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Abstract: This work aims at the unification of the thermodynamically consistent representation
of the micromorphic theory and the microdamage approach for the purpose of modeling crack growth
and damage regularization in crystalline solids. In contrast to the thermodynamical representation
of the microdamage theory, micromorphic contribution to flow resistance is defined in a dual fashion
as energetic and dissipative in character, in order to bring certain clarity and consistency to the
modeling aspects. The approach is further extended for large deformations and numerically
implemented in a commercial finite element software. Specific numerical model problems are
presented in order to demonstrate the ability of the approach to regularize anisotropic damage fields
for large deformations and eliminate mesh dependency.

Keywords: strain gradients; damage; single crystals; finite elements

1. Introduction

Highly anisotropic behavior of single crystals necessitates the consideration of microstructurally
motivated life time estimation models. Considering the general use of single crystals in complex
geometries under harsh environments such as turbine blades, modeling of crack growth due to the
coupling of plasticity and damage becomes essential [1,2]. The chosen constitutive model should
satisfactorily demonstrate the extremely anisotropic and nonlinear behavior of single crystals under
severe thermomechanical loading conditions. There are many modeling attempts in the literature
which associate damage localization to crystallographic planes and inelastic deformations [3–5].

Conventional rate-independent strain based approaches do not effectively model the localization
of deformation due to damage within a finite thickness, since they lack an intrinsic length scale.
A theory which includes a material length scale is necessary for modeling such an inherently
size-dependent phenomenon. Earliest attempts of modeling introducing a length scale are in the
plasticity theory [6,7]. The proposed approach is further extended and numerically implemented in
several works [8–10] and established as so-called gradient plasticity theories with the remarkable
works by Engelen, Peerlings, Geers and Forest [11–15]. Based on principle of virtual power,
a thermodynamically consistent formulation considering nonlocal terms energetic, i.e., not dissipative
in character, is presented by Gurtin and Anand [16] and a micromorphic version of the theory is
also demonstrated in Anand et al. [17]. In the same spirit, there are many regularization attempts
in the literature for strain softening behavior due to damage [18]. Such a micromorphic continuum
based regularization technique has also been proposed for single crystals in order to eliminate the
mesh-dependency problem of the results of such simulations of finite elements by Aslan et al. [19].
However, those attempts exclude the energetic nature of the nonlocal terms.
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Our main effort in this paper is to demonstrate a detailed development of the gradient damage
model developed by Aslan and Forest for single crystals under large deformations [18], in parallel with
the thermodynamical framework presented in [17]. For that purpose, first of all, the micromorphic
damage model which introduces several crystallographic damage mechanisms is demonstrated in
Section 2 and the emphasis is placed on the presentation of thermodynamical consistency of the model
and identification of the dissipative or energetic character of the gradient variables which is presented
in Section 3. The constitutive equations are presented in detail in Section 4 and a specialized modeling
case is scrutinized in Section 5.

The second goal of this paper is to use our theory to report on several numerical simulation
outcomes generated from model problems. The proposed theory is implemented for the commercial
finite element software Abaqus/Standard by implementing a user element subroutine (UEL).
In addition to the standart displacement degrees of freedom, a microdamage variable xd is introduced
as an additional degree of freedom. The implementation is based on a standard four-node isoparametric
element on the interpolated fields with C0 continuity. Representative numerical examples that illustrate
the capacity of the theory and its implementation to damage softening response which results in intense
localization are provided together with discussions in Section 6.

2. Microdamage Model for Single Crystals

2.1. Basic Kinematics

Considering a body in the reference configuration represented by X is mapped to the spatial point
x at time t, the motion of the body is represented by the smooth function x = χ(X, t). Accordingly,
the deformation gradient, the velocity and the velocity gradient are given by

F = ∇χ, v = χ̇, L = grad(v) = ḞF−1, (1)

Following the The Kröner’s decomposition of the deformation gradient [20], the plastic
deformation and damage in a crystal is represented in the inelastic distortion and accordingly
the decomposition takes the following form:

F = FeFi (2)

where Fe represents the rotation and stretch as elastic distortion and Fi is the inelastic distortion
capturing the plasticity and damage in the crystal. Figure 1 represents such a deformation for initial
and final configurations.

Figure 1. Decomposition of the deformation gradient.
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However, for the sake of simplicity and the clarity of the proposed theory, the plastic part of the
inelastic distortion is neglected throughout this work. Then the deformation gradient simply reads

F = FeFd (3)

Fd represents the local inelastic deformation due to damage generated in the material and
invariant under a change in frame. In this framework, the velocity gradient can be decomposed
in the following form:

L = Le + FeLdFe−1 (4)

where
Le = ḞeFe−1, Ld = ḞdFd−1

(5)

volumetric contribution to elastic and inelastic deformation is defined as

J = Je Jd, Je = detFe > 0, Jd = detFd > 0. (6)

Considering the right polar decomposition of the elastic distortion

Fe = ReUe (7)

in terms of the right stretch tensor Ue and the rotation tensor Re. The right elastic Cauchy-Green tensor
and the stretch tensor are defined as

Ce = (Ue)2 = FeTFe (8)

Ue =
3

∑
i=3

λe
i re

i ⊗ re
i (9)

Hencky strain [21] is chosen as a strain measure due to its good agreement with the mechanical
response of a wide class of materials [22,23].

Ee = ln(Ue) =
3

∑
i=1

Ee
i re

i ⊗ re
i (10)

The elastic and inelastic spin and stretching tensors are

De = symLe, Dd = symLd (11)

We = skewLe, Wd = skewLd (12)

Assuming irrotational damage evolution, i.e.,

Wd = 0 (13)

The inelastic deformation gradient rate becomes

Ḟd = DdFd , Fd(X, 0) = 1 (14)

The damage stretching tensor is defined as

Dd = ∑ δ̇sNd
s , (15)



Appl. Sci. 2020, 10, 9142 4 of 12

where δ̇s is the damage rates initiated at each damage system which is a scalar internal variable and Nd
s

is the damage flow direction tensor. Finally, the scalar damage rate takes the following form

ḋ = ∑ |δ̇s| (16)

2.2. Micromorphic Variable χd

Inspiring from the work of Forest (2009), χd is defined as the micromorphic counterpart
for the damage variable d, for the purpose of mathematical regularization as an additional kinematical
degree of freedom. Note that χd is a positive valued scalar variable which constitutes a subset
of micromorphic continuum specifically termed as microdamage continuum by Aslan and Forest
(2009). Moreover, the calculation of its gradient ∇χd numerically comes at ease, since χd is defined
as a degree of freedom. In order to further develop our theory based on the principle of virtual power,
the power expended over the rate of each microvariable is defined as follows:

The power over ḋ is expended by the microscopic stress π, χḋ is expended by the scalar microscopic
stress p, ∇χḋ is expended by the microscopic stress vector b, and χḋ is expended by the microscopic
traction a at the boundary.

3. Principle of Virtual Power

In light of the definitions provided in Section 2.2, neglecting the inertial terms and assuming that
the variation of any independent variable will cause an energy change in the system, external and
internal power densities for any given part P are defined as follows

Wext =
∫

∂P
(tR(nR) · χ̇ dS +

∫
P

bR · χ̇ dV +
∫

∂P
a(nR) ˙χd dS

Wint =
∫

P
(SR : Ḟe

+ πd + p ˙χd + b · ∇ ˙χd) dV
(17)

where
TR = SRFd−T (18)

and TR is the 1st Piola-Kirchhoff stress tensor. Principle of virtual power dictates the balance of external
and internal powers for any given part P and for all generalized virtual rates

Wext = Wint (19)

considering ḋ ≡ 0 and χḋ ≡ 0 and applying divergence theorem leads to the macroscopic force balance
and the traction condition

Div TR + bR = 0 (20)

tR(nR) = TRnR (21)

Considering χ̇ ≡ 0 and ḋ ≡ 0, choosing an arbitrary χḋ field and applying divergence theorem
leads to the microscopic force balance and the traction condition

Div b− p = 0 (22)

a(nR) = b · nR (23)

Following the work of Anand et al. [19], local imbalance of energy is formalized as

ψ̇− SR : Ḟe − πd− pχḋ− b · ∇ ˙χd ≤ 0. (24)
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where ψ stands for the free energy per unit volume and Ce is introduced into the Quation (24) as

ψ̇− 1
2

Te : Ċe − πd− pχḋ− b · ∇ ˙χd ≤ 0. (25)

where
Te = Fe−1SR (26)

Finally, dissipation density reads

D =
1
2

Te : Ċe
+ πd + pχḋ + b · ∇ ˙χd− ψ̇ ≥ 0 (27)

4. Constitutive Equations

Before the presentation of the constitutive equations, several stress measures to be used in
the model need to be introduced.

The Mandel stress is defined by
Me = CeTe (28)

Accordingly, the second Piola stress reads

Te = Fe−1Fe−TMe (29)

Then, the Cauchy stress takes the following form

T = J−1FeMeFeT (30)

The first Piola stress is expressed as

TR = JTF−T (31)

The free energy is primarily defined as:

ψ = ψ̂(Ce, d, χd,∇χd) (32)

and from the normality, the energetic state relations can be derived as

Te =
∂ψ̂(E, d,χd,∇χd)

∂Ee (33)

πen =
∂ψ̂(E, d,χd,∇χd)

∂d
(34)

pen =
∂ψ̂(E, d,χd,∇χd)

∂χd
(35)

ben =
∂ψ̂(E, d,χd,∇χd)

∂∇χd
(36)

Introducing the state relations into the dissipation density D defined by Equation (27),
the dissipation inequality reads:

D = (π − πen)ḋ + (p− pen) ˙χd + (b− ben) · ∇ ˙χd ≥ 0 (37)

Therefore, the dissipative terms can simply be defined as:

πdis = π − πen pdis = p− pen bdis = b− ben (38)
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Finally, the dissipation inequality takes its final form as:

D = πdisḋ + pdis ˙χd + bdis · ∇ ˙χd ≥ 0 (39)

5. Specialization of the Constitutive Equations

Considering the crystallographic structure of a single crystal, the damage evolution is formalized
as an addition of each damage system such as:

ḞdFd−1 = Dd =

Nd
planes

∑
s=1

δ̇s
cns ⊗ ns + δ̇s

1ns ⊗ ls
1 + δ̇s

2ns ⊗ ls
2 (40)

For three mode of fracture, damage evolution is calculated separately as δ̇s
c δ̇s

1, δ̇s
2 and the number

of damage planes Nd
planes is determined from a given crystal structure. The opening δs

of crystallographic planes with the normal vector ns can be defined as cleavage damage in the system
and once cleavage has started, other damage systems are allowed to initiate for the inplane
accommodation along orthogonal directions ls

1 and ls
2, (Figure 2). Three damage criteria are associated

to one opening and two accommodation systems:

f s
c = |ns ·Me · ns| −Ys (41)

f s
i = |ns ·Me · ls

i | −Ys (i = 1, 2) (42)

where Y is the damage threshold and the scalar damage is simply the accumulation of damage
generated in all systems.

ḋ = |δ̇s
c |+ |δ̇s

1|+ |δ̇s
2| (43)

The correspond equivalent stresses projected on to the damage system takes the form:

σ̄s = Me : Ns (44)

Ns
c = ns ·Me · ns , Ns

i = ns ·Me · ls (45)

Figure 2. Schematic representation of the damage systems associated to the crystallographic planes.

For this specific model, the free energy function is taken as a quadratic potential of elastic strain,
Ee, damage, d, microdamage, χd and its gradient, ∇χd

ψ(Ee, d,χd,∇χd) = µ|Ee
0|2 +

1
2

κ(trEe) +
1
2

B(d−χd)2 +
1
2

β|∇χd|2 (46)
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where µ, κ, B and β are positive material constants. Assuming pdis = bdis = 0

πen = B(d−χd)2

pen = −B(d−χd)2

ben = β∇χd

(47)

Considering the damage criterion:

f = σ̄−Y(d,χd) = 0 (48)

microscopic stress reads the following:

π = Y(d,χd), and πdis = Ydis ≥ 0 (49)

Recalling the constitutive relation for the microstress π = πdis + πen, the damage threshold
function also becomes:

Y(d,χd) = Ydis(d,χd) + B(d−χd)2)︸ ︷︷ ︸
Yen(d,χd)

(50)

Further, recalling Equation (22), the microscopic force balance takes the from of Helmholtz
equation which is postulated as implicit gradient theory for plasticity and damage [11,13,14], where the
generalized stresses p and b are not explicitly introduced and the microvariables are defined as
nonlocal variables.

Div b = β∆χd (51)

which yields into the Helmholtz equation:

χd− β

B
∆χd = d (52)

Note that the term 1
2 B(d −χd)2 in Equation (46) introduces an energetic coupling between

d and its micromorphic counterpart χd, as it is performed in the classical micromorphic
theory. Such a penalization necessitates a relatively high coupling modulus, B and the same energetic
term also appears in Equation (48) which also serves as a flow rule for d. In the classical micromorphic
theory such an energetic coupling is necessary since the elastic strain tensor is coupled with its
higher order counterpart and the enrichment is always active even though the behavior is elastic.
However, if the same procedure is applied to an internal variable which is dissipative in nature like
d, an energetic penalization becomes unnecessary and also brings certain complexity, especially for
softening materials. A bulky energetic term in the microforce balance like B(d−χd)2) cannot contribute
to the total dissipation; therefore, plastic softening is always limited by the stored energy through
that term. Moreover, for an anisothermal theory, such an energy stored in the body cannot be clearly
associated to a physical process in a standard material. In order to tackle that problem, an alternative
set of moduli need to be introduced.

In the alternative approach the penalization is not energetic; therefore, coupling modulus, B,
does not take place in the free energy function. However, the quadratic coupling between the scalar
microvariable and its macroscopic counterpart is preserved:

ψ(Ee, ε̄p, ep,∇ep) = µ|Ee|2 + 1
2

λ(trEe)2 +
1
2
I(d−χd)2 +

1
2

β∗|∇χd|2 (53)

where I is a unit elastic modulus which converts unit strain into unit energy and β∗ is equivalent
to β/B of the conventional approach. Note that in this framework the higher order terms 1

2I(d−χd)2

and 1
2 β∗|∇χd|2 are very small compared to the standard elasticity terms, thus, the energy stored
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through higher order continuum can be ignored. Accordingly, the energetic terms become:

πen = I(d−χd) (54)

pen = −I(d−χd) (55)

ben = β∗∇χd (56)

and the generalized balance law takes the form:

χd− β∗∆χd = d (57)

An important observation from Equation (57) is the Laplacian form constructed in the equation
provides regularized solutions only for the microvariableχd and d acts only as a source term. Therefore,
in order to attain a similar solution on d, a dissipative penalization is introduced in the microforce
balance, such as:

σ̄ = π = Y(d) + B(d−χd)︸ ︷︷ ︸
dissipative

+ I(d−χd)︸ ︷︷ ︸
energetic

(58)

Considering the stress units in Pascal, for the majority of mechanical problems, Y(d) is in the order
of MPa and the B is a penalization constant in the order of elastic moduli. For a high value of B,
a satisfactory solution for the local integration is possible only if d followsχd, otherwise the iterative
values of σ̄ overshoots the elastic trial stresses σ̄tr and the microforce balance will be violated. In that
sense B is selected according to the desired difference between d and χd. Therefore, the selection
criteria for the parameter B is more clear in that context and the energetic term I(d−χd) can always
be ignored since B� I .

6. Numerical Results and Discussion

The model is implemented into a special user element subroutine so-called UEL in ABAQUS
software, where the software is used solely as a solver and a visualizer. For the plane strain analysis,
2D four noded quadrilateral elements with bilinear shape functions are used. Microdamage variable
χd is implemented as an extra degree of freedom, in addition to the standard displacements (u1 and u2).
The parameters used in the simulations are provided in Table 1.

Table 1. Model Parameters.

µ κ β B Y0 H I

7.0 x 1010 1.5 x 1011 3.0 x 10−7 1.0 x 100 2.0 x 108 −1.0 x 10−9 6.0 x 109

6.1. Analysis of a 1D Bar

The regularization of a localized deformation with the proposed approach is demonstrated
in a numerical model problem, where a bar with a length of 2.5 mm under tension is studied (Figure 3).
An opening plane, normal to the direction of the bar is defined and at the center element, an initial
defect is introduced where the damage threshold value is slightly reduced. Considering a rate
independent damage evolution with linear isotropic softening and only active for opening mode,
a microforce balance and the generalized balance law for the alternative case take the following form:

σ̄ = Sa + Hd + I(d−χd) + B(d−χd) (59)
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where σ̄ is equivalent tensile stress, H is the softening modulus and Sa is the initial material resistance.
Using Equation (52) one can rewrite Equation (59) as follows:

σ̄ = Sa + H(χd− β

B
∆χd) + (I + B)(− β

B
∆χd) (60)

Further simplifying Equation (60)

σ̄ = Sa + H χd− (I + B + H)l2∆χd (61)

where
l2 =

β

B
(62)

solving Equation (61) for χd gives:

χd =
σ̄− Sa

H
+

(I + B + H)

H
l2∆χd (63)

Note that for a 1D problem, Equation (63) is a second order homogeneous differential equation
with a general form:

y′′ −ωy = C (64)

where

ω = l

√
H

(I + B + H)
(65)

which provides two types of solution depending on the sign of ω

A sinh(x
√

ω) + B cosh(x
√

ω) + C i f ω > 0 (66)

A sin(x
√

ω) + B cos(x
√

ω) + C i f ω < 0 (67)

Note that for a softening problem (providing I > |H|) the solution is sinusoidal an the wave
length reads

2π

ω
= 2lπ

√
(I + B + H)

H
(68)

The numerical result presented in Figure 3 is well in line with the analytical solution provided in
Equation (68).
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Figure 3. Regularized damage fields in a 1D rod under tension with an initial imperfection.

6.2. Analysis of a 2D Single Crystal Block

As a 2D example, a plate representing a 2D single crystal block under uniaxial tension
with a horizontal cleavage plane is investigated (Figure 4). The localization is triggered with an initial
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geometric defect on the left edge and the cleavage plane is kept on the horizontal axis. The wave length
of the localisation band is manipulated by the varying values β. FEA results show that localization
path is well in line with the cleavage plane and the localized deformation is captured with in a band
whose size is mainly controlled by the length scale l defined in Equation (68).

Figure 4. Regularized damage bands in varying sizes manipulated by the parameter β (contour maps
of d).

Figure 5 demonstrates the mesh independency of the results for a given damage plane
with a constant parameter set with varying mesh densities. Results clearly show the successful
regularization and mesh independency of the approach.

Figure 5. Mesh independent solutions for the cleavage problem analyzed with a constant parameter
set with varying mesh density (contour maps of d).

In order to demonstrate the regularized damage accumulation on a rotated plane, a 2D block
with a cleavage plane tilted 25 degrees from the horizontal axis is analyzed under tension with a
central defect. Analysis results show that the localization band is perfectly placed on the predefined
rotated cleavage plane and the size of the band is kept constant throughout the crack as expected
(Figure 6).
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Figure 6. Regularized damage fields for a 25◦ rotated damage plane in clock-wise direction
(contour maps of d).

7. Concluding Remarks

In this work, we have made an attempt to unify the thermodynamically consistent representation
of the micromorphic theory presented in the previous work [17] and the microdamage approach
proposed by Aslan and Forest [18] for the purpose of modeling crack growth and damage regularization
in crystalline solids. It has been shown that the proposed approach is suitable for large deformations
and can conveniently be implemented for finite element analysis.

Our analytical effort also demonstrates that the characteristic solution which captures the intrinsic
length scale for the localization band can also be achieved by introducing a negligible energetic term.
That modification enables the material to undergo a fully damaged state where the equivalent stress
reads zero and naturally eliminates the problem of energetic resistance against softening, observed
in conventional strain gradient approaches.
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