On gesture and speech production in the child aged 3 to 11 years

Jean-Marc Colletta ${ }^{1}$, Catherine Pellenq ${ }^{2}$, Ali Hadian Cefidekhanie ${ }^{1}$
(1) LIDILEM, Stendhal university, Grenoble, France
(2) ESPE, Joseph Fourier university, Grenoble, France email : jean-marc.colletta@u-grenoble3.fr

IASCL june 2014-13th International Congress for the Study of Child Language

AMSTERDAM

Focus on gesture + speech production in children

Studies on language development deeply investigated the acquisision of phonemics, lexicon, syntax and pragmatics...

However : how does the child processes bimodal (speech \& gesture) Language Production?

Why studying LP processes ?
Because it helps tracking changes in the conceptualization \& planification of speech \& gesture.
>>> 2 contrasted language performance \ggg

... These representations do not model language development in production!

4 entries into the study of speech processing in children :

Measure the increase in speech rate during childhood
(Adams \& Gathercole, 1995 ; Koopmans-van-Beinum, 1993 ; Kowal et al., 1975 ; Legendre et al., 2012 ; Pavao Martins et al. 2007 ; Ryan, 2000 ; Walker \& Archibald, 2006...)

Study silent pauses and voiced hesitations

Mainly adult data ; children's voiced hesitations appear during 4th year
of age (Campione \& Véronis, 2004 ; Candea, 2000 ; Duez, 1982; Kowal \& al., 1975)

Study Phonic Groups

An explanatory study showed an effect of age on the length and content of PGs (Colletta, Pellenq \& Rousset, 2008)

Study co-speech gestures

Effect of age on various aspects of gesture production (rate, type of gesture, relation to speech, morphology... (Colletta \& Guidetti, 2010, 2012; Iverson \& Volterra, 2008; Mayberry \& Nicoladis, 2000;...)

Our study aims at tracking age-related changes in spontaneous talk shaped as a narrative.

Why a narrative task ?

- Narration is a monolog language performance
(Fayol, 1985; 2000 ; Hickmann, 2003 ; Karlmiloff-Smith, 1979 ; Tolchinsky, 2004)
- The narrator has to plan speech at 2 levels:
- clause content (information packaging) ;
- text content (macrostructure, dynamics between new \& given information, text cohesion).

Hypotheses

Young child does not lack conceptualization abilities, but lacks lexicon, access to lemmas \& varied grammatical formats, and has a limited memory span to encode phonemic strings.

> Hyp 1 : older child talks faster \& processes more linguistic information than younger child

Assuming linguistic knowledge is being intimately tied to mental imagery through mimism (Jousse, 1974; Barsalou, 1999; Paivio, 2006...)

Hyp 2 : older child gestures more than younger child

Data and population :

77 oral narratives produced by children aged $3^{1} / 2$ yrs to $11^{1} / 2$ yrs attending preschool and primary school (data collected on a French ANR funding)

Full population: 122 children.

Exclusion criteria: children with atypical language abilities ; children who did not verbalize the story on their own; children who did not gesture during narration; children with atypical gesture production.

6 age classes were built out of the data in order to get a better representation of age differences than the 8 classroom levels

	G1	G2	G3	G4	G5	G6
Mean age (days)	1607 (182.39)	2199 (111.79)	2586 (108.73)	3054 (179.02)	3583 (96.41)	3981 (89.82)
Mean age (mnths)	$\mathbf{4 . 4}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8 . 3}$	$\mathbf{9 . 8}$	$\mathbf{1 0 . 9}$
Age range (mnths)	$43-60$	$66-78$	$80-92$	$94-109$	$113-123$	$125-136$
Inter-class gap (mnths)	-	20	12	15	18	11
\mathbf{N}	$\mathbf{1 5}$	$\mathbf{1 5}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 6}$	$\mathbf{1 6}$
F/M	$5 / 10$	$8 / 7$	$5 / 7$	$4 / 9$	$9 / 7$	$10 / 6$

Age groups

Extract from the video clip (W\&G «A close shave»)

Method :

Task : at school, in a separate room, the child was asked to narrate from an extract of an animated film (Nick Park «Wallace \& Gromit - A close shave», the first 3 mn)

Each child was filmed using a camescope and an external microphone.
Child sitting on a chair next to the interviewer

Each narrative was later transcribed and annotated on ELAN. Orthographic speech transcrition aligned on Phonic Groups (PG). Gesture annotation aligned on the video

Measures :

- Phonic Group (PG) (\# \& sec.) = a continuous speech string between 2 inspiration breaths or silent pauses (silent pause $=>200 \mathrm{~ms}$) ;
- Length of narrative (sec.) = total duration of PGs (exluding pauses) $=$ total time of verbalizing;
- Narrative performance : \#syllables ; \#words ; \#clauses ; \#PGs; \#gest. strokes
- Speech rate (\#syll per sec.) + gesture rate (\#strokes per clause)
- PG length \& information content : \#syll per PG, \#words per PG, \#clauses per PG, \#strokes per PG.
>>> Statistica anlysis: One-way anovas (age group x dep variables) \& correlations (Pearson's R)

	G1	G2	G3	G4	G5	G6
Length of Narrative (sec.)	41.66 (19.29)	61.04 (33.60)	100.39 (50.51)	87.33 (36.91)	101.76 (45.19)	88.43 (30.07)
\# Syllab.	156,53	234,20	346,17	354,62	416,94	376,38
\# Words	112,27	173,67	257,75	260,23	303,31	284,19
\# Clauses	19.13 (7.17)	28.86 (15.88)	45.66 (22.94)	44.61 (21.85)	54.00 (28.31)	48.25 (17.34)
\# Gest.	6,00 strokes	7,20 (3.93)	10,00 (9.06)	14,15 (15.83)	18,87 (16.83)	16,62 (8.79)

Narrative performance

Age \& length of narrative

Age \& \# clauses

The narrative significantly gains in length once the child enters primary school (G3). $\mathrm{F}(5,81)=5,7428, \mathrm{p}=.00014$

All linguistic measures show a significant change between G2 and G3. Anova on clauses : $\mathrm{F}(5,81)=6,1944, \mathrm{p}=.00007$

Age \& \# strokes

Use of gesture resources also grow with age $\mathrm{F}(5,81)=3,0882, \mathrm{p}=.01332$; (G1 + G2 * G5 +G6)

	G1	G2	G3	G4	G5	G6
\#syllabe /sec	3.83 (0.41)	3.87 (0.38)	3.53 (0.48)	4.02 (0.40)	4.08 (0.46)	4.28 (0.46)
\#stroke	0.32 /clause	0.28 (0.17)	0.22 (0.18)	0.30 (0.33)	0.35 (0.21)	0.37 (0.19)

Speech rate + Gesture rate

Increase in Speech rate $(\mathrm{F}(5,81)=4.3422, \mathrm{p}=.0015)$

But no significant increase in Gesture rate !!!

$$
(\mathrm{F}(5,81)=66.313, \mathrm{p}=.65244)
$$

	G1	G2	G3	G4	G5	G6
\# PG	33,13	37,47	63,00	55,62	59,31	48,38
PG length (sec)	1.25 (0.26)	1.65 (0.25)	1.66 (0.45)	1.62 (0.27)	1.74 (0.42)	1.87 (0.37)
\# Syllab.	4,73	6,44	5,81	6,51	7,12	7,97
\# Words	3,44	4,79	4,37	4,86	5,24	6,07
\# Clauses	0.59 (0.12)	0.79 (0.22)	0.76 (0.24)	0.81 (0.18)	0.90 (0.25)	1.03 (0.27)
\# Gest.	0.18 strokes	0.21 (0.09)	0.14 (0.17)	0.22 (0.20)	0.31 (0.19)	0.37 (0.20)

PG length \& information content

Increase in the length of PGs
$(\mathrm{F}(5,81)=5.0753, \mathrm{p}<.00043)$ with signific. diff. between $[\mathrm{G} 1]$ and other groups.

All linguistic measures show a significant change between G1 \& G2, and an other one between G4 and G6.
Anova on clauses : $\mathrm{F}(5,81)=5,9022$, p 00011 .

Age \& \# strokes per PG

Increase in the number of strokes per PG! $(\mathrm{F}(5,81)=3.2650, \mathrm{p}=.00078)$ with signific. diff. between [G6] and other age groups. (except G5)

Correlations

Pearson's R was calculated for all relevant variables. All correlations between age \& PG content and PG length were high and significant :

- Age \& \# syllables per PG : R $=0,556$
- Age \& \# words per PG : R = 0,503
- Age \& \# clauses per PG: $\mathrm{R}=0,483$
- Age \& \# PG length : R = 0,435
- Age \& \# strokes per PG:R = 0,343

Results

With age:

Child's narrative production gains in length and in linguistic \& gestural content (as expected)

Child talks faster (as expected)

Child talks in longer speech strings and puts more linguistic and gestural information in GPs !!!

Discussion

2 contrasted series of results suggest 2 developmental pattens according to their respective timing :

DPN : a significant increase in length \& information content of the narrative
Occurs between 6 and 7 yrs of age (in grade one children)

DPPG : a significant increase in length \& information content of the bimodal PG

Occurs first between $41 / 2$ and 6 yrs (before the child enters primary school) and later between 9 and 11 yrs (grade 5 and grade 6 children).

DPPG1 at 4-6 yrs

New planification abilities at the local GP level
>>> hyp of a « rendez-vous » between syntax, prosody \& gesture
(Diessel, 2004; Meyer \& Wheeldon, 2006)

DPN at 6-7 yrs : emergent abilities in text knowledge, text cohesion \& acquisition of related linguistic devices

Effect of schooling?

DPPG2 at 9-11 yrs
New planification abilities at the global text level show in GP production !!!
Related to the emergence of new abilities:
I

Beyond the «learning how to cycle» metaphor :

- DPPG1 : Need to go for a detailed analysis of the syntactic and gestural content of PG's
- DPPG2 : Need to collect additional data on naratives produced by teenagers and adults.
- Add an investigation of silent pauses, voiced pauses and the bodily marking of mental states for a better understanding of the underlying processes (planning speech vs searching for words)

MERCI !!!

