro-
cess. Silica minerals are referred by quartzite, tridymite, 
metamorphic rock, cristobalite and minerals such as poly-
morphs of silica. The combination of silicon and oxygen is 
called silicate, and 90% of earth’s crust is made of silicate 
minerals. Clays and silica sand are silicate minerals that 
are used in applications such as making Portland cement 
in building mortar and modern stucco. Concrete made of 
silicates integrated within silica sand for making concrete 
is a major building material (Greenwood and Earnshaw 
1997). Silicones are used for various products such as mold-
release agents, molding compounds, waxes, waterproofing 
treatments, mechanical seals and high-temperature greases. 
Silica in the form of clay and sand is used in bricks and con-
crete. Glass silica obtained from sand is the major element in 
making various glass material with diverse properties. The 
silly putty contains also substantial amounts of silica, it is 
made by addition of boric acid to silicone oil. Liquid silicone 
is widely used as dry cleaning solvent and is an alternative 
for perchloro-ethylene solvents (Koch and Clément 2007). 
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Silica is also used in biomedical applications such as contact 
lenses, breast implants, explosives and pyrotechnics.

Nanotechnology involves the development of nano-sized 
materials and devices. Notably, silica nanoparticles have 
occupied the prime position due to their facile synthesis, rich 
surface chemistry, low toxicity and controllable properties 
such as optoelectronic, mechanical and chemical stability 
(Rossi et al. 2005; Vivero-Escoto and Huang 2011). These 
properties are not only extensively considered in biomedi-
cal field and but also for diverse applications such as agri-
cultural, food industries, photovoltaic and energy storage 
applications (Liberman et al. 2014; Devi and Balachandran 
2016). Nanotechnology enables the extension of multifunc-
tional medicine by integrating materials that allow multi-
modal imaging and theranostics applications (Bharti et al. 
2015). Notably, mesoporous silica nanoparticles have uni-
form pore size, hydrophilic surface property and high sur-
face area. Such properties increase electrochemically active 
centers, thus enhancing electron transport and promoting 
electrolyte penetration, which meets the requirements of 
next-generation supercapacitors (Huang et al. 2013).

Silica nanoparticles have also been applied for fighting 
COVID-19. Here, a nanocomposite of silver nanocluster/
silica deposited on a FFP3 mask reduces the SARS-Cov-2 
to zero (Balagna et  al. 2020). The nanocomposite also 
increases the life time of the mask and improves air filter-
ing. Morevover, silica nanoparticles can be transformed to 
have a superhydrophilic surface which repels contaminated 
droplets (Meguid and Elzaabalawy 2020).

Natural resources-based silica has garnered consider-
able interest in the materials science and biomedicine fields 
owing to its low cost, eco-friendliness, bioactivity and avail-
ability. Biomass is an alternative source for widely used 
organic precursors, namely tetraethyl orthosilicate (TEOS) 
and tetramethylorthosilicate. In biomedical applications, sta-
bility and biocompatibility are the prime issues. Therefore 
research if focussing on the development of biomass for pre-
paring silica and implemented to theranostics applications.

Developed countries have followed the concept by which 
waste materials are not really waste but new sources for cre-
ating new materials. Developing countries have abundant 
agriculture-based resources and their by-products are used 
to produce various low-value products. In 2005, a bioen-
ergy production project using municipal, animal, agricultural 
and industrial wastes was assigned by five countries: India, 
China, Sri Lanka, Philippines and Thailand. As a result, in 
2010, bioenergy represented 45% of total energy in India, 
17% in China, 33% in Sri Lanka, 34% in Philippines and 
14% in Thailand. India is the major energy consumer in 
Asia. During 2011, biomass gasifier assignment of 0.5 MW 
power in Tamil Nadu and 1.20 MW in Gujarat were success-
fully installed (Pode and Reviews 2016).

In India, 120 million tons of paddy rice is produced per 
annum, giving nearly 4.4 tons of rice husks (Giddel and 
Jivan 2007). High silica content has been observed in bio-
mass wastes (Oladeji 2010; Shen et al. 2014; Zemnukhova 
et al. 2015; Hossain et al. 2018; Dhinasekaran et al. 2020). 
Rice husk ash contains 83–98% of silica (Saxena et al. 2009; 
Babaso and Sharanagouda 2017). Corn is another major crop 
plant with 785 million tons produced annually in this world. 
India is the seventh largest producer of corn cob, with silica 
content as high as 60% in biomass (Kumar et al. 2010). India 
produces an average of 500 million tons of crop residue per 
year, of which 140 million tons is surplus and 92 million 
tons is left as burned (Bhuvaneshwari et al. 2019). Globally, 
uncontrolled burning of biomass wastes is causing environ-
mental and health issues, thus calling for recycling options.

Recent research on silica has focused on nanoparticles. 
Silica nanoparticles can be prepared from either organic 
chemicals or biomass. Comparatively, the usage of biomass 
is less compared to synthetic organic precursors due to lack 
of a review and assessment on the importance of silica in 
biomass. Many reports have reviewed the preparation of 
silica nanoparticles from pure organic chemicals (Wu et al. 
2013a, b; Bleta et al. 2018; Morin-Crini et al. 2019; Meena 
et al. 2020; Mahajan et al. 2020). Here we focus on silica 
nanoparticles from biomass for biosensors, bioimaging, drug 
delivery and supercapacitor applications.

Structural properties of silica minerals

Crystalline and amorphous structure

Solid materials are generally crystalline, made of atoms, 
molecules and ions arranged in an orderly repeating pat-
tern. In amorphous materials, atoms are not arranged in 
orderly repeating patterns. Silica has two types of structures: 
crystalline and amorphous. Silica occurs naturally as the 
solid amorphous phase of flint and opal and as the crystal-
line phase of cristobalite, quartz and tridymite. Amorphous 
phases can be transformed into crystalline phases by thermal 
treatments (Eq. (1)) (Waddell 2000).

Quartz and sandstone are the impure forms of silica. 
The crystalline phases of silica are melanophlogopite, 
α-quartz, α-cristobalite, β-quartz, β-cristobalite, γ-tridymite, 
β-tridymite, α-tridymite, fasriges, chalcedon, keatite, 
moganite and stishovite. Amorphous phases of silica include 
hyalite opal, natural silica glass, sintered pearl, lechatelierite 
are amorphous phases of silica (Fanderlik 2013). There are 
three polymorphic structures present in the silica, each struc-
ture having both low-temperature (α) and a high-temperature 

(1)
Quartz

870◦C
⟷ Tridymite

1470◦C
⟷ Cristoblite

1710◦C
⟷ Melting point



(β) forms (Douglas and Ho 2006). In sediments, the transfor-
mation of amorphous silica opal-A into crystalline opal-CT 
(cristobalite-tridymite) with increasing burial, temperature 
and pressure has been correlated with an abrupt transforma-
tion of organic matter (Lichtfouse and Rullkötter 1994).

Figure 1 shows the structure of both crystalline and amor-
phous silica structures.

Silica and silicones

In 1800, Sir Humphry Davy thought that silica has to be a 
compound and not a single element. To test this hypothesis, 
in 1808 he did experiments to decompose of silex, alumine 
and glucine zircone, yet he failed to isolate the Si metal. 
In 1811, Louis-Jacques Thenard (1777–1857) and Louis-
Joseph Gay-Lussac (1778–1850) explained that heating 
potassium with silicon tetrafluoride results in the formation 
of impure amorphous silicon. Silicon was discovered by 
Jakob Berzelius (1779–1848); in 1824, he prepared amor-
phous silicon successfully using earlier methods, and then, 
he removed fluorosilicates by repeated washing to get the 
purified product. The name silica is coming from the Latin 
word silex. Silica is the combination of silicon (Si) with 
oxygen (O2) and the most plentiful compound in the earth’s 
crust (Pauling 1957; Holden 2001). The covalent network 
structure of SiO2 is given in Fig. 2.

Among all polymers, organic groups attached to a chain 
of inorganic atoms is a unique properties of silicone. Sili-
cones are used in of electronics, paints, construction and 
beverages (Korzhinsky et al. 1995). In medicine, silicone is 
used in artificial joints, antacids, implants of various notori-
ety and pacemakers (Korzhinsky et al. 1995). Silicon dioxide 
(silica) occurs in the form of sand. Reduction of silica with 
carbon at high temperature was performed for manufacturing 

Fig. 1   Structure of crystalline and amorphous silica

Fig. 2   Possible covalent net-
work structure of silica—SiO2

Fig. 3   Molecular structural 
arrangements of silicones



silicone (Eq. (2), Bell et al. 1968; Mozzi and Warren 1969; 
Gerber and Himmel 1986; Korzhinsky et al. 1995).

The SiO4 tetrahedron is the central functional compo-
nent of both amorphous and crystalline of silica. The silicon 

(2)SiO2(s) + 2C(s) → Si(s) + 2CO(g)

atom is placed at the center, and the four oxygen atoms are 
connected at each side of a tetrahedron (Fig. 3, Henderson 
and Baker 2002). According to various forms of silica, the 
tetrahedron depends on the angle (α) and bond length.

The energy of the Si–O bond is 4.5 eV (Devine et al. 
2000). Figure 4 shows the 3D silica structural parameters of 
bond length (d), polyhedron angle (φ) and inter-tetrahedral 
bond angle (α) (Lide 2004).

In Raman spectra, bands correspond to Si–O− groups 
of various Qn units (n < 4). The band at 1050–1100 cm−1 
is due to the symmetric stretching vibrations of the SiO4 
tetrahedra with one nonbridging oxygen (NBO) atom (Q3 
units); 920–950 cm−1 is due to the Si–O− stretching with 
two NBO (Q2 units); 900 cm−1 is attributed to the stretching 
vibration of Q1 units with three nonbridging oxygens; and 
850 cm−1 is due to the symmetric stretching mode of Q0 
anions (McMillan 1984). Figure 5a shows the infrared bands 
with vibrational modes. Nuclear magnetic resonance (NMR) 
study also predicts Q0, Q1, Q2, Q3, Q4 notation in silica, and 
the numbers 0–4 denote the number of ‘Si’ units connected 
through the oxygen to the other single silicon atom. Q0, Q1, 
Q2, Q3 are referred to as a silicon atom with zero, one, two 

Fig. 4   3D schematic of the regular silica structure. Modified after 
Salh (2011)

Fig. 5   a Major vibrational modes for a nonlinear group. b 2D Representation of Qn species. Modified after Salh (2011) and Osipov et al. (2015)



and three attachments of another silicon atom, respectively 
(Lunevich et al. 2016). A schematic two-dimensional repre-
sentation of the Qn species is shown in Fig. 5b.

Preparation of silica nanoparticles

Various preparation methods are available to synthesize 
silica nanoparticles, such as microemulsion processing 
(Finnie et al. 2007), chemical vapor deposition (Rezaei 
et  al. 2014), combustion synthesis (Yermekova et  al. 
2010), plasma synthesis (Saito et al. 2018), hydrothermal 
techniques (Gu et al. 2012) and sol–gel processing (Prabha 
et al. 2019). Major researches efforts have focused on con-
trolling the size and morphology of nanoparticles (Brinker 
and Scherer 2013). During chemical vapor condensation 
(CVC), inorganic precursors, e.g., silicon tetrachloride 
(SiCl4), are decomposed by a high-temperature flame or 
react with hydrogen and oxygen to yield silica nanoparti-
cles (Silva 2004; Vansant et al. 1995). The main drawback 
of flame synthesis is the difficulty in controlling the phase 
composition, particle size and morphology (Klabunde 
2001), yet flame synthesis is the major method for pro-
ducing silica nanoparticles commercially in powder form. 
The different methods for silica nanoparticle preparation 
are presented in Table 1.

Chemical method

The sol–gel technique has advantages of yielding pure, 
homogeneous materials, and enabling to obtain various 
forms of materials such as fibers, films, submicron pow-
ders and monoliths (Fardad 2000; Brinker and Scherer 
2013). The sol–gel process is defined as the chemical 
transformation from colloidal suspension of sol into a 3D 
interconnecting network of gel. In this process, a metal 
alkoxide undergoes hydrolysis and polymerization reac-
tions to form the sol. Further, the sol allows to preparing 
the materials in various forms such as discrete particles or 
polymers. The reaction is controlled by the reactants such 
as alcohol, water and acid/base; the size of the particles 
is tuned by pH, precursor concentration and temperature 
(Burda et al. 2005; Yu et al. 2008; Singh et al. 2011a).

Silica nanoparticles are synthesized by the sol–gel-
assisted, low-temperature Stöber method. In this process, 
the hydrolytic condensation reaction of Si–OH coupling 
occurs by replacement of an alkoxide group (–OR) with a 
hydroxyl group (–OH) (Kim et al. 2017). In the beginning, 
Stöber et al. prepared 1 μm of silica nanoparticles using 

2Qn→

↔ Qn−1 + Qn+1 (n = 1, 2, 3)

the sol–gel method (Stöber et al. 1968). Then, a hundred 
nanometers to a few micrometers silica nanoparticles were 
obtained by controlling the concentration of the precursor 
during hydrolysis (Bogush et al. 1988). The Stöber method 
also allowed to synthesize various shapes of silica nano-
particles such as nanocubes and spheres. The cubic shape 
of silica nanoparticles is obtained by addition of tartaric 
acid during synthesis (Yu et al. 2005), whereas monodis-
perse nanocubes of silica nanoparticles are prepared using 
ammonium tartrate as a surface-specific template in the 
sol–gel method (Yu et al. 2005).

The influence of synthesis parameters on the size and 
shape of silica nanoparticles has been largely studied. The 
concentration of the precursor, e.g., tetraethylorthosilicate, 
and the alcohol, e.g., ethanol, both control the size and 
distribution of silica nanoparticles. Particle sizes of 1.5 nm 
and 20–1000 nm were obtained by tuning the concentra-
tions of alcohol and the precursor (Shimura and Ogawa 
2007; Wang et al. 2010). Reaction temperature and time, 
and rotation per minute are also controlling the homogene-
ous distribution (Dabbaghian et al. 2010). Particle sizes of 
50–800 nm and 32–300 nm were obtained by varying the 
reaction temperature and time (Novak et al. 2010; Kim 
et al. 2017). Narrow particles can be obtained by control-
ling the reaction parameters in the Stöber method.

In the wet chemical synthesis, the surfactant allows to 
tune the size of the particle and prevent agglomeration. 
Amorphous silica nanoparticles of 300–400 nm were pre-
pared using polyvinyl pyrrolidone, cetyltrimethylammonium 
bromide (CTAB) and sodium dodecyl sulfate (Stanley and 
Nesaraj 2014). Particle size of 9 nm was obtained using 
polyethylene glycol-100 as a surfactant (PEG 1000, Guo 
et al. 2017). The properties of silica nanoparticles can be 
tuned also during sol–gel-assisted sonication. Particle size 
decreases with increased concentration of reagents, e.g., 
NH3, tetraethylorthosilicate, ethanol and water, by ultrasoni-
cation during the sol–gel process (Rao et al. 2005). Further 
functionalization of silica nanoparticles allows applications 
in nanomedicine and the industry (Liberman et al. 2014; 
Dubey et al. 2015).

The main parameters controlling the size and shape of 
silica nanoparticles are concentrations of tetraethylortho-
silicate (TEOS), ammonia hydroxide (NH4OH)/ammonia 
(NH3), water, ethanol and reaction temperature (Bogush 
et al. 1988; Rao et al. 2005). Table 2 presents factors con-
trolling particle size. Overall, particle size increases with 
tetraethylorthosilicate concentration (Sumathi and Then-
mozhi 2016), ethanol concentration (Singh et al. 2014a), 
pH of the reaction (Singh et al. 2011a) and reaction tem-
perature (Zainala et al. 2013). Particle size also increases 
with increasing concentration of H2O, yet as H2O con-
centration increases the size of some particles decreases. 
This is because H2O accelerates tetraethylorthosilicate 



hydrolysis; and H2O dilute oligomers in the reaction, 
which helps to produce larger particles and smaller parti-
cle, respectively (Wang et al. 2010). Finally, a narrow dis-
tribution of particle size is obtained at high concentrations 
of ammonia (Zeng et al. 2015). While the mechanism cor-
responding to the nucleation and growth of silica nanopar-
ticles still needs to be explained, a well understanding of 

the impact of synthesis parameters on the resultant particle 
size and shape is gradually developing.

Table 3 shows chemical methods of silica nanoparti-
cle preparation. The influence of the chemical reagents 
on particle size, distribution and morphology is given as 
scanning electron microscopy and transmission electron 
microscopy images in Figs. 6 and 7, respectively.

Table 1   Methods for preparation of silica nanoparticles

Methods Synthesis Observation

Chemical method Sol–gel Hydrolysis and condensation of metalalkoxides and inorganic 
salts such as tetraethylorthosilicate and sodium silicate with 
acid or base as catalyst

Prepared spherical shape of 7–200 nm
Sizes tuned by temperature, reagent concentration and pH
Lower time of reaction

Wet chemical Same reagents as sol gel method plus surfactants such as 
polyvinyl pyrrolidone,

cetyltrimethylammonium bromide, sodium dodecyl sulfate
Amorphous product
Surfactant used to tune size
Longer reaction time

Precipitation Silica gel made using sodium hydroxide and sulfuric acid
Spherical particles 50 nm size
Long reaction time

Biomass Corn cob
Rice husk
Sugarcane
bagasse

Initial extraction by acid and thermal treatments
Nanosilica prepared from biomass by precipitation or sol gel 

processes

Mesoporous silica Soft templating method Mesoporous silica increases loading capacity in drug delivery
Single micelle-templating Organosilica and ethylene-bridged organosilica precursors

Pluronic triblock, pluronic F127 block and cationic block 
copolymer as templates

Vesicle-templating Mixture of silicates and silanes as anionic co-surfactants and 
cationic surfactants

Requires uniform particles size of 25–105 nm obtained by 
co-condensation

Tetraethylorthosilicate (TEOS) and organotriethoxysilanes 
in alkaline solution. Cationic surfactant: cetyltrimethylam-
monium chloride

Micro-emulsion-templating Emulsion obtained by mixing oil, water, surfactant and 
alkaline solution

Thermally stable particles obtained using water, cationic 
surfactants and hydrocarbons

Hard templating method Mono-dispersed mesoporous silica nanoparticles obtained 
using polymer lattices, metal oxides and silica colloids

Polymer latex-templating Selective functional groups activated by surface activation for 
silicification

Functional groups activation achieved by layer-by-layer depo-
sition through electrostatic attraction

Metal or metal oxide nanoparticles Cetyltrimethylammonium bromide (CTAB) acts both as 
stabilizer and mesostructural directing agent

Thickness of mesoporous silica shells tuned by varying the 
ratio of surfactant and silica precursor

Core–shell silica Core is coated with non-toxic material to make nanoparticles 
biocompatible

Shell layer reduces toxicity and enhances the properties of the 
core material



Biomass

To prepare silica nanoparticles, most investigations use 
organic precursors of alkoxysilane such as tetraethylortho-
silicate (TEOS) and tetramethylorthosilicate (Bosio et al. 

2013). Nonetheless, silica from natural resources is used in 
biomedical and materials fields due to low cost, eco-friend-
liness and availability. Silica can be successfully extracted 
from biomass such as sugarcane bagasse, rice husk, corn 
cob, coffee husk and wheat husk. Rice husk is an abundant 

Table 2   Parameters controlling particle size of silica nanoparticles (Rao et al. 2005)

Temp. Temperature, d diameter

Parameter Experimental condition Size (nm)

Ethanol 
(mol 
L−1)

Tetraethylortho-
silicate (mol 
L−1)

H2O/tetraethyl-
orthosilicate (mol 
L−1)

NH4OH (mol L−1) Temp. (ºC)

Effect of ethanol 4–8 0.045 66.7 14 – 20.5 < d < 224.2
Effect of tetraethyl orthosilicate (TEOS) 8 0.012– 0.11 27–311 14

14
– 60.1 < d < 417

Effect of ammonia (NH4OH) 8 0.045 66.7 2.8– 28 – 242.8 < d < 30.6
Effect of water 8 0.045 66.7

209
14 – 224.2 < d < 20.5

Effect of temperature 4–8 0.045 66.7 14 30
70

116.0 < d < 462.03

Table 3   Synthesis of silica nanoparticles by chemical methods

Method Observation References

Stober: fixed ammonia (NH3)/H2O/ ethanol mole 
amounts, varied mass of tetraethyl orthosilicate (TEOS)

Silica opals with diameters 480 nm and 540 nm; Razo et al. (2008)

Stober: TEOS: 0.2 M, NH3: 0.2 M, H2O: 1 M; NH3: 
0.11 M, TEOS: 0.28 M, H2O: 1 M; NH3: 0.3 M, TEOS: 
0.28 M, H2O: 1 M

Particle size 50 nm, 55 nm, 130 nm, respectively. The 
size of particles increased with increased tetraethyl 
orthosilicate (TEOS) and ammonia (NH3) concentra-
tions.

Ibrahim et al. (2010)

Sonochemical sol–gel process. Polyethylene glycol 1000 
(PEG 1000) surfactant, tetraethyl orthosilicate (TEOS) 
silicon sources & ammonia (NH3) as a catalyst

Disperse without any agglomeration. Equiaxed in shape. 
Dispersity, size morphology tuned by varying PEG 
1000. Narrow size distribution of 4–18 nm. Average 
size of 9 nm 

Guo et al. (2017)

Stober method—silica nanoparticles with a high con-
centration.Tetraethylorthosilicate (TEOS) as a starting 
material.

10 nm of 4% of silica nanoparticle through reaction 
condition. By removing solvent, particle concentration 
increased up to 15 wt.% without aggregation

Tadanaga et al. (2013)

TEOS, ammonia (NH3), H2O controls the reaction rate 
and particle size. NH3 and H2O concentrations control 
the hydrolysis and the condensation processes.

Monodisperse spherical silica nanoparticles at 20 nm Beganskienė et al. (2004)

Stober method A series of nanoparticles with controllable size from 20 
to 100 nm

Silica nanoparticles influence as a function of the tem-
perature, precursor, water and catalyst

Particle size is independent of the concentration of the 
precursor and depends on the concentration of the 
ammonia solution. But it is inversely proportional to the 
reaction temperature

Qi et al. (2017)

Sol–gel method. Varied parameters, aging time 2 to 6 h. 
Calcination temperature in the range of 600 °C–700 °C

Average size in the range of 79.68 nm to 87.35 nm. 
Optimum conditions at calcination temperature of 700 
ºC and 2 h aging time

Azlina et al. (2016)

Micelles entrapment approach. Varying synthesis param-
eters

The average size of silica nanoparticles depends on the 
reactants and reaction temperature. The particle sizes of 
28.91 nm–113.22 nm through varying the temperature 
of the reaction. 2-butanol as a solvent

Hajarul et al. (2011)



silicon source, and contains about 75–90% of cellulose, 
hemicellulose and lignin totaling and 17–20% of ash content 
(Azmi et al. 2016). The ash contains more than 90% of silica 
and few metallic impurities. Sugarcane bagasse ash, a major 
by-product of the sugarcane industry, contains 40–50% of 
silica; acid pretreatment allows to increase amount of silica 
up to 80% (Ganesan et al. 2007; Singh and All Jawald 2013).

Corn cobs, obtained from maize corn, contain more than 
60% of silica (Owoeye et al.). Wheat husk ash contains up to 
90% silica (Naqvi et al. 2011), which is close to that of dry 
silica sand, of 99.4%. Bamboo leaf ash also has a large silica 
content of 75.90–82.86 wt.% (Silviana and Bayu 2018). Raw 
teff straw contains about 52% of silica, which can be increased 
to 97% after thermal treatment (Wassie and Srivastava 2017). 

Examples of silica-rich biomass are shown in Fig. 8. Extrac-
tion of silica from biomass, preparation and characterization 
of silica nanoparticles are discussed below.

Corn cob

Corn is one of the most frequently grown food crops in the 
world; it is extracted from maize (corn). Corn cob ash con-
tains more than 60% of silica and few metallic elements 
(Adesanya and Raheem 2009). Corn cob is grounded to 
a fine powder that is used to produce silica, silicates and 
silica nanoparticles. Corn cob is used for enzymes, absor-
bents (Tsai et al. 2001), proteins (Chen et al. 2007), fuel 

Fig. 6   Scanning electron microscopy (SEM) of silica nanoparticles 
with fixed concentration of tetraethylorthosilicate (TEOS) and var-
ied ethanol to water ratios: a 4:1, b 3:1 (Prabha et  al. 2019). Fixed 
concentration of TEOS, ethanol and water and varied NH3 concentra-
tions: c 150 mM, d 200 mM, e 250 mM, reprinted with permission 
from Zhang et  al. (2016). Fixed concentration of NH3 and ethanol 

and varied H2O to TEOS ratio: f 8:4, g 10:4, h 12:4, i 14:4, reprinted 
with permission from Kim et al. (2017). Average particle sizes of a 
450 nm, b 200 nm, c 30 nm, d 50 nm, e 90 nm, f 280–300 nm, g 200–
230 nm, h 150–180 nm, i 100–120 nm. These images reveal that par-
ticle size increases with concentration of precursor, solvent and water



(Kaliyan and Morey 2010) and cement (Adesanya and 
Raheem 2009). The chemical composition of raw corn cob 
ash and extracted silica is shown in Table 4 (Okoronkwo 
et al. 2013).

Nanosilica is prepared from corn cob ash by precipitation 
(Mohanraj et al. 2012). The 50–60% of silica in corn cob 
ash must be purified to remove of impurities. Silica aquagel 
from corn cob ash is prepared by alkaline extraction and acid 

Fig. 7   Transmission electron microscopy (TEM) of silica particles. 
a–d fixed concentration of tetraethylorthosilicate (TEOS), ammonia 
solution (NH4OH) and varied amounts of water. Fixed concentration 
of TEOS and water, and varied concentration of NH4OH f 0.11 M, g 
0.28 M, h 0.57 M, i 1.13 M, j 0.17 M, k 0.40 M, l 0.85 M, reprinted 

with permission from Greasley et  al. (2016). NH4OH concentration 
controls the density of the silica particles. The narrow distribution 
of particle size obtained at higher ammonia concentration and H2O 
could accelerate TEOS hydrolysis and helps to produce larger parti-
cles

Fig. 8   Biomass sources having high content in silica



precipitation (Velmurugan et al. 2015). Silica can be iso-
lated from corn cob by varying pH (7–10) using the sol–gel 
method (Shim et al. 2015). The results show a 99.50% purity, 
larger surface area, high reactivity and 98.50% amorphous 
state. Scanning electron microscopic (SEM) images of corn 
cob and silica nanoparticles are displayed in Fig. 9.

Silica nanoparticles from corn cob extracts are also pre-
pared by precipitation. Here, soluble sodium silicate solution 
from corn cob ash is used as a source of silica, and con-
centrated sodium hydroxide (NaOH) is used as a source of 
soda. Various parameters such as specific gravity, pH value, 
viscosity and electrical conductivity were studied (Ajayi and 

Owoeye 2015). Silica nanoparticles prepared from corn cob 
yield amorphous silica with large surface area.

Rice husk

Rice husk has been studied for energy and for production of 
silica (Liu et al. 2016a, b). For instance, rice husk ash is a 
precursor for silica gel synthesis by the sol–gel method: here 
sodium silicate is prepared first then converted into a gel by 
acid treatment (Geetha et al. 2016). Acid and thermal treat-
ments yield a white color silica with high surface area (Della 
et al. 2002). Rice husk has about 20% of minerals (Carmona 
et al. 2013). Organic compounds include cellulose, hemicel-
lulose and lignin. Minerals contains 94% of silica and 6% 
of Al2O3, K2O, MgO, CaO and P2O5. Composition varies 
depending on soil type, fertilizers and weather conditions 
(De Souza et al. 2002). The chemical composition of rice 
husk is shown in Table 5.

For optimal production of nanosilica from rice husk, the 
effect of the acid leaching, concentration of sodium silicate 
solution, reaction temperature and time of aging and gela-
tion, pH on synthesizing silica nanoparticle, were studied 
(Liou and Yang 2011). Research also focused on morphol-
ogy of rich husk ash, which displays a porous structure 
after washing, acid treatment and sintering (Madrid et al. 
2012). As a consequence, rich husk ash shows promising 

Table 4   Chemical composition of raw corn cob ash and extracted sil-
ica. Source: Okoronkwo et al. (2013)

Constituent Raw corn cob ash 
(wt. %)

Extracted 
silica (wt. 
%)

Silicon dioxide (SiO2) 47.66 97.13
Aluminum oxide (Al2O3) 8.50 0.00
Iron oxide (Fe2O3) 7.90 0.48
Calcium oxide (CaO) 17.70 0.89
Magnesium oxide (MgO) 7.20 0.92
Sulfur trioxide (SO3) 0.70 0.00
Manganese oxide (MnO2) 2.20 0.00
Potassium oxide (K2O) 4.80 0.58

Fig. 9   Scanning electron 
microscopy of a corn cob, 
reprinted with permission from 
Shariff et al. (2016), b calcined 
corn cob ash obtained at 650 ˚C 
for 2 h, c nanosilica from corn 
cob, reprinted with permission 
from Mohanraj et al. (2012), d 
nano-structured silica from corn 
cob with an average diameter of 
55 nm, reprinted with permis-
sion from Okoronkwo et al. 
(2016)



applications for construction materials and technical ceram-
ics due to the high reactivity of the porous structure.

Extraction and characterization of silica from a differ-
ent rice husks such as agulhinha and cateto were analyzed 
(Carmona et al. 2013). Highly pure silica nanoparticles 
with high specific area and an average size of 25 nm were 
prepared by alkali extraction, followed by acid precipita-
tion (Yuvakkumar et al. 2014). Research has also focused 
on ‘waste in valuable product manufacture’ using silica, 
revealing good performance and simple industrial imple-
mentation as anti-sticking agents, filter in rubber products 

and paper (Todkar et al. 2016). Silica nanocomposite can 
be prepared with rice husk ash, which is used as a nano-
filler in epoxy-silica nanocomposites; products display 
good tensile strength, uniform distribution and no agglom-
eration (Moosa and Saddam 2017). To synthesize high 
surface area silica aerogel from rice husk ash, the water 
extract of rice husk is used as a precursor in the sol-gel 
process (Feng et al. 2018). The image of rice husk, after 
acid leach of rice husk, and the morphology of rice husk 
ash and silica nanoparticles are shown in Fig. 10. Overall, 
rice husk silica can be used to develop valuable products, 
thus solving the disposal issue (Tyagi et al. 2017).

Sugarcane bagasse

India has the second largest manufacture of sugarcane in 
the world. Bagasse is the residue of sugarcane; bagasse is 
obtained industrially by milling. India produces 10 million 
tons of sugarcane bagasse ash as a waste material (Goyal 
et al. 2007). Silica is abundant in sugarcane bagasse ash 
(Aigbodion et al. 2010; Faria et al. 2012). Mesoporous 
silica nanoparticles prepared from sugarcane bagasse are 
applied in biomedical and industrial fields (Rahman et al. 
2015). Sugarcane bagasse is considered as a better option 

Table 5   Composition of rice husk ash (Ramadhansyah et al. 2012)

Oxide compounds Chemical composition (%)

Silicon dioxide (SiO2) 93.0
Aluminum oxide (Al2O3) 0.20
Iron oxide (Fe2O3) 0.13
Calcium oxide (CaO) 0.49
Magnesium oxide (MgO) 0.73
Sodium oxide (Na2O) 0.02
Potassium oxide (K2O) 1.30
Sulfur trioxide (SO3) 0.15
Loss on ignition (LOI) 3.98

Fig. 10   Scanning electron 
microscopy. a rice husk. Silica 
nanoparticles synthesized from 
rice husk under various condi-
tions giving: b particles in 
heterogeneous sizes, c agglom-
eration, d 50 nm size (Prabha 
et al. 2019)



than wood fibers in producing textiles, paper, pressed 
wood materials and other products (Mandal and Chakra-
barty 2011). Silica extracted from sugarcane is suitable as 
additive for membrane fabrication (Mokhtar et al. 2016). 
In the nineteenth century, silica was found in plants, and 
then, silica is generally accepted as a sustainable polymer 
compound (Hariharan and Sivakumar 2013). The chemical 
composition of sugarcane bagasse ash is shown in Table 6 
(Chusilp et al. 2009).

The effect of calcination temperature and alkali concen-
tration on silica structure have been studied (Rahmat et al. 
2016; Athinarayanan et al. 2017). HCl is used for washing, 
and NaOH was for silica extraction. Acid pretreatment in 
autoclave removes metal ions and induces the hydrolysis 

of organic substances. Bagasse ash filler treated with HCl/
NH4F gives silica of 77%–97% purity (Huabcharoen et al. 
2017). SEM images of the sugarcane bagasse, bagasse ash 
and silica nanoparticles from sugarcane bagasse are shown 
in Fig. 11.

Mesoporous silica

Porosity is classified according to pore size (Table 7, Bar-
rabino 2011). Porosity is defined as the periodic arrange-
ments with uniform size mesopores integrated within the 
amorphous silica matrix.

Mesoporous silica material was discovered in 1992 by 
the Mobil Oil corporation and is known as the M41S phase 
having pore diameters from about 2 to 10 nm (Hoffmann 
et al. 2006). The materials are often referred to as Mobil 
composition of matter (MCM) (Caras 2011), and the most 
popular MCM materials are MCM-41 and MCM-48, 

Table 6   Chemical composition of sugarcane bagasse ash (Chusilp 
et al. 2009)

Chemical composition (%) Sugarcane 
bagasse ash

Silicon dioxide (SiO2) 64.88
Aluminum oxide (Al2O3) 6.40
Iron oxide (Fe2O3) 2.63
Calcium oxide (CaO) 10.69
Magnesium oxide (MgO) 1.55
SiO2 + Al2O3 + Fe2O3 73.91

Fig. 11   Scanning electron 
microscopy of 15% sugarcane 
bagasse at ages of a 7 days and 
b 28 days, with scale bar of 
10 mm. Reprinted with permis-
sion from Joshaghani et al. 
(2017). c Silica-polyethylene 
glycol (PEG) hybrid. d porous 
silica after PEG extraction. 
Reprinted with permission from 
Rahman et al. (2015)

Table 7   Classification of porous material (Hoffmann et al. 2006) 

Types of porous material The diameter of pores (nm)

Microporous Diameter < 2
Mesoporous 2 < diameter < 50
Macroporous Diameter > 50



displaying 2D hexagonal and 3D cubic arrangement of 
pores, respectively (Tzankov et al. 2014). Mesoporous 
silica got high interest due to tunable particle size 
(10–1000 nm) and pore diameter (2–30 nm), large sur-
face area and pore volume, flexible morphology, surface 
functionalization and uniform mesoporosity, tunable and 
narrow pore size distribution, and excellent biocompat-
ibility and biodegradation. Mesoporous silica nanoparti-
cles (MSNPs) have been developed for inorganic delivery 
(Caras 2011). Mesoporous silica nanoparticles have sizes 
ranging from 50 to 500 nm in diameter with pores rang-
ing from 2 to 20 nm; these pores are mainly cylindrical 
(Kresge et al. 1992). Pores act as vehicles and reservoirs 
in a wide range of fields such as drug delivery, adsorption 
and heterogeneous catalysis. Applications include drug 
delivery of therapeutic agents (Thomas et al. 2010; Slow-
ing et al. 2007; Trewyn et al. 2007).

Microscopic images of mesoporous silica obtained by 
various methods are shown in Fig. 12. Mesoporous silica 
nanoparticles are prepared using amphiphilic molecules as 
templates for their internal structure. Two different struc-
tures can be obtained by changing the synthesis condi-
tions, the two-dimensional hexagonal structure known as 
MCM- 41 (Beck et al. 1992; Kresge et al. 1992) and the 
tridimensional cubic structure MCM-48 (Hoffmann et al. 
2006). Mesoporous silica materials were first synthesized 

for catalytic applications (Yanagisawa et al. 1990; Kresge 
et al. 1992). To increase biocompatibility, smaller sizes 
and homogeneous morphology are required. For instance, 
submicrometer MCM-41 particles were prepared in 1997 
by a modified Stober method (Grün et al. 1997). Later, 
100 nm MCM-41 silica particles were synthesized using 
a dilute surfactant solution (Cai et al. 2001), and then, less 
than 50 nm particles were prepared by dialysis (Suzuki 
et  al. 2004). Overall, mesoporous silica nanoparticles 
have large pore volume and surface area and can be func-
tionalized with versatile functional groups for theranostic 
applications.

Core–shell silica

Core–shell nanoparticles refer as inner material coated 
with another material on the surface (Law et al. 2008). 
Core–shell nanoparticles have numerous advantages over 
conventional nanoparticles in biological applications 
because these particles display high dispersibility and low 
cytotoxicity, bio- and cytocompatibility, better conjugation 
with other bioactive molecules, and increased thermal and 
chemical stability (Sounderya and Zhang 2008). The core 
is coated with non-toxic material to make nanoparticles 
biocompatible. The shell layer reduces the toxic layer and 

Fig. 12   Transmission electron microscopy (TEM) of a mesoporous 
silica nanoparticle with an average diameter of 120 nm. b High-res-
olution image of a single particle, pore size 2.7  nm, reprinted with 
permission from Yu et al. (2011). c 0.1 M CTAB:45 M H2O pore size 
2.9 nm. d 0.1 M CTAB:45 M H2O pore size 2.7 nm, reprinted with 
permission from Vazquez et  al. (2017). e Gold–mesoporous silica 

under plasmonic photothermal with irradiation for 14  h at 514  nm 
under 15 mW, reprinted with permission from Croissant and Guar-
dado-Alvarez (2019). f Multibranched-polymer composite with gold–
silica core–shell nanoparticles, reprinted with permission from Car-
rasco et al. (2016). CTAB: cetyltrimethylammonium bromide



enhances the properties of the core material (Chatterjee 
et al. 2014). Core–shell nanoparticles are mainly designed 
to increase the binding affinity with ligands, drugs and 
receptors in biomedical applications (Sahoo and Labhaset-
war 2003; Gilmore et al. 2008; Chen et al. 2010). The 
thickness of the shell can be tuned to improve contrast 
agents, targeted drug delivery, specific binding and bio-
sensing (Pinho et al. 2010). Microscopic images of silica 

nanoparticles with a core–shell structure are shown in 
Fig. 13. Tables 8 and 9 present core–shell silica nanopar-
ticles for biosensor and bioimaging applications.

Fig. 13   Transmission electron 
microscopy. a Silica–gadolin-
ium particle, reprinted with per-
mission from Kobayashi et al. 
(2007). b Silver–silica with 
silica shell thickness of 8 ± 2 nm 
(Song et al. 2016). Core–shell 
of polystyrene–silica compos-
ites (PSC), c silica: styrene 
1:10, d silica:styrene 1.5:10, 
reprinted with permission from 
Ding et al. (2004). Core–shell 
of gold–silica at various scales: 
e 500 nm, f 20 nm. Gold–silica 
with template of 0.1 g cetyl-
trimethylammonium bromide 
(CTAB) at various scales: g 
200 nm, h 10 nm, reprinted 
with permission from Vu et al. 
(2019). i Core–shell of Au 
nanostar–silica nanoparticles, 
reprinted with permission from 
Al-Ogaidi et al. (2014)

Table 8   Core–shell silica nanoparticles for biosensor applications

Core Shell Application References

Gold nanostar Silica nanoparticle Glucose sensor Al-Ogaidi et al. (2014)
Teardrop-shaped silica nano-

particles
Titanium dioxide nanoparticles For photocatalytic activity Wu et al. (2015)

Silver nanoparticles Silica nanoparticles Aptasensor Song et al. (2016)
DNA-labeled silicon Silica nanoparticles Fluorescent sensor for detection of Hg2+ 

in water
Srinivasan et al. (2017)

Fe3O4 nanoparticles Inner shell: amorphous carbon. Outer 
shell: metallic silver nanoparticles

Cholesterol nanobiosensors Satvekar and Pawar (2018)

Gold nanoparticles Silica nanoparticles and 4,4′-dipyridyl 
embedded into the core–shell

Detection of E. coli O157: H7 Zhu et al. (2018)



Applications of silica nanoparticles

Silica nanoparticles are used in many fields such as bio-
medical, electrical, textile and rubber sectors, yet nowadays 
research is moving toward the biomedical field. Here silica 
nanoparticles are used in diagnosis and to control diseases 
by identifying and correcting the genetic disorders, as a 
theranostics agent. In addition, some applications such as 
biosensor, bioimaging, drug delivery and supercapacitor are 
briefly discussed. Applications of silica nanoparticles are 
shown in Fig. 14 and Table 10.

Biosensors

Sensors are the analytical device that consists of an active 
sensing material with a signal transducer (Kuswandi 2019). 
In general, sensors can be categorized into two types: bio-
sensors and chemical sensors. This classification is based on 

sensing aspects, where the biosensors can sense biochemi-
cal compounds such as enzymes (Verma 2017), antibod-
ies, nucleic acids, cells and tissues (Yogeswaran and Chen 
2008). Biosensors typically consist of two intimately associ-
ated elements: a bioreceptor and a transducer. Based on the 
transducing mechanism, biosensors are further classified as 
(i) optical-detection biosensors, (ii) resonant biosensors, (iii) 
thermal detection biosensors, (iv) ion-sensitive field-effect 
transistor-based biosensors and (v) electrochemical biosen-
sors (Chaubey and Malhotra 2002). Numerous electrochemi-
cal biosensors have been developed for determining various 
substances such as glucose (Saei et al. 2013), cholesterol 
(Hui et al. 2015), dopamine (Huang et al. 2015), hydrazine 
(Liu et al. 2016a, b), hydrogen peroxide (Ju and Chen 2015), 
kanamycin (Qin et al. 2016) and cysteine (Amiri et al. 2017). 
Optical biosensors are applicable in environmental moni-
toring, biomedical research, pharmaceuticals, healthcare, 
homeland security and the battlefield due to powerful detec-
tion and analysis tools (Amiri et al. 2017).

For non-enzymatic detection of hydrogen peroxide (H2O2), 
graphene oxide was composited with silica nanoparticles 
(Huang and Li 2013). Amperometric studies show that com-
posites of graphene oxide and silica nanoparticles enhance 
the electrochemical activity of hydrogen peroxide detection 
in alkaline medium, with a low detection limit of 2.6 μM and 
high reproducibility. Functionalized mesoporous silica is used 
for detection of H2O2 and controlled treatment of heart failure 
(Tan et al. 2017). Here, the H2O2-sensitive probe is attached 
to the surface of a mesoporous silica nanoparticles (MSNP), 
and captopril, a drug for heart failure, is loaded inside the 
pores of nanoparticles. A MSNP-based system of high load-
ing efficiency and releasing capacity was developed and 
combined with detection by chemiluminescence of luminol / 
hydrogen peroxide (Chen et al. 2016). For dengue RNA detec-
tion, 3-aminopropyltriethoxysilane (APTES)-functionalized 
graphene oxide was enclosed in silica nanoparticles (Jin et al. 

Table 9   Core–shell silica nanoparticles for bioimaging application

Core Shell Application References

Gadolinium Silica nanoparticle X-ray imaging Morimoto et al. (2011)
Iron oxide Silica with different thicknesses Multimodal molecular imaging: MRI and optical 

imaging
Jang et al. (2014)

Gadolinium Mesoporous silica Drug delivery Stefanakis and Ghanotakis (2014)
Quantum dot Silica nanoparticle Contrast agent with dual functions fluorescence and 

X-ray absorption
Kobayashi et al. (2016)

Monodisperse 
silica nanopar-
ticle

amorphous gadolinium and euro-
pium oxides with mesoporous 
silica

Drug delivery, fluorescence and magnetic resonance 
imaging

Eurov et al. (2015)

Fig. 14   Applications of silica nanoparticles



2016). Results showed better selectivity and lower detection 
limit than graphene oxide without enclosed silica.

Bioimaging

Silica nanoparticles can be easily utilized for molecular 
imaging techniques, such as optical imaging, e.g., fluores-
cence and bioluminescence, magnetic resonance imaging 
(MRI), radionuclide imaging, e.g., positron emission tomog-
raphy (PET) and single-photon emission computed tomogra-
phy (SPECT), computed tomography (CT), ultrasound, pho-
toacoustic imaging and Raman imaging (Tang and Cheng 
2013). Silica nanoparticles are used as contrast agents in 
medical imaging to encapsulate contrast agent particles such 
as an iron oxide (Lee et al. 2009), gold (Viarbitskaya et al. 

2011), silver (Gong et al. 2007), organic dyes (Yuan et al. 
2005) and quantum dots (Hagura et al. 2011).

The 20–30 nm silica-coated fluorophore is photostable, 
and brightness is 20 times higher than composing fluoro-
phores (Ow et al. 2005). The outer silica shell  allows target 
specific cells and tissues by silica surface functionalization 
(Ow et al. 2005). Computed tomography is mostly used in 
diagnosis due to the limited depth of tissue penetration (Liu 
et al. 2012). A hybrid of silica with gold nanoparticles and 
fluorescein isothiocyanate dyes display a strong fluorescence 
signal at 520 nm under 490 nm excitation (Feng et al. 2014).

Silica-coated gold nanospheres can be coated with flu-
orescent quantum dots, yet further coating with silica is 
needed to reduce the defects of quantum dots (Song et al. 
2015). This composite was used for contrast-enhanced com-
puted tomography and fluorescence imaging. The probe of 

Table 10   Applications of silica nanoparticles

Material Application Process

Gold nanoparticles-mesoporous silica composite Glucose Biosensor Combining gold nanoparticles-mesoporous silica. Biosensor made by 
immobilizing IO4

−-oxidized-glucose oxidase on gold nanoparticles-
mesoporous silica. Modified gold electrode with 2-aminoethanethiol 
as a cross-linker (Bai et al. 2007)

Hollow silica spheres DNA Biosensor Depositing gold nanoparticle/hollow silica spheres on a screen-printed 
carbon paste electrode for the detection of E.coli DNA. Using 
glutaraldehyde bifunctional cross-linker, an aminated DNA probe is 
coupled to the aminated hollow silica spheres and deposited onto the 
electrode of gold nanoparticle-modified screen-printed carbon paste 
(Ariffin et al. 2018)

TAT (cell penetrating peptide) conjugated with 
fluorescein isothiocyanate and doped silica 
nanoparticles

Bioimaging Human lung adenocarcinoma (A549) cells (in vitro) and rat brain 
tissue (in vivo) tagged with nanoparticles. Endovascular approach 
targets brain blood vessels to study blood–brain barrier (Santra et al. 
2004)

Carbon dots inserted in a silica shell around 
polylactide-polyethylene-glycol conjugated silica 
core

Bioimaging Fluorescence induced by incorporation of carbon dots into silica 
nanoparticle shell. Carbon dots with silane groups on the silica shell 
using a one-pot reaction. For cellular uptake, silica-loaded core are 
incubated with A549 cells line and studied for drug release and 
bioimaging Silica core–shell material proved promising materials for 
both bioimaging and anticancer drug delivery (Mehdi et al. 2018)

Mesoporous MCM-41 silica Drug delivery Mesoporous MCM-41 is loaded with ibuprofen. Drug release in a 
simulated body fluid. Drug release analyzed in amine-functionalized 
MCM-41 of micro-sized sphere and irregular shape. Non-function-
alized mesoporous silica shows lower drug release. For amine-func-
tionalized mesoporous silica, drug release rate is better for spherical 
shape compared to irregular shape (Manzano et al. 2008)

Mesoporous silica nanoparticles Drug delivery Interactions with fluorescent unilamellar vesicles and dye-loaded 
mesoporous silica nanoparticles. Time-resolved fluorescence and 
steady-state techniques to study live cells fluorescence imaging 
Release of dye molecules from the pores of mesoporous silica nano-
particles is observed (Bardhan et al. 2018)

Hollow-core mesoporous shell carbon nanospheres Supercapacitor Uniform hollow-core mesoporous shell carbon nanospheres fabri-
cated by a surface co-assembly of monodisperse silica nanospheres 
method. This strategy is easier compared to other methods. 2.0 M 
sulfuric acid solution as the electrolyte: working electrode is hollow-
core mesoporous shell carbon nanospheres coated glass carbon 
electrode, platinum electrode used as a counter. Good sustainability 
of capacitance (You et al. 2011)



in vivo gastric cancer cells using folic acid-conjugated silica 
coated with gold nanoclusters of about 58 nm size was used 
for computed tomography and fluorescence imaging (Zhou 
et al. 2013). Magnetic resonance imaging is mostly used for 
noninvasive diagnostic techniques (Viswanathan et al. 2010). 
Silica-coated gadolinium nanoparticles co-doped with euro-
pium (Eu3+) and terbium (Tb3+) were used for magnetic 
resonance and fluorescence imaging. Gadolinium carbon-
ate particles are often used in magnetic resonance imag-
ing. To increase biocompatibility, biomass-derived silica 
nanoparticles were conjugated with a fluorescent material 
and used for biological imaging application (Pandey et al. 
2014). Here, meso-silica nanoparticles derived from rice 
husk were composited with green fluorescent carbon dots 
by hot injection. The complex shows high drug loading effi-
ciency and stronger fluorescence compared to carbon dots 
alone. Thus, this complex material can be used for theranos-
tic applications. Rice husk-derived silica composite with rare 
earth elements, europium/gadolinium ions were prepared by 
microwave-assisted combustion (Araichimani et al. 2020). 
Europium ions and gadolinium ions in the silica matrix 
exhibited potential of fluorescence imaging and T1-weighted 
magnetic resonance imaging, respectively. Thus, rice husk 
silica nanoparticles with rare earth ions are a good alterna-
tive for developing cost-effective bioimaging contrast agents.

Drug delivery

Drug delivery systems based on silica nanoparticles are fast-
developing in nanomedicine, yet it requires the analysis of 
toxicity, biodistribution, clearance and immune response of 
silica and modified silica (Biju 2014). Mesoporous silica 
nanoparticles are widely used for drug delivery applica-
tion (Chowdhury 2018). Owing to the presence of surface 
silanol groups, they can be functionalized to tune the load 
and release of drugs (Vallet‐Regí et al. 2007). Amine-func-
tionalized mesoporous silica nanoparticles are widely used 
(Vallet-Regí et al. 2011). High drug loading and slow drug 
release are observed (Chowdhury, 2016). A such approach 
has been used for various drugs, e.g., heparin (Wan et al. 
2012), hydrocortisone (Lopez et al. 2009), metoprolol (Guo 
et al. 2010), salidroside (Peng et al. 2013), venlafaxine 
(Tang et al. 2011), vancomycin (Lai et al. 2003), metho-
trexate (Carino et al. 2007), sophoridine (Dong et al. 2014) 
insulin and cyclic adenosine monophosphate (cAMP, Zhao 
et al. 2010), and anticancer drugs such as doxorubicin and 
5-fluorouracil (Singh et al. 2011b; Mei et al. 2012; Wu et al. 
2013a, b; Hwang et al. 2015).

Magnetic carbon nanotubes composited with mesoporous 
silica shows a high loading capacity for therapeutic mol-
ecules such as protein cytochrome C and drug gentamicin 
(Singh et al. 2014b). Small interfering RNA (siRNA) was 

loaded and then released over a days to a week. Transferrin 
was grafted on the surfaces of mesoporous silica nanopar-
ticles by a redox-cleavable disulfide bond, then was used 
as capping agent and targeting ligand (Chen et al. 2017). 
To examine the redox-responsive and burst release of doxo-
rubicin, transferrin was integrated into mesoporous silica 
nanoparticles with the presence and absence of glutathione. 
Here, the presence of glutathione has perfect capping effi-
ciency of transferrin and also enhanced the biocompatibility.

Nanocarriers of amine-modified mesoporous silica–iron 
oxide functionalized with 2, 3-dimercaptosuccinic acid via 
chemical amidation show that a negligible amount of the 
drug is released in the absence of a magnetic field (Chen 
et al. 2011). Upon application of a magnetic field, nanocaps 
are removed by chemical bond breaking, which induces high 
drug release. This material is also applicable for molecu-
lar imaging by T2-weighted magnetic resonance contrast 
influencing agents. Composites of rice husk-derived silica 
nanoparticles and polycaprolactone nanofibers are used for 
drug delivery of drugs such as allantoin (Ke et al. 2016). To 
reduce cost and increase biocompatibility, 5-fluorouracil was 
fixed to chitosan-coated biomass silica nanoparticles (Dhi-
nasekaran et al. 2020). The results showed that potential in 
targeting the cancer cell lines MCF-7 and A549.

Supercapacitors

Supercapacitors have attracted interest owing to their 
extended cycle life performance, high charge/discharge 
rates and high power density (Miller and Simon 2008; Liu 
et al. 2010; Simon and Gogotsi 2010). Supercapacitors are 
considered as a very promising energy storage device to 
complement or eventually replace the batteries of wearable 
and portable electronics, and electrical and hybrid vehicles 
(Kaempgen et al. 2009). Supercapacitors can be classified 
into two main categories according to the energy storage 
mechanisms: electric double-layer capacitors (EDLC) and 
pseudocapacitors (Winter and Brodd 2004). Mesoporous sil-
ica nanoparticles with conducting polyaniline wires wrapped 
with graphene oxide were found to expand the surface area 
and allow the movement of ions and charge transfer (Javed 
et al. 2018).

Manganese dioxide/mesoporous nanocomposite are 
obtained by facile chemical synthesis and then used as elec-
trode material for supercapacitor applications, thus displayed 
superior electrochemical performance (Huang et al. 2017). 
Rice-derived silicon was composited with carbon (SiOx/C) 
for Li-ion batteries by one-step pyrolysis exhibiting SiOx/C 
anode specific capacity of 654 mAh g−1 after 1000 cycles, with 
higher capacity up to 920 mAh g−1 (Huang et al. 2019). To use 
rice husk for energy storage, tin oxide was decorated on husk-
derived silica nanoparticles by facile microwave combustion 



(Vijayan et al. 2020). Here, the presence tin oxide on silica 
nanosphere provides reactive surfaces for charges adsorption 
and desorption.

Silica nanoparticles are not only used in the biomedical 
field but also used in various fields such as material packing, 
textile (Riaz et al. 2019), agriculture and food (Rastogi et al. 
2019), adsorbents in the removal of organic and inorganic 
pollutants (Morin-Crini et al. 2019), rubber field (Peng et al. 
2007), water treatment (Demadis and Mavredaki 2005), con-
crete and construction and photocatalytic degradation (Alaoui 
et al. 2009 and Batista et al. 2010).

Conclusion

Silica nanoparticles are promising material for medical and 
electronics applications. Because of its optoelectronic proper-
ties, silicon (Si) is extensively used in photovoltaic and energy 
storage applications. Recently, the application of silica is also 
explored in biomedical fields in the form of silica nanoparti-
cles as bioimaging, biosensors and drug delivery, due to its 
biocompatibility, biodegradability and low toxicity. The silica 
nanoparticles can be prepared by different methods and most 
of the researchers used the well-known Stober method to get 
monodispersed particles with narrow size distribution. Com-
pared to silica nanoparticles prepared using tetraethylortho-
silicate as a precursor, silica nanoparticles from biomass are 
exhibiting good properties at low cost. Silica sources can also 
be obtainable from rice husk, sugarcane bagasse, corn cob 
and wheat husk.
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