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A cautionary note on the Hanurav-Vijayan sampling algorithm

Guillaume Chauvet∗

March 9, 2021

Abstract

We consider the Hanurav-Vijayan sampling design, which is the default method programmed

in the SURVEYSELECT procedure of the SAS software. We prove that it is equivalent to the

Sunter procedure, but is capable of handling any set of inclusion probabilities. We prove that

the Horvitz-Thompson estimator is not generally consistent under this sampling design. We

propose a conditional Horvitz-Thompson estimator, and prove its consistency under a non-

standard assumption on the first-order inclusion probabilities. Since this assumption seems

difficult to control in practice, we recommend not to use the Hanurav-Vijayan sampling design.

1 Introduction

The Hanurav-Vijayan method (Vijayan, 1968) makes it possible to select a sample with probabili-

ties proportional to size. This is the default method programmed in the SURVEYSELECT procedure

of the SAS software for unequal probability sampling. It is therefore routinely used, see for example

Langlet et al. (2003); Kulathinal et al. (2007); Myrskylä (2007); Jang et al. (2010); Zhao (2011);

∗Univ Rennes, ENSAI, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France, email: chauvet@ensai.fr
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Chauvet and Vallée (2020); Xiong and Higgins (2020).

This sampling algorithm has a number of interesting features. The procedure is of fixed-size, the

required first-order inclusion probabilities are exactly respected, and the second-order inclusion

probabilities are strictly positive and may be computed. However, the statistical properties of esti-

mators arising from the Hanurav-Vijayan method remain poorly studied, which may be due to the

fairly intricate description of the method. This is the purpose of this paper.

After describing the main notations and assumptions in section 2, we present the Hanurav-Vijayan

method in section 3. We prove that it is equivalent to the so-called Sunter sequential procedure,

but that it can handle any set of first-order inclusion probabilities. The consistency of the Horvitz-

Thompson estimator is studied in Section 4. In particular, we prove that the Horvitz-Thompson

is not generally consistent under the Hanurav-Vijayan method, unless a non-standard condition

on the first-order inclusion probabilites is respected. This condition requires that the n largest

inclusion probabilities are very close to each other. A conditional Horvitz-Thompson estimator is

suggested in Section 5, and its consistency is established under a weaker condition. The results of

the simulation study in section 6 support our findings. We conclude in section 7.

2 Notation

We consider a finite population U = {1, . . . , N}. Denote by π = (π1, . . . , πN )> a vector of proba-

bilities, with 0 < πk < 1 for any unit k ∈ U , and with n =
∑

k∈U πk the expected sample size. We
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suppose that the population U is ordered with respect to the inclusion probabilities, i.e.

π1 ≤ . . . ≤ πN . (2.1)

We note π+l =
∑l

k=1 πk for the cumulated inclusion probabilities up to unit l. A random sample is

selected in U by means of a without-replacement sampling design with parameter π, i.e. such that

E(I) = π, where

I = (I1, . . . , IN )> (2.2)

is the vector of sample membership indicators. We are interested in the estimation of the total

ty =
∑

k∈U yk for a variable of interest yk.

Throughout the paper, we will consider the following assumptions:

VA1: There exists some constant C1 such that:

1

N

∑
k∈U

y2k ≤ C1.

SD1: We have n → ∞ as N → ∞, and there exists some constant f ∈]0, 1[ such that N−1n → f .

There exists some constants 0 < λ1 ≤ Λ1 such that for any k ∈ U :

λ1
n

N
≤ πk ≤ Λ1

n

N
.

SD2: There exists some function h(n,N)→ 0 such that

max
i=1,...,n−1

{πN−n+i+1 − πN−n+i} ≤ h(n,N). (2.3)

The assumption (VA1) is related to the variable of interest, which is assumed to have a finite

moment of order 2. The assumption (SD1) is related to the sampling design, and also defines the
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asymptotic framework. It is assumed that all the first-order inclusion probabilities are of order

n/N . The assumptions (VA1) and (SD1) are standard. The assumption (SD2) is more unusual,

and states that the n largest inclusion probabilities are sufficiently close to each other. Note that

from the identity

1

n− 1

n−1∑
i=1

{πN−n+i+1 − πN−n+i} =
πN − πN−n+1

n− 1
,

the mean value of these differences is of order N−1 under assumption (SD1). It would therefore

seem natural to use h(n,N) = N−1 in assumption (SD2). In any case, we prove in Section 4

that under the Hanurav-Vijayan sampling process, h(n,N) needs to be of smaller order for the

Horvitz-Thompson estimator to be generally consistent.

3 Hanurav-Vijayan procedure

The sampling algorithm proposed by Vijayan (1968) is a generalization of a procedure by Hanurav

(1967). Vijayan (1968) considered the specific case of unequal probability sampling with probabil-

ities proportional to size. The description in Algorithm 1 is more general, since it can be applied

for any set π of inclusion probabilities. We have also simplified the presentation, to express the

intermediary quantities needed in the sampling process in terms of the inclusion probabilities only.

The Hanurav-Vijayan procedure is split into two phases. During the first phase, an integer n′ is

randomly selected in {1, . . . , n} and a new vector π(0) of inclusion probabilities is obtained. The

n − n′ units with the larger inclusion probabilities (k > N − n + n′) are selected, while the n′

remaining units with the larger inclusion probabilities (N − n + 1 < k ≤ N − n + n′) are given

the same value
n′πN−n+1

π+
N−n+n

′πN−n+1
. During the second phase, a sample of size n′ is selected among the
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Algorithm 1 Hanurav-Vijayan procedure: draw by draw algorithm

Phase 1:

• Select an integer n′ with probabilities

δi = (πN−n+i+1 − πN−n+i)
π+N−n + iπN−n+1

π+N−n
for i ∈ {1, . . . , n}, (3.1)

where πN+1 = 1. We note N ′ = N − (n− n′).

• Take π(0) = {π1(0), . . . , πN (0)}>, such that

πk(0) =



n′πk
π+
N−n+n

′πN−n+1
if k ≤ N − (n− 1),

n′πN−n+1

π+
N−n+n

′πN−n+1
if N − (n− 1) < k ≤ N ′,

1 if k > N ′.

(3.2)

Phase 2: In the population U ′ = {1, . . . , N ′}, select a sample of size n′ as follows:

• Initialize with i0 = 0.

• For j = 1, . . . , n′, select one unit ij from {ij−1+1, . . . , N−n+j} with probabilities proportional

to

ajij−1+1 =
n′ − j + 1

n′
πij−1+1(0) (3.3)

for unit ij−1 + 1 and

ajk =
k−1∏

l=ij−1+1

{
1− (n′ − j) πl(0)

n′ − π+l (0)

}
× n′ − j + 1

n′
πk(0) (3.4)

for k = ij−1 + 2, . . . , N − n+ j, where π+l (0) =
∑l

k=1 πk(0).

The final sample is: S = {i1, . . . , in′ , N ′ + 1, . . . , N}.
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remaining units through a draw by draw procedure. The algorithm is of fixed size by construction.

We have E{π(0)} = π, and conditionally on π(0) the sampling in U ′ is performed with inclusion

probabilities π(0) (see Vijayan, 1968, Theorem 1). Therefore, the original set of inclusion prob-

abilities π is exactly respected. We denote by πkl(0) = E{IkIl|π(0)} the second-order inclusion

probability of units k, l ∈ U ′ during Phase 2, conditionally on π(0).

The random rounding in Phase 1 ensures that πN−n+1(0) = πN−n+2(0) = . . . = πN−n+n′(0), which

is necessary for the suitability of the draw by draw procedure in Phase 2. This is an early example

of the splitting method later theorized by Deville and Tillé (1998). Note that if πN−n+1 = πN ,

we obtain n′ = n with probability 1 and π(0) = π, which means that Phase 1 is not needed. For

example, this occurs when sampling with equal probabilities, in which case the Hanurav-Vijayan

procedure is equivalent to simple random sampling.

The second phase of the Hanurav-Vijayan algorithm may be more simply implemented in terms

of a sequential procedure, presented in Algorithm 2. Proposition 1 states that both sampling al-

gorithms are equivalent. The proof is given in Appendix A. The second phase of Algorithm 2 is

a generalization of the selection-rejection method (Fan et al., 1962) for unequal probability sam-

pling, known as the Sunter procedure (Sunter, 1977, 1986). The Sunter procedure is known to be

non-exact, in the sense that it cannot be directly applied to any set of inclusion probabilities (e.g.

Tillé, 2011, Section 6.2.8). The first phase of the Hanurav-Vijayan algorithm makes the Sunter

algorithm applicable in full generality. It is remarkable that this solution was proposed ten years

before the sequential procedure was introduced by Sunter (1977). Another possible generalization

is proposed in Deville and Tillé (1998).
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Proposition 1. Algorithms 1 and 2 lead to the same sampling design.

4 Horvitz-Thompson estimator

In this section, we are interested in the Horvitz-Thompson (HT) estimator

t̂yπ =
∑
k∈S

yk
πk
. (4.1)

We make use of the indicator

D1(π) =
1

n

n−1∑
i=1

(n− i)(πN−n+i+1 − πN−n+i), (4.2)

which can be seen as a measure of distance between the n largest inclusion probabilities. We also

use the notation

ξ(0) =
∑
k∈U

yk
πk
{πk(0)− πk} . (4.3)

We have

V (t̂yπ) = V E
{
t̂yπ|π(0)

}
+ EV

{
t̂yπ|π(0)

}
(4.4)

≥ V E
{
t̂yπ|π(0)

}
= V {ξ(0)} =

n∑
i=1

δiE
{
ξ(0)2|n′ = i

}
≥ δn

[{
n

π+N−n + nπN−n+1
− 1

}
N−n∑
k=1

yk +

N∑
k=N−n+1

yk

{
nπN−n+1

πk(π
+
N−n + nπN−n+1)

− 1

}]2
,

where the last line in (4.4) is obtained by keeping the case i = n only. The inequality (4.4) gives

the basic idea of why the HT-estimator may be inconsistent. The term V {ξ(0)} is due to the

randomization in Phase 1, which is needed for the suitability of the sampling in Phase 2. In some

cases, this variability does not vanish as n→∞, as stated in Proposition 2.
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Algorithm 2 Hanurav-Vijayan-Sunter procedure: sequential algorithm

Phase 1:

• Select an integer n′ with probabilities

δi = (πN−n+i+1 − πN−n+i)
π+N−n + iπN−n+1

π+N−n
for i ∈ {1, . . . , n},

where πN+1 = 1. We note N ′ = N − (n− n′).

• Take π(0) = {π1(0), . . . , πN (0)}>, such that

πk(0) =



n′πk
π+
N−n+n

′πN−n+1
if k ≤ N − (n− 1),

n′πN−n+1

π+
N−n+n

′πN−n+1
if N − (n− 1) < k ≤ N ′,

1 if k > N ′.

Phase 2: In the population U ′ = {1, . . . , N ′}, select a sample of size n′ as follows. Initialize with

n0 = 0. For t = 1, . . . , N ′ − 1:

• take It = 1 with probability πt(t− 1), and nt = nt−1 + It,

• compute π(t) = {π1(t), . . . , πN ′(t)}> such that

πk(t) =



πk(t− 1) if k ≤ t− 1,

It if k = t,

(n′ − nt) πk(0)

n′−π+
t (0)

if k > t,

(3.5)

where π+t (0) =
∑t

k=1 πk(0).

The vector of sample membership indicators is I = {π1(N ′ − 1), . . . , πN ′(N
′ − 1), 1, . . . , 1}>.
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Proposition 2. Suppose that assumption (SD1) holds, and that there exists some constant 0 < λ2

such that

λ2
n

N
≤ D1(π). (4.5)

Suppose that there exists some constants c2 > 0 and C2 such that

c2 ≤
1

N − n

∣∣∣∣∣
N−n∑
k=1

yk

∣∣∣∣∣ and
1

n

N∑
k=N−n+1

|yk| ≤ C2. (4.6)

If

c2
C2

>
1

λ2(1− f)

Λ1

λ1

(
1 +

1

λ1

)
, (4.7)

where the constants f , λ1 and Λ1 are defined in assumption (SD1), then there exists some constant

C > 0 such that:

V (N−1t̂yπ) ≥ (1− πN )CN−2n2. (4.8)

Proposition 2 states that if the indicator D1(π) is too large, we can always find variables of interest

satisfying assumption (VA1) and such that the HT-estimator is not consistent, since the second

term in the right-hand side of (4.8) is bounded away from 0. The proof is given in Appendix B. The

ratio c2/C2 may be thought of as a measure of balance of the total ty between the N −n first units

and the n last units: the HT-estimator is not consistent if the total ty is too highly concentrated

on the N − n first units.

Proposition 3. Suppose that assumptions (VA1) and (SD1) hold, and that assumption (SD2)

holds with h(n,N) = o(N−1). Then

V (N−1t̂yπ) = o(1). (4.9)
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Proposition 3 states that the HT-estimator is consistent if the n largest inclusion probabilities are

sufficiently close, namely if assumption (SD2) holds with h(n,N) = o(N−1). This assumption can

not be dropped. For example, if there is a constant lag of order N−1 between these probabilities,

namely if there exists some constant 0 < λ such that

πN−n+i+1 − πN−n+i =
λ

N
,

then D1(π) = λ
2
n−1
N . Therefore, equation (4.5) in Proposition 2 holds, and there are some variables

of interest such that (VA1) holds but the HT-estimator is not consistent.

From a look at the proof of Proposition 3, the assumption (SD2) is needed to control the term

V E(t̂yπ|π(0)), which is due to the first phase in Algorithm 1. To remove this variability, it is

possible to work conditionally on π(0). This is the purpose of the next section.

5 Conditional Horvitz-Thompson estimator

We are interested in the conditional Horvitz-Thompson (CHT) estimator, defined as

t̂yπ(0) =
∑
k∈S

yk
πk(0)

. (5.1)

This estimator makes use of the set of inclusion probabilities π(0) obtained after Phase 1 of Algo-

rithm 1. It may be rewritten as

t̂yπ(0) =
∑
k∈U ′

yk
πk(0)

Ik +
∑
k>N ′

yk, (5.2)

which leads to

E
{
t̂yπ(0)|π(0)

}
=

∑
k∈U ′

yk +
∑
k>N ′

yk = ty. (5.3)
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This is therefore an unbiased estimator for ty, conditionally on π(0).

Proposition 4. Suppose that assumptions (VA1) and (SD1) hold, and that assumption (SD2)

holds with h(n,N) = o

(
1

ln(n)

)
. Then

V {N−1t̂yπ(0)} = o(1). (5.4)

If the assumption (SD2) holds with h(n,N) = O

(
1

n ln(n)

)
, then the CHT-estimator is

√
n-

consistent.

The proof of Proposition 4 is given in Appendix D. We clearly need a weaker assumption on the

difference of the largest inclusion probabilities. Anyway, we need these differences to be no greater

than O
(

1
n ln(n)

)
to ensure the usual

√
n-consistency, which is still demanding.

Another advantage of the CHT-estimator is that the variance may be easily estimated. From the

corollary of Theorem 1 in Vijayan (1968), there is an explicit expression for the conditional second-

order inclusion probabilities, which is restated in Proposition 5. Note that an incorrect factor of 1
2

was indicated in equation (5.5) by Vijayan (1968), see Chaudhuri and Vos (1988).

Proposition 5. (Vijayan, 1968) For k = 1, . . . , N ′, we note

pk(0) =
πk(0)

n′
and Pk(0) =

πk(0)

n′ − π+k (0)
.

For k < l = 1, . . . , N ′, we have

πkl(0) = n′(n′ − 1){1− P1(0)} . . . {1− Pk−1(0)}Pk(0)pl(0). (5.5)

For k = 1, . . . , N ′ and l = N ′ + 1, . . . , N , we have

πkl(0) = πk(0). (5.6)
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For k < l = N ′ + 1, . . . , N , we have

πkl(0) = 1. (5.7)

The second-order inclusion probabilities πkl(0) are strictly positive, and satisfy the Sen-Yates-

Grundy conditions (see Vijayan, 1968, Theorem 3). Therefore, the Sen-Yates-Grundy variance

estimator is unbiased and takes positive values only. In Theorem 2 of Vijayan (1968), these prob-

abilities are averaged to obtain the unconditional second-order inclusion probabilities for the HT

estimator. However, this involves computing the πkl(0)’s for each of the n possible cases for the

integer n′, which is cumbersome if n is large.

6 Simulation study

We conduct a simulation study to illustrate the properties of the Horvitz-Thompson (HT) estimator

and of the conditional Horvitz-Thompson (CHT) estimator. The set-up is inspired from Chauvet

(2020). We generate 2 populations of size N , each consisting of an auxiliary variable x and 4

variables of interest y1, . . . , y4. The x-values are generated according to the model

xk = α+ ηk. (6.1)

In the first population, we use α = 8 and ηk is generated according to a Gamma distribution with

shape and scale parameters 4 and 0.5. In the second population, we use α = 7 and ηk is generated

according to a log-normal distribution with parameters 1.0 and 0.35. This leads to a mean of ap-

proximately 10 and a standard deviation of approximately 1 for the variable x in both populations.
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Given the x-values, the variables of interest are generated according to the following models:

linear : y1k = α10 + α11(xk − µx) + σ1 εk,

quadratic : y2k = α20 + α21(xk − µx)2 + σ2 εk, (6.2)

exponential : y3k = exp{α30 + α31(xk − µx)}+ σ3 εk,

bump : y4k = α40 + α41(xk − µx)2 − α42 exp
{
−α43(xk − µx)2

}
+ σ4 εk,

where µx is the population mean of x, and εk follows a standard normal distribution. The pa-

rameters are chosen in order to obtain a mean of approximately 20 and a standard deviation of

approximately 3 for each variable of interest.

In each population, we compute inclusion probabilities proportional to x, according to the formula

πk = n
xk∑
l∈U xl

. (6.3)

We use ten different population sizes, ranging from N = 2, 000 to N = 20, 000, and a sampling

fraction of 20% for each population. This leads to sample sizes ranging from n = 400 to n = 4, 000.

For example, when N = 20, 000, the inclusion probabilities range between 0.16 and 0.32 when x is

generated by means of the Gamma distribution, and between 0.15 and 0.38 when x is generated

by means of the log-normal distribution.

We consider the indicator D1(π) defined in equation (4.2), and the additional indicators

D2(π) = N × max
i=1,...,n−1

{πN−n+i+1 − πN−n+i},

D3(π) = ln(n)× max
i=1,...,n−1

{πN−n+i+1 − πN−n+i}.

If the assumption (SD2) is respected with h(n,N) = o(N−1) (see Proposition 2), then D1(π) = o(1)
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and D2(π) = o(1), and they should therefore tend to 0 as n increases. If the assumption (SD2)

is respected with h(n,N) = o(1/ ln(n)) (see Proposition 3), then D3(π) = o(1) and D3(π) should

therefore tend to 0 as n increases. We have plotted these indicators in terms of the sample size

n in Figure 1. Neither of them decreases as n increases. The indicator D1(π) is approximately

constant, and so is the indicator D3(π) for large sample sizes (n ≥ 2, 000). The indicator D3(π)

is clearly increasing with n. This supports the apparent difficulties for controlling the closeness of

the largest inclusion probabilities via the assumption (SD2).

We consider the estimation of the population mean µy = N−1
∑

k∈U yk. We select B = 10, 000

samples by means of the HVS sampling algorithm. For each sample and each variable of interest, we

consider the population mean µy = N−1
∑

k∈U yk. We compute the Horvitz-Thompson estimator

of the mean µ̂yπ = N−1t̂yπ, and the conditional estimator of the mean µ̂yπ(0) = N−1t̂yπ(0). For

each estimator µ̂y and for a given sample size n, we compute the Monte-Carlo variance

VMC,n(µ̂y) =
1

B

B∑
b=1

{
µ̂y(sb)−

1

B

B∑
c=1

µ̂y(sc)

}2

, (6.4)

with µ̂y(sb) the estimator of the mean computed on the b-th sample. We also compute the Monte-

Carlo variance ratio

RVMC,n(t̂y) =
VMC,n(t̂y)

VMC,n−400(t̂y)
. (6.5)

If the estimator t̂y is consistent, the Monte-Carlo variance is expected to decrease as the sample

size increases, and the Monte-Carlo variance ratios should be lower than 1.

The simulation results for the HT-estimator are presented in Table 1. In 17 out of 72 cases the

variance ratio RVMC,n is greater than 1, indicating that the variance increases as n increases. In
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Figure 1: Indicators D1(π), D2(π) and D3(π) in function of the sample size n with an auxiliary

variable generated according to a gamma distribution (lhs) and by a lognormal distribution (rhs)
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Population 1, the behavior of µ̂yπ is particularly poor for quadratic, since the variance is of the

same order with n = 400 (27.84 × 10−3) and n = 4, 000 (19.41 × 10−3). In Population 2, the

behavior of µ̂yπ is particularly poor for exponential, since the variance is of the same order with

n = 400 (26.77× 10−3) and n = 4, 000 (21.75× 10−3). This supports the results in Section 4.

The simulation results for the CHT-estimator are presented in Table 2. The variance ratio RVMC,n

is lower than 1 in 69 out of 72 cases, RVMC,n being lower than 1.03 in the three remaining cases. In

almost all cases, the variance obtained with n = 4, 000 is roughly one tenth of the variance obtained

with n = 400, as could be expected. This supports the consistency result obtained in Proposition

4, even if the assumption (SD2) in Proposition 3 is not exactly respected (see the indicator D3(π)

plotted in Figure 1). We note that the CHT-estimator is not necessarily more efficient than the

HT-estimator. For linear, the variance of the HT-estimator is systematically lower.

7 Conclusion

In this paper, we have studied the Hanurav-Vijayan sampling algorithm. We have proposed a

sequential characterization of the method, making the link with Sunter’s procedure. We have also

shown that to ensure the consistency of the Horvitz-Thompson estimator, or of an alternative

conditional Horvitz-Thompson estimator, we need to control the closeness between the largest

inclusion probabilities. This seems rather difficult to achieve in practice. On the other hand,

alternative unequal probability sampling methods programmed in the SURVEYSELECT procedure

lead to a consistent Horvitz-Thompson under the sole assumptions (VA1) and (SD1). This is the

case for the Sampford method (Sampford, 1967) or Chromy’s method (Chromy, 1979; Chauvet,

2020), for example. Therefore, we recommend that SAS users consider one of these two methods
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instead.
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A Proof of Proposition 1

Let k1, . . . , kn′ denote the n′ units successively selected during Phase 2 of Algorithm 2. It is sufficient

to prove that their probability distribution is the same as that of the units i1, . . . , in′ successively

selected during Phase 2 of Algorithm 1. The proof is by induction.

We begin with the probability distribution of k1. We have

Pr(k1 = 1) = Pr(I1 = 1) = π1(0) = a11.

Also, for k ∈ {1, . . . , N − n+ 1}, we have

Pr(k1 = k) = Pr(I1 = . . . = Ik−1 = 0, Ik = 1)

=

{
k−1∏
l=1

(
1− n′ πl(0)

n′ − π+l−1(0)

)}{
n′

πk(0)

n′ − π+k−1(0)

}

=

∏k−1
l=1 (n′ − π+l−1(0)− n′πl(0))

n′
{∏k−1

l=2 (n′ − π+l−1(0))
}
{n′ − π+k−1(0)}

{n′πk(0)}

=

∏k−1
l=1 (n′ − π+l−1(0)− n′πl(0))∏k−1

l=1 (n′ − π+l (0))
{πk(0)}

=

[
k−1∏
l=1

{
1− (n′ − 1)

πl(0)

n′ − π+l (0)

}]
× πk(0) = a1k.

From equations (3.3) and (3.4), i1 and k1 have the same distribution.
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Now, suppose that units k1, . . . , kj−1 have been selected. We have

Pr(kj = kj−1 + 1|k1, . . . , kj−1) = Pr(Ikj−1+1 = 1|k1, . . . , kj−1)

= Pr(Ikj−1+1 = 1|n′kj−1
= j − 1)

= (n′ − j + 1)
πkj−1+1(0)

n′ − π+kj−1
(0)

=

{
n′

n′ − π+kj−1
(0)

}
ajkj−1+1.

Also, for k ∈ {kj−1 + 2, . . . , N − n+ j}, we have

Pr(kj = k|k1, . . . , kj−1) = Pr(Ikj−1+1 = . . . = Ik−1 = 0, Ik = 1|n′kj−1
= j − 1)

=


k−1∏

l=kj−1+1

(
1− (n′ − j + 1)

πl(0)

n′ − π+l−1(0)

)
{

(n′ − j + 1)
πk(0)

n′ − π+k−1(0)

}

=

∏k−1
l=kj−1+1{n′ − π

+
l−1(0)− (n′ − j + 1)πl(0)}

{n′ − π+kj−1
(0)}

{∏k−1
l=kj−1+2(n

′ − π+l−1(0))
}
{n′ − π+k−1(0)}

{n′ − j + 1}πk(0)

=

∏k−1
l=kj−1+1{n′ − π

+
l−1(0)− (n′ − j + 1)πl(0)}∏k−1

l=kj−1+1(n
′ − π+l (0))

× n′ − j + 1

n′ − π+kj−1
(0)

πk(0)

=

 k−1∏
l=kj−1+1

{
1− (n′ − j) πl(0)

n′ − π+l (0)

}× n′ − j + 1

n′ − π+kj−1
(0)

πk(0)

=

{
n′

n′ − π+kj−1
(0)

}
ajk.

From equations (3.3) and (3.4), ij and kj have the same conditional distribution. This completes

the proof.
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B Proof of proposition 2

We note ∆ = ∆1 + ∆2, where

∆1 =

{
n

π+N−n + nπN−n+1
− 1

}
N−n∑
k=1

yk, (B.1)

∆2 =
N∑

k=N−n+1

yk
πk

{
nπN−n+1

π+N−n + nπN−n+1
− πk

}
. (B.2)

By using equation (4.5) and the inequality

n

π+N−n + nπN−n+1
− 1 =

∑N
k=N−n+1 πk − nπN−n+1

π+N−n + nπN−n+1

≥
∑N

k=N−n+2(πk − πN−n+1)

n

=
1

n

n−1∑
i=1

(n− i)(πN−n+i+1 − πN−n+i),

we first obtain

|∆1| ≥ λ2
n

N

∣∣∣∣∣
N−n∑
k=1

yk

∣∣∣∣∣ . (B.3)

Also, from the assumption (SD1) and from the inequality∣∣∣∣∣ nπN−n+1

π+N−n + nπN−n+1

∣∣∣∣∣ ≤ n

N

πN
π1
,

we obtain

|∆2| ≤
Λ1

λ1

(
1 +

1

λ1

) N∑
k=N−n+1

|yk| (B.4)

This leads to

|∆| ≥ |∆1| − |∆2| ≥ n
{
λ2(1− f)c2 −

Λ1

λ1

(
1 +

1

λ1

)
C2

}
, (B.5)

and the result follows from equation (4.7) and from the inequality

δn = (1− πN )
π+N−n + nπN−n+1

π+N−n
≥ (1− πN ).
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C Proof of proposition 3

Making use of Theorem 3 in Vijayan (1968), we have

V {t̂yπ|π(0)} ≤
∑
k∈U ′

πk(0)

{
yk
πk
− 1

n′

∑
l∈U ′

yk
πk

}2

≤
∑
k∈U

πk(0)

{
yk
πk

}2

⇒ EV {t̂yπ|π(0)} ≤
∑
k∈U

y2k
πk
, (C.1)

and from assumptions (VA1) and (SD1), EV {t̂yπ|π(0)} = O(N2n−1).

We also have

V E{t̂yπ|π(0)} = V {ξ(0)} =
n−1∑
i=1

δiE{ξ(0)2|n′ = i}+ δnE{ξ(0)2|n′ = n}. (C.2)

For i < n, we obtain from the assumptions that δi = o(N−1) and E{χ(0)2|n′ = i} = O(N4n−2), so

that the first term in the rhs of (C.2) is o(N3n−1) = o(N2). We can also write

E{χ(0)2|n′ = n} =

[{
n

π+N−n + nπN−n+1
− 1

}{
N−n∑
k=1

yk + πN−n+1

∑
k=N−n+1

yk
πk

}

−
N∑

k=N−n+1

yk
πk

(πk − πN−n+1)

]2

≤ 2

{
n

π+N−n + nπN−n+1
− 1

}2{N−n∑
k=1

yk + πN−n+1

∑
k=N−n+1

yk
πk

}2

+ 2

{
N∑

k=N−n+1

yk
πk

(πk − πN−n+1)

}2

. (C.3)

From the identity

n

π+N−n + nπN−n+1
− 1 =

∑N
k=N−n+2(πk − πN−n+1)

π+N−n + nπN−n+1
=

∑n−1
i=1 (n− i)(πN−n+i+1 − πN−n+i)

π+N−n + nπN−n+1

and from the assumptions, the first term in the rhs of (C.3) is o(n2), while the second term in the

rhs of (C.3) is o(N2). From (C.2), we obtain that V E{t̂yπ|π(0)} = o(N2). This completes the

proof.

21



D Proof of Proposition 4

Preliminary result

Lemma 1. Suppose that Assumptions (SD1) and (SD2) hold. Then some constants C3 and C4

exist such that

E

(
1

n′

)
≤ C3h(n,N) ln(n) +

C4

N
.

Proof

We have

E

(
1

n′

)
=

n∑
i=1

δi
i

=
n∑
i=1

(πN−n+i+1 − πN−n+i)
π+N−n + iπN−n+1

π+N−n

1

i

=

n∑
i=1

πN−n+i+1 − πN−n+i
i

+
πN−n+1(1− πN−n+1)

π+N−n
,

which gives the result.

Proof of Proposition 4

First note that from equation (5.3), we have

V
{
t̂yπ(0)

}
= EV

{
t̂yπ(0)|π(0)

}
.
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By using Theorem 3 in Vijayan (1968), we have

V
{
t̂yπ(0)|π(0)

}
= −1

2

∑
k 6=l∈U ′

{πkl(0)− πk(0)πl(0)}
{

yk
πk(0)

− yl
πl(0)

}2

≤ 1

2n′

∑
k 6=l∈U ′

πk(0)πl(0)

{
yk

πk(0)
− yl
πl(0)

}2

=
∑
k∈U ′

πk(0)

{
yk

πk(0)
− 1

n′

∑
l∈U ′

yk

}2

≤
∑
k∈U ′

y2k
πk(0)

.

By using the inequality

π+N−n + n′πN−n+1 ≤ π+N−n + nπN−n+1 ≤ π+N = n, (D.1)

we obtain under assumption (H1) that for any k ∈ U ′:

πk(0) ≥ f0
n′

N
, (D.2)

and the result follows from Assumption (H2) and Lemma 1.
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Table 1: Monte-Carlo variance (VMC,n) and Monte-Carlo variance ratio (RVMC,n) for the Horvitz-

Thompson (HT) estimator, for two populations and four variables of interest

Population 1 (Gamma distribution)

Sample size 400 800 1, 200 1, 600 2, 000 2, 400 2, 800 3, 200 3, 600 4, 000

linear

VMC,n (×10−3) 8.10 4.37 2.65 1.99 1.64 1.30 1.18 0.92 0.83 0.80

(RVMC,n) (0.54) (0.61) (0.75) (0.83) (0.79) (0.91) (0.77) (0.91) (0.96)

quadratic

VMC,n (×10−3) 27.84 28.14 18.42 20.22 15.90 16.84 24.68 14.43 12.31 19.41

(RVMC,n) (1.01) (0.65) (1.10) (0.79) (1.06) (1.47) (0.58) (0.85) (1.58)

exponential

VMC,n (×10−3) 9.42 5.55 4.77 3.58 3.68 3.33 3.84 3.12 2.72 3.38

(RVMC,n) (0.59) (0.86) (0.75) (1.03) (0.90) (1.15) (0.81) (0.87) (1.24)

bump

VMC,n (×10−3) 37.23 16.40 12.31 9.45 7.11 6.47 5.51 4.33 4.23 3.92

(RVMC,n) (0.44) (0.75) (0.77) (0.75) (0.91) (0.85) (0.79) (0.98) (0.93)

Population 2 (Log-normal distribution)

Sample size 400 800 1, 200 1, 600 2, 000 2, 400 2, 800 3, 200 3, 600 4, 000

linear

VMC,n (×10−3) 8.42 4.04 2.94 2.16 1.72 1.32 1.24 1.05 0.95 0.77

(RVMC,n) (0.48) (0.73) (0.74) (0.80) (0.77) (0.94) (0.85) (0.90) (0.81)

quadratic

VMC,n (×10−3) 37.61 36.57 24.70 37.25 27.30 17.26 19.51 29.01 24.15 27.77

(RVMC,n) (0.97) (0.68) (1.51) (0.73) (0.63) (1.13) (1.49) (0.83) (1.15)

exponential

VMC,n (×10−3) 26.77 27.11 20.49 28.29 22.09 15.00 16.08 23.31 19.20 21.75

(RVMC,n) (1.01) (0.76) (1.38) (0.78) (0.68) (1.07) (1.45) (0.82) (1.13)

bump

VMC,n (×10−3) 37.53 19.38 13.05 9.90 8.25 6.48 6.19 5.56 4.98 4.28

(RVMC,n) (0.52) (0.67) (0.76) (0.83) (0.78) (0.95) (0.90) (0.90) (0.86)
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Table 2: Monte-Carlo variance (VMC,n) and Monte-Carlo variance ratio (RVMC,n) for the condi-

tional Horvitz-Thompson (CHT) estimator, for two populations and four variables of interest

Population 1 (Gamma distribution)

Sample size 400 800 1, 200 1, 600 2, 000 2, 400 2, 800 3, 200 3, 600 4, 000

linear

VMC,n (×10−3) 9.11 5.16 3.22 2.40 1.92 1.46 1.43 1.06 1.03 0.99

(RVMC,n) (0.57) (0.62) (0.75) (0.80) (0.76) (0.98) (0.74) (0.96) (0.96)

quadratic

VMC,n (×10−3) 12.46 8.31 4.16 3.34 2.50 2.06 1.91 1.55 1.34 1.29

(RVMC,n) (0.67) (0.50) (0.80) (0.75) (0.82) (0.93) (0.81) (0.86) (0.96)

exponential

VMC,n (×10−3) 10.21 5.80 3.68 2.73 2.22 1.67 1.65 1.23 1.19 1.13

(RVMC,n) (0.57) (0.63) (0.74) (0.81) (0.75) (0.99) (0.75) (0.97) (0.95)

bump

VMC,n (×10−3) 37.07 30.31 12.62 10.69 7.22 6.53 5.40 4.32 4.34 3.96

(RVMC,n) (0.82) (0.42) (0.85) (0.67) (0.91) (0.83) (0.80) (1.01) (0.91)

Population 2 (Log-normal distribution)

Sample size 400 800 1, 200 1, 600 2, 000 2, 400 2, 800 3, 200 3, 600 4, 000

linear

VMC,n (×10−3) 10.80 5.11 3.50 2.50 2.01 1.69 1.47 1.29 1.29 0.91

(RVMC,n) (0.47) (0.68) (0.71) (0.81) (0.84) (0.87) (0.88) (1.00) (0.70)

quadratic

VMC,n (×10−3) 16.10 7.50 4.95 3.57 2.98 2.32 2.07 2.08 1.83 1.27

(RVMC,n) (0.47) (0.66) (0.72) (0.83) (0.78) (0.89) (1.01) (0.88) (0.69)

exponential

VMC,n (×10−3) 10.61 4.90 3.37 2.43 1.99 1.55 1.38 1.31 1.24 0.86

(RVMC,n) (0.46) (0.69) (0.72) (0.82) (0.78) (0.89) (0.95) (0.94) (0.69)

bump

VMC,n (×10−3) 40.49 21.34 13.10 8.85 7.84 7.13 5.93 4.62 4.75 3.60

(RVMC,n) (0.53) (0.61) (0.68) (0.89) (0.91) (0.83) (0.78) (1.03) (0.76)
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