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Mathematical modeling and optimal control of
complex epidemiological networks

Guillaume Cantin, Nathalie Verdiere

Abstract An optimal strategy for controlling the dynamics of a multi-scale complex
network of epidemiological models is investigated. We focus on the chikungunya
epidemic and consider the spreading of the disease within an indigenous urban region
contaminated after the transmission of the virus to the local vectorial fauna by a single
human individual. Our innovative model takes into account the distinct mobility
properties of the vectorial fauna and the human population. The control strategy
reproduces the association of a vaccination campaign and a limitation process on
the displacements of individuals within the geographical area. Our computations
show that the association of both controls is necessary in order to reach an extinction
equilibrium of the disease with optimality of the strategy.

1 Introduction
1.1 Motivation

This chapter is devoted to the study of an innovative mathematical model for con-
trolling the dynamics of a complex network of epidemiological models. Our work
is motivated by the following observations. First, it is well-known that subtropical
diseases can develop new epidemic outbreaks in tempered areas, due to the un-
intended transportation of a vectorial fauna through aerial or maritime networks.
Furthermore, the environmental suitability for the establishment of the disease vec-
tors as the mosquitoes species Aedes Albopictus is promoted by climate changes.
All these factors add to the risk for the indigenous transmission of chikungunya in
many geographical areas. For example, these factors have played an important role

G. Cantin, N. Verdiére
Normandie Univ, UNILEHAVRE, LMAH, FR CNRS 3335, ISCN, Le Havre, France
e-mail: guillaumecantin @mail.com, nathalie.verdiere @univ-lehavre.fr

173



174 Guillaume Cantin, Nathalie Verdiere

in the chikungunya spread to Brazil in 2013, to South and Central America and the
Caribbean islands [25], [16] and to Europe [12], [28]. Furthermore, it has been re-
cently observed that subtropical diseases such as dengue or chikungunya can develop
new epidemic outbreaks, in another unexpected way; namely, some individuals can
catch the disease during a journey in a subtropical country, and transmit the virus to
the local fauna of their native region after their return. Afterwards, the local fauna is
susceptible to provoke the spreading of the disease; those new infections are called
autochtonous cases. Our aim is to propose a mathematical model which is likely to
reproduce a similar situation and to develop an optimal strategy in order to control
the spreading of the epidemic. To achieve our goal, we consider an epidemiologi-
cal model for the chikungunya disease, given by a system of ordinary differential
equations (ODE). This system has been studied in [19], [20], [21], [22]; it models
the transmission of the chikungunya to human beings by the mosquitoes species
Aedes Albopictus; it has been partially calibrated in order to fit with the data of the
epidemic on the Réunion island, in the Indian ocean. Considering the complexity
of the epidemic, due to the fact that the vectorial fauna and the human population
present distinct mobility properties, we construct a multi-scale complex network of
non-identical instances of this epidemiological model.

1.2 Current state of art

Many papers have been devoted to the analysis of epidemiological models (see for
instance [17], [13] or [23] and the references therein). Using agent-based models,
microscopic approaches are considered in [18], [26]; those approaches promote var-
ious spatial scenarios of vaccination and can give rise to web simulation platforms
[29]. In parallel, an increasing number of works study complex networks of epidemi-
ological models (see for instance [21] or [6]). Those models present both a spatial
structure and a temporal structure, but they do not always take into account the
necessity to be hybrid [3], which shows that the level of refinement of those models
can still be improved. They belong to an important class of complex systems models
which can be used for modeling a great number of real-world applications, such
as neural networks [1], [32] or geographical networks [9], [5], [7]. Emergence and
self-organization, such as synchronization, are some of the topics which are usually
analyzed [2], [4], [11], [15], [27]. Recently, the problem of controlling the dynamics
of this class of models has received an undoubted interest [8]. Nevertheless, many
questions are still open in this field. In particular, it is not known if one can control
the dynamics of a complex network by a strategy which would focus on the topology
of the network.
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1.3 Organization of the chapter

Here, we aim to bring a novel contribution to the study of the influence of the
topology on the dynamics of complex networks. To this end, we consider a complex
network of epidemiological models for the chikungunya and we propose an optimal
control strategy for driving the dynamics of the network to an extinction of the
disease. In our strategy, we model the smart territories decision making at two
different levels. First, we assume that a vaccination campaign is organized; this
control seems to be realistic, since recent progress has been realized on finding a
vaccine against chikungunya [10]. Vaccination is viewed as an internal command
on the dynamics of each place of the geographical area. In parallel, we study the
possibility to control human displacements within this area. We focus on a fictional
scenario modeling a geographical region with a middle-size city environed by a
couple of small cities. We assume that the outbreak takes place in the main city
and analyze the spreading of the disease in a large time temporality. However, our
framework can be applied to a great number of real-world situations. In the next
section, we present the chikungunya transmission model studied in [19] and recall
the main properties of its dynamics. In section 3, we show how to construct a multi-
scale complex network of non-identical instances of this model. In section 4, we set
the optimal control problem with the superposition of vaccination and controls on
human displacements. Finally, we present in section 5 numerical computations for
simulating the control of an epidemic in a specific geographical territory.

2 Problem statement

2.1 Mathematical modeling of the chikungunya epidemic and
transmission model

The chikungunya disease is an arbovirus mostly transmitted to human beings by
mosquitoes species Aedes Albopictus, which was firstly identified in 1953 in eastern
Africa. This vector-borne disease admits similarities with the dengue disease and
represents a severe public health problem, with an increasing geographical spreading
to new countries, due for instance to unintended mobilities of mosquitoes through
aerial or maritime networks. In this chapter, we consider an epidemiological model
studied in [19], where a growing population of mosquitoes transmits the disease to the
human population, which can in turn transmit the disease to uninfected mosquitoes.
The mechanisms described by this epidemiological model are depicted in figure
1. The reader who is not familiar with mathematical equations may find sufficient
information in this schema.
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Growth of the population
of mosquitoes.
System (1): E, L, A.
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Fig. 1 Transmission of the chikungunya disease from the mosquitoes to human beings.

The model is given by the three following systems of ordinary differential equa-
tions:
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In the latter system (1)-(2)-(3), E denotes the number of eggs in a given population
of mosquitoes species Aedes Albopictus at time ¢, L the number of larva and nymphs
and A the number of adult mosquitoes; the three equations of subsystem (1) model
the growth of the population of mosquitoes. Next, S,, corresponds to the number of
adult mosquitoes which are uninfected by the chikungunya virus, but are susceptible
to contract it, whereas I,,, determines the number of infected adult mosquitoes which
transmit the virus to the human population. Obviously, we have A(t) = Sy, (¢) + 1,,, ()
for each time ¢. The two equations of subsystem (2) correspond to the development
of the virus into the mosquitoes population. Finally, Sz, /g and Ry correspond to
the numbers of uninfected but susceptible human beings, infected human beings and
recovered human beings respectively. The three equations of subsystem (3) model
the transmission of the virus by mosquitoes to human beings.

The coefficients b, Kg, Ky, s, d, s, dr, dm, by, Bm, BH, dg and y are assumed
to be positive; their significance is presented in table 1. We refer the reader to [19]
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for the detailed presentation of each term of the model. It is proved in [19] that
the chikungunya transmission model (1)-(2)-(3) admits relevant solutions, that is,
non-negative and bounded solutions whose existence is global.

Table 1 Presentation and significance of the parameters involved in the chikungunya transmission
model (1)-(2)-(3).

Parameter Significance

b laying rate

Kg eggs capacity of the nest

K1, larva capacity of the nest

s rate of evolution from egg to larva

SL rate of evolution from larva to mature female
d eggs mortality rate

dr, larva mortality rate

dm mature female mortality rate

by growth rate of human beings

Bm rate of infection by contact with mosquitoes
BH rate of infection by contact with human beings
dy mortality rate of human beings

b% rate of immunization

2.2 Extinction or persistence of the disease

Here, we aim to briefly recall the main ingredients of the dynamics of the transmission
model (1)-(2)-(3), before presenting the construction of complex networks of non-
identical instances of that system. Let us introduce the quantity Ry given by

_ ﬁmﬁH
Ro= gy +bm)°

The coefficient Ry is usually called basic reproduction number; it corresponds to
the average number of individuals contaminated by interaction with a single infected
individual. The value of the basic reproduction number R determines the dynamics
of the epidemic. Roughly speaking, if Ry admits a low value, then the transmission of
the disease into the human population is weak and the disease vanishes. Otherwise,
if Ry admits a high value, then the disease is likely to spread and persist within
the human population. The following theorem describes the dynamics of system
(1)-(2)-(3), under the technical assumption

“4)

bssy, .
dm(s + d)(SL +dL)

1, &)

which guarantees that the viability of the population of mosquitoes.
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Theorem 0.1 [19] Assume that (5) holds. If Ry < 1, then the transmission model
(1)-(2)-(3) admits a unique equilibrium

Xo=(E*, L, A", S}, I, 0,0,0). (6)
If Ry > 1, then the transmission model (1)-(2)-(3) admits a second equilibrium
X" =(E", L, A", S, I,,, Sy Iy, Ryp). @)

Furthermore, X is globally asymptotically stable if and only if Ry < 1 and X*
is globally asymptotically stable if Ry > 1. Finally, if Ry > 1 and by is suffi-
ciently small, then the solutions of the transmission model (1)-(2)-(3) oscillate in a
neighborhood of X*.

The equilibrium Xy given by (6) corresponds to the extinction of the disease and
exists whatever the values of the parameters are; it is called disease-free equilibrium
(DFE). At the opposite, the equilibrium X* given by (7) corresponds to the persis-
tence of the disease within the human population and exists only when the basic
reproduction number Ry satisfies the condition Ry > 1; it is called endemic equi-
librium (EE). Obviously, we aim to control the dynamics of the transmission model
(1)-(2)-(3) in order to reach the disease-free equilibrium Xy. We present in figure 2
two numerical simulations of the transmission model (1)-(2)-(3) which illustrate the
alternative described in the latter theorem. The parameters values are given in table
2 and the initial conditions are those of node 1 in table 3.

‘ 50

T

L, 1000 - — Iu(t) © — In(t)
) T 40 |- 1]
2 800 . Z
> Z
z Z 301 i
E 600 |- 8 g
o) o)
=} 20 -
© 400 h °
2 2
£ 200 5 g 10~ b
ol Z ol i

| | | | | | | |

0 500 1000 0 2000 4000 6000 8000 10000

t (days) t (days)

Fig. 2 Dynamics of the transmission model (1)-(2)-(3). Left: if Ry < 1, then the disease-free
equilibrium X is reached by the solutions, so that the number of infected human beings tends to
0. Right: if Ry > 1 and bp is sufficiently small, then the endemic equilibrium is reached by the
solutions after a transitional phase which may exhibit damped oscillations.
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3 Construction of the complex network problem with a
multi-scale topology

In this section, we show how to construct a complex network with non-identical
instances of the transmission model (1)-(2)-(3).

First, we consider a graph ¢ made with n vertices (n > 2) and a given number
of edges, which models a geographical area affected by the epidemic. Each vertex
models a city, whereas each edge models a connection between two distinct cities.
We assume that the populations of mosquitoes and human beings are distributed
within those cities. We associate to each vertex of the graph one instance of the
transmission model (1)-(2)-(3). To that aim, we introduce the non-linear operators
fi» 1 <i < n, defined by

] E

b[ Ai (1 - El’,) - (S[ + d[)E[
L.

s E; (1 - Ell) —(sp,i+dri)L;

spiLi —dm,; A

SL.iLi = dpiSmi — Poni i

L,iti m,ivm,i m,i SH,i + IH,i +RH,i

m,i

filxi) =

Iy ;i
Sa,i+In;+Ru,

Bm,i Smyi = dm,idm,i

5

I .
_BH,i%SH,i +by (S, +1ui+Ru,;) —duiSu,

Im,i
+ﬁH,iTSH,i ~Yilg,i—dy iln,;

| YilH,i — du iRn ;i

where x; = (E;, Li, Ai, Sm.is Im.i» SH.is TH i RH,,-)T denotes the state of vertex
i. In our notation, the subscript i refers to each vertex of the graph ¢; we assume
that two distinct vertices admit distinct parameters, so that they are likely to exhibit
distinct dynamics. Indeed, some vertices may admit a low basic reproduction number
(Ro < 1), whereas some other vertices may admit a high basic reproduction number
(Rp > 1).

Next, our aim is to take into account the distinct mobility properties of mosquitoes
and human beings. Thus we distinguish two different scales of mobilities on the same
network. To this end, we assume that the set of edges of the graph ¢ can be split into
two subsets &, = {em.1, .., emi} ( € N)and &y = {en 1, ..., e i} (k € N),
corresponding to the mobilities of mosquitoes and human beings respectively (see
figure 3). Additionally, we introduce the matrices of connectivity m = (m; ;)

and H = (Hi,j)

1<i,j<n

by setting

1<i,j<n
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Fig. 3 Complex network modeling the heterogeneous geographical area affected by a given epi-
demic. The two distinct subsets of edges model distinct mobility properties of disparate populations:
dotted edges represent mosquitoes mobility and continuous edges correspond to human beings dis-
placements. Circles correspond to cities such that Ry < 1, whereas squares correspond to cities
such that Ry > 1.

n
mi,j>0if(j, l')EéamWithl'#:j, m,-,j=Oelse, mi!iz—ZmJ»!i, ®)
i=1
n
H; ;> 0if (j, i) € & withi # j, H;;=0clse, H;;= —ZH,-,i. )
=1
‘5‘#
In this way, m and H are matrices of order n whose sum of coefficients of each
column is null. We assume that the set of edges &, U & does not possess any loop.

We also introduce two matrices of coupling strengths K,,, and Ky of orders 5 and 3
respectively, defined by

K, = diag(e1, 2, &3, &4, €5, 0, 0, 0),  Kp = diag(0, 0, 0, 0, 0, 71, 02, 73),
withg; 20(1 <i <5)and oy = 0 (1 <i < 3). We introduce the notations

T
Knxi = (61E;, &2L;, €3A;, €4Sm.is €5m,i, 0, 0, 0)",
Kux;=(0,0,0,0,0, 01Su.,i 02ln 0'3RH,5)T,

for 1 < i < n. Finally, we define a coupling operator g = (g1, ..., gx)? by setting

n
gi(xl, ...,xn)=Z(mi,ijxj+Hi’jKij), 1<i<n. (10)
j=1

We emphasize that the coupling operator g has been constructed in order to distin-
guish and superpose the distinct mobility properties of the mosquitoes and human
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beings, since the transmission model (1)-(2)-(3) involves two populations of indi-
viduals of different natures. The coupling strength &; (1 <i < 5)and o; (1 <i < 3)
shall be set to relevant numerical values in section 5, in order to reproduce the rates
of mobilities of mosquitoes and human beings respectively. Typically, the numerical
values of &; (1 < i < 5) will be very small with respect to the numerical values
of o7 (1 < i < 3), as shown in Table 2. Indeed, human displacements can cover
a long distance in a short time, whereas mosquitoes mobility is limited to a few
hundred meters in their life (with numerous variations according to the birth envi-
ronment, see [18]). However, our work intends to take into account the transportation
of mosquitoes through human mobility networks, which can increase the distance
browsed by mosquitoes [12], [28]. Overall, the rates of displacements represent an
average per time of mobility.

With these notations, the complex network of transmission models (1)-(2)-(3) can
be written

dx; & .
d_tl:ﬁ(xi)+z(mi’ijxj+Hi’jKij)’ 1<i<n, (1D
j=1
or in a short form IX
E:F(X)+meX+HKHX, (12)

where X = (x1, ..., x,)7 and F(X) = (fi(x1), ..., fu(xn)).

> Multi-scale mobility

The transmission model (1)-(2)-(3) involves two disparate populations (mosquitoes
and human beings) whose mobility properties are modeled by considering two
distinct scales of mobilities on the same network.

Note that in our construction of the complex network problem, we have not
normalized the transmission model (1)-(2)-(3), whereas it has been normalized
in [19]. The reason is that we aim to construct a complex network modeling an
heterogeneous geographical urban area with cities of different sizes.

Using classical methods, we easily establish the existence and uniqueness of
solutions for the complex network problem (12). We skip the proof which does not
fit with the scope of this textbook.

Theorem 0.2 For any initial condition Xy € (R+)8n, the complex network problem
(12) admits a unique global solution X (t) stemming from Xo, whose components are
non-negative and bounded for t € R*.
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4 Optimal control problem

In this section, our aim is to propose an optimal control strategy in order to drive
the solutions of the complex network problem (12) to an extinction of the disease,
while minimizing the cost of the strategy. We assume that the strategy acts on the
dynamics of the complex network problem (12) through two leverages, as depicted
in figure 4 below.

Infected
individual

/—\ i iy

Small cit
HEEEL Vaccination

N~

Vaccinated
individual

Fig. 4 Example of a strategy to limit the propagation of the virus: association of vaccination in one
city and control on the human displacements.

First, we suppose that a vaccination campaign is organized (note that recent
progress has been realized on finding a vaccine against chikungunya [10]). This
control can be viewed as an internal command of the complex network problem (12),
since it involves a control function u( within the operators f; (1 < i < n), which
determine the internal dynamics of each node of the network. For that purpose, we
introduce the following notation:

fi(xi uo) = fi(x;) + (0, 0, 0,0, 0, 0, —upler i, +uoler )" .

Note that the control function uo appears in the 7-th and 8-th components of
fi(xi, up). Obviously, many other strategies could be proposed in order to con-
trol the internal dynamics of each node of the complex network, such as insecticide
treatment for instance (see [20], [24]). Here, we have chosen to focus on a vaccination
campaign and to investigate the effect of that campaign, when associated to a control
of the displacements of human beings acting in parallel.

> Strategy for controlling the dynamics of the epidemic

The optimal control strategy of the complex network (12) models the ability of smart
territories to act at different levels, since a vaccination campaign and a limitation of
human beings displacements involve different civil organizations.

In parallel, we propose a second level of control which acts on the topology of the
network, by controlling the displacements of human beings within the geographical
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area. To that aim, we introduce the matrix

H(uy, ..., ug) = (Hij(up, ..., uk))lsi,an
defined by
Hji(ur, .. ux) = Hji+uy if Hj; >0 € 8y withi # 7,1 <r <k,
H;(uy, ..., ux) =0else,
; (13)
Hii(uy, ..., ux) = _ZHJ'”"
j=1
j#i
Roughly speaking, the matrix H(uy, ..., ug) is defined by adding a control function

u, with 1 < r < k nearby each positive coefficient of matrix H defined by (9) (recall
that k& denotes the number of edges in &y ).
With these notations, we consider the general control problem defined by
dxi

I = fi(xi, uo) + mKx; + H(uy, ..., ux) Kgx;,, 1<i<n. (14)

Additionally, we introduce a performance criterion J defined by

T [ n k
J(Xo, u, T) =T + / (Z I3 (1) + Z uf(;)) dt, (15)
0 \i= =0

where u = (ug, uy, ..., ux). The first term in the performance criterion corresponds
to the minimization of time; the second term corresponds to the minimization of
infected human beings; the third term corresponds to the minimization of the cost
of the control strategy. In this way, we can formulate the optimal control problem:
for each initial condition X, € (R*)gn, we search a pair (X, u) defined on an
interval (0, T], satisfying the equations (14) for each ¢ € (0, T], minimizing the
performance criterion J defined by (15), so that X (7) belongs to an arbitrary small
neighborhood .4 of the trivial equilibrium. Applying the general results of existence
of optimal control theory (see [14] or [31]) leads to the following theorem. Note that
the internal control modeled by a vaccination campaign is necessary: otherwise, the
optimal control problem is unfeasible.

Theorem 0.3 For each initial condition Xy € (R*)Sn and each arbitrarily small

neighborhood N of the trivial equilibrium, there exists a pair (X, u) defined on
an interval (0, T, satisfying the equations (14) for each t € (0, T], such that
X(T) € N and minimizing the performance criterion J defined by (15).
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5 Numerical computations for simulating the control strategy

In this section, we present numerical simulations for a fictional scenario of an
heterogeneous urban area, with a middle-size city environed by three small cities.
The corresponding network is depicted in figure 5. We assume that the main city

Controls on human displacements

T " up
Vaccination uy us

N

U

o PN PN

¥ X A M v
uy — o — T L —

170
uo

Fig.5 Schema of a fictional urban area, with a middle-size city (represented by a square) environed
by three small cities (represented by circles). Dotted edges correspond to mobility of mosquitoes,
whereas continuous edges model human displacements.

admits a high basic reproduction number Ry, whereas the other cities admit a low
basic reproduction number. To this end, we choose different values for the rate S of
infection by contact with human beings (see table 2: Sy = S incity 2; Sy = 0.025 in
cities 1, 3, 4). First, we present the numerical results obtained in absence of control.
Then we compare the effect of organizing a vaccination campaign in every city or
only in the main city. The values of the parameters and of the initial conditions are
given in tables 2 and 3 respectively. Obviously, our framework can be applied to a
great number of other scenarios and geographical areas. Computations have been
performed with the free and open source software BOCOP [30], on the server of the
Laboratory of Applied Mathematics of the University of Le Havre Normandie, in a
GNU/Linux environment.

5.1 Absence of control

The dynamics of the transmission model (1)-(2)-(3) are predicted by Theorem 0.1. In
the case of the complex network depicted in figure 5, we observe in absence of control
that the nodes of the network admitting a low basic reproduction number, which
should converge to the trivial equilibrium, adopt the dynamics of the node which
admits a high basic reproduction number (see figure 6). This is characteristic from
the synchronization phenomenon of complex network with a symmetric topology
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Table 2 Parameters values for a complex network of transmission models (1)-(2)-(3) (source: [19]).

Parameter Value Parameter Value

b 6 Bm 0.5

Kg 1000 by 0.0000457

Kp, 500 ,BH 5 (Ry > 1) or 0.025 (Rp < 1)
s 0.7 dy 09by

SL 0.5 b% 0.1428

d, dy, 0.2 & 0.01

dm 0.25 o 0.1

Table 3 Initial values and end of the transitional dynamics values for a complex network of
transmission models (1)-(2)-(3).

t=0 Node 1 Node 2 Node 3 Node 4

E0) 1 1000 1 1
L) 1 1 1 1
Sm(0) 1 1 1 1
[n(0) 1 1 1 1
S (0) 10000 100000 10000 10000
Iy (0) 10000 10000 10000 10000
Ry (0) 1 1 1 1

t=1 Node 1 Node 2 Node 3 Node 4
E(t;)) 8.13x10> 7.85x10> 8.13x10° 8.04 x 10?
L(ty) 3.11x 10> 3.02x 10> 3.11x10*> 3.08 x 107
Spn(t)  6.44x10%2 559x10> 6.45x 10> 6.17 x 10?
Ln.(r1)) 3.79%x107" 6.81x107" 3.10x 107" 1.12x 107!
Sp(t) 1.28x10° 1.26x10° 1.30x10° 1.32x 103
Ig (1)) 1.19x10" 2.86x 10" 9.55 3.96

Ry (1)) 4.22x10* 4.22x10* 4.22x10* 4.22x 10*

[2], [4]. This first simulation shows the necessity of a control strategy in order to
reach an extinction of the disease in the whole network.

5.2 Association of vaccination and controls of human displacements

We continue with the numerical results of the computation of an optimal control u
for the complex network problem (12). We assume that the control strategy begins
at time ¢ = 1, which takes place after the end of the transitional dynamics exhibiting
damped oscillations (see figure 6).

First, we assume that a vaccination campaign is organized in every city, which
means that the internal control iy is free to be activated in every node of the network.
In parallel, the controls on the displacements of human beings within the network
are also activated. The computation of an optimal control leads to a value of the
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60

40

Number of individuals

! ! !
0 1000 2000 3000 4000

t (days)

Fig. 6 Numerical results of the complex network depicted in figure 5 in absence of control. The
nodes of the network admitting a low basic reproduction number, which should converge to the
trivial equilibrium, adopt the dynamics of the node which admits a high basic reproduction number.
The transitional dynamics exhibits damped oscillations which vanish after time #;.

performance criterion given by J =~ 389.444. The complete results are depicted in
figure 7. We observe that the control strategy is efficient and that the final time of the
strategy is very short. Furthermore, the control functions u1, u7, u3, which correspond
to displacements from center towards periphery, are activated at the beginning of
the strategy, whereas the control functions u4, us, ug, which conversely correspond
to displacements from periphery to center, are activated at the end of the strategy.
Next, we assume that a vaccination campaign is organized in the main city only. The

[ T
) 30 1 Al (t)
E TS N U R uy(t)
° 08| -
2 i --- us(t)
220 z
E S 06 h
= 5
© < 04l |
5] 10 =
2 I 1 =
2 021 -
g 8
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| | | | | | | |
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t (days) t (days)
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1k 8 — uy(t)
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w0 w - U(, (1‘)
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Z 06| 4 =
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Fig. 7 Numerical results for the optimal control of the complex network depicted in figure 5, when
a vaccination campaign is organized in every city.
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computation leads to a value of the performance criterion given by J =~ 753.571,
which is approximately the double of the latter performance criterion, as shown
in figure 8. Roughly speaking, this value corresponds to the necessity to displace
human beings towards the main city in order to be vaccinated, and to come back to
the peripheral small cities where the basic reproduction number is more favorable
for a decrease of the number of infected human beings. Indeed, it is remarkable to
observe that the control function u4 has a totally different shape than in the previous
case. This might be simply interpreted in the following sense: inhabitants of city (1)
have to move towards city (2) in order to receive the vaccination. In parallel, the
control function | remains important, which can correspond for example to a return
of individuals who have received the vaccination.
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Fig. 8 Numerical results for the optimal control of the complex network depicted in figure 5, when
a vaccination campaign is organized only in the main city.

> Feasibility of the strategy

We emphasize that the internal control modeled by a vaccination campaign [10]
appears numerically necessary: otherwise, the optimal control problem is unfeasible.
If it is not possible to organize such a vaccination campaign, then the necessity of
internal control should be taken into consideration and lead to some other strategy,
such as insecticide treatment or awareness campaigns for instance [20], [24].
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Finally, we emphasize that another control strategy has been studied in [20], where
larvicide and insecticide treatments are applied, and prevention campaigns organized
in parallel, since there was no vaccine nor specific treatment against chikungunya
in 2012. In this paper, the authors mainly conclude: “high application of larvicide
or measures to control the proliferation of mosquitoes is needed during all the
interval [0, T even if the peak of epidemic is passed. Then, we observe various
scenarios depending on the mosquito population and virus transmission dynamics.”
The necessity of high application of larvicide in [20] appears similar to the necessity
of vaccination in our strategy, at least in one city. Furthermore, the variations of
controls depending on the mosquito population observed in [20] are of the same
order as the variations of the controls applied to the human displacements. In other
words, even if the natures of the strategies are completely different, it appears as a
necessity to set an efficient control on the virus itself.

6 Conclusion

In this chapter, we have investigated the possibility to control the dynamics of a
complex network of epidemiological models for the chikungunya disease. Taking
into account the distinct mobilities of human beings and of the vectorial fauna
(mosquitoes), we have set a strategy in which we associate vaccination and controls
on the human displacements. Our computations, which are validated in a theoretical
framework, show that:

it is not possible to control the propagation of the virus without vaccination;

e it is possible to control the propagation by organizing a vaccination campaign
only in the main cities;

 the cost of the control strategy may decrease if vaccination is organized in several
cities.

The numerical simulations have been tested on a fictional scenario which is suffi-
ciently general to be applied to a great number of real territories. Furthermore, the
methods employed in our work can serve, with appropriate modifications, as a basis
of improvement for other epidemiological problems, such as the modeling of the
current Covid-19 world pandemic.

In a future work, we aim to improve our approach, by taking into account the
variety of behavioral reactions of individuals facing the epidemic; to that aim,
we propose to consider a hybrid model [3] with the alliance of microscopic and
macroscopic scales.
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